
Understanding Leakage in Searchable Encryption: aQuantitative
Approach

Alexandra Boldyreva
Georgia Institute of Technology

sasha@gatech.edu

Zichen Gui
ETH Zürich

zichen.gui@inf.ethz.ch

Bogdan Warinschi
Dfinity & University of Bristol
bogdan.warinschi@dfinity.org

ABSTRACT

Searchable encryption, or more generally, structured encryption,
permits search over encrypted data. It is an important cryptographic
tool for securing cloud storage. The standard security notion for
structured encryption mandates that a protocol leaks nothing about
the data or queries, except for some allowed leakage, defined by
the leakage function. This is due to the fact that some leakage is
unavoidable for efficient schemes. Unfortunately, it was shown by
numerous works that even innocuous-looking leakage can often
be exploited by attackers to undermine users’ privacy and recover
their queries and/or data, despite the structured encryption schemes
being provably secure. Nevertheless, the standard security remains
the go-to notion used to show the “security" of structured encryp-
tion schemes. While it is not likely that researchers will design
practical structured encryption schemes with no leakage, it is not
satisfactory that very few works study ways to assess leakage. This
work proposes a novel framework to quantify leakage. Our method-
ology is inspired by the quantitative information flow, and we call
our method 𝑞-leakage analysis. We show how 𝑞-leakage analysis
is related to the standard security. We also demonstrate the useful-
ness of 𝑞-leakage analysis by analyzing the security of two existing
schemes with complex leakage functions.

KEYWORDS

Searchable encryption, structured encryption, data privacy, leakage,
cloud storage security, provable security

1 INTRODUCTION

Motivation and Prior Work. Cloud storage continues to experi-
ence explosive growth. It is predicted that 100 zettabytes will be
stored on the cloud by 2025, or 50% of the world’s data at that time.
Even if the cloud storage provider is trusted, it may be subject to
security compromise. Not surprisingly, privacy of data is often a
big concern or even a core compliance requirement due to PCI DSS,
HIPAA, or EU Data Protection regulations.

It is well known that simply using off-the-shelf encryption with
the secret key held by the client does not “work” for cloud storage
applications. This is because standard encryption is so strong, its
ciphertexts are not searchable. Hence in the last decade and a half,
numerous research works have addressed the problem of designing
protocols for secure outsourced databases.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(4), 503–524
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0127

Unfortunately, researchers still cannot offer the practitioners
great solutions that offer clear security–efficiency tradeoffs suitable
for applications. And this is not to say we lack solutions that vary
greatly in security and efficiency. We have protocols with extremely
strong security, e.g., [23], but these are impractical to a degree
that no implementations has even been attempted. Conversely, we
have extremely efficient solutions based on property-preserving
encryption (PPE) [48], such as deterministic encryption (DE) [2,
4], where ciphertexts leak message equality, or order-preserving
encryption (OPE) [7], where ciphertexts preserve the order of the
plaintexts. But not surprisingly, security of PPE schemes is quite
weak and the attacks are quite devastating [5, 44].

And then we have searchable encryption protocols that offer
decent performance and stronger security than PPE, e.g. [3, 10, 14,
15, 19, 20, 38, 45, 53]. All of these schemes leak some information
and many recent works [6, 12, 27, 29, 31, 40] showed that this
leakage, even seemingly innocuous, can be exploited by attackers
violating privacy of users’ data and queries. Moreover, it is often
very hard to understand how serious the allowed leakage is, not
only for practitioners, but for the protocol designers as well. So it is
not clear whether a given solution is really suitable for a particular
application, security-wise. The situation is evenmore pressing since
following the practical demand, searchable encryption protocols
have started to be widely deployed recently, by AWS [51] and
MongoDB [43]. Since their security guarantees are not fully clear,
attacks already started to appear [30] and more are expected.

We believe it is the responsibility of fundamental research to clar-
ify for practitioners (and academics) the extent and the implications
of the leakage inherent in existing schemes, and to develop method-
ologies that make understanding and comparing the security of
novel schemes possible.

A Closer Look. Let us take a closer look at how security is tra-
ditionally defined. A typical security definition for searchable or
more general structured encryption, considers two “worlds." In the
“real” world the adversary interacts with the protocol and observes
whatever real attackers can know, e.g., the transcript of the commu-
nication, some partial knowledge about the data and the queries,
etc. In the “ideal” world the attacker interacts with the simulator,
who is trying to simulate the real environment for the adversary.
The simulator does not know the secret key, but it is given some
function of the data and the queries called leakage. The leakage
function models the information that the protocol is allowed to leak,
and it varies significantly depending on each particular protocol.
The goal of the adversary is to output a bit, and the protocol is con-
sidered secure if for every efficient adversary, there is an efficient
simulator so that the adversary outputs the same bit in both worlds
with almost the same probability. The intuition is that the attacker
cannot distinguish between the real and ideal worlds, hence the

503

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0127

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

real protocol ”behaves” like the ideal one that is simulated without
secrets, and thus it cannot leak any secrets beyond the allowed
leakage.

This is a classical approach to defining security and is used,
for example, for secure multiparty computation (MPC). However,
the difference is that in the classic MPC security definition, the
simulator is not given any leakage besides what is output by the
protocol’s functionality. Butwhen the simulator is given the leakage,
like in the case of searchable encryption, the definition is saying
that no information other than the allowed leakage is leaked. The
adversary’s goal is to output one bit of information, and this has
almost nothing to do with exploiting the leakage. The definition
does not attempt to answer the question of assessing the leakage,
as it is deemed “allowed.” Hence, the users of each protocol that has
been proven secure under such definition are left on their own to
weigh the risk of the leakage. Is the resulting security good? How
good is it? Of course, the answers depend on the leakage function
(aka leakage profile). The problem is that it is almost impossible to
give a precise answer to the above questions except for somewhat
trivial leakage functions.

Many protocols hide everything about the stored data but leak
the access pattern, i.e. the attacker can tell if the same data is
accessed twice. This does not sound like much, but subsequent
attacks show that this can be dangerous [6, 12, 29, 31, 40]. Similarly,
many works have shown that search pattern [46, 47] and volume
leakage [26, 28] can also be exploited. Moreover, sometimes the
leakage is so complex, like in protocols [13, 49], one cannot even
describe it in English within several paragraphs or at all. Providing
provable security statements for protocols with allowed leakage that
is hard to assess does not provide a good service for practitioners.
They need to have a way to assess leakage and decide when it is
acceptable and when it is not.

PriorWork. There are not that manyworks offering ways to assess
leakage. In [8], the authors studied security of the ideal object
for order-preserving encryption, - an order-preserving random
permutation. The paper considers a couple of dedicated security
notions (for the ideal object) where the adversary had to precisely
decrypt a ciphertext or find the range within the plaintext lies.

A recent work [39] attempts to quantify privacy for searchable
encryption and proposes the notion of leakage inversion. They
observe that the leakage is a function and one can define its in-
verse which corresponds to the collection of databases that reveal
structurally equivalent patterns to the original plaintext database.
Studying the entropy of such “reconstruction space” may provide
useful insight into the scheme’s security. However, the approach has
several drawbacks. Firstly, the computation of the reconstruction
space is based on combinatorics and is not always easy to compute.
Secondly, the reconstruction space only includes databases that
agree with the leakage fully. This means that a scheme with many
possible reconstructions may be falsely labelled as a secure scheme
even if all of these reconstructions are close to the real database.
Thirdly, the entropy of a reconstruction space is not directly related
to how resilient a scheme is against an attack, making the entropy
hard to interpret. Finally, the reconstruction space may be infinitely
large for some schemes. In those cases, leakage inversion will not
provide any meaningful insights.

There is also a work that proposes to perform leakage analysis
with Bayesian networks [36]. The idea is that leakage functions can
be modeled as Bayesian networks and leakage-abuse attacks can be
viewed as statistical inference algorithms on these networks. The
authors formalized a notion called coherence which, informally,
measures the accuracy of the leakage abuse attacks. They studied
the coherence of partial and full query recovery attacks of query
equality pattern and volume leakage. The main drawback of the
approach is that the analysis of coherence relies on combinatorial
techniques. These techniques may not be applicable to complex
leakage functions in existing schemes.

Then there are results of [32, 33] which apply ideas from quanti-
tative information flow theory to help understand leakage of the
deterministic and order-revealing encryption schemes. Quantitative
information flow theory offers novel non-cryptographic techniques
for quantifying the amount of leakage of sensitive information
caused by systems [1, 52]. In this setting a system is modeled as
an information-theoretic channel C taking a secret input 𝑋 to an
observable output 𝑌 . The adversary’s prior knowledge about 𝑋
is modeled with a prior probability distribution 𝜋 , and the goals
of the adversary, for each possible value of 𝑋 is modeled with a
gain function 𝑔. The prior- and posterior 𝑔-vulnerabilities then
measure the adversary’s expected gain under 𝑔, before and after
running C, and 𝑔-leakage is the multiplicative (or additive) increase
in 𝑔-vulnerability.

The results of [32, 33] applying these techniques to help un-
derstand PPE schemes are very interesting but the results require
having or finding the ideal object for the primitive and possibly
modeling it as a channel. For example, an ideal object for determin-
istic encryption is a random permutation and the one for order-
preserving encryption is a random order-preserving function. The
works [32, 33] show how to model these as channels by specifying
the information-theoretic channel matrices. This may be feasible
for PPE schemes as the information leakage comes from the cipher-
texts themselves. However, for more complex interactive searchable
encryption protocols such as SEAL [20], the encrypted database
does not leak much information. Instead, most of the leakage comes
when queries are answered. As far as we are aware, nobody has
attempted to model both as an information channel simultaneously
and doing so does not seem to be a straightforward task. We provide
more detailed comparison with QIF in Section 5.1.

Motivating Examples. Let us consider two schemes, which are
provably-secure yet have been subject to attacks. Accordingly, the
security implications for both constructions are not very clear. We
are also interested in these schemes because they have noisy leakage
profiles which have not been studied before.

The first scheme is the differentially private volume-hiding en-
crypted multi-map (DP VHEMM) proposed by Patel et al. [50].
To hide volume pattern, the scheme adds Laplacian noise during
queries to smooth out the query response volumes. The authors
of [50] defined the differential privacy property for encrypted multi-
maps and proved that DP VHEMM satisfies it. The notion is similar
to the original differential privacy definition [21]. Briefly, the ad-
versary should not be able to distinguish between two encrypted
multi-maps when the two multi-maps only differ in two multi-map
keys. For these two multi-map keys, the query response volumes

504

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

should only differ by 1 between the two multi-maps. However, dif-
ferential privacy does not say anything about query privacy and
the data privacy implications are quite limited. In particular, dif-
ferential privacy does not put any constraint on the leakage of
different queries, so query reconstruction may be possible if the
leakage is too “big". In addition, differential privacy only captures
the security of similar multi-maps (these are known as neighbour-
ing multi-maps in the literature). For multi-maps that are far apart,
differential privacy only offers very weak security bounds (through
generic composition) on data privacy.

Unfortunately, [50] did not state or prove the standard indis-
tinguishability security of DP VHEMM. We provide that analysis
for completeness, identifying the leakage. Despite proven security,
Oya and Kerschbaum [46] presented a query reconstruction attack
against DP VHEMM. Their attack does not contradict the above
security results. As we noted, differential privacy does not capture
query privacy. The standard notion does, but in addition to the
allowed leakage. And here the issue is that leakage permits query
reconstruction attacks.

The second example is of SEAL [20], which is a static searchable
encryption scheme with adjustable leakage. The authors of SEAL
proved the standard indistinguishability security of SEAL. Further-
more, they showed experimentally the resilience of SEAL against
query recovery attacks under different parameters of SEAL. On
the other hand, Oya and Kerschbaum [46] showed that SEAL may
still be vulnerable to query reconstruction attacks for certain query
distributions and databases if the (approximate) query distribution
and the (approximate) data distribution are known to the attacker.
In particular, Oya and Kerschbaum showed that they were able to
recover 23% of the queries correctly by only making 500 queries on
the Enron email corpus that contains 30,109 emails.

It is clear now, after the fact, that the leakage in each scheme
enables the attacks. What is not clear is whether the leakages could
have been analyzed before the attacks were found. The other open
questions are whether other attacks are possible and in which set-
tings some security could be guaranteed. We tried to apply the
leakage assessment methodologies from prior works to answer
these questions and we ran into some difficulties. The schemes
and their leakages seem to be too complex for the techniques
from [32, 33, 36, 39] to apply. We do not see a good way to apply
the combinatorial techniques of [36, 39]. Similarly, it does not seem
possible to specify ideal objects for the above schemes, or model
them as channels (to find information-theoretic channel matrices).
Moreover, the reconstruction space computed as part of the leakage
inversion method of [39] will be infinitely large for [50] since DP
VHEMM uses random variables with unbounded support sizes (see
Remark in Section 6.1). Finally, the analyses in [32, 33, 36, 39] focus
on the ideal worlds/objects and it is not obvious if they transfer to
the real world.

Potential Use Cases. We believe that 𝑞-leakage analysis can also
be applied to more complex schemes, e.g., for boolean queries [3,
14, 34] and graph queries [24, 41]. We leave these analyses to future
work.

Our Contributions. We propose a new methodology to quantify
security implications of leakage in searchable encryption schemes.

Our approach is inspired by the quantitative information flow the-
ory and works [1, 52]. We believe our method is more applicable
than previous approaches and show how it can be used to provide
useful security insigts about DP VHEMM and SEAL .

In short, we suggest a method to define and quantify adversarial
success in achieving various security goals when given the leakage
and the ideal experiment. One can do so by considering various
quantitative leakage functions and computing their expectations to
analyze protocols’ security. Special care is needed to ensure that
these bounds translate to the real experiment with the protocol’s
execution, even when the standard security guarantees that the
experiments are indistinguishable. We show the applicability of
our methodology to obtain novel security results for two existing
protocols. We now discuss our contributions in more detail.

𝑞-Leakage Analysis. Recall that standard security notions en-
sure that the protocol does not leak more than some permitted
leakage. To quantify the (in)security of the leakage we propose
to use public functions which we call quantitative leakage or 𝑞𝑙
functions. Roughly speaking, the 𝑞𝑙-function is a function of some
secret information pertaining to the system under attack and the
adversary’s output, and reflect the "payout" that the adversary gets
corresponding to his guess. Different ql-functions can be used to
model different adversarial goals. For example, the goal of the adver-
sary in [44] is to maximize the fraction of correct keyword guesses.
We can easily imagine other important adversarial goals, such as
the probability of a guess of any keyword or of all keywords, etc.
Moreover, 𝑞𝑙-functions can express much more fine-grained goals.
For instance, one can define a 𝑞𝑙-function measuring the attack-
ers’ ability to guess low-frequency keywords, if such keywords are
more sensitive in the application. Such a 𝑞𝑙-function will reward
the attacker more if the guessed keyword has low frequency. We
note that it does not seem possible to avoid considering various
classes of attacks separately, since there cannot be an all-or-nothing
leakage assessment of leakage. This is because there is always the
𝑞𝑙-function asking to compute the whole leakage, but then the
scheme is trivially insecure.

We believe that it is useful and natural to consider expectations
of the 𝑞𝑙-functions (that we call expected quantitative leakage) to
analyze protocol security. This is because unlike leakage profiles
that may be hard to understand, the expected quantitative leakage
is a number that directly quantifies the damage of attacks. Having
fixed a 𝑞𝑙-function, the expected quantitative leakage of different
schemes or a scheme instantiated with different parameters can be
compared.

For known leakage, we quantitatively measure the ability of
an adversary to compute some useful information defined by the
𝑞𝑙-function. More concretely, there is an (ideal) experimentZ that
generates a private key and a database, polynomially many queries
and some auxiliary information aux about the database and the
queries. Then the simulator S, given the leakage, simulates the
interaction with the attackerA, who gets the auxiliary information
aux that models the a-priori information. The adversary outputs
a guess string 𝜔 , to maximize the expectation of the 𝑞𝑙-function
as the function of 𝜔 , the database and the queries. Security of a
scheme with respect to a function 𝑞𝑙 is defined to be the supreme of
expectation of the 𝑞𝑙-function over all adversaries and experiments.

505

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

Note that even though the adversary does not pick the database
and the queries, we still model the prior knowledge with aux.

Now, one would expect that the above 𝑞-leakage analysis per-
formed in the ideal world given the leakage carries over to the real
world with the actual protocol execution, since the standard security
shows that the worlds are indistinguishable. However, somewhat
surprisingly, this is not always true, i.e., indistinguishability does
not always imply that the expected quantitative leakages are the
same in both worlds. In Section 5.1 we present a simple searchable
encryption scheme and discuss its security and leakage. We then
study a particular 𝑞𝑙-function and show that the difference between
the expected quantitative leakages in the real and ideal worlds is
not negligible, even though the adversary cannot distinguish the
worlds except with negligible probability.

Once we establish that the relation does not hold in general,
we find under which conditions one can rely on already existing
results. We show that a wide class of “practical” 𝑞𝑙-functions, and
for schemes proven to be indistinguishable, the expectation in the
real world differs from the expectation in the ideal world by at most
a negligible constant. Section 5 contains the formal definition and
discusses the subtleties with regard to the order of quantifiers.

In Sections 5.2, 5.3 we discuss how one can choose 𝑞𝑙-functions
and how to interpret the concrete expected quantitative leakage
bounds. We suggest comparing the expected quantitative leakage
of the scheme with the expected quantitative leakage of an ideal
scheme with no leakage. This provides a baseline measurement of
how well the scheme hides the secrets captured by the 𝑞𝑙-function.

𝑞-Leakage Analysis Flow. To summarise, here are the steps of the
analysis in our framework. First, a structured encryption scheme
is proven secure with some formally defined leakage under the
standard security definition. Then a set of 𝑞𝑙-functions is chosen
to capture some practical security goals. Also, one has to specify
the environment capturing the application, such as known data
or query distributions, etc. Next, a bound is proven for each 𝑞𝑙-
function in the ideal experiment. (This can be the most challenging
part of the analyses.) Finally, by our results, if the 𝑞𝑙-function satis-
fies the required property, the same bound is guaranteed in the real
experiment where the attacker tackles the same goal interacting
with the protocol. Our method permits both security and insecu-
rity analyses. The results should allow practitioners to make more
informed decisions regarding the security-efficiency trade-offs for
their applications.

Case studies. Equipped with the new 𝑞-leakage analysis method,
we show how it can be used to provide more fine-grained anal-
ysis for the protocols from our motivating examples. For the DP
VHEMM [50] analysis we could use our notion to formally capture
that attack from [46] by defining the appropriate 𝑞𝑙-function and
calculating the lower bound on its expectation. But that would
not be particularly useful after the fact. Instead, we show how our
notion can be used to do a more fine-grained security analysis. The
attack in [46] uses the fact that the query response volumes for
the most frequent multi-map keys (for the dataset they have used)
are far apart. However, not all multi-maps can be exploited this
way. As extreme examples, consider a multi-map where the keys
are student ids and the values are the genders of the students, or

a multi-map where the keys are patient identifiers and the values
are type of admission (see Texas Inpatient Public Use Data File
(PUDF) [22] for a real-world example). For these multi-maps, the
query response volumes will be 1 for every query since the multi-
map keys are unique. We show that for multi-maps with “similar"
query response volumes, DP VHEMM do offer a certain level of
query privacy. We do this by picking an appropriate environment
and 𝑞𝑙- function that rewards guesses on the keys with large query
response volumes more than the keys with small query response
volumes, and providing its upper bound.

For some multi-maps, it may be okay to leak the identity of the
multi-map keys with large query response volumes. For example,
in a multi-map that holds medical records, it is not very impactful
if an attacker manages to recover a query on common flu. On the
other hand, it is a lot more detrimental if an attacker can learn that
a query is on a cancer. To capture the scenario described above, we
pick an environment and a 𝑞𝑙-function that rewards correct guesses
on low-frequent multi-map keys, and again, prove the upper bound.

To provide more insight about SEAL’s security, we consider two
𝑞𝑙-functions, one modeling generic query recovery attacks and the
other modelling attacks that focus on the recovery of low-frequency
keywords. For the first 𝑞𝑙-function, we show a generic upper bound
on the expected quantitative leakage. For the second 𝑞𝑙-function,
we show an upper bound for databases with keyword frequencies
following Zipf distribution. Let 𝑥 be the padding parameter of
SEAL (𝑥 means that all query response volumes are padded to
the next power of 𝑥). One surprising result we found is that for a
database following Zipf distribution and a particular 𝑞𝑙-function
(𝑞𝑙4 in Section 7), the expected quantitative leakage we computed is
proportional to 𝑥

𝑥−1 . This suggests that padding is mostly effective
when 𝑥 is small and it has a diminishing return in terms of the
expected quantitative leakage. We believe that this kind of result
is only possible with approaches similar to our 𝑞-leakage analysis
as a numerical output from the security notion is needed for such
interpretations.

Summary.We hope future work will provide more useful analyses
of practical schemes using our 𝑞-leakage framework, bringing new
insights into their security.

2 NOTATION

We use the notation (𝑥𝑖)𝑁𝑖=0 to represent a list (tuple) (𝑥0, . . . , 𝑥𝑁).
To present running an interactive algorithm 𝐹 between two par-
ties, we use the notation (outputA , outputB) ← [𝐹A (inputA),
𝐹B (inputB)]. In the notation, 𝑓A is the part of the interactive func-
tion run by party A and 𝑓B is the part of the interactive function
run by party B. Let 𝑇 = (𝑇1, . . . ,𝑇𝑛) be a tuple, we write 𝑇 [𝑖] to
denote the 𝑖-th component of 𝑇 , i.e. 𝑇 [𝑖] = 𝑇𝑖 . We write −→𝑣 to mean
a list.

3 PRELIMINARIES: STRUCTURED

ENCRYPTION AND ITS SECURITY

Structured encryption is the generalization of searchable encryp-
tion, which in turn is the generalization of encrypted keyword
search over documents [16, 19, 25]. Structured encryption was for-
malised in 2010 by Chase and Kamara [17]. In this section, we recall

506

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

the syntax and security definition for structured encryption. We
start by recalling the definition of abstract data types.

Abstract Data Types. An abstract data type S = (Data,Q,RSPN,
Query) is defined by a set of data objects Data, a set of query de-
scriptionsQ, a set of responses RSPN and a setQuery of operations
(queries) of the form Data ×Q→ Data × RSPN.

Syntax for Structured Encryption. Our syntax is adapted from
[17] with slight modifications, explained later. The client Clt and
server Svr in the syntax can be stateful.

Let S = (Data,Q,RSPN,Query) be an abstract data type. A
private-key structured encryption scheme Σ for S with security
parameter 1𝜆 and public parameter pub is defined by the following
algorithms Σ = (Gen, Setup,EQuery):
• sk← Gen(1𝜆, pub) is a probabilistic algorithm run by the client.
It takes as input a security parameter 1𝜆 and a public parameter
pub, and outputs a secret key sk.
• (⊥, edata) ← [Setup

Clt
(pub, sk, data), Setup

Svr
()] is an inter-

active algorithm between the client and the server. The client
takes as input a public parameter pub, a secret key sk and some
data data ∈ Data, and the server does not take any input; after
the interaction, the server outputs some encrypted data edata.
• (rspn, edata′) ← [EQuery

Clt
(pub, sk, q),EQuery

Svr
(edata)]

is an interactive query protocol between the client and server.
The client takes as input a public parameter pub, a secret key sk

and a query type q ∈ Q, and the server takes as input encrypted
data edata; after the interaction, the client outputs a response
rspn, and the server obtains updated data edata′.
Structured encryption Σ associated with S = (Data,Q,RSPN,

Query) is correct if for all 𝜆 ∈ N, all pub, all sk output by Gen
Clt

(1𝜆, pub), for all data0 ∈ Data, edata0 output by the server af-
ter running [Setup

Clt
(pub, sk, data0), SetupSvr ()], for all query

sequences (q1, . . . , q𝑙) ∈ Q
𝑙 , it holds that rspn𝑖 = rspn

′
𝑖
for all

𝑖 = 1, . . . , 𝑙 , where (data𝑖 , rspn𝑖) ← Query(data𝑖−1, q𝑖) and (rspn′𝑖 ,
edata𝑖) ← [EQueryClt (pub, sk, q𝑖), EQuerySvr (edata𝑖)], except
for a negligible probability.

We say the scheme Σ is static if its corresponding plaintext
query protocol Query never changes the data. Otherwise, we call
the scheme dynamic. In Appendix B we will define syntax spe-
cific to particular cases of encrypted multi-maps and searchable
encryption.

Security of Structured Encryption.We adapt the security defini-
tion from [17] to our syntax (for the intuition behind this definition
please see the Introduction).

Definition 3.1 (Adaptive Security of Interactive STE (SS-CQA-B)).
Let S = (Data,Q,RSPN,Query) be an abstract data type and let
Σ = (Gen, Setup,EQuery) be the associated structured encryption
scheme. Let 1𝜆 be a security parameter and pub be a public param-
eter. Figure 1 presents the two games associated with a stateful
semi-honest adversaryA and a stateful simulator S. The subscript
A denotes that the algorithm is executed by the adversary, and
hence it learns the corresponding randomness and communication.
L = (LSetup,LEQuery) is the leakage profile, where:
• LSetup is a function capturing leakage during Setup. LSetup :
{0, 1}∗ × Data → {0, 1}∗ takes as input a public parameter pub

and data data ∈ Data, and outputs a description of the leakage
(e.g. the size of data |data|).
• LEQuery is a stateful function capturing leakage during queries.
LEQuery : {0, 1}∗ × Q

∗ × Data → {0, 1}∗ takes as input a pub-
lic parameter pub, a sequence of queries (q𝑗)𝑙𝑗=1 ∈ Q

𝑙 and data
data ∈ Data, and outputs a description of the leakage for the
queries (q𝑗)𝑙𝑗=1 (e.g. query equality which reveals which queries
are the same). LEQuery is evaluated several times (see line 5 of
IdealSS-CQA-B

Σ,A,L,S (1
𝜆, pub) in Figure 1).

RealSS-CQA-B
Σ,A (1𝜆, pub)

1: data← A(1𝜆, pub)
2: sk← Gen

Clt
(1𝜆, pub)

3: (⊥, edata) ←
[
Setup

Clt
(pub, sk, data), SetupA ()

]
4: 𝑖 ← 1
5: while q𝑖 ← A() do
6: (rspn𝑖 , edata) ←

[
EQuery

Clt
(pub, sk, q𝑖),

EQueryA (edata)
]

7: 𝑖 ← 𝑖 + 1
8: 𝑏 ← A()
9: return 𝑏

IdealSS-CQA-B
Σ,A,L,S (1

𝜆, pub)

1: data← A(1𝜆, pub)
2: (⊥, edata) ←

[
S(1𝜆, pub,LSetup (pub, data)),
SetupA (1𝜆)

]
3: 𝑖 ← 1
4: while q𝑖 ← A() do
5: (rspn𝑖 , edata) ←

[
S(1𝜆, pub,LEQuery (pub, (q𝑗)𝑖𝑗=1,
data),EQueryA (edata)

]
6: 𝑖 ← 𝑖 + 1
7: 𝑏 ← A()
8: return 𝑏

Figure 1: Experiments for SS-CQA-B definition.

We say that a structured encryption scheme Σ with security
parameter 1𝜆 and public parameter pub is adaptive SS-CQA-B-BB
secure (semantic secure against chosen query attack with bit output
in the black-box model) with leakage L if there is a simulator S
such that for every PPT adversary A,���Pr [

RealSS-CQA-B
Σ,A (1𝜆, pub) = 1

]
−

Pr

[
IdealSS-CQA-B

Σ,A,S (1𝜆, pub) = 1
] ��� ≤ negl(𝜆) .

We say that a structured encryption scheme Σ is adaptive SS-
CQA-B-NBB secure (semantic secure against chosen query attack
with bit output in the non-black-box model) with leakage L if for
every PPT adversary A, there is a simulator S such that the above
inequality holds.

507

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

Comparison with Prior Definitions. The syntax in [17] does not
consider interactive protocols. Given that many recent schemes [3,
20, 50] are interactive in nature, we opt for the most general syntax
where both the setup protocol and the query protocol can be in-
teractive. Also for generality, we do not consider tokens explicitly.
Unlike [17], we introduced the public parameter pub in the syntax.
For example, the parameter for the Laplace noise and the amount
of padding used in the construction from [50] is an example of a
public parameter. In prior works such as [18, 20, 35, 50], the pub-
lic parameter is assumed to be implicitly known, but we made it
explicit to improve the clarity of the description of the syntax and
the security notion.

Following [17], we allow leakage in the security definition to
be stateful, while this is not explicitly mentioned in many works,
like [20, 34, 35, 42, 50]. Indeed, this causes a problem as all of these
works require a stateful leakage function in their security proofs.

In addition, we note that most papers in the literature [11, 13,
37, 38] use the non-black-box security definition in the security
statements they make, but the actual proofs are for the black-box
security definition. This observation is important for connecting
the standard notion to our new notion. More details can be found
in Section A.2.

4 LEAKAGE AND ITS IMPLICATIONS

Unlike many other cryptographic primitives, provably-secure struc-
tured encryption schemes are allowed to leak some information
about the values they are supposed to protect: data or queries. This
is permitted by the security notion we discussed above via the leak-
age function given to the simulator. More precisely, a security proof
for a structured encryption scheme only guarantees that an adver-
sary (e.g. an honest-but-curious server) cannot learn more informa-
tion about the database and the queries than what is quantified by
the leakage. We recall some of the most common leakage profiles
permitted by many constructions [3, 10, 14, 15, 19, 20, 38, 45, 53].

Common Leakage Profiles. We recall some common leakage
profiles LEQuery, which takes inputs (pub, (q𝑖)𝑙𝑖=1, (data𝑖)

𝑙
𝑖=1)).

Access-pattern Leakage is typically modeled as a function that
outputs a 𝑀-by-𝑙 matrix AP such that AP𝑖, 𝑗 = 1 if data element
data𝑖 is in the query response of query q𝑗 and AP𝑖, 𝑗 = 0 otherwise.

Query Response Volume Leakage (or simply volume leakage)
outputs a list 𝐿 of length 𝑙 such that 𝐿[𝑖] = |rspn|, where rspn is
the second output of Query(data, q).

Query Eqality Pattern outputs an 𝑙-by-𝑙 matrix QE so that
QE𝑖, 𝑗 = 1 if q𝑖 = q𝑗 and QE𝑖, 𝑗 = 0 otherwise.

Leakage-Abuse Attacks. As we have alluded to in the introduc-
tion, the implications of the leakage are not easy to assess. Leakage
profiles as above may seem unavoidable or innocuous. However,
information leaked by many of the provably-secure schemes can be
exploited by an adversary. Often, the results are devastating in that
they reconstruct the plaintext database or the queries to a large
degree. These attacks are known as leakage-abuse attacks in the
literature.

Discussion.Note that all the leakage-abuse attacks in the literature
do not violate SS-CQA-B-BB security. Clearly, it is a troublesome
situation when a provably-secure structured encryption scheme can
be subjected to attacks. To address this problem, one may attempt
to build schemes with close to no leakage and argue that no attack
is possible. However, this approach will likely lead to inefficient
schemes. Alternatively, we can try to improve the security notion
so that it captures the (in)feasibility of attacks directly. We opt for
the latter approach.

5 LEAKAGE ANALYSIS DEFINITION

We propose a novel methodology to assess the security implications
of leakage in structured encryption. 𝑞-leakage analysis is inspired
by the quantitative information flow techniques of Alvim et al. [1].
The core idea is to introduce a quantitative leakage function that
measures how well an adversary can learn some private informa-
tion. The 𝑞𝑙-function can be chosen appropriately to capture certain
classes of attacks, for example, query reconstruction attacks. Then
bounding the 𝑞𝑙-function’s output would show resistance to the
corresponding class of attacks. In contrast to the traditional advan-
tage measures of adversarial success, our 𝑞𝑙-function offers a much
more fine-grained assessment. Our analysis allows us to reward
the attacker for partial guesses and also for making more “valuable”
guesses. We discuss this flexibility and how to choose 𝑞𝑙-functions
in Sections 5.2 and 5.3.

5.1 𝑞-Leakage Analysis

We start with a natural notion capturing the ability of an attacker
learning some secret information.

Real
𝑞𝑙

Notion. The formal definition is in Definition 5.1, but we
start with an informal description. We fix an abstract data type and
the associated structured encryption scheme. Consider two parties,
the environmentZ and stateful PPT adversaryA. The environment
Z generate secret key sk, some data data0, polynomially many
queries (q𝑗)𝑙𝑗=1 and some auxiliary information aux on the data and
the queries. Then the environment and the adversary run the setup
protocol where the environment plays the role of the client and
the adversary plays on behalf of the server. Next, the environment
and the adversary run the query protocol with queries (q𝑗)𝑙𝑗=1
where again the environment plays the role of the client and the
adversary plays the role of the server. Finally, the adversary is
given aux and outputs a guess 𝜔 . The output of the experiment is
𝑞𝑙 (𝜔, pub, (data𝑗)𝑙𝑗=1, (q𝑗)

𝑙
𝑗=1), where𝜔 ∈ {0, 1}

∗ is a string output
by the adversary, pub is the public parameter, (data𝑗)𝑙𝑗=1 are data
generated at the start of the game and by the queries, and (q𝑗)𝑙𝑗=1
are queries generated by the environment.

The supreme of the expected quantitative leakage of a function
𝑞𝑙 for scheme Σ with respect to environmentZ is defined to be the
supreme of expectation of the game over all PPT adversariesA, i.e.
supA E

[
Real 𝑞𝑙

Σ,A,Z (1
𝜆, pub)

]
.

Definition 5.1 (Real𝑞𝑙). Let S = (Data,Q,RSPN,Query) be an
abstract data type and let Σ = (Gen, Setup, EQuery) be the associ-
ated structured encryption scheme. Let 1𝜆 be a security parameter
and pub be a public parameter. Figure 2 presents the experiment

508

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

associated with the environmentZ and the stateful semi-honest
adversary A. The environment plays the role of the client and the
adversary plays the role of the server. The game is parametrized by
the function 𝑞𝑙 .

Given a particular environment Z and function 𝑞𝑙 , we define
the expected quantitative leakage as the supremum of the output of
the game Real 𝑞𝑙

Σ,A,Z (1
𝜆, pub) over all PPT adversaries A, i.e.

supA E

[
Real 𝑞𝑙

Σ,A,Z (1
𝜆, pub)

]
.

Real 𝑞𝑙
Σ,A,Z (1

𝜆, pub)

1: (data0, (q𝑗)𝑙𝑗=1, aux) ← Z(1
𝜆, pub)

2: sk← GenZ (1𝜆, pub)
3: (⊥, edata0) ←

[
SetupZ (sk, pub, data0), SetupA ()

]
4: for 𝑖 ← 1, . . . , 𝑙 do
5: (rspn𝑖 , edata𝑖) ← [EQueryZ (sk, pub, q𝑖),

EQueryA (edata𝑖−1)]
6: (data𝑖 , rspn′𝑖) ← Query(data𝑖−1, q𝑖)
7: 𝜔 ← A(1𝜆, pub, aux)
8: return 𝑞𝑙 (𝜔, pub, (data𝑗)𝑙𝑗=0, (q𝑗)

𝑙
𝑗=1)

Figure 2: Real
𝑞𝑙

experiment.

Remarks. The parties we consider are stateful though we do not
explicitly specify their states.

We could have given 𝑞𝑙 aux, but this is not necessary as aux
models some partial information about data and queries already
given to it.

One can generalise our leakage analysis to other adversarial
models. For example, the adversary may be allowed to pick the
queries after it receives the encrypted database. This corresponds
to an adversary who can execute non-adaptive queries on the server.
A natural modification from there is to make the adversary adaptive,
meaning that the adversary can choose the next query based on
what it has seen so far. However, in this case, the 𝑞𝑙-function needs
to be crafted carefully to avoid letting the adversary win trivially
(e.g. by guessing the queries he has chosen).

We note that our framework captures the worst-case security
using the conditions specified by the environment. If a specific
subset of samples is a concern, one can use an environment that
generates these samples exclusively.

It can be quite hard to use the above notion directly to assess
leakage of specific constructions. To make security proofs more
feasible, we use the standard real-ideal paradigm and define the
expected quantitative leakage in the ideal world, as it is easier to
assess.

Ideal
𝑞𝑙

Notion.The ideal experiment, or world, for our notion is
presented in Figure 3. It is similar to the ideal experiment in the
standard security notion [17].

We consider three stateful parties: the environmentZ, the adver-
sary A and the simulator S. The experiment is also parametrized

by the leakage profile L = (LSetup,LEQuery) and the function
𝑞𝑙 . The adversary interacts with S who is given the output of the
leakage functions. The game proceeds in the same way as the real
game except that all real operations on the encrypted database (i.e.
Setup and EQuery) are replaced by a simulator S simulating these
operations with inputs given by the leakage function L. By the end
of the experiment, the adversary outputs a guess 𝜔 and the game
outputs 𝑞𝑙 of 𝜔 (with all other relevant inputs). Similar to the real
notion, we can define the supremum of the expected quantitative
leakage as follows.

Given a particular environment Z, a particular simulator S
and function 𝑞𝑙 , we define the expected quantitative leakage as the
supremum of the output of the game Ideal 𝑞𝑙

Σ,A,Z,S (1
𝜆, pub) over

all PPT adversaries A, i.e. supA E

[
Ideal 𝑞𝑙

Σ,A,Z,S (1
𝜆, pub)

]
.

We remark that for deterministic environments outputting the
data and the queries the adversary could know those and could
always “win” and hence the expected quantitative leakage may not
be very informative. But we envision all environments describing
practical attacks to contain some randomized challenges and the
issue will not arise.

Indistinguishability does not Imply Equality in Expectation.

Ideally, we want to show that for SS-CQA-B-BB secure schemes the
expected quantitative leakage in the ideal world (Figure 3) and the
expected quantitative leakage in the real world (Figure 2) are the
same except for a negligible difference. Then, we can use the ideal
experiment to compute the expected quantitative leakage. However,
it turns out this does not hold true in general, even if the scheme is
provably SS-CQA-B-BB secure.

We present a counterexample to show that the expectation in
the real game cannot always be bounded by the expectation in the
ideal game, even if the underlying scheme is provably secure. We
then formalise conditions for which the expectation in the ideal
world can be used to bound the expectation in the real world in
Theorem 5.2.

Ideal 𝑞𝑙
Σ,A,Z,S (1

𝜆, pub)

1: (data0, (q𝑗)𝑙𝑗=1, aux) ← Z(1
𝜆, pub)

2: (⊥, edata0) ← [S(1𝜆, pub,LSetup (pub, data0)),
SetupA ()]

3: for 𝑖 ← 1, . . . , 𝑙 do
4: (rspn𝑖 , edata𝑖) ← [S(1𝜆, pub,

LEQuery (pub, (q𝑗)𝑙𝑗=1, data0)),
EQueryA (edata𝑖−1)]

5: (data𝑖 , rspn′𝑖) ← Query(data𝑖−1, q𝑖)
6: 𝜔 ← A(1𝜆, pub, aux)
7: return 𝑞𝑙 (𝜔, pub, (data𝑗)𝑙𝑗=0, (q𝑗)

𝑙
𝑗=1)

Figure 3: Ideal
𝑞𝑙

experiment.

509

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

Let 1𝜆 be the security parameter and pub be the public parameter.
Consider the following structured encryption scheme Σ for some ab-
stract data type S = (Data,Q,RSPN,Query). The key generation
algorithm Σ.Gen(1𝜆, pub) generates a random key sk← $ {0, 1}𝜆 .
The setup algorithm Σ.Setup is non-interactive. The client encrypts
data as sk ⊕ data when sk ≠ 1𝜆 and data when sk = 1𝜆 . Then ci-
phertext is sent to the server. We omit the query algorithm of Σ as
it is not used in the example.

One can easily verify that the scheme (more specifically, the
Setup component of it) is SS-CQA-B-BB secure with respect to the
following leakage:
• For all data ∈ {0, 1}𝜆 , return a random string in {0, 1}𝜆 .

The real experiment and the ideal experiment only differ when sk =

1𝜆 . This key is chosen only with probability 2−𝜆 , so the advantage
of the adversary distinguishing the real experiment and the ideal
experiment is upper bounded by 2−𝜆 = negl(𝜆).

Now back to 𝑞-leakage analysis, consider an environment that
generates data distributed uniformly in {0, 1}𝜆 and generates no
query. We are interested in finding out how well the scheme Σ
above hides data. We use the following contrived 𝑞𝑙-function:

𝑞𝑙 (𝜔,⊥, (data),⊥) = 2𝜆 · 1 {𝜔 = data} ,
where 1 is an indicator function. Here, if the adversary manages to
guess data correctly, it’s 𝑞𝑙-function yields 2𝜆 , otherwise, it gets 0.

The adversary can use the following strategy to maximise its
guess. For any ciphertext 𝑐 it sees, it guesses the data as 𝑐 . In Real𝑔
experiment, by using this strategy, the adversary can only win
when sk = 0𝜆 or sk = 1𝜆 . Its expected quantitative leakage with
respect to the function 𝑞𝑙 is 2𝜆 · 2−𝜆+1 = 2.

Now using this leakage function stated above, we compute the
expected quantitative leakage in the ideal world Ideal𝑞𝑙 . Since the
ciphertext is totally random, the probability that the attacker can
guess the data correctly is 2−𝜆 . This means the expected quantitative
leakage is 1.

Comparing the expected quantitative leakages in the real world
and the ideal world, we see that they differ by 1 even though the
scheme is SS-CQA-B-BB secure with the leakage function. This
leads us to conclude that, in general, it is incorrect to say that SS-
CQA-B-BB secure implies a negligible difference in the expectations
between the real world and the ideal world in our new 𝑞-leakage
analysis.

When Indistinguishability Holds. We note that the 𝑞𝑙-function
in our counter-example above is not very natural. For “reasonable”
𝑞𝑙-functions we can expect a negligible difference in the expec-
tations between the real world and the ideal world in our new
𝑞-leakage analysis. We give a quantification of such 𝑞𝑙-functions in
the following theorem.

Theorem 5.2 (SS-CQA-B-BB Security implies Security in our
Analysis). LetL be a leakage profile and Σwith security parameter
1𝜆 and public parameter pub be SS-CQA-B-BB secure with leakage
L. Let 𝑞𝑙 be a function such that:

(1) | |𝑞𝑙 | | ∈ poly(𝜆),
(2) sup𝑧 |𝑞𝑙 (𝑧) | ∈ poly(𝜆),

where | |𝑞𝑙 | | denotes the size of the support of 𝑞𝑙 where 𝑞𝑙 is non-
zero. Then there is a simulator S, such that for every PPT adversary

A, and for every environmentZ,

E

[
Real 𝑞𝑙

Σ,A,Z (1
𝜆, pub)

]
≤ E

[
Ideal 𝑞𝑙

Σ,A,Z,S (1
𝜆, pub)

]
+ negl(𝜆).

We give a high-level overview of the steps in the proof here.
The full proof can be found in Appendix A. In the first step of
our proof (Appendix A.1), we show that if we have two random
variables that are computationally indistinguishable, we can bound
the difference between the expected quantitative leakage of the
two random variables with a general formula. This immediately
implies that for “reasonable" 𝑞𝑙-functions (with conditions stated
in Theorem 5.2), the expected 𝑞-leakage of two computationally
indistinguishable random variables can only differ by a negligible
amount. Then, we create an intermediate security notion SS-CQA-S
(where the adversary outputs a string instead of a bit in the end)
and show that SS-CQA-B-BB security implies SS-CQA-S-BB secu-
rity (Theorem A.4 in Appendix A.2), which can be of independent
interest. Combining the results in Appendices A.1 and A.2 yield a
proof for Theorem 5.2.

Remarks.We first remark on the order of the quantifiers for S and
A in Theorem 5.2. As mentioned before, most of the constructions
in the literature use SS-CQA-B-NBB as their security notion but the
actual proofs are for SS-CQA-B-BB. In addition, we were only able
to show the implication between SS-CQA-B-BB with our notion
(see Figure 5). So it only makes sense to put S before A.

To the best of our knowledge, most of the constructions in the
literature [3, 10, 14, 15, 19, 20, 38, 45, 53] use SS-CQA-B-NBB as
their security notion but the actual proofs are for SS-CQA-B-BB.
Hence, the leakage functions proved for those schemes can be used
in our security notion directly.

We also note that the function 𝑞𝑙 from our counter-example does
not satisfy the second condition of Theorem 5.2 since sup𝑧 |𝑞𝑙 (𝑧) | =
2𝜆 ∉ poly(𝜆).

Comparison with the QIF Framework. The quantitative infor-
mation flow framework (QIF) [1, 52] considers a gain function 𝑔

that takes the attacker’s guess 𝑤 and secret input 𝑥 and output a
number measuring how well the adversary guessed the informa-
tion about 𝑥 . Our functions are very similar in this regard. But the
further treatment is different.

QIF models all possible (secret) inputs and (observable) outputs
of the system as an information-theoretic channel matrix 𝐶 that
gives the conditional probabilities of outputs given the inputs. The
information-theoretic essence of a channel matrix is a mapping
from priors 𝜋 to distributions on posterior distributions.

And then the (additive) 𝑔-leakage is computed as∑︁
𝑦

max
𝑤

∑︁
𝑥

𝜋𝑥𝐶𝑥,𝑦𝑔(𝑤, 𝑥) −max
𝑤

∑︁
𝑥

𝜋𝑥𝑔(𝑤, 𝑥) .

The QIF techniques apply well to property-preserving encryp-
tion (PPE) schemes such as deterministic or order-preserving en-
cryption, as shown in [32, 33]. This is because the PPE security
definitions specify the ideal objects and those are feasible to model
as a channel. Also, PPE leakage is independent of the queries.

The work [9] extended quantitative information flow to support
generic leakage functions and adaptive adversaries. However, their
results still do not apply to dynamic stateful schemes.

510

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

Our framework is not constrained to information channels and
hence it provides more flexibility (e.g. leakage in SEAL is stateful
and is hard to model as an information channel). Also, our frame-
work includes a formal security model for searchable encryption.
The security model is important to show how tomodel data, queries,
and auxiliary information distributions. Moreover, our framework
guarantees that the expected quantitative leakage computed in the
ideal world can be transferred to the real world if the 𝑞𝑙-function
behaves nicely (Theorem 5.2). This is not investigated in [1, 52]. Fi-
nally, our framework focuses on the amount of damage an adversary
can do to a system (i.e., posterior vulnerability which corresponds
to the first term of the 𝑔-leakage formula) as opposed to 𝑔-leakage
as we value the absolute security of the system more.

5.2 Choosing the 𝑞𝑙-Function

The choice of the function 𝑞𝑙 is crucial in our 𝑞-leakage analysis
since 𝑞𝑙 is used to capture classes of attacks. In this section, we
provide a discussion on how the 𝑞𝑙-functions can be chosen.

Capture the Goal of the Attacker. The 𝑞𝑙-function should be
picked to capture concrete classes of attacks. (As we discussed in
the Introduction, it is impossible to meaningfully quantify leak-
age’s damage wrt all possible attacks.) For example, we can capture
query reconstruction attacks by awarding the adversary for every
correctly guessed query. Formally, this function 𝑞𝑙 can be written
as:

𝑞𝑙 ((w𝑗)𝑙𝑗=1, pub, (data𝑗)
𝑙
𝑗=0, (q𝑗)

𝑙
𝑗=1) =

∑𝑙
𝑗=1 1

(
w𝑗 = q𝑖

)
𝑙

,

where w𝑗 is the plaintext the adversary guessed for query q𝑗 . The
𝑞𝑙-function returns the fraction of the correct guesses. In fact, the
function 𝑞𝑙 match the query recovery rate in many attacks in the
literature [6, 31, 44, 46, 47, 55].

Fine-grained quantitative Lakage. As mentioned above, some
parts of the data and queries may be easier to attack than the
other parts. For example, for a database containing medical records,
there are significantly more queries on “flu” than on “cancer”, so
by pure guessing, an attacker can recover queries on “flu” more
easily. However, the attacker may not be interested in queries on
“flu” since it is a common disease.

The 𝑞𝑙-function above cannot be used to encourage the attacker
to make more guesses on “cancer”. However, it can be easily modi-
fied to achieve that. Consider the following 𝑞𝑙-function 𝑞𝑙 ′:

𝑞𝑙 ′((w𝑗)𝑙𝑗=1, pub, (data𝑗)
𝑙
𝑗=0, (q𝑗)

𝑙
𝑗=1)

=

∑𝑙
𝑗=1 1

(
w𝑗 = q𝑖

)
+ 1

(
w𝑗 = q𝑖 ,w𝑗 = cancer

)
𝑙

,

Here, we modified the function 𝑞𝑙 by adding an additional term
1

(
w𝑗 = q𝑖 ,w𝑗 = cancer

)
. The net effect of this is that whenever the

attacker makes a correct guess and the guess is “cancer“, it receives
twice amount of gain than before. As a result, the attacker is more
willing to make guesses on “cancer”since it is easier to maximize
the expected quantitative leakage this way.

The function 𝑞𝑙 ′ can also be interpreted differently. Instead of
considering the problem from the perspective of the attacker, we
can consider it from the perspective of a defender. The goal of the

defender is to minimize the gain an attacker can have on a database.
So the gain on a query (when the attacker makes a correct guess)
can be seen as the privacy loss of the query. Using 𝑞𝑙 ′ as an example,
the 𝑞𝑙-function suggests that the privacy loss of “cancer” is twice
as that of “flu”.

In general, the 𝑞𝑙-function should be picked in a way to reflect
real-world privacy concerns. The 𝑞𝑙-function should reflect which
parts of the data and queries are the adversary (or the defender)
mostly interested in, so that the expected quantitative leakage com-
puted in 𝑞-leakage analysis can accurately reflect the impact of
attacks. We note that the complexity of the 𝑞-leakage analysis may
depend on the a particular choice of the 𝑞𝑙-function. For certain
schemes and functions such analysis may be quite complex.

5.3 Interpreting the Expected Quantitative

Leakage

With 𝑞-leakage analysis, whether a scheme is secure is no longer
binary (i.e. a scheme can either be secure or insecure). Rather, secu-
rity becomes relative. Different 𝑞𝑙-functions can have very different
semantic meanings, e.g., the expected loss of a company in cash
and the success rate of query recovery attacks. We believe that it
is hard to normalize different 𝑞𝑙-functions into a unit interval. In
this section, we discuss how one could still interpret the output of
𝑞-leakage analysis, i.e. the supremum of the expected quantitative
leakage, or expected 𝑞-leakage for short.

Measure the Impact of an Attack. For 𝑞𝑙-functions that directly
model recovery rate of attacks with a certain goal (e.g. 𝑞𝑙 in Sec-
tion 5.2 which models query recovery attacks), the expected 𝑞-
leakage can be interpreted straightforwardly as an upper bound
on the expected recovery rate of the attacks.In practice, practition-
ers who try to use structured encryption scheme to protect their
data can use 𝑞-leakage analysis to compute the expected 𝑞-leakages
for different schemes and pick the one with the smallest expected
𝑞-leakage (if the expected 𝑞-leakage is reasonably small). While
there is no general guideline on how small the expected 𝑞-leakage
needs to be for a scheme to be considered secure, we believe that
using 𝑞-leakage analysis to find the expected 𝑞-leakage of different
schemes is the first step in coming up with a consensus on the
expected 𝑞-leakages for different classes of attacks.

Understand Fine-grained Security. Instead of using 𝑞-leakage
analysis to capture recovery attacks directly, one can use a function
such as 𝑞𝑙 ′ in Section 5.2 for a more fine-grained measure of secu-
rity. In those cases, the 𝑞𝑙-function should be chosen so that the
expected 𝑞-leakage has a well-understood meaning. Then, the user
can analyze the expected 𝑞-leakage of different schemes with their
data and pick the scheme with the smallest expected 𝑞-leakage as
before.

Comparing the Expected Quantitative Leakage to the Base-

line. The expected quantitative leakage may be hard to interpret
for some schemes and 𝑞𝑙-functions. For that reason, we propose
to compare the expected quantitative leakage to a baseline one,
computed on a scheme with no leakage, i.e. LSetup = ⊥ and
LEQuery = ⊥. Then, the difference in the expected 𝑞-leakages
between the baseline and the scheme tells us how much security
the scheme lost due to its leakage. More formally, we define the

511

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

baseline leakage as supA E

[
Real 𝑞𝑙⊥,A,Z (1

𝜆, pub)
]
, where we abuse

⊥ to mean a scheme with no leakage. We give concrete examples
of baselines in Sections 6 and 7.

Efficiency and Security Trade-off. Some structured encryption
schemes have parameters that affect their efficiency and security.
It is generally well-understood how there parameters affect the
efficiency of the schemes, but it is less clear how they affect the
security. 𝑞-leakage analysis can be used to quantify security, and
thus, allow users to make informed decisions on their parameter
choices. As an example, we show in Section 7 how the parameters
in Demertzis et al. [20] affect security. This allows a user to pick
parameters that achieve a specific target expected quantitative
leakage, or help the user understand the security risks if they pick
the parameters for certain efficiency goals.

6 CASE STUDY: DP VHEMM ANALYSIS

6.1 DP VHEMM Description and Prior Results

Overview of DP VHEMM. An encrypted multi-map is an en-
crypted collection of key-value pairs where the client can query
values with multi-map keys. We give the syntax of encrypted
multi-maps in Appendix B. In this section, we study the secu-
rity of differential-private volume-hiding encrypted multi-map (DP
VHEMM) proposed by Patel et al. [50]. We give a high-level de-
scription of DP VHEMM in this section and provide a more detailed
description in Appendix C.

DP VHEMM is a static encrypted multi-map based on Cuckoo
hashing. The main insight of the construction is that it is possible
to encrypt and store the key-value pairs of a multi-map in the hash
tables (two of them to be specific) used in Cuckoo hashing. Then,
when the client wants to query for the keys later, it can hide the
true query response volumes of the keys (i.e. the size of the value
corresponding to the keys) by querying additional entries of the
hash tables on top of the entries that it wants to retrieve. The authors
argued that padding all query response volumes to the maximum
query response volume (by querying enough dummy entries of the
hash tables so that the total number of entries accessed is equal to
the maximum size of the values) is expensive, so they proposed a
differentially private way of hiding the query response volumes by
adding Laplace noises to the true query response volumes (achieved
by querying additional dummy entries of the hash tables).

Remark. Since DP VHEMM relies on Laplace noises with infinite
support sizes, any true query response volume ℓ (key) for multi-
map key key can produce the observed query response volume
ℓ∗ (key). This means that given the leakage of a particular database
and a sequence of queries protected by DP VHEMM, the number of
multi-maps that can produce the leakage is infinite in size. A direct
consequence of this is that the reconstruction space studied in [39]
will be infinite in size as well and it is unclear how the size of the
reconstruction space helps with understanding the impact of the
leakage of DP VHEMM.

Known Security of DP VHEMM. The authors of [50] proved
that DP VHEMM satisfies the differential privacy property they
defined. The notion is similar to the original differential privacy

definition [21]. Briefly, the adversary should not be able to distin-
guish between two encrypted multi-maps when the multi-maps
differ only in two key-value pairs (i.e. the two multi-maps are the
same except that for two of the keys, there is one more/less value
associated to these keys). However, differential privacy does not
say anything about query privacy and the data privacy implica-
tions are quite limited. In particular, differential privacy does not
constrain the leakage of the encrypted queries, so query reconstruc-
tion attacks are not ruled out. In addition, differential privacy only
guarantees the privacy of neighbouring multi-maps that only differ
in two key-value pairs. The security bounds for multi-maps that
differ significantly are too loose to be meaningful.

The authors of [50] did not state or prove SS-CQA-B-(N)BB
security of their scheme. We provide the analysis in Appendix D
for completeness.

Despite the above security results, Oya and Kerschbaum [46]
presented a query reconstruction attack against DP VHEMM. Their
attack does not contradict the above two security statements. As
we mentioned, differential privacy does not capture query privacy.
SS-CQA-B notion does, but besides leakage. And here the issue is
that leakage permits query reconstruction attacks.

Reproducing the results shown by Oya and Kerschbaum with
𝑞-leakage analysis would not be particularly useful. Instead, we
show how 𝑞-leakage analysis can be used to perform a more fine-
grained security analysis. The attack in [46] uses the fact that the
query response volumes for the most frequent multi-map keys
(for the dataset they have used) are far apart. However, not all
multi-maps can be exploited this way. In this section, we show that
for multi-maps with “similar" query response volumes (we will
formally define what we mean by “similar" later), DP VHEMM do
offer a certain level of query privacy.

6.2 Analysis of DP VHEMM Leakage

In this section, we show how our notion can be used to analyze the
leakage of DP VHEMM in certain cases (for specific environments)
and for particular security goals (for certain 𝑞𝑙-functions). We begin
by providing a general description of the environments we con-
sider. We then refine the environment and consider two specific
distributions of multi-map. We show that for some 𝑞𝑙-functions,
DP VHEMM is secure with respect to these environments.

Rewarding Multi-map Keys with Large Query Response Vol-

umes. The attack by Oya and Kerschbaum [46] uses the fact that
the query response volumes for the most frequent multi-map keys
(for the dataset they have used) are far apart. However, not all
multi-maps can be exploited this way. As an example, consider a
multi-map where the keys are student ids and the values are the
genders of the students. For this multi-map, the query response
volumes will be 1 for every query since the multi-map keys are
unique. We show that for multi-maps with “similar" query response
volumes (we will formally define what we mean by “similar" later),
DP VHEMM does offer a certain level of query privacy.

We use the following 𝑞𝑙-function 𝑞𝑙1:

𝑞𝑙1 ((𝑖, key𝑘), pub, (MM𝑗)𝑙𝑗=0, (q𝑗)
𝑙
𝑗=1) = 1

{
key𝑘 = q𝑖

}
· 𝑘
𝑁
,

512

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

where the guess is an index 𝑖 and a key key𝑘 (key𝑘 is the 𝑘-th key
in terms of query response volume, from the smallest to the largest)
and 𝑁 is the total number of keys in the multi-map. The 𝑞𝑙-function
outputs 𝑘

𝑁
when the guessed key key𝑘 matches with the 𝑖-th query

q𝑖 . In other words, the 𝑞𝑙-function rewards guesses on the keys
with large query response volumes more than the keys with small
query response volumes.

We consider multi-maps with “similar" query response volumes.
Let key1, . . . , key𝑁 be the keys of the multi-map such that 𝜇𝑖 ≤ 𝜇 𝑗
for all 𝑖 < 𝑗 (recall that 𝜇𝑖 is the location parameter for the query
response volume of key𝑖). Let 𝛿 ∈ N be a natural number such that
for all 𝑖 , 𝜇𝑖+𝛿 − 𝜇𝑖 < 𝑏. That is, for every key key, there are at least 𝛿
other keys that have similar location parameters (up to a difference
of𝑏) to it. The environment will generate amultimapwith randomly
chosen keys and values, and which satisfies the above conditions on
the location parameter for the query response volumes. To simplify
the analysis we consider the true query response volumes following
the Laplace distribution. The environment also generates queries
with an arbitrary distribution. The parameters describing the multi-
map are given to the adversary as the auxiliary information. In
more practical terms, this environment can be used to model a
medical database where diseases (as keys of a multi-map) have a
similar number of patients (patients as multi-map values).

For such an environment and the 𝑞𝑙-function, the following
theorem shows that DP VHEMM achieves a certain level of security.
The proof is in Appendix D.

Theorem 6.1. Let 1𝜆 be a security parameter and pub =

(𝛼, 𝜀, 𝜆𝐷𝑃 , 𝑐 (·)) be a public parameter. Let 𝑁 ∈ N be the number of
multi-map keys, 𝛿 ∈ N be a natural number, 𝑏 ∈ R+, 𝑏 ≤ 2/𝜀 band
𝑑 ∈ N be a natural number. Suppose 𝑁 ≥ 𝛿 · exp

(
−𝑑 ·𝜀
2

)
and 𝑠 < 𝑑 .

LetZ𝑁,𝛿,𝑠,𝑑
1 be the following environment:

(1) It picks 𝜇1, . . . , 𝜇𝑁 ∈ N such that 𝜇𝑖 ≤ 𝜇 𝑗 for all 𝑖 < 𝑗 and for
all 𝑖 , 𝜇𝑖+𝛿 − 𝜇𝑖 < 𝑑 .

(2) It generates a multi-map MM =

{
(key𝑖 , (𝑣𝑖, 𝑗)𝑙𝑖𝑗=1)

}𝑁
𝑖=1

such
that:
• key𝑖 is picked randomly from {0, 1}∗ (with an arbitrary
distribution picked by the environmentZ1) under the con-
straint that key𝑖 ≠ key𝑗 for all 𝑖 ≠ 𝑗 .
• 𝑙𝑖 are distributed as ⌊LapD(𝜇𝑖 , 𝑠)⌋.
• The values 𝑣𝑖, 𝑗 are randomly picked from {0, 1}∗ under the
constraint that all 𝑣𝑖, 𝑗 for a fixed 𝑖 are unique. Repeated
values are resampled until there are no more collisions.

(3) It generates polynomially many queries q1, . . . , q𝑙 with an
arbitrary query distribution chosen by the environmentZ1.

(4) It sets the auxiliary information as 𝑁 , {(key𝑖 , 𝜇𝑖)}𝑁𝑖=1, 𝛿 , 𝑠 , 𝑑 .
Consider 𝑞𝑙-function 𝑞𝑙1:

𝑞𝑙1 ((𝑖, key𝑘), pub, (MM𝑗)𝑙𝑗=0, (q𝑗)
𝑙
𝑗=1) = 1

{
key𝑘 = q𝑖

}
· 𝑘
𝑁
.

We get

sup
A

E

[
Real 𝑞𝑙1

DP VHEMM,A,Z𝑁,𝛿,𝑠,𝑑
1

(1𝜆, pub)
]
≤ 1

𝛿
· exp

(
𝑑 · 𝜀
2

)
.

As a numerical example, let 𝑁 = 100, 𝛿 = 20, 𝑠 = 5, and 𝑑 = 10.
This corresponds to a multi-map where there are 100 multi-map

keys. For each multi-map key, there are at least 20 other multi-map
keys with similar frequencies (the location parameter of the random
variables that determines their frequencies are at most 10 apart).
For 𝜀 = 0.2, Theorem 6.1 suggests that the expected 𝑞-leakage is
upper bounded by 0.136.

In addition, the baseline expected 𝑞-leakage

sup
A

E

[
Real 𝑞𝑙1

⊥,A,Z𝑁,𝛿,𝑠,𝑑
1

(1𝜆, pub)
]

is upper bounded by 1
𝑁

where 𝑁 is the number of multi-map keys.
This is because the query distribution is not given to the adversary
and no other auxiliary information allows it to make a guess that
is better than a random guess. For the numerical example above,
this means that the baseline gain is 0.01. While 0.136 expected
𝑞-leakage is much larger than the 0.01 baseline, the expected 𝑞-
leakage is significantly smaller than the worst-case of 1. So the
scheme should be considered reasonably secure forZ𝑁,𝛿,𝑠,𝑑

1 and
𝑞𝑙1 if the 0.136 expected 𝑞-leakage is acceptable.

Rewarding Multi-map Keys with Small Query Response Vol-

umes. For some multi-maps, it may be okay to leak the identity
of the multi-map keys with large query response volumes. For ex-
ample, in a multi-map that holds medical records, it is not very
impactful if an attacker manages to recover a query on common
flue. On the other hand, it is a lot more detrimental if an attacker
can recover a query on a cancer.

To capture the scenario described above, we need a 𝑞𝑙-function
that rewards correct guesses on low-frequent multi-map keys. We
consider the following 𝑞𝑙-function 𝑞𝑙2:

𝑞𝑙2 ((𝑖, key′𝑘), pub, (MM𝑗)𝑙𝑗=0, (q𝑗)
𝑙
𝑗=1) = 1

{
key′

𝑘
= q𝑖

}
·
(
𝑁 − 𝑘
𝑁

)3
.

In short, the function 𝑞𝑙2 outputs
(
𝑀−𝑘
𝑀

)3
whenever the guess key′

𝑘

matches the 𝑖-th query q𝑖 . It is easy to see that the 𝑞𝑙-function is
inversely proportional to the rank of the keyword (the rank is the
order of the keyword in terms of their true query response volumes;
the keywords are ordered in increasing true query response vol-
umes). We picked this 𝑞𝑙-function as we can derive an analytical
bound with it but other 𝑞𝑙-functions are possible as well.

We consider an environmentZ𝑁,𝑡,𝛿,𝑠
2 . LetMM be a multi-map

generated by environment Z𝑁,𝑡,𝛿,𝑠
2 with keys key1, ·, key𝑁 . As

before, the keys satisfy 𝜇𝑖 ≤ 𝜇 𝑗 for all 𝑖 < 𝑗 . In addition, there exists
𝑘 < 𝑁 and 𝛿 ∈ R+ such that for all 𝑖, 𝑗 < 𝑘 ,

��𝜇𝑖 − 𝜇 𝑗 �� < 𝛿 · 𝑠 . In
other words, all keys from key1 to key𝑘−1 have similar location
parameters (and hence, similar query response volumes).

We can bound the security of DP VHEMM with respect to the
environmentZ𝑁,𝑡,𝛿,𝑠

2 and function 𝑞𝑙2 as follows:

Theorem 6.2. Let 1𝜆 be a security parameter and pub = (𝛼, 𝜀,
𝜆𝐷𝑃 , 𝑐 (·)) be a public parameter. Let 𝑁 ∈ N be the number of multi-
map keys, 𝑡 < 𝑁 be a natural number, 𝛿 ∈ R+ be a positive real
number, and 𝑏 ∈ R+, 𝑏 ≤ 2/𝜀 be a positive real number.

LetZ𝑁,𝑡,𝛿,𝑠
2 be the following environment:

(1) It picks 𝜇1, . . . , 𝜇𝑁 ∈ N such that 𝜇𝑖 ≤ 𝜇 𝑗 for all 𝑖 < 𝑗 and��𝜇𝑖 − 𝜇 𝑗 �� < 𝛿 · 𝑠 for all 𝑖, 𝑗 < 𝑡 .
513

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

(2) It generates a multi-map MM =

{
(key𝑖 , (𝑣𝑖, 𝑗)𝑙𝑖𝑗=1)

}𝑁
𝑖=1

such
that:
• key𝑖 is picked randomly from {0, 1}∗ (with an arbitrary
distribution picked by the environmentZ2) under the con-
straint that key𝑖 ≠ key𝑗 for all 𝑖 ≠ 𝑗 .
• 𝑙𝑖 are distributed as ⌊LapD(𝜇𝑖 , 𝑠)⌋.
• The values 𝑣𝑖, 𝑗 are randomly picked from {0, 1}∗ under the
constraint that all 𝑣𝑖, 𝑗 for a fixed 𝑖 are unique. Repeated
values are resampled until there are no more collisions.

(3) It generates polynomially many queries q1, . . . , q𝑙 with an
arbitrary query distribution chosen by the environmentZ2.

(4) It sets the auxiliary information as 𝑁 , {(key𝑖 , 𝜇𝑖)}𝑁𝑖=1, 𝑡 , 𝛿 , 𝑠 .
Consider function 𝑞𝑙2:

𝑞𝑙2 ((𝑖, key𝑘), pub, (MM𝑗)𝑙𝑗=0, (q𝑗)
𝑙
𝑗=1) = 1

{
key𝑘 = q𝑖

}
·
(
𝑁 − 𝑘
𝑁

)3
.

We have

sup
A

E

[
Real 𝑞𝑙2

DP VHEMM,A,Z𝑁,𝑡,𝛿,𝑠
2

(1𝜆, pub)
]

≤max

{(
𝑁 − 𝑡
𝑁

)3
,
exp (𝛿)

𝑁

}
.

We provide a proof of Theorem 6.2 in Appendix D.
As a numerical example, consider parameters 𝑁 = 1000, 𝑡 = 900,

𝜖 = 0.2, and 𝛿 = 5. This corresponds to a multi-map with 1000 multi-
map keys, of which 900 of them have query response volumes, and
those 900 multi-map keys have true query response volumes that
differ by at most 50. The expected 𝑞-leakage with these parameters
is about 0.148.

In contrast, the baseline 𝑞-leakage with 𝑞𝑙2 is upper bounded by
1
𝑁
· ∑𝑁

𝑖=1
𝑖3

𝑁 4 =
(𝑁+1)2
4𝑁 3 . This is because the best possible strategy

for the adversary without any leakage is to guess randomly. It
can succeed at most 1

𝑁
times and the expected 𝑞-leakage when it

guess correctly is
∑𝑁
𝑖=1

𝑖3

𝑁 4 . Numerically, for 𝑁 = 1000, the baseline
𝑞-leakage will be approximately 2.5 × 10−4. This is significantly
smaller than the expected 𝑞-leakage for DP VHEMM. However, this
is to be expected because DP VHEMM is only designed to hide
neighbouring databases (and as a result, queries with similar true
query response volumes).

Still, we believe that DP VHEMM offers reasonable resilience
against query reconstruction attacks that focus on low-frequency
multi-map keys since the expected 𝑞-leakage is significantly smaller
than the worst-case of 1. This suggests that DP VHEMM is useful
in applications where most of the multi-map keys have small query
response volumes (This is common since many real-world multi-
maps follow Zipf’s law1).

7 CASE STUDY: ANALYSIS OF SEAL

Overview of SEAL. A searchable encryption scheme is a scheme
that supports encrypted keyword search on encrypted documents.
We give the syntax of searchable encryption in Appendix B. In

1Zipf’s law states that empirically, the value of the 𝑛th entry in a list of measured
values is inversely proportional to 𝑛.

this section, we study the security of SEAL, which is a searchable
encryption scheme proposed by Demertzis et al. [20].

SEAL [20] a static searchable encryption scheme with adjustable
leakage. The construction uses two main techniques to suppress
leakage. The first technique is the use of ORAM with adjustable
leakage derived from a generic ORAM construction [54]. The idea
there is that instead of using a single ORAM to access all data, the
data is permuted and partitioned into 2𝛼 partitions. These partitions
are then stored in individual ORAMs. When the client wants to
retrieve an item, it first computes which ORAM it needs to access,
and then accesses that ORAM to get the result. By increasing 𝛼 ,
one can get a more efficient data retrieval scheme (because the
individual ORAMs are smaller) at the cost of larger leakage.

The second technique used is padding. The authors suggest
padding the frequencies of the keywords to the next power of a
chosen integer 𝑥 . This hides the exact keyword frequencies. In
addition, if two keywords have the same padded frequency, they
cannot be distinguished from each other.

Known results about SEAL security. With the description of
the scheme, it is easy to see that the public parameter for SEAL is
pub = (𝛼, 𝑥). The leakage of the scheme is as follows:

• LSetup (pub,DB) =
∑𝑁
𝑖=1 𝑙𝑖 where 𝑙𝑖 is the number of keywords in

the 𝑖-th document.
• LEQuery (pub, (q𝑖)𝑙𝑖=1,DB) is a stateful leakage function as fol-
lows. Before generating the leakage for any queries, the leakage
function computes 𝑀 =

∑𝑁
𝑖=1 𝑥

⌈log𝑥 |DB(w𝑖) | ⌉ , where w𝑖 are key-
words in the database. Then, the leakage function creates 2𝛼 par-
titions 𝑃1, . . . , 𝑃2𝛼 . These partitions have a maximum size of ⌈𝑀2𝛼 ⌉
each. Then, the leakage function initialises a map𝑀 : Q→ P(N)
as an empty map. For every keywordw𝑖 in the database (these key-
words can also be viewed as elements in Q), the leakage function
inserts 𝑥 ⌈log𝑥 |DB(w𝑖) | ⌉ elements (w𝑖 , 1), . . . , (w𝑖 , 𝑥

⌈log𝑥 |DB(w𝑖) | ⌉)
into the partitions randomly. If a partition is full, the leakage
function will try to insert the element into a different random
partition. Let the indices of the partitions (the index of 𝑃𝑖 is
𝑖) touched by the insertion process above (with repetition) be
idx1, . . . , idx𝑥 ⌈log𝑥 |DB(w𝑖) |⌉ . The leakage function finally sets𝑀 (w𝑖)
= (idx1, . . . , idx𝑥 ⌈log𝑥 |DB(w𝑖) |⌉). Then, the output of
LEQuery (pub, (q𝑖)𝑙𝑖=1,DB) is simply𝑀 (q1), . . . , 𝑀 (q𝑙).

Oya and Kerschbaum [46] showed that SEAL is vulnerable to
query reconstruction attacks for certain databases. In particular,
the authors performed experiments on the Enron email corpus and
the java-user mailing list from the Lucene project. In the exper-
iments, these datasets are split into two halves, one half as the
target dataset and the other half as the auxiliary dataset. The target
dataset is encrypted using SEAL and queries are made on the en-
crypted database (the queries are generated with Google Trends).
Then, the leakage observed from the setup and query phase of the
protocol, along with the auxiliary dataset and Google Trends as a
query distribution are given to the attacker. Oya and Kerschbaum
showed that their attack algorithm can recover 23% of the queries
correctly on the Lucene dataset, when the number of keywords
used is set to 1000, the average number of queries is 250, and 𝑥 = 4
(the authors did not specify the choice of 𝛼 in the paper). The at-
tack demonstrates that if the attacker has auxiliary information on

514

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

the query distribution and keyword frequency distribution, query
reconstruction can still work on the scheme.

Oya and Kerschbaum’s attack does demonstrate the weaknesses
of SEAL, but the assumptions on the power of the attacker are
quite strong. In practice, it is hard to obtain an auxiliary query
distribution. Without one, Oya and Kerschbaum’s attack has very
limited success (below 10% query recovery rate) in query recon-
struction. We analyze the security implications of SEAL’s leakage
in the presence of auxiliary keyword frequency distribution but in
the absence of auxiliary query distribution.

Analysis of SEAL’s Leakage. We begin by making a general
observation on the leakage of SEAL. SEAL hides the identity of
the keywords by padding the frequencies of the keywords to the
next power of 𝑥 (𝑥 is chosen by the user) and hiding the keywords
amongst the other keywords with the same padded frequency.

Given a database DB, we define 𝑀𝑥,𝑖 to be the number of key-
words in DB that has padded volume 𝑥𝑖 . Then it is easy to observe
that the best adversary who aims to recover a query with query
response volume 𝑥𝑖 has 1

𝑀𝑥,𝑖
chance of succeeding.

However, SEAL is designed to obfuscate keywords that already
have similar frequencies. It is entirely possible that there exists
an 𝑖 such that𝑀𝑥,𝑖 is small (e.g. only a few keywords have a very
high frequency). In that case, SEAL will fail to protect the identity
of those keywords. Hence, the security of SEAL depends on the
distribution of keywords in the database. Our analysis below shows
specific distributions of databases for which SEAL offers security.

Rewarding the most frequent Keywords. In general, high-fre-
quency keywords are harder to protect since there are not many of
them according to the Zipf’s law, so the query response volumes
will give them away easily. However, not all databases follow Zipf’s
law and some may be secure with SEAL. Due to the constraints on
space, we defer a more detailed discussion to Appendix E. We show
a generic bound on the expected 𝑞-leakage of any query-guessing
𝑞𝑙-functions for SEAL.

Rewarding Low-frequent Keywords. Conversely, an adversary
may be interested in recovering the keywords of the queries with
low frequency. An example of a 𝑞𝑙-function that rewards low-
frequent keywords more is

𝑞𝑙4 ((𝑖,w), pub, (DB𝑗)𝑙𝑗=0, (q𝑗)
𝑙
𝑗=1) =

1
{
q𝑖 = w

}��
DB(q𝑖)

�� .

This function achieves the goal since it is inversely proportional
to the frequency of the guessed keyword. For databases where the
frequency of the keywords following a Zipf distribution, we can
prove the following bound on the expected 𝑞-leakage.

Theorem 7.1. Let 1𝜆 be a security parameter and pub = (𝛼, 𝑥)
be a public parameter. Let 𝑛 ∈ N be the number of keywords in the
database.

LetZ𝑛
4 be the following environment:

(1) For 𝑖 = 0, . . . , 𝑛, it samples 𝑟𝑖 from the Zipf distribution with
probability mass function Pr [𝑟] = 1

𝐻𝑛

1
𝑟 , where 𝐻𝑛 is the 𝑛-th

harmonic number. After that, it randomly generates keyword
w𝑖 and 𝑟 documents d𝑖,1, . . . , d𝑖,𝑟 (with an arbitrary distribution
picked by the environmentZ4).

(2) It sets the database DB as (d𝑖, 𝑗 , {w𝑖 })𝑖, 𝑗 .
(3) It sets the auxiliary information as

{
(w𝑖 , ⌈log𝑥 𝑟𝑖 ⌉)

}
𝑖
.

Given security parameter 1𝜆 and public parameter pub = (𝛼, 𝑥),
for any 𝑛 ∈ N, 𝑛 ≫ 𝑥 , for any function 𝑞𝑙4, the expected 𝑞-leakage
of SEAL with respect to the environment Z𝑛

4 and function 𝑞𝑙4 is
upper bounded as:

sup
A

E

[
Real 𝑞𝑙4SEAL,A,Z𝑛

4
(1𝜆, pub)

]
≤ 𝐻𝑛

𝑛

𝑥

𝑥 − 1 .

As an example, if 𝑛 = 1000 (1000 keywords in total where the
query response volumes 𝑟 are distributed with the probability mass
function Pr [𝑟] = 1

𝐻𝑛

1
𝑟), we get the bound on the expected 𝑞-

leakage as 0.0075 𝑥
𝑥−1 .

On the contrary, the baseline for 𝑞𝑙4 is 𝐻𝑛

𝑛2 . This is easy to see
since the best guessing strategy of the adversary is to guess ran-
domly and its expected 𝑞-leakage when it guesses correctly is
1
𝑛 ·

∑𝑛
𝑖=1

1
𝑛 =

𝐻𝑛

𝑛 . Numerically, this means that the baseline for
the example above is 7.49× 10−6 which is significantly smaller than
the expected 𝑞-leakage of SEAL. However, this does not mean SEAL
is ineffective in suppressing volume leakage since the expected
𝑞-leakage of SEAL is significantly better than the worst-case bound
of 1.

Interestingly, we observe that the bound on the expected 𝑞-
leakage for SEAL grows proportional to 𝑥

𝑥−1 . This suggests that
increasing 𝑥 is not efficient in reducing the bound (since the stor-
age/communication overhead grows linearly in 𝑥 but the security
bound only reduces proportional to 𝑥

𝑥−1).

8 CONCLUSIONS

We proposed a new methodology to quantify information leakage
inherent in searchable encryption schemes. We exemplified its use
with two practical protocol analyses providing novel insights. For
DPVHEMM,we showed that formulti-maps that have similar query
response volumes from different multi-map keys, DP VHEMM can
offer sufficient query privacy. For SEAL, we discovered a surprising
result where padding has a diminishing return in terms of the query
privacy. These fine-grained security analysis are not possible with
the standard security notion. We leave it to future works to study
more existing and new schemes’ leakage with respect to various 𝑞𝑙-
functions and environments. As the first step, we only considered
semi-honest security. We hope that future works will generalize
our framework to active adversaries. We believe our framework
will prove to be useful for more fine-grain analyses of practical
searchable encryption schemes and help their wider adoption.

515

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

REFERENCES

[1] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith. 2012. Measuring In-
formation Leakage Using Generalized Gain Functions. In 2012 IEEE 25th Computer
Security Foundations Symposium. 265–279. https://doi.org/10.1109/CSF.2012.26

[2] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill. 2007. Provably-
Secure Schemes for Basic Query Support in Outsourced Databases. In Data and
Applications Security XXI, 21st Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, Redondo Beach, CA, USA, July 8-11, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4602), Steve Barker and Gail-Joon Ahn
(Eds.). Springer, 14–30. https://doi.org/10.1007/978-3-540-73538-0_2

[3] Arnab Bag, Debadrita Talapatra, Ayushi Rastogi, Sikhar Patranabis, and Debdeep
Mukhopadhyay. 2023. TWo-IN-one-SSE: Fast, Scalable and Storage-Efficient
Searchable Symmetric Encryption for Conjunctive and Disjunctive Boolean
Queries. Proceedings on Privacy Enhancing Technologies 2023, 1 (Jan. 2023), 115–
139. https://doi.org/10.56553/popets-2023-0008

[4] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. 2007. Deterministic and
Efficiently Searchable Encryption. In Advances in Cryptology - CRYPTO 2007,
27th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4622), Alfred
Menezes (Ed.). Springer, 535–552. https://doi.org/10.1007/978-3-540-74143-5_30

[5] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart, and Vitaly
Shmatikov. 2018. The Tao of Inference in Privacy-Protected Databases. Proc. VLDB
Endow. 11, 11 (jul 2018), 1715–1728. https://doi.org/10.14778/3236187.3236217

[6] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage
Abuse Attacks. In ISOC Network and Distributed System Security Symposium –
NDSS 2020. The Internet Society, San Diego, CA, USA.

[7] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’Neill. 2009.
Order-Preserving Symmetric Encryption. In Advances in Cryptology - EURO-
CRYPT 2009, 28th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings (Lec-
ture Notes in Computer Science, Vol. 5479), Antoine Joux (Ed.). Springer, 224–241.
https://doi.org/10.1007/978-3-642-01001-9_13

[8] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. 2011. Order-
Preserving Encryption Revisited: Improved Security Analysis and Alternative
Solutions. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings (Lecture
Notes in Computer Science, Vol. 6841), Phillip Rogaway (Ed.). Springer, 578–595.
https://doi.org/10.1007/978-3-642-22792-9_33

[9] Michele Boreale and Francesca Pampaloni. 2014. Quantitative Information Flow
under Generic Leakage Functions and Adaptive Adversaries. In Formal Techniques
for Distributed Objects, Components, and Systems, Erika Ábrahám and Catuscia
Palamidessi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 166–181.

[10] Raphael Bost. 2016. Σ𝑜𝜙𝑜𝜍 : Forward Secure Searchable Encryption. In ACM
CCS 2016: 23rd Conference on Computer and Communications Security, Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi (Eds.). ACM Press, Vienna, Austria, 1143–1154. https://doi.org/10.1145/
2976749.2978303

[11] Raphaël Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and Backward
Private Searchable Encryption from Constrained Cryptographic Primitives. In
ACM CCS 2017: 24th Conference on Computer and Communications Security, Bha-
vani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM
Press, Dallas, TX, USA, 1465–1482. https://doi.org/10.1145/3133956.3133980

[12] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
Abuse Attacks Against Searchable Encryption. In ACM CCS 2015: 22nd Confer-
ence on Computer and Communications Security, Indrajit Ray, Ninghui Li, and
Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 668–679. https:
//doi.org/10.1145/2810103.2813700

[13] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk,
Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic Searchable Encryption
in Very-Large Databases: Data Structures and Implementation. In ISOC Network
and Distributed System Security Symposium – NDSS 2014. The Internet Society,
San Diego, CA, USA.

[14] David Cash, Stanislaw Jarecki, Charanjit S. Jutla, Hugo Krawczyk, Marcel-Catalin
Rosu, and Michael Steiner. 2013. Highly-Scalable Searchable Symmetric Encryp-
tion with Support for Boolean Queries. In Advances in Cryptology – CRYPTO 2013,
Part I (Lecture Notes in Computer Science, Vol. 8042), Ran Canetti and Juan A.
Garay (Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 353–373.
https://doi.org/10.1007/978-3-642-40041-4_20

[15] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalampos Papamanthou,
and Rasool Jalili. 2018. New Constructions for Forward and Backward Private
Symmetric Searchable Encryption. InACMCCS 2018: 25th Conference on Computer
and Communications Security, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 1038–1055. https:
//doi.org/10.1145/3243734.3243833

[16] Yan-Cheng Chang andMichael Mitzenmacher. 2005. Privacy Preserving Keyword
Searches on Remote Encrypted Data. In ACNS 05: 3rd International Conference on
Applied Cryptography and Network Security (Lecture Notes in Computer Science,

Vol. 3531), John Ioannidis, Angelos Keromytis, and Moti Yung (Eds.). Springer,
Heidelberg, Germany, New York, NY, USA, 442–455. https://doi.org/10.1007/
11496137_30

[17] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled
Disclosure. In Advances in Cryptology – ASIACRYPT 2010 (Lecture Notes in Com-
puter Science, Vol. 6477), Masayuki Abe (Ed.). Springer, Heidelberg, Germany,
Singapore, 577–594. https://doi.org/10.1007/978-3-642-17373-8_33

[18] G. Chen, T. Lai, M. K. Reiter, and Y. Zhang. 2018. Differentially Private Access
Patterns for Searchable Symmetric Encryption. In IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications. 810–818. https://doi.org/10.1109/
INFOCOM.2018.8486381

[19] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-
able symmetric encryption: improved definitions and efficient constructions. In
ACM CCS 2006: 13th Conference on Computer and Communications Security, Ari
Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati (Eds.). ACM Press,
Alexandria, Virginia, USA, 79–88. https://doi.org/10.1145/1180405.1180417

[20] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. SEAL: Attack Mitigation for Encrypted Databases via
Adjustable Leakage. In USENIX Security 2020: 29th USENIX Security Symposium,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 2433–2450.

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In TCC 2006: 3rd Theory
of Cryptography Conference (Lecture Notes in Computer Science, Vol. 3876), Shai
Halevi and Tal Rabin (Eds.). Springer, Heidelberg, Germany, New York, NY, USA,
265–284. https://doi.org/10.1007/11681878_14

[22] Texas Health Care Information Collection Center for Health Statistics. 2023.
Texas Inpatient Public Use Data File (PUDF). https://www.dshs.texas.gov/texas-
health-care-information-collection/health-data-researcher-information/texas-
inpatient-public-use. [Online; accessed 29-Nov-2023].

[23] Marilyn George, Seny Kamara, and Tarik Moataz. 2021. Structured Encryption
and Dynamic Leakage Suppression. In Advances in Cryptology - EUROCRYPT
2021 - 40th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, October 17-21, 2021, Proceedings, Part
III (Lecture Notes in Computer Science, Vol. 12698), Anne Canteaut and François-
Xavier Standaert (Eds.). Springer, 370–396. https://doi.org/10.1007/978-3-030-
77883-5_13

[24] Esha Ghosh, Seny Kamara, and Roberto Tamassia. 2021. Efficient Graph En-
cryption Scheme for Shortest Path Queries. In Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security (Virtual Event, Hong
Kong) (ASIA CCS ’21). Association for Computing Machinery, New York, NY,
USA, 516–525. https://doi.org/10.1145/3433210.3453099

[25] Eu-Jin Goh. 2003. Secure Indexes. Cryptology ePrint Archive, Report 2003/216.
https://eprint.iacr.org/2003/216.

[26] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.
2018. Pump up the Volume: Practical Database Reconstruction from Volume
Leakage on Range Queries. In ACM CCS 2018: 25th Conference on Computer
and Communications Security, David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 315–331. https:
//doi.org/10.1145/3243734.3243864

[27] Paul Grubbs, Marie-Sarah Lacharité, BriceMinaud, and Kenneth G. Paterson. 2019.
Learning to Reconstruct: Statistical Learning Theory and Encrypted Database
Attacks. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, San Francisco, CA, USA, 1067–1083. https://doi.org/10.1109/SP.2019.00030

[28] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:
New Volume Attacks against Range Queries. In ACM CCS 2019: 26th Conference
on Computer and Communications Security, Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, London, UK, 361–378.
https://doi.org/10.1145/3319535.3363210

[29] Zichen Gui, Kenneth G. Paterson, and Sikhar Patranabis. 2023. Rethinking
Searchable Symmetric Encryption. In 2023 IEEE Symposium on Security and
Privacy (SP). 1401–1418. https://doi.org/10.1109/SP46215.2023.10179460

[30] Zichen Gui, Kenneth G. Paterson, and Tianxin Tang. 2023. Security Analysis of
MongoDB Queryable Encryption. In 32nd USENIX Security Symposium, USENIX
Security 2023, Anaheim, CA, USA, August 9-11, 2023, Joseph A. Calandrino and
Carmela Troncoso (Eds.). USENIX Association, 7445–7462. https://www.usenix.
org/conference/usenixsecurity23/presentation/gui

[31] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.
In ISOC Network and Distributed System Security Symposium – NDSS 2012. The
Internet Society, San Diego, CA, USA.

[32] Mireya Jurado, Catuscia Palamidessi, and Geoffrey Smith. 2021. A Formal
Information-Theoretic Leakage Analysis of Order-Revealing Encryption. In 34th
IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia,
June 21-25, 2021. IEEE, 1–16. https://doi.org/10.1109/CSF51468.2021.00046

[33] Mireya Jurado and Geoffrey Smith. 2019. Quantifying Information Leakage of
Deterministic Encryption. In Proceedings of the 2019 ACM SIGSAC Conference on
Cloud Computing Security Workshop, CCSW@CCS 2019, London, UK, November
11, 2019, Radu Sion and Charalampos Papamanthou (Eds.). ACM, 129–139. https:

516

https://doi.org/10.1109/CSF.2012.26
https://doi.org/10.1007/978-3-540-73538-0_2
https://doi.org/10.56553/popets-2023-0008
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.14778/3236187.3236217
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/2976749.2978303
https://doi.org/10.1145/3133956.3133980
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1145/2810103.2813700
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1145/3243734.3243833
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1109/INFOCOM.2018.8486381
https://doi.org/10.1109/INFOCOM.2018.8486381
https://doi.org/10.1145/1180405.1180417
https://doi.org/10.1007/11681878_14
https://www.dshs.texas.gov/texas-health-care-information-collection/health-data-researcher-information/texas-inpatient-public-use
https://www.dshs.texas.gov/texas-health-care-information-collection/health-data-researcher-information/texas-inpatient-public-use
https://www.dshs.texas.gov/texas-health-care-information-collection/health-data-researcher-information/texas-inpatient-public-use
https://doi.org/10.1007/978-3-030-77883-5_13
https://doi.org/10.1007/978-3-030-77883-5_13
https://doi.org/10.1145/3433210.3453099
https://eprint.iacr.org/2003/216
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1145/3243734.3243864
https://doi.org/10.1109/SP.2019.00030
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1109/SP46215.2023.10179460
https://www.usenix.org/conference/usenixsecurity23/presentation/gui
https://www.usenix.org/conference/usenixsecurity23/presentation/gui
https://doi.org/10.1109/CSF51468.2021.00046
https://doi.org/10.1145/3338466.3358915
https://doi.org/10.1145/3338466.3358915

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

//doi.org/10.1145/3338466.3358915
[34] Seny Kamara and Tarik Moataz. 2017. Boolean Searchable Symmetric Encryption

with Worst-Case Sub-linear Complexity. In Advances in Cryptology – EURO-
CRYPT 2017, Part III (Lecture Notes in Computer Science, Vol. 10212), Jean-Sébastien
Coron and Jesper Buus Nielsen (Eds.). Springer, Heidelberg, Germany, Paris,
France, 94–124. https://doi.org/10.1007/978-3-319-56617-7_4

[35] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-
tured Encryption. In Advances in Cryptology – EUROCRYPT 2019, Part II (Lec-
ture Notes in Computer Science, Vol. 11477), Yuval Ishai and Vincent Rijmen
(Eds.). Springer, Heidelberg, Germany, Darmstadt, Germany, 183–213. https:
//doi.org/10.1007/978-3-030-17656-3_7

[36] Seny Kamara and Tarik Moataz. 2023. Bayesian Leakage Analysis: A Framework
for Analyzing Leakage in Encrypted Search. Cryptology ePrint Archive, Report
2023/813. https://eprint.iacr.org/2023/813.

[37] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and Dynamic
Searchable Symmetric Encryption. In FC 2013: 17th International Conference on
Financial Cryptography and Data Security (Lecture Notes in Computer Science,
Vol. 7859), Ahmad-Reza Sadeghi (Ed.). Springer, Heidelberg, Germany, Okinawa,
Japan, 258–274. https://doi.org/10.1007/978-3-642-39884-1_22

[38] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. 2012. Dynamic
searchable symmetric encryption. In ACM CCS 2012: 19th Conference on Computer
and Communications Security, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.).
ACM Press, Raleigh, NC, USA, 965–976. https://doi.org/10.1145/2382196.2382298

[39] Evgenios M. Kornaropoulos, Nathaniel Moyer, Charalampos Papamanthou, and
Alexandros Psomas. 2022. Leakage Inversion: Towards Quantifying Privacy
in Searchable Encryption. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi
(Eds.). ACM, 1829–1842. https://doi.org/10.1145/3548606.3560593

[40] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. 2018. Improved
Reconstruction Attacks on Encrypted Data Using Range Query Leakage. In 2018
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San
Francisco, CA, USA, 297–314. https://doi.org/10.1109/SP.2018.00002

[41] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. 2015. GRECS:
Graph Encryption for Approximate Shortest Distance Queries. In ACM CCS
2015: 22nd Conference on Computer and Communications Security, Indrajit Ray,
Ninghui Li, and Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 504–
517. https://doi.org/10.1145/2810103.2813672

[42] Brice Minaud and Michael Reichle. 2022. Dynamic Local Searchable Symmetric
Encryption. In Advances in Cryptology – CRYPTO 2022, Part IV (Lecture Notes
in Computer Science, Vol. 13510), Yevgeniy Dodis and Thomas Shrimpton (Eds.).
Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 91–120. https://doi.
org/10.1007/978-3-031-15985-5_4

[43] MongoDB. 2023. Queryable Encryption: MongoDB Manual. https://www.
mongodb.com/docs/manual/core/queryable-encryption/.

[44] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference
Attacks on Property-Preserving Encrypted Databases. In ACM CCS 2015: 22nd
Conference on Computer and Communications Security, Indrajit Ray, Ninghui Li,
and Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 644–655. https:
//doi.org/10.1145/2810103.2813651

[45] Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic
Searchable Encryption via Blind Storage. In 2014 IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, Berkeley, CA, USA, 639–654. https:
//doi.org/10.1109/SP.2014.47

[46] Simon Oya and Florian Kerschbaum. 2021. Hiding the Access Pattern is Not
Enough: Exploiting Search Pattern Leakage in Searchable Encryption. In USENIX
Security 2021: 30th USENIX Security Symposium, Michael Bailey and Rachel Green-
stadt (Eds.). USENIX Association, 127–142.

[47] Simon Oya and Florian Kerschbaum. 2022. IHOP: Improved Statistical Query
Recovery against Searchable Symmetric Encryption through Quadratic Optimiza-
tion. In USENIX Security 2022: 31st USENIX Security Symposium, Kevin R. B. Butler
and Kurt Thomas (Eds.). USENIX Association, Boston, MA, USA, 2407–2424.

[48] Omkant Pandey and Yannis Rouselakis. 2012. Property Preserving Symmetric
Encryption. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Cambridge, UK, April 15-19, 2012. Proceedings (Lecture Notes in Computer Science,
Vol. 7237), David Pointcheval and Thomas Johansson (Eds.). Springer, 375–391.
https://doi.org/10.1007/978-3-642-29011-4_23

[49] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-
ung Geol Choi, Wesley George, Angelos D. Keromytis, and Steven M. Bellovin.
2014. Blind Seer: A Scalable Private DBMS. In 2014 IEEE Symposium on Security
and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE Computer Society,
359–374. https://doi.org/10.1109/SP.2014.30

[50] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating
Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps
via Hashing. In ACM CCS 2019: 26th Conference on Computer and Communications
Security, Lorenzo Cavallaro, Johannes Kinder, XiaoFengWang, and Jonathan Katz
(Eds.). ACM Press, London, UK, 79–93. https://doi.org/10.1145/3319535.3354213

[51] Amazon Web Services. 2023. AWS Database Encryption SDK. https:
//docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-
encryption.html.

[52] Geoffrey Smith. 2015. Recent Developments in Quantitative Information Flow
(Invited Tutorial). In Proc. LICS 2015: 30th ACM/IEEE Symposium on Logic in
Computer Science. 23–31.

[53] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-
namic Searchable Encryption with Small Leakage. In ISOC Network and Dis-
tributed System Security Symposium – NDSS 2014. The Internet Society, San Diego,
CA, USA.

[54] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM CCS 2013: 20th Conference on Computer and
Communications Security, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung
(Eds.). ACM Press, Berlin, Germany, 299–310. https://doi.org/10.1145/2508859.
2516660

[55] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your
Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable
Encryption. In USENIX Security 2016: 25th USENIX Security Symposium, Thorsten
Holz and Stefan Savage (Eds.). USENIX Association, Austin, TX, USA, 707–720.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their useful comments.
Alexandra Boldyreva was supported in part by Cisco Research
Award and the National Science Foundation Award No.1946919.
Zichen Gui was supported by Zurich Information Security and
Privacy Center (ZISC).

A THEORETICAL RESULTS ON 𝑞-LEAKAGE

ANALYSIS

A.1 Computationally Indistinguishable

𝑞𝑙-Functions

Computationally Indistinguishable 𝑞𝑙-Functions. Let 𝑋 =

(Ω, F , 𝑃𝑋) be a probability space. Let |𝑋 | to be the number of
outcomes of 𝑋 , i.e. |Ω |. For a function 𝑔 : Ω → R, we write 𝑔(𝑋) to
mean a real-valued random variable which maps the outcomes of
𝑋 to 𝑔(·) of it. We abuse the notation 𝑧 ∈ 𝑔(𝑋) to mean elements in
the image of 𝑔(𝑋). We formalise the criterion on the 𝑞𝑙-function for
it to give a negligible difference in expectations for the real world
and the ideal world in our security game in Theorem A.1.

Theorem A.1 (Bound on Expectations with respect to 𝑔).
Let 𝑋 = (Ω, F , 𝑃𝑋) and 𝑌 = (Ω, F , 𝑃𝑌) be probability spaces and
𝑔 : Ω → R be a function which maps the outcomes of the events to
real numbers. Then

E [𝑔(𝑋)] ≤ E [𝑔(𝑌)] + |𝑔(𝑋) | · sup
𝑧
|𝑔(𝑧) | · Δ(𝑔(𝑋), 𝑔(𝑌)),

where Δ(𝑔(𝑋), 𝑔(𝑌)) denotes the statistical distance (or total varia-
tion distance) between 𝑔(𝑋) and 𝑔(𝑌), i.e.
sup𝑧∈𝑔 (𝑋) |Pr [𝑔(𝑋) = 𝑧] − Pr [𝑔(𝑌) = 𝑧] |.

517

https://doi.org/10.1145/3338466.3358915
https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-030-17656-3_7
https://doi.org/10.1007/978-3-030-17656-3_7
https://eprint.iacr.org/2023/813
https://doi.org/10.1007/978-3-642-39884-1_22
https://doi.org/10.1145/2382196.2382298
https://doi.org/10.1145/3548606.3560593
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1145/2810103.2813672
https://doi.org/10.1007/978-3-031-15985-5_4
https://doi.org/10.1007/978-3-031-15985-5_4
https://www.mongodb.com/docs/manual/core/queryable-encryption/
https://www.mongodb.com/docs/manual/core/queryable-encryption/
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1145/2810103.2813651
https://doi.org/10.1109/SP.2014.47
https://doi.org/10.1109/SP.2014.47
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1109/SP.2014.30
https://doi.org/10.1145/3319535.3354213
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption.html
https://doi.org/10.1145/2508859.2516660
https://doi.org/10.1145/2508859.2516660

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

Proof of Theorem A.1. We start by expressing the difference
between the expectations.

|E [𝑔(𝑋)] − E [𝑔(𝑌)] |

=
∑︁

𝑧∈𝑔 (𝑋)
𝑧 · Pr [𝑔(𝑋) = 𝑧] −

∑︁
𝑧∈𝑔 (𝑌)

𝑧 · Pr [𝑔(𝑌) = 𝑧]

=
∑︁

𝑧∈𝑔 (𝑋∪𝑌)
𝑧 · (Pr [𝑔(𝑋) = 𝑧] − Pr [𝑔(𝑌) = 𝑧])

=
∑︁

𝑧∈𝑔 (𝑋)
𝑧 · (Pr [𝑔(𝑋) = 𝑧] − Pr [𝑔(𝑌) = 𝑧]) .

So in particular, there is a 𝑧 such that

|𝑧 · (Pr [𝑔(𝑋) = 𝑧] − Pr [𝑔(𝑌) = 𝑧]) | ≥ |E [𝑔(𝑋)] − E [𝑔(𝑌)] ||𝑔(𝑋) | .

We can take a weaker bound on the right hand side by replacing
𝑧 on the left by sup𝑧 |𝑔(𝑧) |, and we get����sup
𝑧
|𝑔(𝑧) | · (Pr [𝑔(𝑋) = 𝑧] − Pr [𝑔(𝑌) = 𝑧])

����
≥ |E[𝑔 (𝑋)]−E[𝑔 (𝑌)] |

|𝑔 (𝑋) | ,

sup
𝑧
|𝑔(𝑧) | · |Pr [𝑔(𝑋) = 𝑧] − Pr [𝑔(𝑌) = 𝑧] |

≥ |E[𝑔 (𝑋)]−E[𝑔 (𝑌)] |
|𝑔 (𝑋) | ,

|Pr [𝑔(𝑋) = 𝑧] − Pr [𝑔(𝑌) = 𝑧] |
≥ |E[𝑔 (𝑋)]−E[𝑔 (𝑌)] |

|𝑔 (𝑋) | ·sup𝑧 |𝑔 (𝑧) |
.

The left hand side is bounded from above by statistical distance
Δ(𝑔(𝑋), 𝑔(𝑌)). Finally, by rearranging the terms, we have the de-
sired result.

Δ(𝑔(𝑋), 𝑔(𝑌)) ≥ |E [𝑔(𝑋)] − E [𝑔(𝑌)] ||𝑔(𝑋 ∪ 𝑌) | · sup𝑧 |𝑔(𝑧) |
E [𝑔(𝑋)] ≤ E [𝑔(𝑌)] + |𝑔(𝑋) | · sup

𝑧
|𝑔(𝑧) | · Δ(𝑔(𝑋), 𝑔(𝑌)) .

□

It is straightforward to see that if two probability spaces are com-
putationally indistinguishable, and a function 𝑔 behaves nicely on
the probability spaces (specified by the conditions in the corollary),
we get Corollary A.2.

Corollary A.2 (Bound on Computationally Indistinguish-
able Probability Spaces with respect to 𝑔). Let 1𝜆 be a security
parameter. Let 𝑋 = (Ω, F , 𝑃𝑋) and 𝑌 = (Ω, F , 𝑃𝑌) be probability
spaces and 𝑔 : Ω → R be a function which maps the outcomes of
the events to real numbers. Assume that the following conditions
hold:

(1) 𝑋 and 𝑌 are computationally indistinguishable,
(2) |{𝜔 | 𝑔(𝜔) ≠ 0, 𝜔 ∈ Ω}| ∈ poly(𝜆),
(3) sup𝑧 |𝑔(𝑧) | ∈ poly(𝜆).

Then
E [𝑔(𝑋)] ≤ E [𝑔(𝑌)] + negl(𝜆) .

A.2 Implications between the Standard Notion

and 𝑞-leakage Analysis

Just as the standard notion we showed in Section 2, 𝑞-leakage
analysis we described in Section 5.1 is quantified with a leakage
function. In this section, we show that one can use the same leakage
function for both notions if certain conditions are met. This helps
with security proofs as it allows one to first quantify the leakage in
the standard notion, and then calculate the expected 𝑞-leakage in
the 𝑞-leakage analysis.

In more detail, we first propose an intermediate notion (Def-
inition A.3) that is the same as the standard notion except that
the adversary returns a string as opposed to a bit in the real and
ideal games. We then show that security in the standard notion
(i.e. computational indistinguishability between the real and ideal
games) implies security in this intermediate notion in Theorem A.4.
Finally, we show that if a scheme is secure in the intermediate no-
tion with leakage L, then the expected 𝑞-leakage in the real game
of 𝑞-leakage analysis can be bounded by the expected 𝑞-leakage in
the ideal game of 𝑞-leakage analysis with the same leakage L.

We begin by stating the intermediate notions in Definition A.3
below. One is in the black-box model and the other one is in the
non-black-box model. The difference is the order of quantifiers.

Definition A.3 (Modified Adaptive Security of Interactive STE (SS-C-
QA-S)). Let 1𝜆 be a security parameter and pub be a public param-
eter. Consider the probabilistic games in Figure 4 for structured
encryption scheme Σ where A is a stateful semi-honest adversary
which outputs a string in the end, S is a stateful simulator, Clt is
the client played by the real game, Svr is the server played by the
adversary, L = (LSetup,LQuery) is the leakage profile:

We say that scheme Σ with security parameter 1𝜆 and public
parameter pub is adaptive SS-CQA-S-BB secure (semantic secure
against chosen query attack with string output in the black-box
model) with leakage L if there is a simulator S such that for every
PPT adversaries A and distinguishers D,���Pr [

D(RealSS-CQA-S
Σ,A (1𝜆, pub)) = 1

]
−

Pr

[
D(IdealSS-CQA-S

Σ,A,S (1𝜆, pub)) = 1
] ��� ≤ negl(𝜆) .

We say that scheme Σ with security parameter 1𝜆 and public
parameter pub is adaptive SS-CQA-S-NBB secure (semantic secure
against chosen query attack with string output in the non-black-
box model) with leakage L if for every PPT adversaries A and
distinguishers D, there is a simulator S such that,���Pr [

D(RealSS-CQA-S
Σ,A (1𝜆, pub)) = 1

]
−

Pr

[
D(IdealSS-CQA-S

Σ,A,S (1𝜆, pub)) = 1
] ��� ≤ negl(𝜆) .

The implications between the four notions are summarised in
Theorem A.4.

Theorem A.4 (Implications between Different Notions.).
The implications between SS-CQA-B-BB, SS-CQA-B-NBB, SS-CQA-
S-BB and SS-CQA-S-NBB are represented by Figure 5.

518

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

RealSS-CQA-S
Σ,A (1𝜆, pub)

1: data← A(1𝜆, pub)
2: sk← Gen

Clt
(1𝜆, pub)

3: (⊥, edata) ←
[
Setup

Clt
(sk, pub, data), SetupA ()

]
4: 𝑖 ← 1
5: while q𝑖 ← A() do
6: (rspn𝑖 , edata) ←

[
EQuery

Clt
(sk, pub, q𝑖),

EQuery
Svr
(edata)

]
7: 𝑖 ← 𝑖 + 1
8: 𝜔 ← A()
9: return 𝜔

Ideal𝑆𝑆−𝐶𝑄𝐴−𝑆
Σ,A,S (1𝜆, pub)

1: data← A(1𝜆, pub)
2: (⊥, edata) ←

[
S(1𝜆, pub,LSetup (pub, data)), SetupA ()

]
3: 𝑖 ← 1
4: while q𝑖 ← A() do
5: (rspn𝑖 , edata) ←

[
S(1𝜆, pub,LEQuery (pub, (q𝑗)𝑖𝑗=1,
data),EQueryA (edata)

]
6: 𝑖 ← 𝑖 + 1
7: 𝜔 ← A()
8: return 𝜔

Figure 4: Games for SS-CQA-S.

SS-CQA-B-BB

SS-CQA-B-NBB

SS-CQA-S-BB

SS-CQA-S-NBB

Figure 5: Implications between the notions

Proof of Theorem A.4. The implications
SS-CQA-B-BB⇒ SS-CQA-B-NBB and
SS-CQA-S-BB⇒ SS-CQA-S-NBB are trivial.

(SS-CQA-S-NBB ⇒ SS-CQA-B-NBB) Suppose that the under-
lying scheme Σ is not secure in SS-CQA-B-NBB, then there is an
adversary A for all simulators S, the output of the real and ideal
experiments differs with non-negligible probability. We construct
an adversary against SS-CQA-S-NBB as follows. At the beginning
of the experiment, the adversary outputs data data0 and a sequence
of queries (q𝑗)𝑙𝑗=1 for some 𝑙 . We run the query algorithm on the
data an to obtain a bit 𝑏 and set the output of the SS-CQA-S-NBB
experiment to be (𝑏, (data𝑗)𝑙𝑗=1, (q𝑗)

𝑙
𝑗=1). Since the probability of

obtaining 𝑏 in the real world and the ideal world is different in
SS-CQA-B-NBB, there must be a distinguisher who can distinguish

(𝑏, (data𝑗)𝑙𝑗=1, (q𝑗)
𝑙
𝑗=1) from the real world and the ideal world,

hence, scheme Σ must be insecure in SS-CQA-S-NBB.
(SS-CQA-S-BB⇒ SS-CQA-B-BB) The proof is similar to

SS-CQA-S-NBB⇒ SS-CQA-B-NBB so we do not repeat it here.
(SS-CQA-B-BB⇒ SS-CQA-S-BB) For any simulator S in

SS-CQA-B-BB, we construct an adversary that generates a non-
negligible difference in probability using SS-CQA-S-BB adversaries
as follows. Let A and D be some adversary and distinguisher
that breaks scheme Σ in SS-CQA-S-BB for the simulator S. The
adversary against SS-CQA-B-BB works as follows. It uses adversary
A to generate data data0 and a sequence of queries (q𝑗)𝑙𝑗=0. The
queries are executed and a transcript T is kept. The transcript T
is given to the adversary A to generate a string 𝜔 . This string
is passed into distinguisher D and a bit 𝑏 is produced. Since we
assumed that SS-CQA-S-BB is insecure, the probability of getting
𝑏 in the real world and ideal world is different, and scheme Σ is
insecure in SS-CQA-B-BB. □

Proof of Theorem 5.2. It suffices to show that the two games
in 𝑞-leakage analysis are computationally indistinguishable if the
underlying scheme is secure in the SS-CQA-B-BB model. Using
Figure 5, we know that security in the SS-CQA-B-BB model implies
security in the SS-CQA-S-BB model. Now, we modify the games in
the SS-CQA-S-BB model by replacing the first line of the real and
ideal worlds with that of 𝑞-leakage analysis, i.e. we let the environ-
ment sample the database, queries and auxiliary information:

(DB0, (q1, . . . , q𝑁), aux) ← $Z.

It is straightforward to see that security in the SS-CQA-S-BB model
implies security in thismodifiedmodel. The only difference between
this model and 𝑞-leakage analysis is that the 𝑞𝑙-function has not
been applied to the output of the game yet. It can be easily shown
that the two games in 𝑞-leakage analysis are indistinguishable if
the modified model is secure with a simple reduction.

We can then use Corollary A.2 to show the desired result. □

B SYNTAX OF INSTANTIATIONS OF

STRUCTURED ENCRYPTION

EncryptedMulti-maps (EMMs).Amulti-mapS = (MM,Q,RSPN,

Query) is an abstract data type such that the data is a set of key-
value tuples MM =

{
(key𝑖 ,−→𝑣𝑖)

}
𝑖∈[𝑁] where 𝑁 is the number of

multi-map keys inMM. Each multi-map key key𝑖 is associated with
a list of values −→𝑣𝑖 . We write ℓ (key𝑖) to mean the number of values
associated to multi-map key𝑖 . For simplicity, we consider static
multi-maps, where the only queries supported are key queries.
For these queries, Q = {key𝑖 }𝑖∈[𝑁] and RSPN ⊂ {0, 1}∗. A key
query Query takes as input a multi-mapMM and a key key ∈ Q,
and outputs a list of values associated to the key key, denoted
as MM[key] ∈ RSPN. An encrypted multi-map is a structured
encryption scheme with multi-maps as the abstract data type.

Searchable Encryption. Document collection S =

(DB,Q,RSPN,Query) is a data type such that the data is a set of
document-keywords tuples DB = ((d1,

{
w1, 𝑗

}𝑙1
𝑗=1),

. . . , (d𝑁 ,
{
w𝑁,𝑗

}𝑙𝑁
𝑗=1)). For the purpose of this paper, we consider

519

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

static document collections, that is, the only queries Query sup-
ported by S are keyword search queries. A keyword search query
takes as input a document collection DB and a keyword w ∈ Q,
and outputs a list of documents that contain the keyword{
d𝑗 | w ∈

{
w𝑗,𝑖

}𝑙 𝑗
𝑖=1

}
∈ RSPN. A structured encryption scheme that

supports document collections is known as searchable encryption.

C FULL DESCRIPTION OF DP VHEMM

In this section, we give a detailed description of DP VHEMM.

Basic Volume-Hiding Encrypted Multi-map. In [50], Patel et
al. proposed a differentially-private volume-hiding EMM based
on Cuckoo hashing. To simplify its description, we first present
the basic volume-hiding construction (we refer to the solution as
VHEMM from now on), and later present the scheme enhanced
with differential privacy.

Let 1𝜆 be the security parameter, F : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1}𝑛
be a pseudorandom function family, and Π = (Enc,Dec) be a sym-
metric encryption scheme with message space {0, 1}∗ and key space
{0, 1}𝜆 . Let MM =

{
(key𝑖 , (𝑣𝑖, 𝑗)𝑙𝑖𝑗=1)

}
𝑖∈[𝑁]

be a multi-map. The

scheme has a public parameter 𝛼 ∈ R+ where 𝛼 is used to de-
termine the size of the hash tables. The scheme VHEMM=(Gen,
Setup, EQuery) is as follows. Gen samples two keys, skF for F
and skEnc for Π. Setup initialises two hash tables 𝑇0 and 𝑇1 of
size (1 + 𝛼) ∗∑𝑖∈[𝑁] 𝑙𝑖 such that 𝑛 = ⌈log2 ((1 + 𝛼) ∗

∑
𝑖∈[𝑁] 𝑙𝑖)⌉.

Then, for every key-value pair (key𝑖 , (𝑣𝑖, 𝑗)𝑙𝑖𝑗=1), the client breaks
the key-value pair down into (key𝑖 , 𝑣𝑖,1), . . . , (key𝑖 , 𝑣𝑖,𝑙 𝑗). For 𝑗 =
1, . . . , 𝑙𝑖 , the client inserts value 𝑣𝑖, 𝑗 into the position FskF (key𝑖 | | 𝑗 | |0)
of hash table 𝑇0. Similarly, it inserts value 𝑣𝑖, 𝑗 into the position
F
skF
(key𝑖 | | 𝑗 | |1) of hash table 𝑇1. If the position in the hash table

has already been occupied, the client follows the insertion pro-
cedure of Cuckoo hashing and moves the preoccupied item to a
different location.

Once all elements have been inserted, the algorithm fills the
empty locations of the hash tables with dummy values. The dummy
values are chosen in a way that they can be distinguished from real
values. Then all entries are encrypted using Π.Enc under skEnc, and
the ciphertexts are sent to the server. In addition, the client finds
the maximum query response volume, i.e. max𝑖 𝑙𝑖 and stores it as
state.

The EQuery protocol is as follows. To query a multi-map key
key, the client computes addresses F

skF
(key| | 𝑗 | |𝑏) for 𝑗 = 1, . . . ,

max𝑖 𝑙𝑖 and 𝑏 = 0, 1. These addresses are sent to the server and
the server responds with the encrypted contents stored in these
addresses in the hash tables. These encrypted contents are then
decrypted using Dec and skEnc and the dummy query responses
are filtered out.

Differentially Private Volume-Hiding Encrypted Multi-map.

The VHEMM scheme described above can be quite inefficient as the
client has to retrieve encrypted contents from 2 ∗max𝑖 𝑙𝑖 addresses
for every query. As an alternative, Patel et al. [50] proposed another
scheme based on differential privacy. We refer to the solution as DP
VHEMM, and it will be the focus of our analysis.

DP VHEMM uses function Lap : R+ × {0, 1}∗ → R to sample
Laplace random variables. It takes as input a scale parameter 𝑠 of a

Laplace random variable and a seed seed, and outputs a realisation
of the Laplace random variable with location 0 and scale 𝑠 . We
write Lap(𝑠; seed) to emphasize that seed fully determines the
randomness of Lap.

The public parameter of DP VHEMM contains the following:
• 𝛼 ∈ R+: A parameter determining the size of the hash tables.
• 𝜀 ∈ R+: The scale parameter of a Laplace random variable.
• 𝜆𝐷𝑃 ∈ R+: A parameter determening the amount of fixed
padding (on top of the random padding introduced by a Laplace
random variable) in the scheme.
• 𝑐 (𝜆𝐷𝑃 , 𝜀): A function that determines the amount of additional
padding based on 𝜆𝐷𝑃 and 𝜀.

Gen samples sk1, sk2 for F, skEnc ∈ {0, 1}𝜆 for Π, and sk3 ∈
{0, 1}𝜆 to compute seed for Lap.

Setup. The client runs the setup protocol of VHEMM just as
before, with sk1 and skEnc. The client also builds a multi-map
MM

′ = {(key𝑖 , 𝑙𝑖)}𝑁𝑖=1 where 𝑁 is the total number of multi-map
keys which maps the multi-map keys to their true query response
volumes 𝑙𝑖 . The client then runs the setup protocol of VHEMM again
on multi-mapMM

′ (with new hash tables), now with sk2 and skEnc.
The client does not have to maintain a state.

EQuery. To query a multi-map key key, the client first runs the
EQuery protocol of VHEMM on the hash tables that store the
true query response volumes to obtain ℓ (key) = |MM[key] |. Next,
the client computes the padded query response volume ℓ∗ (key) =
⌊ℓ (key) +Lap(2/𝜀; F

sk3 (key)) +𝑐 (𝜆𝐷𝑃 , 𝜀)⌋2 3. Then, the client que-
ries the hash table MM that stores the actual key-value pairs on
the server with addresses F

sk2 (key| | 𝑗 | |𝑏) for 𝑗 = 1, . . . , ℓ∗ (key) and
𝑏 = 0, 1. The query responses are decrypted with key skEnc and the
dummy values are filtered out.

D THEORETICAL RESULTS ON DP VHEMM

Definition D.1 (Secure Pseudorandom Laplace Random Number
Generator). Let G : R × {0, 1}𝜆 → Z be a family of determin-
istic polynomial time computable functions. Let LapD(𝑥, 𝑏) be a
mathematical Laplace random variable with location 𝑥 and scale 𝑏.
We say that G is a secure pseudorandom Laplace random number
generator if for any 𝑏 ∈ R and polynomial time algorithmA which
outputs 0 or 1 as a distinguisher,���Pr

sk←${0,1}𝜆 [A(G(𝑏, sk))]−

Pr𝑟←$LapD(0,𝑏) [A(𝑟)]
��� ≤ negl(𝜆).

Note that in DP VHEMM, the Lap function has three inputs,
namely the scale 2/𝜀, a cryptographic key sk3 and a multi-map key
key. This is slightly different from the expected inputs for a secure
2In [50], the authors did not specify how to compute Lap(2/𝜀) deterministically with
key as the input. We propose to do this with Lap(2/𝜀; Fsk3 (key)) in our paper. We
provide a security definition for Lap() in Appendix D that is needed for the security
of the protocol.
3In addition, in [50], the padded query response volume for multi-map key is computed
as ℓ∗ (key) = ℓ (key)) + Lap(2/𝜀; Fsk3 (key)) +𝑐 (𝜆𝐷𝑃 , 𝜀) . This is not mathematically
correct as the Laplace distribution is a continuous distribution but query response
volumes need to be integral. We add the floor function and show in Lemma D.4 that
the modified scheme still satisfies the differential-private property proposed in the
original paper. In addition, we bound the probability that an adversary can recover
the identity of a multi-map key in Theorem D.6.

520

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

Llen (pub, (q1, . . . , q𝑚),MM; st)

1: (𝛼, 𝜀, 𝜆𝐷𝑃 , 𝑐 (·)) ← pub

2: if q𝑚 ∈ st then
3: return st[q𝑚]
4: ℓ∗ ←

��
MM[q𝑚]

�� + LapD(0, 2/𝜀) + 𝑐 (𝜆𝐷𝑃 , 𝜀) ⊲

LapD(0, 2/𝜀) is a mathematical Laplace distribution with
location 0 and scalar 2/𝜀.

5: st[q𝑚] ← ℓ∗

6: return st[q𝑚]

Figure 6: Response volume leakage function of DP VHEMM.

pseudorandom Laplace random number generator. In Theorem D.2,
we show that for any input 𝜀 and key and for a random key sk,
the output of function Lap(2/𝜀; F

sk
(key)) is computationally in-

distinguishable from Lap(2/𝜀; key) if F is a secure pseudorandom
function.

Theorem D.2 (Lap(2/𝜀; Fsk (key)) and Lap(2/𝜀; key) Indistin-
guishability). Let F is a secure pseudorandom function. Let key←
$ {0, 1}𝜆 , 𝑓 (𝜀, sk, key) = Lap(2/𝜀; F

sk
(key)) and𝑔(𝜀, sk) = Lap(2/𝜀; key).

For all 𝜀 ∈ R, multi-map key key ∈ {0, 1}∗ and polynomial time
algorithm A which outputs 0 or 1 as a distinguisher,

|Pr
sk←${0,1}𝜆 [A(Lap(2/𝜀; Fsk (key))]−

Pr
sk←${0,1}𝜆 [Lap(2/𝜀; sk)] | ≤ negl(𝜆).

Proof of Theorem D.2. Suppose the adversary can distinguish
Lap(2/𝜀; F

sk
(key)) from Lap(2/𝜀; sk). We can use this to distin-

guish F
sk
(key) from sk by simply applying Lap(2/𝜀; ·) over the

two inputs and calling the distinguisher. This will be a violation of
the PRF security of F and the statement is proven. □

Security of DP VHEMM. In this section, we give a formal security
statement of DP VHEMM and its proof. The proof uses the stan-
dard technique of constructing a simulator S which can produce
a transcript that is computationally indistinguishable from a real
execution of the scheme.

Theorem D.3 (Security of DP VHEMM). Let 1𝜆 be a security
parameter and pub = (𝛼, 𝜀, 𝜆𝐷𝑃 , 𝑐 (·)) be a public parameter. Let
DP VHEMM be the encrypted multi-map scheme defined above.
Let F : {0, 1}𝜆 × {0, 1}𝑚 → {0, 1}𝑛 be a secure pseudorandom
function family, Π = (Enc,Dec) be an IND-CPA secure symmet-
ric encryption scheme with message space {0, 1}∗ and key space
{0, 1}𝜆 , and Lap : R × {0, 1}𝜆 → N be a secure Laplace random
number generator (see Definition D.1) used by the scheme.

Define setup leakage as LSetup (pub,MM) = ∑𝑁
𝑖=1 𝑙𝑖 where 𝑁

is the number of multi-map keys inMM. For arbitrary queries q1
up to q𝑚 , define query leakage as LQuery = (LQEq,Llen). LQEq is
a query equality leakage function LQEq (pub, (q1, . . . , q𝑚),MM) =
QE where QE is a matrix where QE𝑖, 𝑗 = 1 if q𝑖 = q𝑗 ; QE𝑖, 𝑗 = 0
otherwise. Llen is a stateful volume leakage function shown in
Figure 6.

Then DP VHEMM is SS-CQA-B-BB secure with leakage
(LSetup,LQuery).

Proof. Without loss of generality, assume that the multi-map
is MM =

{
(key𝑖 , (𝑣𝑖, 𝑗)𝑙𝑖𝑗=1)

}
𝑖∈[𝑁]

and the (adaptive) queries are
q1, . . . , q𝑘 .

Let S be the simulator we construct. There are two algorithms S
has to simulate, namely the setup algorithm Setup and the query
algorithm EQuery. We show how these can be done below:

• Setup: Given the setup leakage LSetup (MM) = ∑𝑁
𝑖=1 𝑙𝑖 , the

simulator constructs two hash tables 𝑇0 and 𝑇1 of size (1 +
𝛼)∑𝑁

𝑖=1 𝑙𝑖 each. The entries of the hash table are encryptions
of the zero string under a randomly picked key.
• Query: The simulator is given two leakage components. The
first component is the query equality leakage
LQEq (q1, . . . , q𝑚,MM) = QE where QE is a matrix such
that QE𝑖, 𝑗 = 1 if q𝑖 = q𝑗 ; QE𝑖, 𝑗 = 0 otherwise. The second
component is the volume leakageLlen (q1, . . . , q𝑚,MM;,) =
ℓ∗. To simulate the transcript, the simulator works as follows.
It begins by checking if there exists 𝑗 ≠𝑚 such thatQE𝑚,𝑗 =

1. Suppose that is false. Then, the simulator generates ℓ∗
random accesses on hash tables 𝑇0 and 𝑇1 each and stores
the accessed addresses in its state. On the other hand, if there
exists 𝑗 ≠𝑚 such thatQE𝑚,𝑗 = 1. The simulator looks up for
the addresses accessed by query q𝑗 in its state and replays
the accesses.

We argue that the simulator above produces a transcript that
is computationally indistinguishable from a real execution of the
scheme. To do this, we use the following sequence of games:

• Game0 is identical to Real
SS-CQA-B
DP VHEMM,A (1

𝜆).
• Game1 replaces the IND-CPA secure ciphertexts in the hash
tables with encryptions of the zero string under a random
key.
• Game2 replaces the PRF used to generate the hash table
addresses with a random function.
• Game3 replaces the padded query response volumes (i.e.
ℓ∗ (key) = ⌊ℓ (key) + Lap(2/𝜀; F

sk3 (key)) + 𝑐 (𝜆𝐷𝑃 , 𝜀)⌋) by
ones generated in the leakage Llen () (Figure 6).

Game0 and Game1 are only negligibly-distinguishable as it breaks
IND-CPA of the encryption scheme otherwise.

Game1 and Game2 are computationally indistinguishable for
two reasons. Firstly,Game1 andGame2 may be different when the
random function used in Game2 does not produce a valid cuckoo
hashing. However, this happens with negligible probability when∑𝑁
𝑖=1 𝑙𝑖 = 𝜔 (1). Secondly, an adversary may be able to distinguish

the random function used in Game2 from the PRF used in Game1.
Though this only happens with negligible probability as it breaks
PRF security otherwise.

Finally, Game2 and Game3 are computationally indistinguish-
able since Lap() is a secure Laplace random number generator (see
Theorem D.2) and it has only been called polynomially many times.

It is easy to see that Game3 is identical to
IdealSS-CQA-BDP VHEMM,A,(LSetup,LQuery),S (1

𝜆) and the proof is complete.
□

521

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

Generic Bounds on the Success Rate of Query Reconstruction

Attack. In this section, we give generic bounds on the probability
that an adversary can recover the multi-map key of a query for the
setup above. We use these bounds to bound the expectations of the
𝑞𝑙-functions we consider below. On a high level, the bounds are
calculated in two steps. In the first step, we compute the likelihood
of the multi-map key of a given query q being key for any multi-
map key key. Then, we bound the success rate of an adversary in
recovering the multi-map key of a particular query in a sequence
of queries.

We begin by deriving the probability mass function of the floored
Laplace distribution. For simplicity, we only consider the case where
the parameter 𝜇 of the Laplace distribution is an integer.

Lemma D.4. Let 𝑋 ∼ ⌊Lap(𝜇, 𝑏)⌋ be a floored Laplace random
variable where 𝜇 ∈ Z. Then the probability mass function (defined
over integers) of X is

𝑃 (𝑋 = 𝑥) = 1
2
exp

(
− |𝑥 − 𝜇 |

𝑏

) (
1 − exp

(
1
𝑏

))
.

Proof of Lemma D.4. The probability density function of Lap-
lace random variable Lap(𝜇, 𝑏) is defined to be

Pr [Lap(𝜇, 𝑏) = 𝑥] = 1
2𝑏

exp
(
− |𝑥 − 𝜇 |

𝑏

)
.

This can be easily integrated to give the cumulative distribution
function

Pr [Lap(𝜇, 𝑏) < 𝑥] = 1
2
+ 1
2
sgn(𝑥 − 𝜇)

(
1 − exp

(
− |𝑥 − 𝜇 |

𝑏

))
.

We are now ready to compute the probability mass function
Pr [⌊Lap(𝜇, 𝑏)⌋ = 𝑥] of the floored Laplace distribution. As 𝜇 ∈ Z
and the support of the floored Laplace distribution only contain
integers, we only need to consider the cases 𝑥 ≥ 𝜇 and 𝑥 < 𝜇.

Case 1: 𝑥 ≥ 𝜇.

Pr [⌊Lap(𝜇, 𝑏)⌋ = 𝑥]
=Pr [𝑥 ≤ Lap(𝜇, 𝑏) < 𝑥 + 1]
=Pr [Lap(𝜇, 𝑏) < 𝑥 + 1] − Pr [Lap(𝜇, 𝑏) < 𝑥]

=
1
2

(
1 − exp

(
− |𝑥 + 1 − 𝜇 |

𝑏

))
− 1
2

(
1 − exp

(
− |𝑥 − 𝜇 |

𝑏

))
=
1
2
exp

(
− |𝑥 − 𝜇 |

𝑏

)
− 1
2
exp

(
− |𝑥 − 𝜇 |

𝑏

)
exp

(
1
𝑏

)
=
1
2
exp

(
− |𝑥 − 𝜇 |

𝑏

) (
1 − exp

(
1
𝑏

))
.

Case 2: 𝑥 < 𝜇.

Pr [⌊Lap(𝜇, 𝑏)⌋ = 𝑥]
=Pr [𝑥 ≤ Lap(𝜇, 𝑏) < 𝑥 + 1]
=Pr [Lap(𝜇, 𝑏) < 𝑥 + 1] − Pr [Lap(𝜇, 𝑏) < 𝑥]

= − 1
2

(
1 − exp

(
− |𝑥 + 1 − 𝜇 |

𝑏

))
+ 1
2

(
1 − exp

(
− |𝑥 − 𝜇 |

𝑏

))
= − 1

2
exp

(
− |𝑥 − 𝜇 |

𝑏

)
exp

(
1
𝑏

)
+ 1
2
exp

(
− |𝑥 − 𝜇 |

𝑏

)
=
1
2
exp

(
− |𝑥 − 𝜇 |

𝑏

) (
1 − exp

(
1
𝑏

))
.

□

Given an observed query response volume ℓ∗ (key) (the multi-
map key key is unknown to the attacker), we are interested in the
likelihood of it coming from multi-map key key′. An adversary
that can compute these can simply pick the guess of the multi-map
key that is the most rewarding (with the consideration of the 𝑞𝑙-
function). We show how the likelihood can be bounded and how it
relates to the information-theoretical bounds on the success rate of
query reconstruction.

We show the following proposition which will be useful to bound
the ratio between likelihoods later.

Proposition D.5 (Ratio of Probabilities between Laplace
RandomVariables). Let𝑋𝑖 ∼ ⌊Lap(𝜇𝑖 , 𝑏)⌋ be independent floored
Laplace random variables for 𝑖 = 1, 2 where:
• 𝜇𝑖 ∈ Z ∀ 𝑖 ,
• |𝜇1 − 𝜇2 | = 𝑐 .

Then for any 𝑑 ∈ N,

Pr [𝑋1 = 𝑑] ≤ exp
(𝑐
𝑏

)
· Pr [𝑋2 = 𝑑] .

Proof of Proposition D.5. We re-write one of the probabilities
into the other.

Pr [𝑋2 = 𝑑]

=
1
2
exp

(
− |𝑑 − 𝜇2 |

𝑏

) (
1 − exp

(
1
𝑏

))
≥ 1
2
exp

(
− |𝑑 − 𝜇1 | + |𝜇1 − 𝜇2 |

𝑏

) (
1 − exp

(
1
𝑏

))
=
1
2
exp

(
− |𝜇1 − 𝜇2 |

𝑏

)
exp

(
− |𝑑 − 𝜇1 |

𝑏

) (
1 − exp

(
1
𝑏

))
= exp

(
− 𝑐
𝑏

)
Pr [𝑋1 = 𝑑] .

To second line is simply a rewriting of the probability using
Lemma D.4. The third line uses triangle inequality. The fourth line
rewrites the first exponential into two components. Finally, the last
line converts the terms into the desired form in the proposition.
We obtain the inequality in the proposition by re-arranging the
terms. □

We are now ready to show the bounds on the posterior probabil-
ity Pr [key | ℓ∗] where key is the guess of the queried multi-map
key given that the observed query response volume is ℓ∗. We note
that this probability is information-theoretically optimal – no ad-
versary can guess the multi-map key of a query correctly with a
probability higher than the posterior probability. As a consequence,
we can use the posterior probability to argue about the maximum
expected 𝑞-leakage in our security notion.

Theorem D.6 (Bounds on the Posterior Probabilities). Let
{key𝑖 } be the set of multi-map keys of the multi-map and their
true multi-map key volumes distributed as ℓ (key𝑖) ∼ ⌊Lap (𝜇𝑖 , 𝑏)⌋.
Let 𝑌𝑖 ∼ Lap(0, 2/𝜀) be the Laplace random noise with location
0 and scale 2/𝜀 used on ℓ (key𝑖). Assume 2/𝜀 > 𝑏, i.e. the amount
of Laplace noise added is larger than the uncertainty of the actual
volumes.

522

Understanding Leakage in Searchable Encryption: aQuantitative Approach Proceedings on Privacy Enhancing Technologies 2024(4)

Then, we can write the observed query response volumes as
ℓ∗ (key𝑖) ∼ ⌊2ℓ (key𝑖)+𝑌𝑖 +𝑐 (𝜆𝐷𝑃 , 𝜀)⌋, where 𝑐 (𝜆𝐷𝑃 , 𝜀) is a constant
that depends on 𝜆𝐷𝑃 and 𝜀.

Given an observed query response volume ℓ∗, the posterior prob-
ability Pr [key𝑖 | ℓ∗] is defined as

Pr [key𝑖] Pr [ℓ∗ | key𝑖]∑
𝑗 Pr

[
key𝑗

]
Pr

[
ℓ∗ | key𝑗

] .
This probability is bounded from below by

1∑
𝑗 exp

(|𝜇𝑖−𝜇 𝑗 |
2/𝜀

)
and from above by

1∑
𝑗 exp

(
− |𝜇𝑖−𝜇 𝑗 |2/𝜀

) .

Proof of Theorem D.6. The proof is a simple manipulation of
likelihood functions. Without loss of generality, we consider the
relation between Pr [ℓ∗ | key𝑖] and Pr

[
ℓ∗ | key𝑗

]
for any choice

of 𝑖 and 𝑗 .

Pr

[
ℓ∗ | key𝑗

]
=Pr

[
⌊2ℓ (key𝑗) + Lap (0, 2/𝜖) + 𝑐 (𝜆𝐷𝑃 , 𝜀)⌋ = ℓ∗

]
=
∑︁
𝑘

Pr

[
ℓ (key𝑗) = 𝑘

]
·

Pr

[
⌊Lap (0, 2/𝜖)⌋ = ℓ∗ − 2𝑘 − 𝑐 (𝜆𝐷𝑃 , 𝜀)

]
≤

∑︁
𝑘

exp

(��𝜇𝑖 − 𝜇 𝑗 ��
2/𝜀

)
·

Pr [ℓ (key𝑖) = 𝑘] · Pr
[
⌊Lap (0, 2/𝜖)⌋ = ℓ∗ − 2𝑘 − 𝑐 (𝜆𝐷𝑃 , 𝜀)

]
= exp

(��𝜇𝑖 − 𝜇 𝑗 ��
2/𝜀

) ∑︁
𝑘

Pr [ℓ (key𝑖) = 𝑘] · Pr
[
⌊Lap (0, 2/𝜖)⌋ = ℓ∗ − 2𝑘 − 𝑐 (𝜆𝐷𝑃 , 𝜀)

]
= exp

(��𝜇𝑖 − 𝜇 𝑗 ��
2/𝜀

)
Pr

[
ℓ∗ | key𝑖

]
.

The second line of the equation is a simple rewrite of the first
one. The third line expands the probability into a convolution. The
fourth line uses Proposition D.5 to upper-bound the likelihood. The
last two lines are rewrites of the expression in reverse.

By using this relation on the posterior probability directly, we
obtain the desired upper bound.

The lower bound can be derived in the same way by using the
relation

Pr

[
ℓ (key𝑗) = 𝑘

]
≥ exp

(
−

��𝜇𝑖 − 𝜇 𝑗 ��
2/𝜀

)
Pr [ℓ (key𝑖) = 𝑘]

for any 𝑘 . We omit the details here.
□

Proof of Theorem 6.1. As 𝜇𝑖+𝛿 − 𝜇𝑖 < 𝑏 for some 𝛿 , we can
bound the posterior probability for identifying multi-map key key𝑖

from above using Theorem D.6. For simplicity, we assume 𝑖 + 𝛿 is
smaller or equal to the number of multi-map keys.

Pr

[
key𝑖 | ℓ∗

]
≤ 1∑

𝑗 exp
(
− |𝜇𝑖−𝜇 𝑗 |2/𝜀

)
≤ 1∑𝑖+𝛿

𝑗=𝑖+1 exp
(
− |𝜇𝑖−𝜇 𝑗 |2/𝜀

)
≤ 1∑𝑖+𝛿

𝑗=𝑖+1 exp
(
−𝑑 ·𝜀2

)
=

1

𝛿 exp
(
−𝑑 ·𝜀2

)
=
1
𝛿
· exp

(
𝑑 · 𝜀
2

)
.

The multi-map keys key𝑖 for 𝑖 that have not been covered, i.e.
𝑖 + 𝛿 is greater than the number of multi-map keys, have the same
bound on the posterior probability by symmetry.

We can now consider the bound on the expected 𝑞-leakage in
our security notion. As we have just shown above, no adversary
can guess guess a multi-map key more than 𝑒

𝛿
of the times. So a

natural bound on the expected 𝑞-leakage can be derived as:

E

[
Real 𝑞𝑙1DP-VH EMM,A,Z1

(1𝜆)
]

≤ 1
𝛿
· exp

(
𝑑 · 𝜀
2

)
·max𝑞𝑙1

≤ 1
𝛿
· exp

(
𝑑 · 𝜀
2

)
.

□

Proof of Theorem 6.2. The expected 𝑞-leakage can be com-
puted in two parts. The first part is for the high-frequent multi-map
keys, i.e. key𝑖 for 𝑖 > 𝑡 . We can trivially bound as(

𝑁 − 𝑡
𝑁

)3
.

The second part is for the low-frequent multi-map keys, i.e. key𝑖
for 𝑖 ≤ 𝑡 . From Theorem D.6 and use the constraint

��𝜇𝑖 − 𝜇 𝑗 �� < 2𝛿/𝜀
for all 𝑖, 𝑗 < 𝑡 , we know that the probability of guessing the multi-
map key key𝑖 for 𝑖 ≤ 𝑡 correctly is upper bounded by

1∑𝑁
𝑗=1 exp

(
− |𝜇𝑖−𝜇 𝑗 |2/𝜀

)
≤ 1∑𝑁

𝑗=1 exp
(
− 2𝛿/𝜀

2/𝜀

)
=
exp (𝛿)

𝑁
.

Since the maximum gain for guess key𝑖 for 𝑖 ≤ 𝑡 correctly is 1, the
expected 𝑞-leakage for the low-frequent multi-map keys is upper
bounded by exp(𝛿)

𝑁
.

523

Proceedings on Privacy Enhancing Technologies 2024(4) Alexandra Boldyreva, Zichen Gui, and Bogdan Warinschi

Combining the bound on the high-frequent and low-frequent
multi-map keys together, we get

sup
A

E

[
Real 𝑞𝑙2DP-VH EMM,A,Z2

(1𝜆, pub)
]

≤ max

{(
𝑁 − 𝑡
𝑁

)3
,
exp (𝛿)

𝑁

}
.

□

E ADDITIONAL ANALYSIS OF SEAL

Rewarding the most frequent Keywords. Although high-fre-
quency keywords are less protected in general due to the distinct
frequencies they have, there are databases where these keywords
(and other keywords) are not vulnerable to query and data recon-
struction attacks. For example, if the keywords are social security
numbers (SSNs) and each SSN only appears once in the database,
then𝑀𝑥,1 = 𝑁 where 𝑁 is the size of the database, and the chance
of any adversary guessing any SSN correctly is 1

𝑁
.

More generally, for any query-guessing adversary that only has
access to the padded frequencies of the keywords as auxiliary
information (i.e. for keyword w, the adversary only knows that
the true frequency of the keyword is between 𝑥 ⌈log𝑥 |DB(w) | ⌉−1

and 𝑥 ⌈log𝑥 |DB(w) | ⌉), the expected 𝑞-leakage is upper bounded by
min𝑖 1

𝑀𝑥,𝑖
·max𝑞𝑙 . We state this formally in Theorem E.1.

Theorem E.1. Let 1𝜆 be a security parameter and pub = (𝛼, 𝑥)
be a public parameter. Let 𝑙 ∈ N be a natural number and𝑀𝑥,𝑖 ∈ N
for 𝑖 = 0, . . . , 𝑙 be a list of natural numbers.

LetZ{𝑀𝑥,𝑖 }𝑙𝑖=0
3 be the following environment:

(1) For 𝑖 = 0, . . . , 𝑙 , it randomly generates 𝑀𝑥,𝑖 keywords w𝑖,1,
w𝑖,𝑀𝑥,𝑖

(with an arbitrary distribution picked by the environ-
ment Z3) with the constraint that each keyword is unique
(across all 𝑖’s). For each keywordw𝑖, 𝑗 , generate a random num-
ber 𝑟 between 𝑥𝑖−1 + 1 and 𝑥𝑖 inclusively. Then randomly
generate 𝑟 documents d𝑖, 𝑗,𝑘 for 𝑘 = 1, . . . , 𝑟 (with an arbitrary
distribution picked by the environmentZ3).

(2) It sets the database DB as (d𝑖, 𝑗,𝑘 ,
{
w𝑖, 𝑗

}
)𝑖, 𝑗 .

(3) It sets the auxiliary information as
{
(w𝑖, 𝑗 , 𝑖)

}
𝑖, 𝑗
. (Hence the

adversary knows which “frequency bin" does each keyword
fall into.)

Let ℎ : {0, 1}∗ × Data
∗ × Q

∗ → R be a function. Suppose 𝑞𝑙3
has the shape 𝑞𝑙3 ((𝑖, key𝑘), pub, (MM𝑗)𝑙𝑗=0, (q𝑗)

𝑙
𝑗=1) = ℎ((𝑖, key𝑘),

pub, (MM𝑗)𝑙𝑗=0, (q𝑗)
𝑙
𝑗=1) · 1

{
key𝑘 = q𝑖

}
. Then, given security pa-

rameter 1𝜆 and public parameter pub = (𝛼, 𝑥), for any 𝑙 ∈ N and
𝑀𝑥,𝑖 ∈ N for 𝑖 = 0, . . . , 𝑙 , for any function 𝑞𝑙3, the expected 𝑞-

leakage of SEAL with respect to the environmentZ{𝑀𝑥,𝑖 }𝑙𝑖=0
3 and

function 𝑞𝑙3 is upper bounded as:

sup
A

E

Real 𝑞𝑙3SEAL,A,Z{𝑀𝑥,𝑖 }𝑙𝑖=0
3

(1𝜆, pub)
 ≤ min

𝑖

1
𝑀𝑥,𝑖

· sup
𝑧
|ℎ(𝑧) |.

It is easy to see why the bound works. The supremum of the
expected 𝑞-leakage is the same as the supremum of 𝑞𝑙3. But 𝑞𝑙3 can
be decomposed into ℎ and an indicator function 1

{
key𝑘 = q𝑖

}
. For

the indicator function, we know that if there are 𝑀𝑥,𝑖 keywords
with the same padded frequency, the adversary cannot distinguish
these keywords. So the indicator function can only be 1 1

𝑀𝑥,𝑖
of the

times. Hence, the min𝑖 1
𝑀𝑥,𝑖

component in the bound. The other
half of the bound comes from the fact that the supremum of 𝑞𝑙3 is
upper bounded by the supremum of ℎ.

This bound is useful when min𝑖 1
𝑀𝑥,𝑖

is small. Or equivalently,
all𝑀𝑥𝑖 are large. This corresponds to a database where all keyword
frequencies are similar (e.g. a database of SSNs where each SSN
only appear once), or a database where there are several clusters of
keyword frequencies and all clusters have a reasonably large size
(e.g. a database of products by a company where groups of products
are produced in similar quantities).

F THEORETICAL RESULTS ON SEAL

Proof of Theorem 7.1. We begin by computing the expecta-
tion of𝑀𝑥,𝑖 . Since the keyword frequencies follow Zipf distribution
with probability mass function Pr [𝑟] = 1

𝐻𝑛

1
𝑟 , the expectation of

𝑀𝑥,𝑖 can be calculated as

E

[
𝑀𝑥,𝑖

]
= 𝑛 ·

(
1
𝐻𝑛

1
𝑥𝑖−1 + 1

+ . . . + 1
𝐻𝑛

1
𝑥𝑖

)
≥ 𝑛

𝐻𝑛

𝑥𝑖 − 𝑥𝑖−1
𝑥𝑖

=
𝑛

𝐻𝑛

𝑥 − 1
𝑥

.

Recall that guessing a keyword with frequency 𝑟 correct is
awarded 1

𝑟 gain. It means that if 𝑟 after padding becomes 𝑥𝑖 for
some 𝑖 , the gain is upper bounded by 1

𝑥𝑖−1
.

Since the adversary is given all the plaintext keywords with
the floors of log𝑥 of their frequencies, upon observing the query
response volumes, the best the adversary can do is to randomly
pick a keyword with matching padded volume as its guess. This
means the expected gain is upper bounded as follows:

sup
A

E

[
Real

𝑞𝑙4
SEAL,A,Z𝑛

4
(1𝜆, pub)

]
≤ max

𝑖

1
𝑥𝑖−1

· 𝐻𝑛

𝑛

𝑥

𝑥 − 1

≤ 𝐻𝑛

𝑛

𝑥

𝑥 − 1 .

□

524

	Abstract
	1 Introduction
	2 Notation
	3 Preliminaries: Structured Encryption and its Security
	4 Leakage and its Implications
	5 Leakage Analysis Definition
	5.1 q-Leakage Analysis
	5.2 Choosing the ql-Function
	5.3 Interpreting the Expected Quantitative Leakage

	6 Case Study: DP VHEMM Analysis
	6.1 DP VHEMM Description and Prior Results
	6.2 Analysis of DP VHEMM Leakage

	7 Case Study: Analysis of SEAL
	8 Conclusions
	References
	Acknowledgments
	A Theoretical Results on q-leakage Analysis
	A.1 Computationally Indistinguishable ql-Functions
	A.2 Implications between the Standard Notion and q-leakage Analysis

	B Syntax of Instantiations of Structured Encryption
	C Full Description of DP VHEMM
	D Theoretical Results on DP VHEMM
	E Additional Analysis of SEAL
	F Theoretical Results on SEAL

