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ABSTRACT
While the existing literature on Differential Privacy (DP) auditing

predominantly focuses on the centralized model (e.g., in auditing

the DP-SGD algorithm), we advocate for extending this approach

to audit Local DP (LDP). To achieve this, we introduce the LDP-

Auditor framework for empirically estimating the privacy loss of

locally differentially private mechanisms. This approach leverages

recent advances in designing privacy attacks against LDP frequency

estimation protocols. More precisely, through the analysis of nu-

merous state-of-the-art LDP protocols, we extensively explore the

factors influencing the privacy audit, such as the impact of different

encoding and perturbation functions. Additionally, we investigate

the influence of the domain size and the theoretical privacy loss pa-

rameters 𝜖 and 𝛿 on local privacy estimation. In-depth case studies

are also conducted to explore specific aspects of LDP auditing, in-

cluding distinguishability attacks on LDP protocols for longitudinal

studies and multidimensional data. Finally, we present a notable

achievement of our LDP-Auditor framework, which is the discovery

of a bug in a state-of-the-art LDP Python package. Overall, our LDP-

Auditor framework as well as our study offer valuable insights into

the sources of randomness and information loss in LDP protocols.

These contributions collectively provide a realistic understanding

of the local privacy loss, which can help practitioners in selecting

the LDP mechanism and privacy parameters that best align with

their specific requirements. We open-sourced LDP-Auditor in [4].
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1 INTRODUCTION
Differential Privacy (DP) [29] is now widely recognized as the

gold standard for providing formal guarantees on the privacy level

achieved by an algorithm. One of its extension, known as Local

DP (LDP) [28, 39], aims at tackling the trust challenges associated

with relying on a centralized server, such as those highlighted by

various data breaches [50] and instances of data misuse [71]. In

LDP, each user perturbs their own data locally before sharing it

with a data aggregator or a central server. The fundamental idea

behind LDP is to introduce carefully calibrated noise to the data to

ensure individual privacy guarantees while allowing meaningful

statistical analysis to be performed on the aggregated noisy data.
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Formally, a randomized algorithm M satisfies (𝜖, 𝛿)-local differ-

ential privacy ((𝜖, 𝛿)-LDP), for 𝜖 ≥ 0 and 0 ≤ 𝛿 ≤ 1, if for any pair

of input values 𝑣1, 𝑣2 ∈ Domain(M) and all possible sets of outputs
𝑂 ⊆ Range(M), the following inequality holds:

Pr[M(𝑣1) ∈ 𝑂] ≤ 𝑒𝜖 · Pr[M(𝑣2) ∈ 𝑂] + 𝛿 . (1)

In particular, (𝜖, 𝛿)-LDP is also called approximate LDP, with the

special case of 𝛿 = 0 being called pure 𝜖-LDP. On the one hand,

an (L)DP mechanism is accompanied by the mathematical proof

in Equation (1) that establishes a theoretical upper bound for

the privacy loss, represented by the privacy parameters 𝜖 and 𝛿 . In

particular, lower values of 𝜖 indicate stronger privacy guarantees.

On the other hand, the recent and emerging field of DP auditing

(e.g., see [3, 19, 36, 40, 44, 48, 53, 54, 56, 58, 60]) aims at estimating

an empirical lower bound for the privacy loss, denoted as 𝜖𝑒𝑚𝑝 .

The role of DP auditing is crucial because it bridges the gap

between theoretical guarantees and practical implementations, es-

pecially when theoretical bounds on privacy loss might be overly

pessimistic or not sufficiently tight (e.g., as in Differentially Private

Stochastic Gradient Descent – DP-SGD [1]). In other words, DP

auditing helps in understanding howwell privacy-preserving mech-

anisms perform under different conditions and attack scenarios [54].

Furthermore, auditing can uncover potential vulnerabilities or flaws

in the implementation that might not be apparent through theo-

retical analysis alone [27, 60, 61]. From a practical standpoint, the

empirical estimation of the privacy loss through realistic attackers

can also help practitioners make informed decisions and under-

stand the implications of specific privacy parameter choices. These

instances underscore the significance of empirically estimating and

verifying the claimed privacy levels of (L)DP mechanisms.

1.1 Our Contributions
With these motivations in mind, in this paper, we introduce the

LDP-Auditor framework, which is designed to audit LDP frequency

estimation protocols and estimate their empirical privacy loss. Fre-

quency (or histogram) estimation is a primary objective of LDP as

it is a building block for more complex tasks. This means our audit
results are applicable and relevant to numerous tasks under LDP guar-
antees, such as heavy hitter estimation [15, 68], joint distribution

estimation [24, 41, 57, 75], frequent item-set mining [67, 72], ma-

chine learning [49, 74], frequency estimation of multidimensional

data [5, 55, 64] and frequency monitoring [7, 10, 26, 32, 63].

More precisely, LDP-Auditor relies onMonte Carlomethods to es-

timate the probabilities 𝑝0 = Pr[M(𝑣1) ∈ 𝑂] and 𝑝1 = Pr[M(𝑣2) ∈
𝑂] from Equation (1) through attacks. From this, an empirical pri-

vacy loss is computed, 𝜖𝑒𝑚𝑝 = ln ((𝑝0 − 𝛿) /𝑝1), thus providing
an estimate of the algorithm’s privacy leakage. A comprehensive
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discussion on the LDP-Auditor framework, including its detailed

methodology and applications, is deferred to Section 4.

Unlike traditional DP-SGD auditing, in which the focus is on

distinguishing neighboring datasets, LDP-Auditor assesses the dis-

tinguishability of inputs directly. To achieve this, we instantiate

LDP-Auditor with distinguishability attacks based on recent ad-

versarial analysis of LDP frequency estimation protocols [9, 31].

These attacks allow an adversary’s to predict the user’s input value

based on the obfuscated output, enabling LDP-Auditor to directly

evaluate the privacy guarantees offered by LDP mechanisms, mak-

ing it well-suited for privacy auditing. In this context, expanding

beyond [9, 31], we also introduce novel distinguishability attacks tai-

lored to four additional LDP frequency estimation protocols based

on histogram encoding [66], as well as general distinguishability

attacks on LDP protocols for longitudinal studies (see Algorithm 2)

and on LDP protocols for multidimensional data (see Algorithm 3).

As an example, Figure 1 illustrates an instance of our auditing

results for a theoretical upper bound of 𝜖 = 2 (indicated by the

dashed red line) across eight 𝜖-LDP frequency estimation proto-

cols: Generalized Randomized Response (GRR) [37], Subset Selec-

tion (SS) [65, 73], Symmetric Unary Encoding (SUE) [32], Optimal

Unary Encoding (OUE) [66], Thresholding with Histogram Encod-

ing (THE) [66], Summation with Histogram Encoding (SHE) [29],

Binary Local Hashing (BLH) [15] and Optimal Local Hashing

(OLH) [66]. Among all these protocols, GRR demonstrated a tight

empirical privacy loss estimation for 𝜖𝑒𝑚𝑝 as it does not require

a specific encoding. On the other hand, other LDP protocols pre-

sented 𝜖𝑒𝑚𝑝 within ≤ 2x of the theoretical 𝜖 (such as SUE, THE

and SHE), and even within ≤ 4x of the theoretical 𝜖 (like BLH).

These results indicate that either the state-of-the-art attacks are still
not representative of the worst-case scenario or that the upper bound
analyses of these LDP protocols are not tight. The latter assumption
might occur for LDP protocols that incorporate sources of randomness
(e.g., due to hashing [2, 15, 59, 66]) not captured in the worst-case

definition of LDP in Equation (1).

More specifically, we have investigated several factors influ-
encing the audit, including the effect of theoretical privacy loss

parameters (𝜖 and 𝛿) in low, mid and high privacy regimes as well

as the impact of the domain size 𝑘 on local privacy estimation.

Our investigation included detailed case studies to further
explore specific facets of LDP auditing. Notably, our analysis
assessed how variations in 𝛿 affect the empirical privacy loss, 𝜖𝑒𝑚𝑝 ,

for approximate LDP variants [69] of the GRR, SUE, BLH and OLH

protocols, alongside with the Gaussian Mechanism (GM) [30] and

the Analytic GM (AGM) [14]. Moreover, given that BLH exhibited

the least tight empirical privacy loss estimation 𝜖𝑒𝑚𝑝 , we investi-

gated the privacy loss of local hashing without LDP obfuscation.

In addition, we examined the degradation of the empirical local

privacy loss in repeated data collections compared to the theoretical

upper bound imposed by the (L)DP sequential composition [30].

In this context, within a generic framework, we proposed distin-

guishability attacks on LDP protocols in longitudinal studies (cf.
Algorithm 2). Furthermore, we addressed the case of multidimen-
sional data, proposing distinguishability attacks for LDP protocols

following the RS+FD [5] solution (cf. Algorithm 3). We also show
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Figure 1: Comparison of estimated privacy loss 𝜖𝑒𝑚𝑝 with
theoretical upper bound 𝜖 = 2 for eight pure LDP frequency
estimation protocols. The dashed red line corresponds to the
certifiable upper bound. While GRR closely aligns with the
theoretical bound, others exhibit empirical 𝜖𝑒𝑚𝑝 within ≤ 2x
(e.g., SUE) or even ≤ 4x (i.e., BLH) of the theoretical 𝜖 value.

how LDP-Auditor successfully identified a bug in one state-of-the-
art LDP Python package, in which the empirical privacy loss 𝜖𝑒𝑚𝑝

contradicts the theoretical upper bound 𝜖 (see Figure 8).

Taking all these aspects into account, the coverage of our analysis

is broadened, allowing for a more comprehensive assessment of

the robustness of various LDP protocols in realistic data collection

scenarios. More specifically, our main contributions in this paper

can be summarized as follows:

• We introduce the LDP-Auditor framework, which aims to

estimate the empirical privacy loss of LDP frequency estima-

tion protocols. This framework provides a realistic assess-

ment of privacy guarantees, which is essential for making

informed decisions about LDP parameter selection and on

stimulating the research of new privacy attacks.

• We introduce novel distinguishability attacks specifically

tailored to LDP protocols for longitudinal studies and mul-

tidimensional data. These new attacks enrich the privacy

analysis techniques available for examining the robustness

of LDP mechanisms in practical settings.

• We conduct an extensive audit of various LDP protocols,

analyzing the impact of factors such as privacy regimes, do-

main size and multiple data collections. This comprehensive

analysis provides valuable insights into the resilience and

effectiveness of nine state-of-the-art LDP mechanisms, fun-

damental building blocks for applications such as frequency

monitoring [10, 26, 32, 63], heavy hitter estimation [15, 68]

and machine learning [49, 74].

• We demonstrate the bug detection capabilities of LDP-

Auditor by identifying an issue in a state-of-the-art LDP

Python package. This highlights the practical significance of

our framework in validating LDP implementations.

2 RELATEDWORK
Differential privacy auditing, as introduced by Jagielski et al. [36],

involves employing various techniques to empirically assess the

extent of privacy leakage in machine learning algorithms through

estimating the 𝜖𝑒𝑚𝑝 privacy loss. These techniques are particularly
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valuable when known analytical bounds on the DP loss lack preci-

sion, allowing for empirical measurements of privacy in such cases.

For instance, DP auditing has been extensively investigated in eval-

uating the mathematical analysis for the well-known DP-SGD algo-

rithm proposed by Abadi et al. [1]. The research literature on DP-

SGD auditing covers both centralized [19, 36, 44, 53, 54, 56, 58, 60]

and federated [3, 48] learning settings. Beyond privacy-preserving

machine learning, privacy auditing has also been studied for stan-

dard DP algorithms [11, 17, 27, 34, 45]. For instance, some of these

works consider a fully black-box scenario (i.e., unknown DP mech-

anism) with the goal of estimating the 𝜖-(L)DP guarantee pro-

vided [11, 34, 45]. Another line of research [17, 27] has been tailored

to identify errors in algorithm analysis or code implementations,

especially when derived lower bounds contradict theoretical upper

bounds. While the works in [17, 27] could also be used to certify the

𝜖-LDP guarantee through Monte Carlo estimations, our work con-

siders realistic privacy attacks to LDP mechanisms to empirically

estimate the privacy loss 𝜖𝑒𝑚𝑝 . In other words, they would be able

to answer “is the claimed 𝜖-LDP correct in this code implementation?”,
whereas we alternatively answer “is the claimed 𝜖-LDP worst-case
guarantee tight under state-of-the-art attacks?”.

This distinction highlights our emphasis on assessing the tight-

ness of privacy guarantees under stringent adversarial conditions.

Consequently, we envision our auditing analysis as an stimulus for

advancing the current state-of-the-art in privacy attacks on LDP

protocols and achieve tight empirical estimates for 𝜖𝑒𝑚𝑝 . In this

context, the existing literature on privacy attacks on LDP comprises

several categories: (1) Distinguishability attacks [9, 21, 31] (adopted

in this work), which enable adversaries to predict the users’ input

based on the obfuscated outputs; (2) Pool inference attacks [33],

allowing adversaries to deduce a user’s preferences or attributes

from the aggregated data, such as inferring a user’s preferred skin

tone used in emojis; (3) Re-identification attacks [9, 52], aiming to

uniquely identify a specific user within a larger population; and

(iv) Attacks on iterative data collections [10, 35], which allows ad-

versaries to detect a pattern change in longitudinal studies, such as

when someone starts a diet by monitoring calorie consumption.

3 LDP FREQUENCY ESTIMATION PROTOCOLS
In this section, we review the necessary notation (cf. Table 1 in

Appendix A) and background information of the LDP frequency

estimation protocols. Throughout the paper, let [𝑛] = {1, 2, . . . , 𝑛}
denote a set of integers and 𝑉 = {𝑣1, . . . , 𝑣𝑘 } represent a sensitive
attribute with a discrete domain of size 𝑘 = |𝑉 |. We consider a

distributed setting with 𝑛 users and one untrusted server collecting

the data reported by these users. The fundamental premise of (𝜖, 𝛿)-

LDP, as stated in Equation (1), is that the input to M cannot be

confidently determined from its output, with the level of confidence

determined by 𝑒𝜖 and 𝛿 . Therefore, the user’s privacy is considered

compromised if the adversary can correctly predict the user’s value.

In recent works [9, 31], the authors introduced distinguisha-
bility attacks A to state-of-the-art LDP frequency estimation

protocols. These attacks enable an adversary to predict the users’

value 𝑣 = A(𝑦), in which 𝑦 = M(𝑣) represents the reported value

obtained through the 𝜖-LDP protocol. In essence, although each

LDP protocol employs different encoding and perturbation func-

tions, the adversary’s objective remains the same, namely to predict

the user’s true value by identifying the most likely value that would

have resulted in the reported value 𝑦. The notion of distinguisha-

bility attacks provides a unified approach to evaluate the privacy

guarantees offered by different LDP protocols.

We now provide a brief overview of state-of-the-art pure and ap-

proximate LDP frequency estimation protocolsM, along with their

respective distinguishability attacks denoted as AM . The attack

AM generally relies on a “support set” [66], denoted as 1M , which

is built upon the reported value 𝑦. The combination of these proto-

cols and attack strategies will enable us to comprehensively audit

the empirical privacy level provided by various LDP mechanisms.

3.1 Pure 𝜖-LDP Protocols
Generalized Randomized Response (GRR). The GRR [37] mech-

anism generalizes the randomized response surveying technique

proposed by Warner [70] for 𝑘 ≥ 2 while satisfying 𝜖-LDP. Given

a value 𝑣 ∈ 𝑉 , GRR(𝑣) outputs the true value 𝑣 with probability 𝑝 ,

and any other value 𝑣 ′ ∈ 𝑉 \ {𝑣}, otherwise. More formally:

Pr[GRR(𝑣) = 𝑦] =
{
𝑝 = 𝑒𝜖

𝑒𝜖+𝑘−1 if 𝑦 = 𝑣,

𝑞 = 1

𝑒𝜖+𝑘−1 if 𝑦 ≠ 𝑣 ,
(2)

in which 𝑦 ∈ 𝑉 is the perturbed value sent to the server. The

support set for GRR is simply 1GRR = {𝑦}. From Equation (2),

Pr[𝑦 = 𝑣] > Pr[𝑦 = 𝑣 ′] for all 𝑣 ′ ∈ 𝑉 \ {𝑣}. Therefore, the attack
strategy AGRR is to predict 𝑣 = 𝑦 [9, 31].

Subset Selection (SS). The SS [65, 73] mechanism was proposed

for the case in which the obfuscation output is a subset of values Ω
of the original domain 𝑉 . The optimal subset size that minimizes

the variance is 𝜔 = |Ω | = max

(
1,

⌊
𝑘

𝑒𝜖+1

⌉)
. Given an empty subset

Ω, the true value 𝑣 is added to Ω with probability 𝑝 = 𝜔𝑒𝜖

𝜔𝑒𝜖+𝑘−𝜔 .

Finally, values are added to Ω as follows:

• If 𝑣 ∈ Ω, then𝜔−1 values are sampled from𝑉 \{𝑣} uniformly

at random (without replacement) and are added to Ω;
• If 𝑣 ∉ Ω, then 𝜔 values are sampled from 𝑉 \ {𝑣} uniformly

at random (without replacement) and are added to Ω.

Afterward, the user sends the subset Ω to the server. The support

set for SS is the subset of all values in Ω, i.e., 1SS = {𝑣 |𝑣 ∈ Ω}. There-
fore, the attack strategyASS is to predict 𝑣 = Uniform (1SS) [9, 31].

Unary Encoding (UE). UE protocols [32, 66] encode the

user’s input data 𝑣 ∈ 𝑉 , as a one-hot 𝑘-dimensional vector be-

fore obfuscating each bit independently. More precisely, let v =

[0, . . . , 0, 1, 0, . . . , 0] be a binary vector with only the bit at the po-

sition 𝑣 set to 1 while the other bits are set to 0. The obfuscation

function of UE mechanisms randomizes the bits from v indepen-

dently to generate y as follows:

∀𝑖 ∈ [𝑘] : Pr[y𝑖 = 1] =
{
𝑝, if v𝑖 = 1,

𝑞, if v𝑖 = 0,

(3)

in which y is sent to the server. There are two variations of UE

mechanisms: (i) Symmetric UE (SUE) [32] that selects 𝑝 = 𝑒𝜖/2

𝑒𝜖/2+1
and 𝑞 = 1

𝑒𝜖/2+1 in Equation (3), such that 𝑝 + 𝑞 = 1; and (ii) Optimal

UE (OUE) [66] that selects 𝑝 = 1

2
and 𝑞 = 1

𝑒𝜖+1 in Equation (3). With
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y, the adversary can construct the subset of all values 𝑣 ∈ 𝑉 that

are set to 1, i.e., 1UE = {𝑣 |y𝑣 = 1}. There are two possible attack

strategies AUE [9, 31]:

• A0

UE
is a random choice 𝑣 = Uniform ( [𝑘]), if 1UE = ∅;

• A1

UE
is a random choice 𝑣 = Uniform (1UE), otherwise.

Local Hashing (LH). LH protocols [15, 66] use hash functions

to map the input data 𝑣 ∈ 𝑉 to a new domain of size 𝑔 ≥ 2, and

then apply GRR to the hashed value. Let H be a universal hash

function family such that each hash function H ∈ H hashes a

value 𝑣 ∈ 𝑉 into [𝑔] (i.e., H : 𝑉 → [𝑔]). There are two variations

of LH mechanisms: (i) Binary LH (BLH) [15] that just sets 𝑔 = 2,

and (ii) Optimal LH (OLH) [66] that selects 𝑔 = ⌊𝑒𝜖 + 1⌉. Each user

first selects a hash function H ∈ H at random and obfuscates the

hash value ℎ = H(𝑣) with GRR. In particular, the LH reporting

mechanism is LH(𝑣) B ⟨H,GRR(ℎ)⟩, in which GRR(ℎ) is given in

Equation (2) while operating on the new domain [𝑔]. Each user

reports the hash function and obfuscated value ⟨H, 𝑦⟩ to the server.

With these elements, the adversary can construct the subset of all

values 𝑣 ∈ 𝑉 that hash to 𝑦, i.e., 1LH = {𝑣 |H(𝑣) = 𝑦}. There are two
possible attack strategies ALH [9, 31]:

• A0

LH
is a random choice 𝑣 = Uniform ( [𝑘]), if 1LH = ∅;

• A1

LH
is a random choice 𝑣 = Uniform (1LH), otherwise.

Histogram Encoding (HE). HE protocols [66] encode

the user value as a one-hot 𝑘-dimensional histogram, v =

[0.0, 0.0, . . . , 1.0, 0.0, . . . , 0.0] in which only the 𝑣-th component

is 1.0. To satisfy 𝜖-LDP, HE(v) perturbs each bit of v indepen-

dently using the Laplace mechanism [29]. Two different input val-

ues 𝑣1, 𝑣2 ∈ 𝑉 will result in two vectors with L1 distance of Δ1 = 2.

Thus, HE will output y such that y𝑖 = v𝑖 + Lap

(
Δ1

𝜖

)
. In this paper,

we propose distinguishability attacks on two pure 𝜖-LDP HE protocols:
• Summation with HE (SHE) [29]. With SHE, there is no

post-processing of y. Instead of constructing a support set,

we describe our attacking strategy to SHE as follows. Let

𝑃𝑉 (𝑣) be the prior probability of input value 𝑣 , and let

𝑃𝑌 (y|𝑣) be the likelihood of observing y given the true input

value 𝑣 . By the Bayes’ theorem, the posterior probability of

input value 𝑣 given the observed y is:

𝑃𝑉 (𝑣 |y) = 𝑃𝑌 (y|𝑣)𝑃𝑉 (𝑣)∑𝑘
𝑖=1 𝑃𝑌 (y|𝑖)𝑃𝑉 (𝑖)

. (4)

We can compute the likelihood 𝑃𝑌 (y|𝑣) as follows. For a
given 𝑣 , the corresponding one-hot encoded histogram is v.
The reported value y is the sum of v and noise from a Laplace

distribution with scale 𝑏 = 2/𝜖 . Therefore, the likelihood of

observing y given v is:

𝑃𝑌 (y|v) =
1

(2𝑏)𝑘
exp

(
− |y − v|1

𝑏

)
, (5)

in which |y − v|1 is the L1 distance between y and v. To
perform the attack, we compute the posterior probability

𝑃𝑉 (𝑣 |y) for each possible input value 𝑣 ∈ 𝑉 and output the

most probable input value. In other words, given the reported

y, our Bayes optimal attack A𝑆𝐻𝐸 outputs:

𝑣 = argmax

𝑣∈𝑉
𝑃𝑉 (𝑣 |y) . (6)

Note that this attack requires knowledge of the prior proba-

bility distribution 𝑃𝑉 (𝑣). If the prior is unknown (assumed

in this paper), one can use a uniform prior.

• Thresholding with HE (THE) [66]. With THE, the server

(or the user) can construct the support set as 1THE =

{𝑣 | y𝑣 > 𝜃 }, i.e., each noise count whose value > 𝜃 . The

optimal threshold value for 𝜃 that minimizes the protocol’s

variance is within (0.5, 1). With 1THE = {𝑣 | y𝑣 > 𝜃 }, we
propose an adversary ATHE with two attack strategies:

– A0

THE
is a random choice 𝑣 = Uniform ( [𝑘]), if 1THE = ∅;

– A1

THE
is a random choice 𝑣 = Uniform (1THE), otherwise.

3.2 Approximate (𝜖, 𝛿)-LDP Protocols
In this section, we describe two (𝜖, 𝛿)-LDP protocols, which are

based on the Gaussian mechanism [14, 30]. We defer the descrip-

tions of approximate (𝜖, 𝛿)-LDP variants [69] of GRR, SUE and LH

protocols – namely, Approximate GRR (AGRR), Approximate SUE

(ASUE), Approximate LH (ALH) – to Appendix B.

HE with Gaussian Mechanism (HE-GM) [14, 30]. Similar

to HE protocols of Section 3.1, HE-GM protocols encode the user

value as a one-hot 𝑘-dimensional histogram. Then, HE-GM(v) per-
turbs each bit of v independently using a Gaussian mechanism

(GM) [14, 30]. Two different input values 𝑣1, 𝑣2 ∈ 𝑉 will result in

two vectors with L2 distance of Δ2 =
√
2. Thus, HE-GM will out-

put y such that y𝑖 = v𝑖 + N
(
0, 𝜎2

)
, in which 𝜎 is determined by

𝜖, 𝛿, and Δ2. When using the well-established GM for 𝜖, 𝛿 ∈ (0, 1),
𝜎 =

Δ2

𝜖

√︁
2 ln(1.25/𝛿) [30]. In this paper, we also consider the Ana-

lytic GM (AGM) [14], which is an improved version of the GM [30]

and can be applied for any 𝜖 > 0. The main difference between

GM and AGM is the method to parameterize 𝜎 . With AGM, 𝜎 is

calculated analytically as demonstrated in [14, Algorithm 1] and its

implementation [12]. Hereafter, we will specifically denote “AGM”

and “GM” when referring to HE-GM instantiated with AGM and

GM, respectively.

Building upon our distinguishability attack’s description of the

SHE protocol with Laplace noise, we extend the attack analysis to

HE-GM protocols. The overall strategy, including the use of Bayes’

theorem to compute posterior probabilities, remains consistent with

our prior description in Section 3.1 (cf. Equation (4)). However, the

key difference lies in the noise distribution used for ensuring LDP.

While the Laplace mechanism involves adding noise drawn from

a Laplace distribution with scale 𝑏 = 2/𝜖 , the Gaussian mechanism

adds noise following the normal distribution, (i.e., N
(
0, 𝜎2

)
). This

needs a different computation for the likelihood 𝑃𝑌 (y|𝑣) in Equa-

tion (5), reflecting the properties of Gaussian noise. Accordingly,

the likelihood of observing y given v under Gaussian noise is:

𝑃𝑌 (y|v) =
1√︁

(2𝜋𝜎2)𝑘
exp

(
−
|y − v|2

2

2𝜎2

)
, (7)

in which |y − v|2
2
denotes the L2 squared distance between y and v.

Then, our Bayes optimal attack for HE-GM protocols AHE-GM

predicts the most probable input value, 𝑣 , given the reported y, by
following Equation (6). Remark that Equation (7) is valid for both

GM and AGM as a function of their respective noise scale 𝜎 . Similar

to the A𝑆𝐻𝐸 attack, if the prior probability distribution 𝑃𝑉 (𝑣) is
unknown, a uniform prior may be assumed for the analysis.
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4 LDP AUDITING
In this section, we introduce our LDP-Auditor framework (Sec-

tion 4.1) and our distinguishability attacks considering multiple

data collections (Section 4.2 and Section 4.3).

4.1 LDP-Auditor
Our LDP-Auditor framework builds upon previous work on central

DP auditing [36] with slight modifications tailored for LDP auditing.

This adaptation is necessary due to the intrinsic differences between

the central DP and LDP models, primarily regarding the granularity

of privacy and the nature of the data being protected. Figure 9 in

Appendix C compares the adversarial privacy game between central

and local DP. Unlike central DP, in which the adversary’s objec-

tive is to distinguish between two “neighboring datasets”, the LDP

model shifts the focus towards distinguishing between individual

“inputs”. We instantiate LDP-Auditor with distinguishability attacks

to construct a robust test statistic for auditing LDP mechanisms.

Specifically, we can formulate a distinguishability attack as a binary

hypothesis testing problem: H : “𝑦 comes from 𝑣1”. The attacker

receives an output drawn from one of the two distributions M(𝑣1)
orM(𝑣2) and has to infer whether the input was 𝑣1 or not. If the

algorithmM is (𝜖, 𝛿)-LDP, then no distinguishability attacks can

be too accurate [38]. Specifically, for any distinguishability attack

A, we can statistically measure LDP re-writing Equation (1) as:

Pr[A(M(𝑣1)) = 𝑣1]︸                    ︷︷                    ︸
True Positive Rate (TPR)

≤ 𝑒𝜖 · Pr[A(M(𝑣2)) = 𝑣1]︸                    ︷︷                    ︸
False Positive Rate (FPR)

+ 𝛿 . (8)

IfM satisfies (𝜖, 𝛿)-LDP, then 𝜖 ≥ ln

(
TPR−𝛿
FPR

)
. In this formula-

tion, the TPR is the probability that the attack correctly identifies

𝑦 as coming from 𝑣1, and the FPR is the likelihood that 𝑦 is in-

correctly attributed to 𝑣1 when it comes from 𝑣2. Note that the 𝛿

term in Equation (8) reflects the privacy budget from M and is not

an independent probability or error rate introduced by the distin-

guishability attack A. However, a single run of a distinguishability

attack is typically not sufficient to draw meaningful conclusions

due to the inherent variability in the mechanism’s outputs. Thus, to

ensure the robustness of our empirical privacy loss estimation and

account for statistical uncertainty, LDP-Auditor runs for multiple

trials 𝑇 in order to compute the TPR and FPR from Equation (8).

Then, to affirm that our empirical privacy loss estimation is valid

with a probability greater than 1−𝛼 , we use Clopper-Pearson confi-

dence intervals
1
[22] to establish a lower bound 𝑝1 for the FPR and

an upper bound 𝑝0 for the TPR, each with a confidence of 1 − 𝛼/2.
As a consequence, we can be confident that our empirical privacy

loss estimation 𝜖𝑒𝑚𝑝 = ln

(
𝑝0−𝛿
𝑝1

)
, holds with probability 1−𝛼 . This

procedure is outlined in Algorithm 1, and we prove its correctness

in Theorem 1. The proof of Theorem 1 is deferred to Appendix E.

Theorem 1 (Correctness of LDP-Auditor). Given black-box
access to an LDP mechanismM, and a distinguishability attack A,
for any two distinct values 𝑣1, 𝑣2, a number of trials𝑇 , and a statistical
confidence 𝛼 , if LDP-Auditor in Algorithm 1 returns 𝜖𝑒𝑚𝑝 , then, with
probability 1 − 𝛼 , M does not satisfy (𝜖 ′, 𝛿)-LDP for any 𝜖 ′ < 𝜖𝑒𝑚𝑝 .

1
We briefly describe the generic Clopper-Pearson method in Appendix D.

Algorithm 1 LDP-Auditor.

Input : Theoretical 𝜖 and 𝛿 , LDP protocolM, distinguishability

attack A, values 𝑣1, 𝑣2 ∈ 𝑉 , trial count 𝑇 , confidence level 𝛼 .

Output : Estimated privacy loss 𝜖𝑒𝑚𝑝 .

1: TP = 0, FP = 0 ⊲ True Positive (TP) and False Positive (FP)

2: for 𝑖 ∈ [𝑇 ] do
3: if A(M(𝑣1)) = 𝑣1 TP = TP + 1

4: if A(M(𝑣2)) = 𝑣1 FP = FP + 1

5: end for
6: 𝑝0 = ClopperPearsonLower(TP,𝑇 , 𝛼/2)
7: 𝑝1 = ClopperPearsonUpper(FP,𝑇 , 𝛼/2)

return : 𝜖𝑒𝑚𝑝 = ln((𝑝0 − 𝛿)/𝑝1)

Accounting for statistical uncertainty. We highlight that

when we refer to 𝜖𝑒𝑚𝑝 as an empirical lower bound with prob-

ability 1 − 𝛼 , this naming is solely due to the inherent random-

ness of the Monte Carlo sampling process, without the need for

any specific modeling or assumptions. By increasing the num-

ber of trials 𝑇 , we can progressively enhance our confidence

level towards 1. Furthermore, the decision to employ the Clopper-

Pearson method stems from its relevance when an exact confi-

dence interval is desired, in contrast to approximate methods (e.g.,
heuristic approaches). This approach enables a more reliable safe-

guard against underestimating privacy risks, and has been widely

used in central DP audit research [17, 36, 54, 60]. In this work,

we utilize the Clopper-Pearson implementation provided by the

proportion_confintmethod in the Python package statsmodels
(https://pypi.org/project/statsmodels/).

Choice of parameters. Given that LDP frequency estimation

protocols usually distribute noise uniformly at random, the esti-

mation of the empirical privacy loss 𝜖𝑒𝑚𝑝 is not contingent upon

selecting values 𝑣1 and 𝑣2 to represent a “worst-case scenario”, un-

like in central DP audit. Considering𝑉 = {1, 2, . . . , 𝑘}, in this work,

we set 𝑣1 = 1 and 𝑣2 = 2. The performed tests revealed no sta-

tistical difference when experiments were conducted with 𝑣1 = 1

and a dynamic 𝑣2 = Uniform(2, 𝑘). Considering the experimental

setup parameters, the number of trials 𝑇 and the confidence level

1 − 𝛼 should be chosen to balance computational efficiency with

the robustness of the empirical privacy loss estimation. Typically, a

larger 𝑇 enhances the reliability of 𝜖𝑒𝑚𝑝 estimates, while a smaller

𝛼 increases the confidence in these estimates. In this work, we

recommend selecting 𝑇 to be sufficiently large to ensure stable

estimates across multiple experiments (e.g., we set 𝑇 = 10
6
) and

setting 𝛼 to reflect a high confidence level, such as 0.05 or 0.01, to

underpin the statistical significance of the empirical findings.

Limits on the empirical privacy loss estimation. The 𝜖𝑒𝑚𝑝

reported by Algorithm 1 is upper bounded by the theoretical 𝜖 but

also by an upper bound imposed by Monte Carlo estimation, which

will be denoted by 𝜖𝑂𝑃𝑇 and depends on 𝛼 and 𝑇 . For instance, let

𝛼 = 0.01 to get a 99%-confidence bound and 𝑇 = 10
4
trials. Even

if we get perfect inference accuracy with TP = 𝑇 and FP = 0, the

Clopper-Pearson confidence interval would produce 𝑝0 = 0.9994

and 𝑝1 = 0.0006, which implies an empirical privacy loss of 𝜖𝑒𝑚𝑝 =

7.42. This means, with 99% probability, the true 𝜖 is at least 7.42,

and 𝜖𝑂𝑃𝑇 (𝛼,𝑇 ) = 7.42.
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4.2 LDP-Auditor for Longitudinal Studies
In practice, the server often needs to collect users’ data periodi-

cally throughout multiple data collections (i.e., longitudinal studies).
Nevertheless, in the worst-case, one known result in (L)DP is that

repeated data collections have a linear privacy loss due to the
sequential composition [30]. This occurs because attackers can

exploit “averaging attacks” to distinguish the user’s actual value

from the added noise. For this reason, well-known LDP mecha-

nisms for longitudinal studies such as RAPPOR [32] (deployed in

Google Chrome) and 𝑑BitFlipPM [26] (deployed in Windows 10),

were designed with a memoization-based solution. We discuss how

to audit LDP mechanisms based on memoization in Appendix F.

Given 𝜏 data collections, we aim to audit the empirical privacy

loss of LDP protocols in comparison to the upper bound 𝜏𝜖-LDP

imposed by the (L)DP sequential composition. Our main motiva-

tion is to evaluate how tight the sequential composition is for LDP

protocols. Furthermore, this audit will provide insights into the

privacy implications of real-world applications similar to those im-

plemented by Apple [59], in which memoization was not employed.

In Algorithm 2, we present the extension of distinguishability

attacks on LDP protocols to longitudinal studiesA𝐿
. In this context,

the adversary’s objective remains the same: to predict the user’s

true value by determining the most probable value that would have

generated the reported value𝑦𝑡 after 𝜏 data collections. Notably, the

adversary now possesses an increased knowledge due to random

fresh noise being added to the user’s value 𝑣 over 𝜏 times. To per-

form the “averaging attack”, in each data collection, the adversary

constructs the “support set” based on the reported value 𝑦𝑡 and

LDP mechanism M. The support set is then used to increment the

knowledge (i.e., count) about the user’s true value and what con-

stitutes noisy data, ultimately predicting 𝑣 . We highlight that the

exceptions are HE-based protocols in which the notion of a support

set is not applicable, namely SHE, GM and AGM, rendering Algo-

rithm 2 inapplicable. In these protocols, Laplace or Gaussian noise

with a mean of 0 is added in each data collection. Consequently,

the “averaging attack” is straightforward as it involves determining

𝑣 by taking the argmax of the summation of all reports. Formally,

this is expressed as 𝑣 = argmax

(∑𝜏
𝑡=1 y

𝑡
)
.

Finally, our LDP-Auditor framework (Algorithm 1) can be used

to estimate the privacy loss of LDP protocols in longitudinal studies.

To achieve this, one can simply replace “A(M(𝑣))” in Lines 3 and

4 of Algorithm 1 with “A𝐿 (𝑣)”, i.e., the distinguishability attack

outlined in Algorithm 2, which already takes into accountM.

4.3 LDP-Auditor for Multidimensional Data
Another dimension of interest to the server is multidimensional
data (i.e., 𝑑 ≥ 2 attributes), aiming to enable more comprehensive

decision-making. Considering potential correlations among these

attributes, the principles of DP sequential composition [30] remain

applicable in this context. Therefore, the existing solutions for

multidimensional data, represented as v = [𝑣1, 𝑣2, . . . , 𝑣𝑑 ], include:
• Splitting (SPL): This naïve method involves partitioning

the privacy budget 𝜖 among the 𝑑 attributes, collecting each

attribute under
𝜖
𝑑
-LDP. Examples based on this SPL solution

are the LoPub [57] and Castell [41] mechanisms, which are

designed for joint distribution estimation.

Algorithm 2 Distinguishability Attack in Longitudinal Study: A𝐿
.

Input : User value 𝑣 , privacy guarantee 𝜖 , LDP protocol M,

number of data collections 𝜏 .

Output : Predicted value 𝑣 .

1: Initialize a 𝑘 sized zero-vector z = [0, 0, . . . , 0]
2: for 𝑡 ∈ [𝜏] do:
3: User-side randomization 𝑦𝑡 = M(𝑣)
4: Given 𝑦𝑡 , adversary construct support set 1M
5: for 𝑣 ∈ 1M do:
6: Increment count z[𝑣] = z[𝑣] + 1

7: end for
8: end for
9: Predict 𝑣 = argmax(z)

return : 𝑣

• Sampling (SMP): In this approach, users are divided into

𝑑 disjoint sub-groups. Each sub-group 𝑗 ∈ [𝑑] then reports

the 𝑗-th attribute under 𝜖-LDP. Example of mechanisms us-

ing the SMP solution include CALM [75] and FELIP [24],

proposed for marginal estimation, and [55, 64, 69], which

introduced LDP mechanisms for mean estimation.

• Random Sampling Plus Fake Data (RS+FD) [5]: In this

solution, each user samples a single attribute 𝑗 ∈ [𝑑] to re-
port 𝑣 𝑗 under 𝜖

′
-LDP and reports uniform fake data for the

𝑑 − 1 non-sampled attributes. Because the sampling result

is not disclosed to the aggregator, there is amplification by

sampling [13, 43]. For this reason, RS+FD utilizes an ampli-

fied privacy budget 𝜖 ′ = ln (𝑑 · (𝑒𝜖 − 1) + 1) for the sampled

attribute. An example based on RS+FD is the GRR-FS mech-

anism [16], designed for node-level LDP on graph data, to

enable training of graph neural networks.

Upon closer examination of the three solutions, one can notice

that both SPL and SMP solutions can be considered as straight-

forward instances of reporting one attribute with a given LDP

mechanism (one at a time for SPL). Consequently, our LDP-Auditor

framework can be directly used to estimate empirical privacy losses

𝜖𝑒𝑚𝑝 for LDP mechanisms following the SPL and SMP solutions.

Therefore, in this work, our focus shifts towards auditing the RS+FD

solution, for which there is a privacy amplification effect due to

uncertainty on the server side.

In Algorithm 3, we introduce the distinguishability attack de-

signed for LDP protocols following the RS+FD solution, denoted as

ARS+FD
. Here, the adversary’s objective is twofold: first, to predict

the attribute that the user has sampled, and subsequently, to predict

the user’s actual value. Since each user selects an attribute 𝑗 ∈ [𝑑]
uniformly at random, the Bayes optimal guess for the adversary

is 𝑗 = Uniform( [𝑑]). Once the attribute is predicted, the adversary
constructs the “support set” based on the reported value𝑦 𝑗 and LDP

mechanismM. With the support set, as in Section 3, the adversary

predicts the user’s value 𝑣 𝑗 .

Finally, we extend our LDP-Auditor framework for RS+FD proto-

cols in Algorithm 4. Themain change is due to themultidimensional

data setting, for which we define v1 and v2 in Lines 1 and 2 of Al-

gorithm 4. The test statistic remains unchanged, as it is derived

from distinguishability attacks as per Algorithm 3. Notice that one
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main difference with RS+FD auditing is that even if the user did

not sample the attribute 𝑗 , the attack can still predict the user’s

value 𝑣 𝑗 correctly due to uniform fake data generation for that

attribute. Our goal is thus to audit if RS+FD satisfies the claimed 𝜖-

LDP guarantee with amplification by sampling. Algorithm 4 builds

upon the foundational principles established in Section 4.1 and in

Algorithm 1 and, consequently, the framework’s correctness and

reliability extend to this adaptation as well.

Algorithm 3 Distinguishability Attack on RS+FD: ARS+FD
.

Input : User values v = [𝑣1, 𝑣2, . . . , 𝑣𝑑 ], privacy guarantee 𝜖 ,

RS+FD protocolM.

Output : Predicted value 𝑣 𝑗 .

1: for 𝑖 ∈ [𝑑] do: ⊲ cf. RS+FD [5, Algorithm 1]

2: User-side randomization 𝑦𝑖 = M(𝑣𝑖 )
3: end for
4: Adversary predict user’s sampled attribute 𝑗 = Uniform( [𝑑])
5: Given 𝑦 𝑗 , construct support set 1M
6: Predict 𝑣 𝑗 = Uniform(1M ) ⊲ cf. Section 3

return : 𝑣 𝑗

Algorithm 4 LDP-Auditor for RS+FD Protocols.

Input :Theoretical 𝜖 , LDP protocolM, distinguishability attack

ARS+FD
, values 𝑣1, 𝑣2 ∈ 𝑉 , trial count 𝑇 , confidence level 𝛼 .

Output : Estimated privacy loss 𝜖𝑒𝑚𝑝 .

1: v1 = [𝑣1, 𝑣1, . . . , 𝑣1]1×𝑑 , v2 = [𝑣2, 𝑣2, . . . , 𝑣2]1×𝑑
2: TP = 0, FP = 0 ⊲ True Positive (TP) and False Positive (FP)

3: for 𝑖 ∈ [𝑇 ] do
4: if ARS+FD (v1) = 𝑣1 TP = TP + 1

5: if ARS+FD (v2) = 𝑣1 FP = FP + 1

6: end for
7: 𝑝0 = ClopperPearsonLower(TP,𝑇 , 𝛼/2)
8: 𝑝1 = ClopperPearsonUpper(FP,𝑇 , 𝛼/2)

return : 𝜖𝑒𝑚𝑝 = ln(𝑝0/𝑝1)

5 EXPERIMENTAL EVALUATION
This section presents our experimental setting to assess the pro-

posed audit framework as well as the main results obtained.

5.1 General Setup of Experiments
For all experiments, we have used the following setting:

• Environment. All algorithms are implemented in Python

3 with the Numpy [62], Numba [42], Ray [51], Multi-Freq-

LDPy [8] and pure-LDP [23, 46] libraries, and run on a local

machine with 2.50GHz Intel Core i9 and 64GB RAM. Our

LDP-Auditor tool is open-sourced in a GitHub repository [4].

• Audit parameters. We set 𝑇 = 10
6
trial counts and use

Clopper-Pearson confidence intervals with 𝛼 = 0.01 (i.e.,
our estimates hold with 99% confidence). These parameters

establish the Monte Carlo upper bound as 𝜖𝑂𝑃𝑇 = 12.025.

• Stability. Since LDP protocols are randomized, we report

average results with standard deviation over 5 runs.

5.2 Main Auditing Results
We begin by presenting our main LDP auditing results, considering:

• LDP protocols.We audit the eight 𝜖-LDP frequency estima-

tion protocols described in Section 3.1 and the six (𝜖, 𝛿)-LDP

frequency estimation protocols described in Section 3.2.

• Theoretical upper bound. We evaluated the LDP fre-

quency estimation protocols in high, mid and low privacy

regimes over the range 𝜖 ∈ {0.25, 0.5, 0.75, 1, 2, 4, 6, 10}. The
chosen range for 𝜖 follows the state-of-the-art LDP litera-

ture (e.g., see [2, 49, 68, 72, 75]) and real-world implementa-

tions [25] (e.g., RAPPOR [32] with 𝜖 = 0.5).

• Delta parameter. For approximate LDP, we set 𝛿 = 1𝑒−5.
• Domain size. We also varied the domain size 𝑘 ∈
{25, 50, 100, 150, 200} as it influences the performance of the

distinguishability attacks.

Figure 2 illustrates the theoretical 𝜖 values (x-axis) versus the es-

timated 𝜖𝑒𝑚𝑝 values (y-axis), demonstrating the comparison across

various domain sizes 𝑘 , for the eight 𝜖-LDP frequency estimation

protocols: GRR, SS, SUE, OUE, BLH, OLH, SHE and THE. Similarly,

Figure 3 presents analogous plots for the six (𝜖, 𝛿)-LDP frequency

estimation protocols: AGRR, ASUE, ABLH, AOLH, GM and AGM.

Henceforth, when discussing our results, the notation “(A)GRR” will
be used whenever the findings are applicable to both GRR and AGRR
protocols (analogously for other LDP protocols).

Effect of Encoding and Perturbation Functions. It is im-

portant to note that LDP frequency estimation protocols employ

different encoding and perturbation functions, leading to varying

levels of susceptibility to distinguishability attacks [9, 31]. Notably,

as shown in Figure 2 and Figure 3, one can notice that (A)GRR
is the unique LDP protocol that achieves tight empirical privacy es-
timates for 𝜖𝑒𝑚𝑝 . As described in Section 3.1, auditing (A)GRR’s

privacy guarantees is straightforward since there is no specific en-

coding (i.e., the input and output spaces are equal). Conversely, all

other LDP protocols (i.e., SS, UE-, LH- and HE-based) incorporate

specific pre-processing encoding functions, which may result in

information loss and/or additional randomness.

For instance, (A)BLH hashes the input set𝑉 of size 𝑘 to {0, 1} and,
thus results in excessive loss of information due to collisions. Even

if the bit is transmitted correctly after the (A)GRR perturbation, the

server can only obtain one bit of information about the input (i.e.,
to which half of the input domain the value belongs to). For these

reasons, BLH consistently led to the worst auditing results among

the 𝜖-LDP protocols with a “flat” 𝜖𝑒𝑚𝑝 < 1 estimation after 𝜖 ≥ 2.

Indeed, although both (A)LH protocols present similar empirical

privacy losses 𝜖𝑒𝑚𝑝 in high privacy regimes (the lowest among all
other LDP protocols), the difference is remarkable in favor of (A)OLH

in mid to low privacy regimes. Thus, (A)OLH preserves more utility
than (A)BLH, while providing tighter privacy loss estimation.

Concerning the SS protocol that reports a subset Ω of 𝜔 values,

one can note from Figure 2 that the empirical privacy loss 𝜖𝑒𝑚𝑝

demonstrated similar results to other LDP protocols in high privacy

regimes. However, an exception occurs in low privacy regimes, in

which SS equals GRR due to a subset size 𝜔 = 1, resulting in tight

estimates for 𝜖𝑒𝑚𝑝 . Regarding UE-based protocols, in high-privacy

regimes (𝜖 ≤ 1), both SUE and OUE presented similar empirical

privacy estimates for 𝜖𝑒𝑚𝑝 in Figure 2. In mid-privacy regimes
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Figure 2: Theoretical 𝜖 values (x-axis) versus estimated 𝜖𝑒𝑚𝑝 values (y-axis) using our LDP-Auditor framework with 𝛿 = 0.
We compare different domain sizes 𝑘 for eight state-of-the-art 𝜖-LDP frequency estimation protocols: GRR [37], SS [65, 73],
SUE [32], OUE [66], BLH [15], OLH [66], SHE [29] and THE [66].

(1 < 𝜖 ≤ 4), OUE presented higher empirical privacy losses 𝜖𝑒𝑚𝑝

than SUE. However, OUE reached a “plateau” estimation for 𝜖𝑒𝑚𝑝

in low privacy regimes (𝜖 > 4), explained by an upper bound on

the distinguishability attack (see [31]). This plateau behavior is also

observed for the (A)OLH protocol in low privacy regimes due to a

comparable upper bound on the attacker effectiveness. Comparing

approximate- and pure-SUE protocols, similar results were noticed

for (A)SUE in Figure 2 and Figure 3, considering all privacy regimes.

Lastly, for HE-based protocols, similar estimates for 𝜖𝑒𝑚𝑝 were

observed across all privacy regimes for both 𝜖-LDP protocols,

namely SHE and THE, in Figure 2, albeit with varying sensitiv-

ity to the domain size 𝑘 (discussed afterwards). In contrast, from

Figure 3, one can notice that the (𝜖, 𝛿)-LDP GM protocol led to

the worst auditing results among all LDP protocols. Therefore, in
addition to AGM’s ability to preserve greater utility than GM, it also
offers more precise empirical privacy loss estimations.

Impact of domain size. As the domain size 𝑘 increases, one can

observe in Figure 2 and Figure 3 a direct impact on the empirical

privacy loss estimation of 𝜖𝑒𝑚𝑝 for all LDP protocols, in which the

gap with the theoretical 𝜖 increases. However, the impact is minor

for the (A)GRR protocol, even in high privacy regimes. Conversely,

for all other LDP protocols, this impact is substantial, with empirical

𝜖𝑒𝑚𝑝 estimates ranging within ≤ 2.5x of the theoretical 𝜖 (when

𝑘 = 25) up to ≤ 5x (when 𝑘 = 200). These results are consistent

with the distinguishability attack effectiveness, which decreases

according to higher 𝑘 (i.e., more uncertainty) [9, 31]. For instance,
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Figure 3: Theoretical 𝜖 values (x-axis) versus estimated 𝜖𝑒𝑚𝑝 values (y-axis) using our LDP-Auditor framework with 𝛿 = 1𝑒−5.
We compare different domain sizes 𝑘 for six state-of-the-art (𝜖, 𝛿)-LDP frequency estimation protocols: AGRR [69], ASUE [69],
ABLH [69], AOLH [69], GM [30] and AGM [14]. For GM, we only audit for certifiable theoretical upper bounds 𝜖 ≤ 1.

in the case of GRR, the probability 𝑝 = 𝑒𝜖

𝑒𝜖+𝑘−1 of being “honest” in

Equation (2) decreases proportionally to 𝑘 . In other mechanisms,

there is a higher likelihood of introducing noise in the output 𝑦,

such as by flipping more bits from 0 to 1 in (A)UE protocols.

Nevertheless, exceptions exist for both OUE and OLH protocols,

in which in low privacy regimes (when 𝜖 ≥ 4), a larger domain

size 𝑘 leads to tighter estimates of 𝜖𝑒𝑚𝑝 than smaller domain sizes.

Although to a small extent, the THE protocol also yields more

accurate estimates for higher 𝑘 when 𝜖 = 10. Taking OUE as an

example, these results can be attributed to the fact that the bit

corresponding to the user’s value is transmitted with a random

probability of
1

2
(cf. Equation (3)). Consequently, if the domain size

is small, it results in a higher false positive rate, which subsequently

decreases the estimated empirical privacy loss 𝜖𝑒𝑚𝑝 .

Generality of Our Findings. Overall, the gap between empiri-

cal 𝜖𝑒𝑚𝑝 and theoretical 𝜖 privacy guarantees tends to widen in high

privacy regimes (i.e., lower 𝜖 values). This trend is particularly pro-

nouncedwhen considering the sensitivity of different LDP protocols

to the domain size. Lastly, we highlight that all 𝜖-LDP and (𝜖, 𝛿)-LDP

frequency estimation protocols audited herein are building blocks

of LDP mechanisms for more complex tasks such as: heavy hitter

estimation [15, 68], joint distribution estimation [24, 41, 57, 75], fre-

quent item-set mining [67, 72], machine learning [49, 74], frequency

estimation of multidimensional data [5, 55, 64] and frequency mon-

itoring [7, 10, 26, 32, 63]. Thus, our audit results provide generic

insights that shed light on several critical factors influencing the

estimation of the local privacy loss.

5.3 Case Study #1: Approximate- VS Pure-LDP
In theory, Bun et al. [18] proved that in the local DP model, ap-

proximate privacy is actually never more useful than pure privacy.

We will now compare approximate- and pure-LDP by assessing the

impact of 𝛿 on the LDP auditing process. In these experiments, we

use the following parameter values:

• LDP protocols. We audit the six (𝜖, 𝛿)-LDP protocols de-

scribed in Section 3.2.

• Theoretical upper bound. Because GM requires 𝜖 ≤ 1 [30],

we vary the privacy guarantee only in high privacy regimes,

within the range 𝜖 ∈ {0.25, 0.5, 0.75, 1}.
• Delta parameter.We vary the 𝛿 parameter within the range

𝛿 ∈ {0, 1𝑒−7, 1𝑒−6, 1𝑒−5, 1𝑒−4}; 𝛿 = 0 means 𝜖-LDP.
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• Domain size. We vary the domain size 𝑘 ∈
{25, 100, 150, 200}. We present results for 𝑘 ∈ {25, 200} in
the main paper and defer the others to Appendix G.1

Figure 4 illustrates the theoretical 𝜖 values (x-axis) versus es-

timated 𝜖𝑒𝑚𝑝 values (y-axis) when varying the 𝛿 parameter and

domain size 𝑘 ∈ {25, 200}, using our LDP-Auditor framework. Note

that for both GM and AGM protocols, there is no 𝜖𝑒𝑚𝑝 value when

𝛿 = 0, as these protocols do not have pure 𝜖-LDP variations.

Interestingly, for protocols such as AGRR, ASUE, ABLH and

AOLH, our observations corroborate the theoretical assertionsmade

by Bun et al. [18] regarding the comparative utility of approximate

versus pure privacy. More precisely, Figure 4 and Figure 10 (for

𝑘 ∈ {100, 150}) indicate that variations in 𝛿 do not significantly

alter the estimated privacy loss 𝜖𝑒𝑚𝑝 across these protocols. This

consistency in 𝜖𝑒𝑚𝑝 values, irrespective of 𝛿 adjustments, suggests

that for LDP protocols with a finite range, the audit outcomes

for approximate-privacy closely align with those for pure-privacy.

Conversely, the GM and AGM protocols exhibit distinct behaviours.

More precisely, as 𝛿 increases, signaling a relaxation in the privacy

constraint, we observe a narrowing gap between theoretical 𝜖 and

empirical 𝜖𝑒𝑚𝑝 values. This trend highlights a crucial aspect of LDP

protocols with an infinite range, in which allowing for a nonzero

𝛿 directly influences the perceived privacy protection, leading to

a more pronounced estimation of the privacy loss. Finally, the

impact of the domain size on the estimated privacy loss has a minor

effect on the AGRR, ASUE, ABLH and AOLH protocols, with a

decreasing 𝜖𝑒𝑚𝑝 value for higher 𝑘 . In contrast, for both GM and

AGM protocols, the estimated 𝜖𝑒𝑚𝑝 values increase (i.e., indicating
less privacy) as 𝑘 increases.

5.4 Case Study #2: Auditing the Privacy Loss of
Local Hashing Encoding Without LDP

As discussed previously in Section 5.2, both LH protocols present

the least tight estimates for 𝜖𝑒𝑚𝑝 in high privacy regimes. Even

worse, BLH’s estimated privacy loss remains below 𝜖𝑒𝑚𝑝 < 1 for

𝜖 ≥ 2, leading to empirical privacy losses ≤ 10x of the theoretical 𝜖 .

Motivated by these observations, we performed an additional study

to audit the impact of local hashing encoding but with no
LDP perturbation (i.e., 𝜖 = +∞), which we refer to as Local Hash-

ing Only (LHO). More precisely, the LHO reporting mechanism

is LHO(𝑣) B ⟨H,H(𝑣)⟩, and we used the same distinguishabil-

ity attack ALH described in Section 3 to attack LHO. For these

experiments, we use the following parameter values:

• LHO hash domain.We vary the hash domain [𝑔] within
the range 𝑔 ∈ {2, 4, 6, 8, 10}.

• Domain size. We vary the domain size within the range

𝑘 ∈ {25, 50, 100, 150, 200}.

Figure 5 presents the estimated 𝜖𝑒𝑚𝑝 values (x-axis) for LHO

protocols according to the hash domain sizes 𝑔 (y-axis) using our

LDP-Auditor framework for different domain sizes 𝑘 . Observations

from Figure 5 underscore that, even for a binary hash domain

(𝑔 = 2), the estimated privacy loss remains 𝜖𝑒𝑚𝑝 < 1, aligning

with high privacy regimes suitable for real-world applications. In-

deed, even though there is no LDP randomization of the hashed

value ℎ ∈ {0, 1}, the adversary still has a random guess on the
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(a) Domain size 𝑘 = 25.
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(b) Domain size 𝑘 = 200.

Figure 4: Theoretical 𝜖 values (x-axis) versus estimated 𝜖𝑒𝑚𝑝

values (y-axis) using our LDP-Auditor framework. We as-
sess different privacy guarantees for six (𝜖, 𝛿)-LDP protocols
across domain sizes 𝑘 ∈ {25, 200}. The special case 𝛿 = 0 corre-
sponds to pure 𝜖-LDP, for which GM and AGM do not satisfy.

support set 1LH. Given a general (universal) family of hash func-

tions H , each input value 𝑣 ∈ 𝑉 is hashed into a value in [𝑔]
by a hash function H ∈ H , and the universal property requires
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Figure 5: Estimated 𝜖𝑒𝑚𝑝 (y-axis) versus hash domain 𝑔 (x-
axis) using our LDP-Auditor framework comparing different
domain sizes 𝑘 for LH encoding with no LDP randomization.

∀𝑣1, 𝑣2 ∈ 𝑉 , 𝑣1 ≠ 𝑣2 : Pr

H∈H
[H(𝑣1) = H(𝑣2)] ≤ 1

𝑔 . In other words,

approximately 𝑘/𝑔 values can be mapped to the same hashed value

ℎ = H(𝑣) in [𝑔]. Although local hashing pre-processing by itself

has no proven DP guarantees, this significant loss of information in

the encoding step suggests potential privacy gains for LH protocols

due to the presence of many random collisions. In a similar context,

DP-Sniper [17], a method developed to finds violations of DP, also

encountered difficulties estimating 𝜖 for the original RAPPOR [32],

which is based on Bloom filters and employs hash functions.

One could expect a similar privacy gain for other LDP mech-

anisms based on sketching such as Apple’s Count-Mean Sketch

(CMS) [59] and Hadamard [2] mechanisms, which we leave as for

future audit investigations. Furthermore, as we increase the hash

domain size 𝑔 > 2 without introducing any LDP perturbation, the

estimated 𝜖𝑒𝑚𝑝 starts to rise, achieving medium privacy regimes

1 < 𝜖𝑒𝑚𝑝 ≤ 2.5. This outcome is expected since preserving more

information during the encoding step decreases the support set size

|1LH |, which naturally enhances the accuracy of the distinguisha-

bility attack ALH. Therefore, the estimated privacy loss 𝜖𝑒𝑚𝑝 for

LH-based protocols will be lower if the domain size 𝑘 is high and/or

if the new hashed domain 𝑔 is small.

5.5 Case Study #3: Auditing the LDP Sequential
Composition in Longitudinal Studies

As discussed in Section 4.2, we aim to audit the empirical privacy

loss of LDP protocols in longitudinal studies (i.e., 𝜏 data collections).
This will allow to assess the gap between empirical local privacy

loss estimation and the theoretical upper bound imposed by the

(L)DP sequential composition. For these experiments, we use both

Algorithms 1 and 2 with the following parameter values:

• LDP protocols. We audit the eight 𝜖-LDP protocols from

Section 3.1. Additionally, in light of the findings presented

in Section 5.3, we only audit two (𝜖, 𝛿)-LDP protocols that

exhibit sensitivity to 𝛿 ; namely, GM and AGM.

• Number of data collections. We vary the number of data

collections in the range 𝜏 ∈ {5, 10, 25, 50, 75, 100, 250, 500}.
• Theoretical upper bound. We vary the per-report pri-

vacy guarantee in high privacy regimes, in the range 𝜖 ∈

{0.25, 0.5, 0.75, 1}. By the sequential composition, the theo-

retical upper bound after 𝜏 data collections is 𝜏𝜖-LDP.

• Delta parameter. For approximate LDP, we set 𝛿 = 1𝑒−5.
• Domain size.We vary the domain size 𝑘 ∈ {2, 25, 50, 100}.
We present results for 𝑘 ∈ {2, 100} in the main paper and

defer the others to Appendix G.2.

Figure 6 illustrates the estimated 𝜖𝑒𝑚𝑝 values (y-axis) for the

eight 𝜖-LDP and both GM and AGM (𝜖, 𝛿)-LDP protocols according

to the the number of data collections 𝜏 (x-axis), per report 𝜖 and

domain size 𝑘 ∈ {2, 100}, using our LDP-Auditor framework. From

Figure 6a, one can notice that both GRR and SS protocols have equal

𝜖𝑒𝑚𝑝 estimates, as for 𝑘 = 2, the subset size 𝜔 = 1 (i.e., GRR). These
two LDP protocols exhibited the tightest empirical privacy esti-

mates for 𝜖𝑒𝑚𝑝 , aligning with the observations made in Section 5.2

(see Figure 8). In contrast, the approximate LDP protocols, notably

GM and AGM, showed less favorable estimates for privacy loss,

which corroborates the findings illustrated in Figure 3 in Section 5.2.

The remaining pure-LDP protocols – SUE, OUE, BLH and OLH –

display intermediate privacy loss estimates.

Furthermore, Figure 6b reveals that, for a larger domain size of

𝑘 = 100, the results obtained are reversed. Among pure-LDP proto-

cols, GRR yields the lowest 𝜖𝑒𝑚𝑝 estimation for all experimented 𝜏

values, followed by the SHE protocol. The reason for this is that the

probability of being “honest” 𝑝 = 𝑒𝜖

𝑒𝜖+𝑘−1 in Equation (2), is directly

proportional to the domain size 𝑘 . Therefore, even after many data

collections 𝜏 , the adversary has still too much noisy data to filter,

which makes the distinguishability attack less efficient. Similar to

Figure 6, in Figure 11, approximate-LDP protocols (GM and AGM)

led to the lowest empirical privacy loss estimates for 𝜖𝑒𝑚𝑝 .

Moreover, from both Figure 6 and Figure 11, it is evident that even

after 𝜏 = 500, none of the LDP protocols, achieves the optimal upper

bound 𝜖𝑂𝑃𝑇 imposed by the Monte Carlo estimation when the per-

report privacy guarantee is too small (i.e., 𝜖 = 0.25). However, as the

number of data collections becomes sufficiently large (i.e., 𝜏 ≥ 250)

and the privacy guarantee per report also increases (e.g., 𝜖 ≥ 0.75),

all pure-LDP protocols, with the exception of GRR, manage to

achieve the Monte Carlo upper bound, resulting in 𝜖𝑒𝑚𝑝 = 𝜖𝑂𝑃𝑇 .

Yet, as the number of data collections becomes sufficiently large

(i.e., 𝜏 → ∞), we anticipate that 𝜖𝑒𝑚𝑝 will converge to 𝜖𝑂𝑃𝑇 for all

LDP protocols even when the per-report 𝜖 < 0.5.

These results are quite surprising since one would imagine the

privacy leakage to be higher for repeated data collections when

random fresh noise is added per report. Nevertheless, as the domain

size increases, the performance of the distinguishability attack de-

creases [9, 31]. As a consequence, for real-world deployments with

substantial domain sizes (e.g., list of Internet domains), exclusively

relying on theoretical 𝜖-LDP guarantees may prove unrealistic. Pri-

vacy auditing becomes imperative in such scenarios, to establish

appropriate privacy parameters, thus avoiding adding more noise

than required. Notably, these auditing results emphasize a crucial
aspect for longitudinal studies: a substantial gap exists between the-
ory (sequential composition) and practice (LDP auditing). To narrow

this gap, one could consider designing more powerful attacks for

longitudinal studies beyond those proposed here in Algorithm 2.

Alternatively, research efforts could be directed towards developing

more sophisticated compositions for 𝜖-LDP mechanisms.
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(a) Domain size 𝑘 = 2.
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(b) Domain size 𝑘 = 100.

Figure 6: Estimated 𝜖𝑒𝑚𝑝 (y-axis) versus the number of data collections 𝜏 (x-axis) using our LDP-Auditor framework for different
domain sizes 𝑘 ∈ {2, 100}. We vary the per report 𝜖-LDP guarantee for the following LDP frequency estimation protocols: GRR,
SS, SUE, OUE, BLH, OLH, SHE, THE, GM and AGM. For both approximate-LDP protocols, namely GM and AGM, 𝛿 = 1𝑒−5.

5.6 Case Study #4: LDP Auditing with
Multidimensional Data

As discussed in Section 4.3, our audit results outlined in Section 5.2

are also valid for LDP mechanisms based on the standard SPL and

SMP solutions for multidimensional data. Thus, in this section, we

aim to audit LDP protocols following the RS+FD [5] solution. For

these experiments, we use both Algorithms 3 and 4, considering:

• LDP protocols. We audit five 𝜖-LDP RS+FD protocols:

RS+FD[GRR], RS+FD[SUE-z], RS+FD[SUE-r], RS+FD[OUE-

z] and RS+FD[OUE-r]. The difference between UE-z and UE-r

lies on how to generate the fake data [5]. More precisely,

UE-z initializes a zero-vector and UE-r initializes a random

one-hot-encoded vector. Next, SUE or OUE is used to sanitize

these vectors.

• Theoretical upper bound.We vary the theoretical privacy

parameter 𝜖 in high, mid and low privacy regimes over the

same range 𝜖 ∈ {0.25, 0.5, 0.75, 1, 2, 4, 6, 10} as in Section 5.2.

• Domain size and number of attributes. We vary the

domain size as 𝑘 ∈ {2, 25, 50, 100} and we vary the num-

ber of attributes over 𝑑 ∈ {2, 10}. When 𝑑 = 2, k = [2, 2],
k = [25, 25], k = [50, 50] and k = [100, 100] and, in a similar

way for 𝑑 = 10. We present results for 𝑘 ∈ {2, 100} in the

main paper and defer the others to Appendix G.3.

Figure 7 illustrates the comparison of theoretical 𝜖 values (x-axis)

with estimated 𝜖𝑒𝑚𝑝 values (y-axis) for the five RS+FD protocols,

based on the number of attributes 𝑑 and domain size 𝑘 ∈ {2, 100},
utilizing our LDP-Auditor framework. From Figure 7, it is clear

that, once again, GRR exhibits tighter empirical privacy losses 𝜖𝑒𝑚𝑝

than UE-based protocols following the RS+FD solution. However,

in contrast to Section 5.2, the estimated 𝜖𝑒𝑚𝑝 for GRR now displays

a “plateau behaviour” after theoretical 𝜖 ≥ 4. This plateau arises be-

cause the probability of reporting the true value under GRR reaches

high values with 𝜖 ≥ 4. Notably, among the family of UE proto-

cols, SUE demonstrates a tighter empirical 𝜖𝑒𝑚𝑝 than OUE when

the domain is binary (see Figure 7a). However, SUE exhibits lower

𝜖𝑒𝑚𝑝 than OUE when 𝑘 = 100 (see Figure 7b). This observation

can be attributed to the advantage of SUE in transmitting the true

bit with a probability 𝑝 > 1

2
, while OUE has 𝑝 = 1

2
. Consequently,

the distinguishability attack achieves higher accuracy for SUE, in-

creasing the true positive rate and decreasing the false positive

rate, resulting in higher 𝜖𝑒𝑚𝑝 estimates. Moreover, different fake

data generation procedures for UE protocols (UE-z vs UE-r) did not

result in significant changes in the audit results.

Another intriguing result is that the empirical privacy loss is

lower for a binary domain compared to when𝑘 = 100. This behavior

is primarily due to the impact of fake data on distinguishability

attacks. In a binary domain, fake data significantly increases the false
positive rate, leading to a decrease in the estimated privacy loss 𝜖𝑒𝑚𝑝 .
However, for a higher domain size, fake data has a lesser impact

on the false positive rate, as the distinguishability attack has more

rooms for errors. Overall, these nuanced relationships underscore

the intricate interplay between domain size, the use of fake data

and the tightness of local privacy loss estimation in the context of

RS+FD protocols.

5.7 Case Study #5: Debugging a Python
Implementation of UE Protocols

Finally, we show how our LDP-Auditor framework can also serve as

a tool for verifying the correctness of LDP implementations. In our

case study, we focused on the pure-LDP [46] package (version 1.1.2)

and show that their UE protocols fail to meet the claimed level of

𝜖-LDP. Our objective here is not to point out issues with respect to a

particular code or library but rather to demonstrate the potentiality
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(b) Domain size 𝑘 = 100.

Figure 7: Theoretical 𝜖 (x-axis) versus estimated 𝜖𝑒𝑚𝑝 (y-axis) using our LDP-Auditor framework comparing different number
of attributes 𝑑 for five RS+FD [5] protocols with domain sizes 𝑘 = 2 and 𝑘 = 100.

of our approach for verifying and debugging LDP protocols. Follow-

ing a similar experimental setup as the one outlined in Section 5.2,

Figure 8 presents a comparison of the theoretical 𝜖 values (x-axis)

with the estimated 𝜖𝑒𝑚𝑝 values (y-axis) using our LDP-Auditor

framework. We consider different domain sizes 𝑘 for both the SUE

and OUE protocols, implemented in the pure-LDP package. The

inconsistencies we found between the lower and upper bounds are

highlighted within the orange rectangle.
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Figure 8: Theoretical 𝜖 (x-axis) versus estimated 𝜖𝑒𝑚𝑝 (y-axis)
using our LDP-Auditor framework comparing different do-
main sizes𝑘 for both SUE andOUEprotocols, implemented in
the pure-LDP package [46]. The orange rectangle highlights
inconsistencies between the observed empirical privacy loss
and the theoretical upper bound.

From Figure 8, it is clear that LDP-Auditor has detected inconsis-

tencies between the lower and upper bounds, which are highlighted

by the orange rectangle. After conducting an investigation into the

pure-LDP code, we were able to identify the specific location of the

implementation error. The error arises from the following steps in

the _perturb function of the UEClient class:

(1) The user initializes a zero-vector y = [0, 0, . . . , 0] of size 𝑘 ;
(2) The user samples indexes of values in y that will flip from 0

to 1 with probability 𝑞 (as indicated in Equation (3)).

(3) With probability 𝑝 (as indicated in Equation (3)), the index

at position y𝑣 (representing the user’s true value) is flipped

from 0 to 1.

(4) *Missing step*: if y𝑣 was set to 1 in step (2) but not in step

(3), there should be a correction to revert it back to 0.

This was a simple mistake that was directly fixed by the au-
thors [47] following our communication with them. However,

it is crucial to emphasize that this minor error had implications

for the 𝜖-LDP guarantees. Specifically, the bit corresponding to

the user’s value was transmitted more time than intended, par-

ticularly in high privacy regimes. In mid to low privacy regimes,

the bug might go unnoticed, given the already high probability of

transmitting the bit as 1. This explains why LDP-Auditor failed to

detect inconsistencies between the empirical and upper bounds for

𝜖 ≥ 1. In such cases, specialized tools designed for identifying DP

violations, like DP-Sniper [17], would likely have been effective in

detecting the bug. Therefore, we strongly encourage end-users of

the pure-LDP package to update to the latest version 1.2.0.

6 CONCLUSION AND PERSPECTIVES
In this work, we have introduced the LDP-Auditor framework as

a powerful tool for empirically estimating the privacy loss of LDP

frequency estimation protocols. Our main LDP audit results pro-

vide new insights into the empirical local privacy loss in prac-

tical adversarial settings. Through several case studies, we have

demonstrated the framework’s effectiveness in identifying signifi-

cant discrepancies between theoretical guarantees and empirical

privacy loss. These findings contribute to a nuanced understanding

of the challenges and considerations in the design and implemen-

tation of LDP mechanisms. As LDP continues to gain prominence

in privacy-preserving data analysis, LDP-Auditor can serve as a

valuable resource for practitioners and researchers aiming to assess

and enhance the privacy guarantees of their systems.

Nevertheless, while we instantiated LDP-Auditor with distin-

guishability attacks on the user’s value [9, 31], our future plans

involve expanding the scope of LDP auditing to incorporate other

adversarial analysis proposed in the literature, such as inference

pool [33], data change detection [10] and re-identification at-

tacks [9, 52]. We also aim and suggest extending LDP-Auditor to

encompass a wider range of LDP applications (e.g., mean estima-

tion) as these may introduce unique challenges and considerations

during the auditing process. Additionally, we aim at integrating the

Neyman-Pearson lemma into LDP-Auditor’s analysis to leverage

its theoretical foundation to enhance the precision of our audit-

ing framework. Lastly, one can envision utilizing LDP-Auditor as

a means to establish a unified local privacy loss 𝜖𝑒𝑚𝑝 when com-

paring mechanisms of different locally private definitions, such as

𝑑-privacy [20], 𝛼-PIE [52] and LDP [39].
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A SUMMARY OF NOTATIONS
The main notation used in this paper is summarized in Table 1.

Symbol Description

[𝑎] Set of integers {1, 2, 3, . . . , 𝑎}.
a𝑖 𝑖-th coordinate of vector a.
𝑉 Data domain.

𝑘 Domain size 𝑘 = |𝑉 |.
𝑛 Number of users.

𝜖 Theoretical privacy loss.

𝛿 Maximum probability that privacy loss exceeds 𝜖 .

𝜖𝑒𝑚𝑝 Empirical privacy loss.

𝜖𝑂𝑃𝑇 Upper bound on Monte Carlo privacy loss.

M (𝜖, 𝛿)-LDP mechanism.

A Distinguishability attack.

A𝐿
Distinguishability attack in longitudinal study.

ARS+FD
Distinguishability attack on RS+FD protocols.

AM Distinguishability attack of mechanismM.

1M Support set of mechanismM.

𝑇 Number of trials.

𝛼 Confidence level.

𝑑 Number of attributes 𝑑 ≥ 2.

𝜏 Number of data collections.

Table 1: Symbols and Notations.

B APPROXIMATE (𝜖, 𝛿)-LDP PROTOCOLS
Approximate GRR (AGRR) [69]. Similar to GRR in Section 3.1,

given a value 𝑣 ∈ 𝑉 , AGRR(𝑣) outputs the true value 𝑣 with proba-

bility 𝑝 , and any other value 𝑣 ′ ∈ 𝑉 \ {𝑣}, otherwise. More formally:

Pr[AGRR(𝑣) = 𝑦] =
{
𝑝 =

𝑒𝜖+(𝑘−1)𝛿
𝑒𝜖+𝑘−1 if 𝑦 = 𝑣,

𝑞 = 1−𝛿
𝑒𝜖+𝑘−1 if 𝑦 ≠ 𝑣 ,

(9)

in which 𝑦 ∈ 𝑉 is the perturbed value sent to the server. From

Equation (9), Pr[𝑦 = 𝑣] > Pr[𝑦 = 𝑣 ′] for all 𝑣 ′ ∈ 𝑉 \ {𝑣}. Thus, the
attack strategy AAGRR is equivalent to AGRR, i.e., to predict 𝑣 = 𝑦.

Approximate SUE (ASUE) [69]. Similar to the SUE proto-

col [32] in Section 3.1, ASUE encode the user’s input data 𝑣 ∈ 𝑉 , as

a one-hot 𝑘-dimensional vector. The obfuscation function of ASUE

randomizes the bits from v independently to generate y as follows:

∀𝑖 ∈ [𝑘] : Pr[y𝑖 = 1] =

𝑝 =

𝑒𝜖−
√
𝑒𝜖 (1−𝛿)+𝛿
𝑒𝜖−1 , if v𝑖 = 1,

𝑞 =

√
𝑒𝜖 (1−𝛿)+𝛿−1

𝑒𝜖−1 , if v𝑖 = 0,

(10)

in which y is sent to the server. As for UE protocols, with y, the
adversary can construct the subset of all values 𝑣 ∈ 𝑉 that are set

to 1, i.e., 1AUE = {𝑣 |y𝑣 = 1}. Then, the attack strategy AASUE is

equivalent to AAUE:

• A0

ASUE
is a random choice 𝑣 = Uniform ( [𝑘]), if 1AUE = ∅;

• A1

ASUE
is a random choice 𝑣 = Uniform (1AUE), otherwise.

Approximate LH (ALH) [69]. Similar to the LH protocols [15,

66] in Section 3.1, ALH uses a hash function H ∈ H to map the

input data 𝑣 ∈ 𝑉 to a new domain of size 𝑔 ≥ 2, and then apply

AGRR to the hashed value ℎ = H(𝑣). In particular, the ALH re-

porting mechanism is ALH(𝑣) B ⟨H,AGRR(ℎ)⟩, in which AGRR is

given in Equation (9) while operating on the new domain [𝑔]. The
two variants of ALH protocols are: (1) Approximate BLH (ABLH),

which sets 𝑔 = 2 and (2) Approximate OLH (AOLH), which sets

𝑔 =
−3𝑒𝜖𝛿−

√
𝑒𝜖−1

√
(1−𝛿) (𝑒𝜖+𝛿−9𝑒𝜖𝛿−1)+𝑒𝜖+3𝛿−1

2𝛿
. Each user reports

the hash function and obfuscated value ⟨H, 𝑦⟩ to the server. With

these elements, the adversary can construct the subset of all values

𝑣 ∈ 𝑉 that hash to 𝑦, i.e., 1ALH = {𝑣 |H(𝑣) = 𝑦}. Then, the attack
strategy AALH is equivalent to ALH:

• A0

ALH
is a random choice 𝑣 = Uniform ( [𝑘]), if 1ALH = ∅;

• A1

ALH
is a random choice 𝑣 = Uniform (1ALH), otherwise.

C ADVERSARIAL PRIVACY GAME
Figure 9 provides a comparative illustration of the adversarial pri-

vacy game in central and local differential privacy frameworks,

highlighting scenarios of membership inference and value distin-

guishability attacks, respectively.

(a) Central DP with membership inference attack.

(b) Local DP with value distinguishability attack.

Figure 9: Comparison of the adversarial privacy game be-
tween the central and local DP settings.

D CLOPPER-PEARSON INTERVAL
The Clopper-Pearson method [22] is a statistical technique used to

calculate exact confidence intervals for the success probability in

binomial distributions. This method is known for its conservative

nature, ensuring that the confidence interval computed does not rely

on any asymptotic approximations and is therefore valid regardless

of the sample size. Given𝑥 successes in𝑇 trials, the Clopper-Pearson

interval computes the lower and upper confidence limits for the

true probability of success, based on the beta distribution’s cumula-

tive density function. Specifically, the Clopper-Pearson confidence

interval is computed as follows:[
𝔅

(𝛼
2

;𝑥,𝑇 − 𝑥 + 1

)
,𝔅

(
1 − 𝛼

2

;𝑥 + 1,𝑇 − 𝑥

)]
, (11)

in which𝔅 denotes the beta distribution quantile function, 𝑥 is the

number of observed successes, 𝑇 is the total number of trials, 𝛼
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represents the significance level and 𝔅(𝑝 ; 𝑧,𝑤) is the 𝑝-th quantile

from a beta distribution with shape parameters 𝑧 and𝑤 . This exact

method is crucial in our LDP auditing framework, as it allows us to

establish the lower and upper bounds for the true positive rate and

false positive rate of Equation (8) with high confidence, ensuring

that our empirical privacy loss estimations are both accurate and

robust.

E PROOF OF THEOREM 1
Proof of Theorem 1. First, the guarantee of the Clopper-

Pearson confidence intervals is that, with probability at least 1 − 𝛼 ,

𝑝0 ≤ 𝑝0 and 𝑝1 ≥ 𝑝1, which implies 𝑝0/𝑝1 ≥ 𝑝0/𝑝1. Second, ifM
is (𝜖, 𝛿)-LDP, then we would have 𝑝0 ≤ 𝑝1𝑒

𝜖 + 𝛿 , meaning M is

not (𝜖 ′, 𝛿)-LDP for any 𝜖 ′ < ln((𝑝0 − 𝛿)/𝑝1). Combining the two

statements, M is not 𝜖 ′ for any 𝜖 ′ < ln((𝑝0 − 𝛿)/𝑝1) = 𝜖𝑒𝑚𝑝 . □

F MEMOIZATION-BASED LDP PROTOCOLS
As mentioned in Section 4.2, in longitudinal studies, the privacy

loss is linear on the number of data collections 𝜏 following the

DP sequential composition. This accumulation allows attackers to

employ “averaging attacks” to more easily distinguish a user’s true

value among the noisy data. To counteract this, renowned LDP

mechanisms for longitudinal studies, such as RAPPOR [32] and

𝑑BitFlipPM [26], incorporate a memoization-based strategy.

One way to employ memoization is to memorize an obfuscated

value 𝑦 = M(𝑣) and consistently reuse it throughout time [6, 26].

Specifically, at each time 𝑡 ∈ [𝜏], the user reports the memorized 𝑦,

which satisfies 𝜖-LDP. Note that as there is only a single obfuscation

round, our LDP-Auditor operates equivalently to auditing in a single

data collection scenario (i.e., Algorithm 1).

An alternative memoization technique involves re-using the

memorized obfuscated value 𝑦 = M(𝑣) as the input for a subse-
quent round of obfuscation [7, 9, 32, 63]. This means that at each

time 𝑡 ∈ [𝜏] the user reports 𝑦𝑡 = M(𝑦); note that the input to
M is an already obfuscated value 𝑦. In this setting, there are two

levels of privacy guarantees [32]: 𝜖1, which is the privacy level

of the first report 𝑦1 = M(𝑦) following the second obfuscation

round, and 𝜖∞, which is the privacy guarantee offered by the first

obfuscation round that generated 𝑦. More precisely, 𝑦 = M(𝑣) sat-
isfy 𝜖∞-LDP because it establishes the upper bound for the privacy

leakage as an adversary could only recover 𝑦 instead of 𝑣 after

executing an “averaging attack” across an indefinite number of

reports 𝑦1, 𝑦2, . . . , 𝑦∞. Consequently, our LDP-Auditor framework

described in Algorithm 1 can be deployed directly to estimate an

empirical privacy loss 𝜖𝑒𝑚𝑝 against the theoretical upper bound 𝜖1
for a single data collection. For 𝑡 → ∞ data collections, the theo-

retical upper bound becomes 𝜖∞, for which the distinguishability

attack in longitudinal study A𝐿
outlined in Algorithm 2 should be

applied. In other words, while in Section 5.5 the upper bound is

𝜏𝜖-LDP, for memoization-based mechanisms with two obfuscation

rounds, the upper bound is 𝜖∞-LDP.

G ADDITIONAL EXPERIMENTS
G.1 Case Study #1: Auditing the Impact of 𝛿
Following the experimental setup detailed in Section 5.3, Figure 10

illustrates the theoretical 𝜖 values (x-axis) versus estimated 𝜖𝑒𝑚𝑝

values (y-axis) when varying the 𝛿 parameter and domain size

𝑘 ∈ {100, 150}, using our LDP-Auditor framework. Note that for

both GM and AGM protocols, there is no 𝜖𝑒𝑚𝑝 value when 𝛿 = 0,

as these protocols do not have pure 𝜖-LDP variations. Finally, a

similar trend as in Figure 4 can be observed in Figure 10, for which

the discussion in Section 5.3 is equally applicable to these results.

G.2 Case Study #3: Auditing the LDP Sequential
Composition in Longitudinal Studies

Following the experimental setup detailed in Section 5.5, Figure 11

illustrates the estimated 𝜖𝑒𝑚𝑝 values (y-axis) for the eight 𝜖-LDP

and both GM and AGM (𝜖, 𝛿)-LDP protocols according to the the

number of data collections 𝜏 (x-axis), per report 𝜖 and domain size

𝑘 ∈ {25, 50}, using our LDP-Auditor framework. Notice that a

similar trend as in Figure 6 can be observed in Figure 11, for which

the discussion in Section 5.5 is equally applicable to these results.

G.3 Case Study #4: LDP Auditing with
Multidimensional Data

Following the experimental setup detailed in Section 5.6, Figure 12

illustrates the comparison of theoretical 𝜖 values (x-axis) with es-

timated 𝜖𝑒𝑚𝑝 values (y-axis) for the five RS+FD protocols, based

on the number of attributes 𝑑 and domain size 𝑘 ∈ {25, 50}, utiliz-
ing our LDP-Auditor framework. Notice that a similar trend as in

Figure 7 can be observed in Figure 12, for which the discussion in

Section 5.6 is equally applicable to these results.
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(a) Domain size 𝑘 = 100.
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(b) Domain size 𝑘 = 150.

Figure 10: Theoretical 𝜖 values (x-axis) versus estimated 𝜖𝑒𝑚𝑝 values (y-axis) using our LDP-Auditor framework. We assess
different privacy guarantees for six (𝜖, 𝛿)-LDP protocols across domain sizes 𝑘 ∈ {100, 150}. The special case 𝛿 = 0 corresponds to
pure 𝜖-LDP, for which GM and AGM do not satisfy.
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(a) Domain size 𝑘 = 25.
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Figure 11: Estimated 𝜖𝑒𝑚𝑝 (y-axis) versus the number of data collections 𝜏 (x-axis) using our LDP-Auditor framework for different
domain sizes 𝑘 ∈ {25, 50}. We vary the per report 𝜖-LDP guarantee for the following LDP frequency estimation protocols: GRR,
SS, SUE, OUE, BLH, OLH, SHE, THE, GM and AGM. For both approximate-LDP protocols, namely GM and AGM, 𝛿 = 1𝑒−5.
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(a) Domain size 𝑘 = 25.
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(b) Domain size 𝑘 = 50.

Figure 12: Theoretical 𝜖 (x-axis) versus estimated 𝜖𝑒𝑚𝑝 (y-axis) using our LDP-Auditor framework comparing different number
of attributes 𝑑 for five RS+FD [5] protocols with domain sizes 𝑘 = 25 and 𝑘 = 50.
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