
Post-quantum XML and SAML Single Sign-On
Johannes Müller

CNRS/LORIA
Nancy, France

johannes.mueller@loria.fr

Jan Oupický
SnT/University of Luxembourg
Esch-sur-Alzette, Luxembourg

jan.oupicky@uni.lu

ABSTRACT
Extensible Markup Language (XML) is one of the most popular
serialization languages. Since many security protocols are built
using XML, it also provides cryptographic functionality. A central
framework in this area is the Security Assertion Markup Language
(SAML). This standard is one of the most widely used options
for implementing Single Sign-On (SSO), which allows users to
authenticate to different service providers using the credentials
from a single identity provider.

Like all other security protocols currently in use, the security
and privacy of XML-based frameworks such as SAML is threatened
by the development of increasingly powerful quantum computers.
In fact, future attackers with access to scalable quantum computers
will be able to break the currently used cryptographic building
blocks and thus undermine the security of the SAML SSO to illegally
access sensitive private information.

Post-quantum cryptography algorithms have been developed
to protect against such quantum attackers. While many security
protocols have been migrated into the quantum age by using post-
quantum cryptography, no such solutions for XML and the security
protocols based on it have been developed, let alone tested.

We make the following contributions to fill this gap. We have
designed post-quantum solutions for the cryptographic building
blocks in XML and integrated them into the SAML SSO protocol.
We implemented our solutions in the OpenSAML, Apache Santu-
ario, and BouncyCastle libraries and extensively tested their perfor-
mance for various post-quantum instantiations. As a result, we have
created a comprehensive and solid foundation for post-quantum
XML and post-quantum SAML SSO migration.

KEYWORDS
XML, SAML, post-quantum, SSO, single sign-on

1 INTRODUCTION
Extensible Markup Language (XML) is a markup language used for
data serialization. XML is one of the most popular data serialization
languages and has a large ecosystem built around it, such as Exten-
sible Stylesheet Language Transformations (XSLT) [80], a language
used to describe transformations of XML documents, XML Schema
Definition (XSD) [76], a language used to define and validate the
structure of an XML document, or XPath [75], a query language
used to navigate through an XML document.
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XML also supports cryptographic algorithms, such as digital
signatures and encryption, to build security protocols. In fact, the
World Wide Web Consortium (W3C) has introduced the XML Sig-
nature [79] and XML Encryption [77] standards, which are widely
used to represent digital signatures and encrypted data as an XML
document. Another example is the XML Advanced Electronic Sig-
natures (XAdES) standard [28] (which extends the XML Signatures
standard [79]) that is used throughout the EU as one of the signature
formats compliant with the eIDAS regulation.

XML signatures and XML encryption are part of many XML-
based protocols, e.g. Simple Object Access Protocol (SOAP) [74], a
protocol used to communicate with Web services, Security Asser-
tion Markup Language (SAML) [52], a framework for exchanging
authentication and authorization information about individuals be-
tween two parties, orHealth Level 7 (HL7) [32], a set of standards for
exchanging healthcare information. What these applications have
in common is that they protect sensitive personal data (e.g. health
records) from the eyes and hands of unauthorized parties.

One of the primary use cases for SAML is to facilitate authentica-
tion with Single Sign-On (SSO) functionality. Single sign-on allows
a user to authenticate to multiple service providers using a single
set of credentials from a central authority, the identity provider.
SAML-based SSO is supported across the Web by providers includ-
ing Google [30], Microsoft [46], Cloudflare [21], or ServiceNow [62].
Since SSO can be used in the healthcare sector to efficiently and
securely receive and process private medical data [59], numerous
providers such as ChartRequest [19], Enterprise Health [26], or
Miniorange [48] offer SAML-based solutions for such applications.

The security of currently used public key cryptography algo-
rithms, including those in XML, is based on “classical” hardness
assumptions, such as the integer factorization problem or the dis-
crete logarithm problem. However, Peter Shor showed in 1994 [64]
that these problems can be solved in polynomial time on a quan-
tum computer. Thus, algorithms whose security is based on such
assumptions, such as RSA or (EC)DSA, are vulnerable to future
adversaries who can use (scalable) quantum computers.

To address the threat posed by quantum attackers, the crypto-
graphic community has developed new public-key cryptographic
algorithms whose security relies on the hardness of problems that
are assumed to be “hard” even for quantum computers (e.g., the
Shortest Vector Problem). These algorithms are called post-quantum
or sometimes quantum-safe. Many post-quantum algorithms have
been developed, especially during the NIST standardization process
for post-quantum cryptography [49]. While the standardization
process is ongoing, it is important to study how to efficiently and
seamlessly migrate our existing cryptographic systems to these
new post-quantum cryptography algorithms.

Because current XML signature and public key encryption stan-
dards support only classically secure algorithms [25, 77, 79], they
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are vulnerable to future quantum attackers. This threat is espe-
cially true for SAML, where a quantum adversary can forge the
classical signatures to completely undermine the security features
of the SAML SSO protocol. As a result, such attackers could, for
example, illegally access private health data. Moreover, a current
eavesdropper can record and store sensitive information encrypted
using XML public key encryption, and decrypt them in the future
when it gains access to a quantum computer (so-called “store now,
decrypt later” attacks).

Despite its practical relevance, to the best of our knowledge
there is no previous work that proposes and evaluates solutions
for post-quantum XML and post-quantum SAML (SSO). However,
migrating these backbone languages and frameworks of our digi-
tized world is necessary to prevent a future security and privacy
disaster: for example, a quantum attacker could forge XAdES-based
eIDAS signatures used to sign real-world contracts, or break the
SAML SSO protocol to illegally authenticate to service providers
(e.g., banks, insurance companies, or government agencies) to steal
sensitive private data.

From a practical point of view, the main challenge is to develop
solutions for the upcoming migration period that are compatible
with current standards and at the same time quantum-safe. Only
with such conceptually planned and carefully detailed solutions
will it be possible to migrate XML-based security protocols on a
large scale and seamlessly into the quantum age.

1.1 Contributions
We offer the following contributions to address the open challenges
mentioned above:

(1) We discuss the quantum security of the public-key cryptog-
raphy in XML and of the SAML framework to illustrate the
significance of this threat.

(2) We design the first post-quantum solutions for XML digital
signatures, for XML public key encryption, and for SAML.
In each case, we propose purely post-quantum solutions,
which use only post-quantum cryptography, and hybrid
post-quantum solutions, which combine classical and post-
quantum cryptography.

(3) We implement our post-quantum solutions in Java using
OpenSAML [72], Apache Santuario [70] and BouncyCas-
tle [71]. We instantiate them with the (currently) most rea-
sonable post-quantum cryptographic algorithms and exten-
sively analyze their performance. Our implementation is
available at https://github.com/PQSAML/index.

(4) Based on our findings, we discuss the features and limitations
of post-quantum XML and post-quantum SAML, and give
recommendations for their post-quantum migration.

Due to its practical relevance, the focus of our work is on the
hybrid variants, as they provide the desired properties of being
both compatible with current standards and quantum-safe (see
Section 4.3 for a more detailed discussion). On a technical level, the
development and testing of these hybrid variants has also attracted
most of our attention, as we aimed to realize the hybrid properties in
a “minimally invasive” way and with as little performance overhead
as possible. To achieve this goal within the constraints set by the
current XML/SAML standards, we have designed and compared

various solutions. At the same time, through this approach we have
identified limitations that prevent some more efficient (hybrid)
post-quantum solutions within the current standards, and which
we argue should be removed.

Our implementation of composite post-quantum signatures (Sec-
tion 5.2.1) is available in BouncyCastle since version 1.78. Addi-
tionally, we are in the process of submitting our solutions to the
maintainers of OpenSAML and Apache Santuario.

Overall, our work paves the way for the practical migration
of XML-based security protocols into the post-quantum era, and
provides the first such case study for a widely used application, the
SAML framework.

1.2 Related work
There have been numerous papers proposing and analyzing post-
quantum versions of popular protocols such as TLS [4, 68], SSH [22,
65], WireGuard [34], OpenVPN [73], or FIDO2 [12]. While there are
a number of publications that analyze the security of classical XML
signatures, XML encryption, and the SAML framework [36, 37, 42,
67], we have not come across a paper that studies post-quantum
XML signatures and public key encryption, or post-quantum SAML.

1.3 Overview
We start with an introduction to XML signatures/encryption and
a discussion of the threat of quantum computers in Section 2. In
Section 3, we introduce SAML and its single sign-on (SSO) protocol
and discuss its security against quantum adversaries. In Section 4,
we present the current state of post-quantum cryptography. We
propose our solutions for purely and hybrid post-quantum XML
signatures and XML public key encryption in Sections 5 and 6. In
Section 7 we propose our solutions for purely and hybrid post-
quantum SAML SSO. We conclude with a summary and discuss
future work in Section 8.

We assume that the reader is familiar with the notions and secu-
rity properties of digital signatures, symmetric encryption, public
key encryption and hash functions.

2 XML SIGNATURES AND ENCRYPTION
In this section, we briefly explain the XML signature [79] and XML
encryption [77] standards. While the standards define multiple
methods for achieving their goals, we focus on those ones that are
relevant to XML documents in SAML [52].

Notation. We use the typewriter font to refer to a particular
XML element, and we omit XML namespaces in our descriptions.

2.1 XML signatures
A digital signature in XML can be applied to any type of data, it can
be an XML document or a binary file. In either case, the resulting
signature is represented as an XML element Signature.

Types. The standard [79] defines three types of XML signatures:
• Enveloping: The signed data1 is an XML element Object,
which is a child of Signature.

1We are slightly misusing the term “signed data”, since the input to the cryptographic
signing operation is only the element SignedInfo, which contains a hash of the
“document to be signed”.
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XML document

Calculate its digest

Insert the digest into SignedInfo

Sign SignedInfo

Signature

Insert Signature into the document

Signed XML document

Figure 1: XML signature creation.

• Enveloped: The signed data is an XML document. Signature
is a descendant of this document.
• Detached: The signed data is external to Signature, i.e.,
Signature is a separate XML document.

From now on, we will only focus on enveloped XML signatures
as they are the only supported type in SAML [52].

Structure. A Signature element has the following children:
• SignedInfo includes the signature algorithm identifier and
the references to signed data. Specifically, inside SignedInfo
there is a Reference element which contains a URI reference
to the signed data, a digest of the signed data and a set of
transformations that are applied before the hashing.
• SignatureValue contains a signature over SignedInfo, i.e.,
the output of the signing operation of the signature algo-
rithm.
• KeyInfo contains information about the public key which
can be used to verify the signature in SignatureValue. Typ-
ically, KeyInfo contains a certificate chain.

Creation of XML signature. An enveloped signature of an XML
document is created as follows:

(1) Prepare a Signature element with predefined algorithms
for canonicalization, hashing, and signing.

(2) Calculate the digest of the XML document and prepare a
Reference element with the resulting digest. Since this is
an enveloped signature, the Reference must contain the
enveloped signature transformwhich removes the Signature
element from the digest computation during verification.

(3) Sign SignedInfo using the signature algorithm. Paste the
result into SignatureValue.

(4) Prepare KeyInfo containing the verification public key.
(5) Paste the resulting Signature into the original XML docu-

ment. The result is a signed XML document.
Figure 1 provides a simplified diagram of the signing procedure.

Signed XML document

Extract Signature

Signature

XML document without Signature

Calculate its digest

Does the digest match the one inside SignedInfo?
true false

Invalid XML signature

false

Is the signature of SignedInfo valid?
true

Invalid XML signature

Valid XML signature

Figure 2: XML signature verification.

Verification of XML signature. The verification works as follows:

(1) Check if SignatureValue is a signature of SignedInfo us-
ing the public key specified in KeyInfo and the algorithm
specified in SignedInfo. If invalid, abort.

(2) Check if the digest of the document matches the one in
Reference. If it matches, the XML signature is valid.

Figure 2 provides a simplified diagram of the verification proce-
dure. While the order of the verification steps can be reversed (first
verify the references, then verify the signature), this order is not
recommended as it can introduce potential DDoS attacks [78].

2.2 XML public key encryption
The XML Encryption standard [77] defines a method for encrypting
data and representing the result as an XML element. The standard
does not impose any restrictions on the plaintext data, i.e., it can
be an XML element or a binary file.

Similar to the XML signature standard [77], the encryption stan-
dard defines multiple ways how to achieve the goal. We focus on a
specific case where the data is encrypted using a public key encryp-
tion algorithm since our overall objective is post-quantum SAML
SSO and many SAML SSO implementations [6, 20, 47, 53, 54] use
XML public key encryption. Specifically, it is an instance of a hybrid
encryption, combining public key and symmetric encryption.

Encryption. While the XML encryption standard can be imple-
mented with different cryptographic primitives, for illustrative pur-
poses we describe the case where RSA is the public key encryption
scheme and AES-256 is the symmetric encryption scheme:

(1) Generate an AES-256 key.
(2) Encrypt the plaintext using AES-256 with the generated key.
(3) Encrypt the AES-256 key using RSA with the RSA public

key.
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(4) Create the XML element EncryptedData. The AES cipher-
text is placed inside its CipherData child while the RSA
encrypted AES key is placed inside KeyInfo.

See Figure 4 (Appendix B) for a simplified diagram of the en-
cryption procedure. The encryption result is represented by the
EncryptedData element. It contains ciphertexts and their metadata.
The metadata typically includes the encryption algorithm, in the
form of the EncryptionMethod element. It also includes informa-
tion about the encryption key, in the form of the KeyInfo element,
which consists of the EncryptedKey element containing the RSA
ciphertext and metadata about the encryption algorithm and public
key. Listing 1 in the appendix shows an example XML encrypted
document.

Decryption. The decryption process simply reverses the encryp-
tion process, i.e., the AES key is decrypted using the RSA private
key, and the AES key is used to decrypt the actual data. See Figure 5
(Appendix B) for a simplified diagram of the decryption procedure.

Authentication. Although the XML encryption standard [77]
does not explicitly provide for authentication or integrity of the
ciphertext, this can be solved for the data ciphertext by using an
authenticated encryption (AE) scheme, such as AES-GCM [24].
However, the encrypted symmetric key ciphertext is not authenti-
cated/integrity checked because RSA-OAEP [39] is not AE. For this
reason, XML encryption is usually combined with XML signatures.

2.3 Quantum threat
We briefly explain the threat that quantum attackers pose to the
current XML standards.

XML signatures. The XML signature standard [79] currently sup-
ports only the classical signature schemes RSA, (EC)DSA and Ed-
DSA [25]. The security of all these schemes reduces to the integer
factorization or the discrete logarithm problem. Since these hard-
ness assumptions can be solved in polynomial time by a crypto-
graphically relevant quantum computer, any quantum adversary
can forge current XML signatures.

XML encryption. The XML encryption standard [77] supports
both public key encryption and symmetric key encryption. Since
symmetric encryption is not severely affected by quantum com-
puters, doubling key sizes is considered sufficient protection (see
Appendix C for more details). The standard currently supports only
RSA as a public key encryption scheme, which is not secure against
quantum computers. In particular, a quantum attacker who obtains
a RSA-encrypted ciphertext (from current or future conversations)
can learn the private message.

3 SAML AND SINGLE SIGN-ON
Security Assertion Markup Language (SAML) is an XML-based
security framework [52]. It has two main parts: the first defines the
structure of SAML messages, which are XML documents, and the
second defines various protocols that use SAML messages.

The primary use case for SAML is to establish a single sign-
on (SSO) authentication scheme. SSO allows a user to log in to
multiple service providers with a single set of credentials from
a single identity provider. The SAML SSO protocol is not only

User SP IdP

HTTP login request

HTTP response with AuthnRequest

HTTP POST request with AuthnRequest

User authentication

HTTP response with Response

HTTP POST request with Response

HTTP authorization cookie

Figure 3: SAML SSO protocol flow.

supported by all major identity providers on the Internet, but also
by many universities and research institutes in Europe and North
America [20, 30, 35, 46, 63]. Researchers can use this tool to log in
to publishers’ websites or research databases that contain sensitive
data (e.g., health data).

3.1 Protocol
The SAML SSO protocol has three participants: the user, the service
provider (SP), and the identity provider (IdP). We assume that the user
has previously registered with the IdP and has a set of credentials.

Setup. In the typical scenario, the user wants to log in to the SP
using the credentials they have established with the IdP. The proto-
col assumes that the SP and IdP have a pre-existing relationship,
i.e., they have exchanged configuration details and agreed on user
identifiers, such as email.

Overview. The main protocol flow of SAML SSO is as follows:
(1) The SP creates a SAML message AuthnRequest and sends it

to the IdP.
(2) The IdP processes the AuthnRequest and authenticates the

user in question.
(3) The IdP creates a SAML message Response containing the

result of the authentication and sends it to the SP.
The protocol gets more complex at the lower level, where it

needs to define how the SAML messages are actually transported
from the SP to the IdP and vice versa. This is what bindings are
for; they specify how to transport SAML messages. Throughout
this paper we implicitly assume that the HTTP POST Binding (as
depicted in Figure 3) is used.

3.2 Security
The security mechanisms in SAML SSO fall into two categories,
those that depend on the binding and those that do not.

Binding-dependent mechanisms. These mechanisms vary depend-
ing on how the binding is implemented. For example, in the HTTP
POST binding, HTTP connections are secured using TLS [60], while
all SAML messages pass through the user, who can read and modify
them. In contrast, the HTTP Artifact binding does not route SAML
messages through the user.
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The main binding-specific mechanism is TLS [60], which es-
tablishes secure channels between two peers. Although TLS is
not required by the SAML standard, we assume throughout this
paper that all HTTP connections are secured with TLS. In the sce-
nario shown in Figure 3, there are two TLS channels: user–SP and
user–IdP.

Binding-independent mechanisms. While TLS prevents external
parties from reading or modifying messages, it is also necessary to
prevent attacks from the peers themselves, such as the user. This
is where binding-independent mechanisms come into play. These
mechanisms are twofold: XML signatures (Section 2.1) provide
integrity and authenticity of SAML messages, and XML encryption
(Section 2.2) is used to encrypt some of the sensitive data in the
SAML SSO protocol.

Unless otherwise noted, we assume that SAML messages are
signed by their creators (even though this is not explicitly required
by the standard). We also assume that IdP responses are partially en-
crypted, i.e. the Assertion element within Response is encrypted
and the result of the XML encryption is within EncryptedAssertion.
Additionally, we assume that the Signature element is a child of
AuthnRequest or Response.

Recall that there is a setup phase where the SP and IdP agree on
configuration details, in particular to establish trust. This can be
done in a number of ways. They can exchange long-term signing
public keys, or they can use a public key infrastructure (PKI) and
establish trust anchor(s). In our work, we assume that the SP and the
IdP share a common trust anchor, i.e., they use certificates signed
by a Certificate Authority (CA) that is trusted by both parties.

Recall from Section 2 that XML signatures and XML public key
encryption have the KeyInfo element, which contains information
about the signing/encryption key. We assume that KeyInfo always
contains an X.509 [14] public key certificate signed by the trusted
CA or, in the case of XML public key encryption, an encrypted key.

In summary, XML signatures are the main security mechanism
used in the SSO protocol, since the purpose of the protocol is to
prove to the SP that the user is who they claim to be, and the
Response signed by the IdP provides such proof.

3.3 Quantum threat
Based on Section 3.2, we identify three security mechanisms which
make SAML SSO vulnerable to quantum adversaries: XML signa-
tures, XML public key encryption and TLS. We discuss the impact
on the SSO protocol if a quantum adversary breaks any of these
security mechanisms.

An adversary attacking the SSO protocol can have multiple goals,
for example:

(1) It wants to learn the content of the SAML messages.
(2) It wants to impersonate a user to the SP.
(3) It wants to impersonate the SP to the IdP (or vice versa).
(4) It wants to impersonate a user to the IdP.

With the current SAML SSO protocol in use, a quantum adver-
sary can achieve goals (1), (2) and (3), while (4) is dependent on the
authentication method used by the IdP, which is outside the scope
of the SAML SSO protocol:

(1) The adversary can record the traffic and break the confiden-
tiality of TLS and/or XML public key encryption. This attack
is called the “store now, decrypt later” attack.

(2) The adversary receives the AuthnRequest from the SP and
then forges a Response from the IdP claiming to be the
targeted user. This requires forging an XML signature where
the signing private key can be pre-computed, e.g., from the
IdP’s public key certificate.

(3) The adversary creates an AuthnRequestwith SP’s identifiers
and forges the SP’s signature and sends it to the IdP. Similarly,
the adversary can create a Response and forge the IdP’s
signature.

In this way, a quantum attacker can, for example, access sensitive
private data that the service provider is supposed to make available
only to the designated user.

We can see that upgrading just one security mechanism to be
post-quantum is not enough to prevent the attacks: while post-
quantum TLS prevents non-participants from learning the contents
of messages, it does not prevent impersonation, and while upgrad-
ing to post-quantum XML signatures prevents impersonation, it
does not provide confidentiality. Thus, in this paper we discuss the
post-quantum solutions to all of these security mechanisms.

4 POST-QUANTUM CRYPTOGRAPHY
For more than two decades, the cryptographic community has been
developing new public key algorithms that are assumed to be secure
even against a quantum adversary. These algorithms are referred
to as post-quantum [8].

4.1 Overview
There are several approaches to post-quantum cryptography that
differ in their underlying hardness assumptions and in their perfor-
mance:

• The security of lattice-based schemes is based on the hard-
ness of the Shortest Vector Problem (or related problems).
Typically, lattice-based schemes do not have the smallest
key/signature sizes, but their operations are the fastest.
• Code-based schemes depend on the hardness of code de-
coding problems, such as the Syndrome Decoding Problem.
While code-based schemes are generally slower than lattice-
based schemes and their key sizes are also larger, code-based
hardness assumptions tend to be more conservative.
• Hash-based schemes are also considered a conservative op-
tion because their security is tied to the security of the un-
derlying hash function, which is a well-studied primitive.
Hash-based schemes have small public keys but large signa-
tures, and they are also slower than lattice-based schemes.
• Isogeny-based and multivariate schemes have promising per-
formance profiles, but most of these schemes have been bro-
ken [9, 17]. Although there are newer constructions such as
CSIDH [18], SQISign [23], or MAYO [10], they need further
evaluation.

Overall, while post-quantum algorithms have larger size require-
ments than their classical counterparts, some of them are faster
than classical algorithms, as illustrated in Table 8 in the appendix.
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Key Encapsulation Mechanism. A central cryptographic building
block of post-quantum cryptography is Key Encapsulation Mecha-
nisms (KEMs). Using a KEM, anyone with access to the public key
𝑝𝑘 (of a particular recipient) can run the randomized encapsulation
algorithm of the KEM to obtain a fresh symmetric key 𝑘 and a
public-key ciphertext 𝑒 that encrypts 𝑘 under 𝑝𝑘 . The recipient can
use its secret key 𝑠𝑘 to decrypt the ciphertext 𝑒 .

The primary application of KEMs is to implement hybrid public-
key encryption schemes (Appendix B). The sender (with input𝑚
and 𝑝𝑘) first runs the encapsulation scheme of the KEM to obtain
a symmetric key 𝑘 and an encryption of 𝑘 under 𝑝𝑘 , and then
symmetrically encrypts the message𝑚 with 𝑘 . The recipient first
decrypts the KEM ciphertext with its secret key 𝑠𝑘 and then uses
the decrypted symmetric key 𝑘 to recover the message𝑚.

4.2 Standardization
In 2016, NIST launched a process to find suitable post-quantum
replacements for classical algorithms [49]. NIST is seeking post-
quantum signatures and key encapsulation mechanisms (KEMs).
In 2022, NIST announced [2] that it had selected one KEM (Ky-
ber [61]) and three signatures (Dilithium [43], Falcon [58], and
SPHINCS+ [33]) for standardization from the 69 algorithms at the
beginning of the process [1]. NIST also extended the process to
a fourth round, with the goal of selecting additional KEMs for
standardization from four candidates: BIKE [5], HQC [45], Classic
McEliece [3] and SIKE [38].2 In 2022, NIST also started a parallel
standardization process to find alternative post-quantum signa-
tures [50].

Due to the importance of this standardization process for post-
quantum migration in practice, we focus on the closer candidate
environment in this paper.

In their call for proposals [49], NIST defined five security levels,
from 1 (least secure) to 5 (most secure), which are used to categorize
the security of post-quantum algorithms. These security levels are
defined as the number of operations it takes to attack block ciphers
and hash functions. For example, the best attack on an algorithm
achieving security level 1 must take resources greater than doing a
key search attack on AES-128.

4.3 Hybrid post-quantum cryptography
Since post-quantum algorithms are still relatively new compared
to classical algorithms, such as RSA, it is not surprising that some
of them (such as SIKE [17] and Rainbow [9]) turned out to be less
secure than intended (even in the classical setting).

To mitigate the risk, it is beneficial to combine (well-studied)
classical with (less studied, but potentially stronger) post-quantum
cryptographic algorithms. This hybrid approach is often recom-
mended [16, 66] in the transition phase, as it ensures that the result-
ing scheme is secure as long as one of the components is secure.

Another practical advantage of hybrid approaches is the ease
of compliance with existing regulations, such as eIDAS in the EU.
Since updating such high-level regulations is part of a political
process and therefore slow, a regulated institution or company (such
as a trust service provider), that wants to start its post-quantum

2SIKE is no longer considered because it is broken [17].

migration now, can use a hybrid approach to still comply with
current regulations.

Since these benefits come at the expense of performance, it is
important to understand which hybrid combinations strike a good
balance between security and efficiency. This is a major focus of this
paper, in which we propose both purely post-quantum and hybrid
post-quantum solutions for each problem.3

4.4 Post quantum TLS
In the transition to post-quantum SAML SSO, the TLS connections
must also bemade post-quantum. Since TLS is a securitymechanism
independent of the SAML SSO protocol itself (see Section 3), post-
quantum TLS is not the focus of this paper. Instead, we refer the
reader to [4] for an overview of the state of the art.

4.5 Post-quantum certificates
XML signatures and XML public-key encryption use X.509 public
key certificates to determine which public key to use for verification
or encryption (see Section 2). Therefore, when moving to post-
quantum XML and SAML SSO, these certificates must also be post-
quantum, meaning that the entire certificate chain must be signed
with post-quantum signatures. Since this aspect is independent of
the actual XML and SAML processes (similar to TLS, as explained
above), we refer the reader to [13, 40] for more details on this topic.

5 POST-QUANTUM XML SIGNATURES
In this section, we design and test purely post-quantum (Section 5.1)
and hybrid post-quantum (Section 5.2) XML signatures.

5.1 Purely post-quantum
Design. Since the XML signature standard is crypto-agile, it can

be implementedwith any signature scheme. Thanks to this property,
the design of purely post-quantum XML signatures is reduced to
the creation of appropriate XML identifiers for these post-quantum
algorithms. In our (anonymized) implementation, we have used
custom experimental identifiers which can be found at https://
github.com/PQSAML/index.

Experimental setup. We conducted an experiment in which we
signed XML documents with different purely post-quantum XML
signatures and tested their performance. For all experiments in this
paper, we created new forks of OpenSAML [72], Apache Santu-
ario [70] and BouncyCastle [71] libraries. The machine used for
measuringwasOracle CloudVM.Standard.A1.Flex (Arm64) running
Ubuntu 22.04.3 LTS. OpenSAML is used to create, sign and verify
SAML messages and relies on the XML security library Apache
Santuario and BouncyCastle for cryptographic primitives.

To make our experiment realistic, we chose XML documents in a
real-world framework, namely the SAML messages AuthnRequest
and Response, which vary in size. We simulated a typical SAML
SSO exchange, which includes signing and verifying AuthnRequest
and Response, 10000 times, and computed the average time to sign
and verify messages, as well as the total time of the process. We
also computed the average size of the Signature element inside

3We use the term purely post-quantum exclusively for solutions that do not combine
post-quantum and classical algorithms.
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AuthnRequest and Response, and the average size of the complete
XML document size.

Results. We have summarized our experimental results in Table 1.
For each metric, we compare the relative change against the state-
of-the-art classical signature algorithm ECDSA with curve P-256.

Using post-quantumXML signatures increases the document size
significantly (at least 2×), but for larger XML documents the relative
size increase becomes smaller because Signature has constant size.

The signing algorithms of all post-quantum schemes are slower
than the one of ECDSA (P-256), but the average signing times of
Dilithium (both at security levels 2 and 5) and Falcon (security level
1) are better than those of RSA and ECDSA (P-521). In particular,
SPHINCS+’s signing times are more than 100× slower than the
others, except for 15360-bit RSA.

Falcon’s (security level 1) verification time is more than twice
as fast as ECDSA (P-256), and Dilithium’s (security level 2) and
Falcon’s (security level 5) times are also about 30% faster than
ECDSA (P-256). SPHINCS+ verification is still slower than ECDSA
(P-256), but only by a factor of 4 (as opposed to a factor of 3654 for
signing).

From post-quantum signatures, Dilithum (security level 2) comes
out on top when considering the total time (2× signing + 2× veri-
fying), being only 56% slower than ECDSA (P-256). At all security
levels, Dilithium and Falcon are faster than ECDSA (P-521) and RSA.
Due to the slow signing time SPHINCS+ is the slowest (together
with 15360-bit RSA) in total.

In unstable or low-bandwidth networks, the larger signature
sizes of Dilithium and the other post-quantum algorithms can make
these solutions even slower than the lighter classical ones.

5.2 Hybrid post-quantum
Hybrid post-quantum XML signatures are more complex to re-
alize than purely post-quantum ones. There are essentially two
approaches: using a hybrid post-quantum signature scheme (Sec-
tion 5.2.1) or using two separate signature schemes (Section 5.2.2).

Design goals. Before we present and test our solutions, we first
define the desirable properties:
• Backward compatibility: The hybrid post-quantum XML sig-
nature should also be verifiable by a party that only supports
classical signature schemes. This property is important for a
smooth transition phase.
• Non-separability [13]: An adversary cannot strip the post-
quantum component of the signature and obtain a valid
classical signature.

The combination of these two features provides the two main
advantages of the hybrid post-quantum approach: compliance with
current regulations that only support classical schemes, and miti-
gation of the risk that the post-quantum part turns out to be less
secure than intended (Section 4.3).

5.2.1 Composite hybrid. In this approach, we use a single hybrid
post-quantum signature scheme to implement the XML signature,
which means that we have only one Signature element in the
signed XML document. Such hybrid signature schemes are some-
times referred to as composites or composite hybrid signatures [56].
Note that this approach is inherently not backward compatible.

Design. The simplest implementation is to use concatenation,
where the hybrid public and private keys are the results of con-
catenating the respective classical and post-quantum keys. The
hybrid signature is then the concatenation of two signatures, and
the hybrid signature is valid if both signatures are valid. Such a
hybrid scheme can be treated as a single signature scheme in the
standard XML signing and verification processes. We describe the
construction in more detail in Appendix D.

However, without further means, such a concatenation scheme
is separable and it is disadvantageous from a technical point of view,
for example, because the decoding is based on the lengths of the
different components. To address these issues, our implementation
is based on the IETF draft specification [56], which is non-separable
and uses ASN.1 structures for encoding.

Experimental setup. We used essentially the same setup as in Sec-
tion 5.1, except that here we use hybrid composite post-quantum
signatures instead of purely post-quantum signatures. Due to the
large number of possible combinations we present only four pair-
ings of ECDSA with Dilithium/Falcon.4

Performance results. We present our results in Table 2. While
hybrid composite post-quantum XML signatures are larger than
purely post-quantum XML signatures, and also slower, the perfor-
mance drop is not as drastic as going from classical to post-quantum
signatures. For example, the document signed with the ECDSA (P-
256) + Dilithium (security level 2) composite signature is only 3−4%
larger than the document signed with Dilithium alone, because the
classical signature is already small. On the other hand, the total
time is about 1.4× the total time with Dilithium alone, because
Dilithium already has fast operations. We see similar results for
composite signatures with Falcon.

5.2.2 Separate hybrid. We now present the separate hybrid ap-
proach, which uses two separate Signature elements, one to rep-
resent the classical signature and the other to represent the post-
quantum signature. Unlike the composite hybrid approach pre-
sented earlier, the separate hybrid approach can provide backwards
compatibility because the signatures can be verified separately.

Design. The most important design decision for implementing
the separate hybrid approach is to decide which message to sign.

The naive way is to sign the same XML document with both
signatures independently. The resulting Signature elements are
then placed inside the XML document as usual for enveloped signa-
tures. Although the XML signature standard [79] does not prohibit
placing multiple Signature elements within an XML document,
there are several problems with this naive approach:
• Although we require that the entire document signature is
valid if and only if the classical Signature and the post-
quantum Signature are valid, it cannot be guaranteed that
real-world implementations will check this conjunction, only
the disjunction.
• If the standard XML signature verification procedure (Sec-
tion 2.1) is used, then (at least) one of the XML signatures
will fail verification. This is because the enveloped signature

4The specification [56] does not explicitly define composites with ECDSA with P-521,
only P-384. We used P-521 because it provides 256-bit security.
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Table 1: Performance of purely post-quantum XML signatures

Algorithm Signature size Document size Signing time Verification time Total time

ECDSA (P-256) 1563 2513 0.28 ± 0.05 0.51 ± 0.06 1.58 ± 0.12
Dilithium (2) 9816 (×6.28) 10766 (×4.28) 0.85 ± 0.23 (×3.04) 0.37 ± 0.06 (×0.73) 2.46 ± 0.13 (×1.56)
Falcon (1) 4303 (×2.75) 5253 (×2.09) 1.35 ± 0.18 (×4.82) 0.25 ± 0.04 (×0.49) 3.18 ± 0.26 (×2.01)

Dilithium (5) 17703 (×11.33) 18653 (×7.42) 1.13 ± 0.14 (×4.04) 0.84 ± 0.07 (×1.65) 3.94 ± 0.15 (×2.49)
Falcon (5) 7229 (×4.63) 8179 (×3.25) 2.71 ± 0.43 (×9.68) 0.41 ± 0.09 (×0.80) 6.23 ± 0.76 (×3.94)

ECDSA (P-521) 1843 (×1.18) 2793 (×1.11) 0.93 ± 0.07 (×3.32) 3.29 ± 0.15 (×6.45) 8.45 ± 0.26 (×5.35)
RSA (3072 bits) 2898 (×1.85) 3848 (×1.53) 10.60 ± 0.22 (×37.86) 0.58 ± 0.14 (×1.14) 22.36 ± 0.46 (×14.15)
SPHINCS+ (1) 23220 (×14.86) 24170 (×9.62) 1023.13 ± 6.71 (×3654.04) 2.07 ± 0.52 (×4.06) 2050.40 ± 12.46 (×1297.72)
RSA (15360 bits) 9258 (×5.92) 10208 (×4.06) 1193.92 ± 6.58 (×4264) 11.03 ± 0.43 (×21.63) 2409.9 ± 12.40 (×1525.25)
SPHINCS+ (5) 84456 (×54.03) 85406 (×33.99) 1581.27 ± 9.96 (×5647.39) 4.45 ± 0.67 (×8.73) 3171.45 ± 18.37 (×2007.25)

Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. SHA2-512 was used as a reference hashing function. ECDSA with
SHA2-256 for P-256, SHA2-512 for P-521, RSA PKCS# v1.5 with SHA2-512. Included certificate chain length 1. Assertions not encrypted.

Table 2: Performance of composite hybrid post-quantum XML signatures

Algorithm Signature size Document size Signing time Verification time Total time

ECDSA (P-256) 1563 2513 0.28 ± 0.05 0.51 ± 0.06 1.58 ± 0.12
ECDSA (P-256) + Dilithium (2) 10173 (× 6.51) 11123 (×4.43) 1.09 ± 0.45 (×3.89) 0.67 ± 0.12 (×1.31) 3.52 ± 0.40 (×2.23)
ECDSA (P-256) + Falcon (1) 4692 (× 3.00) 5642 (×2.25) 1.49 ± 0.17 (×5.32) 0.52 ± 0.04 (×1.02) 4.01 ± 0.25 (×2.54)

ECDSA (P-521) + Dilithium (5) 18344 (×11.74) 19294 (×7.68) 2.20 ± 0.47 (×7.86) 2.74 ± 0.09 (×5.37) 9.88 ± 0.33 (×6.25)
ECDSA (P-521) + Falcon (5) 7907 (× 5.06) 8857 (×3.52) 3.46 ± 0.24 (×12.36) 2.32 ± 0.11 (×4.53) 11.53 ± 0.38 (×7.30)

Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. SHA2-512 was used as a reference hashing function. ECDSA with
SHA2-256 for P-256, SHA2-512 for P-521. Included certificate chain length 1. Assertions not encrypted.

transform, which is the only transform allowed by the SAML
standard [52], only removes its parent Signature from the
reference digest calculation, not the other Signature.
• It does not provide the desirable feature of non-separability
(see above).

Our solution to achieve non-separability is to sign sequentially.
In this case, the XML document contains two Signature elements
𝑆𝐴, 𝑆𝐵 : 𝑆𝐴 is a signature over the original document 𝑑 , and 𝑆𝐵 is
a signature over (𝑆𝐴, 𝑑). However, if we use the standard verifica-
tion procedure, only 𝑆𝐵 verifies successfully, because 𝑆𝐴 , a signa-
ture over 𝑑 , contains only the enveloped signature transformation,
which does not remove 𝑆𝐵 from the hash calculation. To avoid this
problem, we decided to add an extra transformation that removes
the other signature as well. To do this, we tailored the extra transfor-
mation to the underlying protocol, since it relies on the location of
the Signature elements within the signed document. In Section 7.2
we present our solution tailored to the SAML SSO protocol.

Experimental setup. We used the same setup as for the compos-
ite hybrid approach (Section 5.2.1) and with the same signature
algorithm combinations to directly compare these two approaches.

Performance results. We have summarized our results in Table 3.
We see that for each combination, the separate hybrid approach
produces larger signed XML documents compared to the composite
hybrid because it includes the extra Signature element with meta-
data. For ECDSA (P-256) + Dilithium (security level 2), the increase
in size (compared to the composite hybrid) is about 17%, and for
ECDSA (P-256) + Falcon (security level 1) it is about 32%.

Performance is also affected because of the overhead of creating
and verifying the extra Signature element. The separate hybrid
approach with ECDSA (P-256) + Dilithium (security level 2) is about
61% slower than the equivalent composite hybrid. For example, at
security level 5, overhead becomes smaller for ECDSA + Falcon to
about 37%.

5.3 Discussion
We have seen that the purely post-quantum solutions for XML
signatures are easy to implement, while we had to overcome some
technical barriers to realize the two hybrid post-quantum XML
signature versions. We found that regarding hybrid approaches,
the most straightforward solutions were not the best. Instead, we
had to look at the specifics of XML signatures to find efficient and
effective solutions. Let us now discuss the main features of the two
hybrid versions that we have designed and tested.

The composite hybrid (Section 5.2.1) is more efficient in terms of
size and speed. The construction can also be universally applied to
any XML-based protocol because it does not change the document
structure, and the hybrid signing and verification is typically dele-
gated to the cryptographic library that implements the primitive.
We estimate that the implementation effort of this hybrid post-
quantum XML signing solution is similar to purely post-quantum
XML signatures presented in Section 5.1 where all thats needed,
assuming the hybrid signature scheme is already implemented, is
to integrate new XML algorithm identifiers. On the downside, the
composite hybrid post-quantum XML signature is not backward
compatible as it cannot be verified by a purely classical verifier.
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Table 3: Performance of separate hybrid post-quantum XML signatures

Algorithm Signature size Document size Signing time Verification time Total time

ECDSA (P-256) 1563 2513 0.28 ± 0.05 0.51 ± 0.06 1.58 ± 0.12
ECDSA (P-256) + Dilithium (2) 11755 (× 7.52) 12978 (×5.16) 1.66 ± 0.73 (×5.93) 1.18 ± 0.16 (×2.31) 5.67 ± 0.74 (×3.59)
ECDSA (P-256) + Falcon (1) 6241 (× 3.99) 7464 (×2.97) 1.87 ± 0.23 (×6.68) 0.97 ± 0.14 (×1.90) 5.68 ± 0.41 (×3.59)
ECDSA (P-521) + Falcon (5) 9459 (× 6.05) 10682 (×4.25) 3.95 ± 0.30 (×14.11) 3.96 ± 0.19 (×7.76) 15.83 ± 0.55 (×10.02)

ECDSA (P-521) + Dilithium (5) 19922 (×12.75) 21145 (×8.41) 4.10 ± 0.57 (×14.64) 4.57 ± 0.24 (×8.96) 17.35 ± 0.83 (×10.98)
Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. SHA2-512 was used as a reference hashing function. ECDSA with
SHA2-256 for P-256, SHA2-512 for P-521. Included certificate chain length 1. Assertions not encrypted.

The separate hybrid (Section 5.2.2) is slightly slower than the
composite approach and also produces larger documents. On the
positive side, however, this approach provides backwards compat-
ibility, allowing the signer to create hybrid post-quantum XML
signatures without worrying about whether the verifier can sup-
port post-quantum algorithms. The main disadvantage of the sep-
arate approach is that there is no universal solution that can be
applied to any XML-based protocol, resulting in more complex and
fragmented implementations.

6 POST-QUANTUM XML ENCRYPTION
In this section, we design and test purely post-quantum (Section 6.1)
and hybrid post-quantum (Section 6.2) solutions for XML encryp-
tion. As mentioned in Section 2.3, symmetric encryption schemes
can be made post-quantum by doubling their key sizes (see Appen-
dix C for more information), while public key encryption schemes
need to be enhanced or replaced with post-quantum solutions; the
latter will therefore be the focus of this section.

6.1 Purely post-quantum
There are essentially two ways to make the classical PKE scheme in
XML purely post-quantum: replace the classical PKE scheme with
a post-quantum PKE scheme (Section 6.1.1), or replace it with a
post-quantum key encapsulation mechanism (KEM) (Section 6.1.2).

6.1.1 Compatible solution. This solution is directly compatible
with the current XML standard.

Design. We replace the classical PKE schemewith a post-quantum
PKE scheme.

Experimental setup. The experimental setup is similar to the
XML signature experiments except that we encrypt and later de-
crypt the Assertion element within the Response SAML mes-
sage (see Section 3). The result of the encryption process is the
EncryptedAssertion element. We include the RSA-signed encryp-
tion certificate in KeyInfo.

We used the implementations of the post-quantum PKE schemes
Kyber, BIKE and Classical McEliece from BouncyCastle [71]. We
also attempted to benchmark their HQC implementation but we
were unsuccessful because it regularly returned decryption errors.

Performance results. We have summarized the results of our ex-
periment in Table 4.

As we can see, Kyber is significantly faster (about 20×) than
classical 3072-bit RSA-OEAP public key encryption. The Kyber

encryption still produces larger XML ciphertext than RSA because
the internal KEM ciphertext and the KEM public key are larger (the
public key is inside the KeyInfo element).

BIKE at security level 1 takes about twice as long as RSA, and
the size of its XML ciphertext is similar to the size of Kyber’s XML
ciphertext at security level 1. BIKE at security level 5 is the slowest
option we tested, taking about 13 times as long as RSA; its XML ci-
phertext is about 2.3× the size of Kyber’s XML ciphertext at security
level 5.

The total size of Classic McEliece XML ciphertexts is several
orders of magnitude larger than the others. However, it has the
smallest (non-XML) ciphertexts of all post-quantum KEMs and
also of RSA (see Table 8). The reason for this difference is that
XML ciphertexts also contain the public keys, and Classic McEliece
has large public keys. Therefore, if we removed the public key
from the KeyInfo element, Classic McEliece would be the most
bandwidth-efficient XML public encryption algorithm. In terms of
speed, McEliece is about 40% slower than RSA at security level 1.

6.1.2 More efficient solution. Recall from Section 2.2 that the XML
public key encryption is a hybrid encryption scheme that combines
a PKE scheme, such as RSA-OAEP [39], with a symmetric cipher,
such as AES-GCM [24].

The more efficient solution is to replace the classical PKE compo-
nent within the hybrid encryption with a post-quantum KEM. This
way we avoid a double symmetric encryption as in the simple solu-
tion (see above), because in the simple solution the post-quantum
PKE component is itself a hybrid scheme that already contains a
symmetric encryption.

We did not test this solution because we wanted to stay close
to the XML encryption standard [77], which does not (currently)
support KEMs. Since we are interested in working solutions for the
post-quantum migration phase, we have refrained from making
major modifications to the XML standard and the OpenSAML [72]
and Apache Santuario [70] libraries.

6.2 Hybrid post-quantum
Our main idea for implementing hybrid post-quantum XML PKE
is to use two nested layers of encryption, one classical and one
post-quantum. This way, even if one of the layers is broken, the
encrypted message will remain secret if the other layer remains
secure. While this solution is the simplest to implement in our
libraries, at the end of this section we explain more complicated
approaches that can be more efficient in some applications.
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Table 4: Performance of purely post-quantum XML public key encryption

Algorithm Enc. Assertion size Document size Encryption time Decryption time Total time

RSA (3072 bits) 4 388 5 001 0.55 ± 0.21 10.46 ± 0.22 11.01 ± 0.35
Kyber (1) 5 231 (×1.19) 5 832 (×1.17) 0.25 ± 0.05 (×0.45) 0.23 ± 0.05 (×0.02) 0.48 ± 0.09 (×0.04)
Kyber (5) 7 417 (×1.69) 8 018 (×1.60) 0.30 ± 0.04 (×0.56) 0.30 ± 0.04 (×0.03) 0.60 ± 0.06 (×0.05)

Cl. McEliece (1) 355 929 (×81.11) 356 530 (×71.29) 2.51 ± 0.37 (×4.59) 12.92 ± 0.57 (×1.23) 15.43 ± 0.68 (×1.40)
BIKE (1) 7 387 (×1.68) 7 988 (×1.60) 0.67 ± 0.05 (×1.22) 21.50 ± 0.33 (×2.06) 22.17 ± 0.34 (×2.01)

Cl. McEliece (5) 1 415 005 (×322.47) 1 415 606 (×283.06) 9.60 ± 0.84 (×17.54) 63.57 ± 0.84 (×6.08) 73.17 ± 1.23 (×6.65)
BIKE (5) 17 380 (×3.96) 17 981 (×3.60) 5.02 ± 0.09 (×9.19) 136.35 ± 1.51 (×13.03) 141.38 ± 1.54 (×12.84)

Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. RSA-OAEP with MGF1-SHA1 [39].

Design. To implement hybrid post-quantum encryption, we first
encrypt the message using the classical public key encryption
scheme, and then encrypt the resulting ciphertext using the purely
post-quantum public key encryption scheme (Section 6.1).

Although not specifically intended for the post-quantum set-
ting, such layered encryption is called super-encryption in the XML
encryption standard [77]. We slightly improve the existing super-
encryption technique as follows. In general, the decrypting party
does not directly see whether the EncryptedData element is an
instance of layered encryption or regular (single-layer) encryption.
Therefore, we add metadata to the outer layer EncryptedData to
indicate that it is an outer layer. More specifically, to conform
to the existing standard [77], we use the MimeType attribute of
EncryptedData with a value such as enc/multilayer.

Experimental setup. To evaluate the performance of our hybrid
post-quantum XML public key encryption, we used the same ex-
perimental setup as in Section 6.1. We combined the classical XML
encryption algorithm 3072-bit RSA-OAEP [39] with Kyber, BIKE
and Classic McEliece at security levels 1 and 5.

Performance results. We present our full results in Table 5. We see
that using hybrid post-quantum encryption with RSA and Kyber
results in only a 4 − 5% slowdown compared to using plain RSA.
The resulting document is more than twice as large.

Using RSA with BIKE at security level 1 is about 3× slower than
using plain RSA, and the document size is about the same as using
RSA with Kyber at security level 5. RSA with BIKE at level 5 is the
slowest combination tested, taking almost 14× as long as plain RSA.

RSA with Classic McEliece at security level 1 takes about 2.4×
the time of plain RSA, but due to the larger public keys, the resulting
XML document is about 72× larger compared to using only RSA.

Alternative approaches. We present two alternative approaches
that are more efficient, but would require significant modifications
to the standard, which we want to avoid in this work (see above).

The first alternative is to combine a classical Diffie-Hellman (DH)
key exchange with a post-quantum key exchange using a KEM that
together outputs two shared secrets. The symmetric key could then
be derived from the two shared secrets using a hybrid combiner [11,
29, 57]. Although the XML encryption standard supports deriving
the symmetric key from a DH key exchange, it does not currently
support either KEM-based key exchange or hybrid combiners.

The second (simpler) alternative is to encrypt only the symmetric
key twice (once with the classical and once with the post-quantum

PKE scheme), but not the symmetrically encrypted ciphertext. This
construction is more time and memory efficient, especially for
larger messages, but it requires significant conceptual changes in
the existing implementations.

6.3 Discussion
We have shown that purely post-quantum XML public-key encryp-
tion can be realized if the underlying cryptographic library provides
a post-quantum PKE construction. Our experiments demonstrated
that using purely post-quantum XML PKE can be significantly (up
to 20 times) faster than using classical RSA PKE at the cost of larger
cryptographic material.

We could also see that the increased size comes from the way
the XML ciphertext is represented. If the KeyInfo element in the
XML ciphertext contains the encryption certificate, then the size
of the post-quantum solutions is larger. However, there are many
use cases where it is not necessary to include the certificate, so
post-quantum ciphertexts in XML could in principle also be smaller.

We have also shown how to implement hybrid post-quantum
XML public key encryption. In particular, our experiments demon-
strate that combining RSA with Kyber is only a bit slower than
using RSA alone while doubling the ciphertext size. We have iden-
tified two ways (using KEMs and more efficient nested encryption)
to reduce this overhead. Since neither method is compatible with
the current standard, we advocate that this limitation be removed
in the next revision of the standard.

7 POST-QUANTUM SAML SINGLE SIGN-ON
In this section, we describe how to integrate the post-quantum
cryptographic building blocks from the previous sections to make
the SAML Single Sign-On (SSO) protocol post-quantum. As before,
we present two post-quantum versions, one that uses only post-
quantum cryptography (Section 7.1) and one that combines classical
and post-quantum cryptography (Section 7.2). We implemented
these solutions and we present the results of our experiments.

Certificates. Recall from Section 3 that in our SAML SSO setupwe
assume that the Service Provider (SP) and the Identity Provider (IdP)
share a trust anchor and that the signing and encryption certificates
are unknown to the recipient. Therefore, certificates are sent inside
SAMLmessages: certificates for signatures inside the corresponding
Signature, and certificates for public key encryption as KeyInfo
inside Extensions of AuthnRequest.
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Table 5: Performance of hybrid post-quantum XML public key encryption

Algorithm Enc. Assertion size Document size Encryption time Decryption time Total time

RSA (3072 bits) 4 388 5 001 0.55 ± 0.21 10.46 ± 0.22 11.01 ± 0.35
+ Kyber (1) 10 255 (×2.34) 10 856 (×2.17) 0.83 ± 0.28 (×1.52) 10.74 ± 0.67 (×1.03) 11.57 ± 0.79 (×1.05)
+ Kyber (5) 12 441 (×2.84) 13 042 (×2.61) 0.79 ± 0.08 (×1.44) 10.68 ± 0.28 (×1.02) 11.47 ± 0.29 (×1.04)

+ Cl. McEliece (1) 360 953 (×82.26) 361 554 (×72.30) 3.28 ± 0.17 (×6.00) 23.37 ± 0.19 (×2.23) 26.65 ± 0.28 (×2.42)
+ BIKE (1) 12 411 (×2.83) 13 012 (×2.60) 1.14 ± 0.24 (×2.09) 31.89 ± 0.64 (×3.05) 33.04 ± 0.69 (×3.00)

+ Cl. McEliece (5) 1 420 029 (×323.62) 1 420 630 (×284.07) 11.02 ± 0.24 (×20.14) 73.41 ± 0.86 (×7.02) 84.43 ± 0.95 (×7.67)
+ BIKE (5) 22 404 (×5.11) 23 005 (×4.60) 5.46 ± 0.11 (×9.99) 147.50 ± 1.54 (×14.10) 152.96 ± 1.58 (×13.89)

Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. RSA-OAEP with MGF1-SHA1 [39].

Post-quantum TLS. As explained in Section 3, the TLS protocol is
commonly used in SAML SSO to secure the channels between the
different parties. Therefore, in order to make the entire SSO protocol
post-quantum, we need to use post-quantum TLS as well. However,
since the main SSO protocol treats the mechanism for securing the
communication channels as a black box, we abstract away from
TLS in this section and focus only on the protocol-specific parts
of SAML SSO. We refer the reader to [4] for the state of the art in
post-quantum TLS.

7.1 Purely post-quantum
Design. We build a purely post-quantum SAML SSO solution

by replacing the classical XML signatures and public key encryp-
tion with purely post-quantum XML signatures and public key
encryption (Sections 5.1 and 6.1).

Experimental setup. The basic setup is as in Sections 5 and 6. In
our experiment, the SP creates an AuthnRequest with a KEM cer-
tificate inside Extensions and signs the AuthnRequest using the
post-quantum XML signature. The IdP verifies the signature of the
AuthnRequest. The IdP creates a corresponding Response with an
EncryptedAssertion encrypted with the public key from the KEM
certificate and signs the Response. The SP verifies the signature of
the AuthnRequest and decrypts the EncryptedAssertionwith its
KEM private key. Signing and encryption certificates are verified.

Performance results. In Table 6 we present the total bandwidth
of the protocol, i.e., the sum of the sizes of AuthnRequest and
Response messages, the processing time on the SP side, the pro-
cessing time on the IdP side, and the total processing time. Due
to the number of possible combinations, we only provide results
for the lowest security levels. We use the classical combination of
ECDSA signature and RSA PKE as a baseline.

We see that certain combinations of post-quantum algorithms
result in faster execution times: Dilithium with Kyber is four times
faster, and Falcon with Kyber is more than three times faster than
the baseline. Clearly, all post-quantum algorithm combinations
result in higher bandwidth compared to the baseline. The most
bandwidth-efficient post-quantum combinations are Falcon with
Kyber or BIKE; however, these combinations still consume about
2× the baseline’s bandwidth. The worst performing combination
is the security-conservative pair SPHINCS+ with Classic McEliece
with 82× the baseline’s bandwidth and 160× times the baseline’s
total time.

7.2 Hybrid post-quantum
We present two approaches to implementing hybrid post-quantum
SAML SSO: the first uses composite hybrid post-quantum signatures
(Section 5.2.1) and is not backward compatible, and the second
uses separate hybrid post-quantum signatures (Section 5.2.2) and is
backward compatible.

Backward compatibility in SAML. We say that a post-quantum
solution for SAML SSO is backward-compatible if the SP/IdP can
construct AuthnRequest/Response such that its authenticity and
integrity achieve hybrid post-quantum security, while it can still
be processed by classical verifiers.

7.2.1 No backward compatibility.

Design. The simplest way to implement hybrid post-quantum
SAML SSO is to use hybrid composite post-quantum XML signa-
tures (Section 5.2.1) to sign SAML messages in combination with
hybrid post-quantum XML public key encryption (Section 6.2) to
encrypt messages. This approach does not make any changes to the
standard SAML message as each message contains one Signature
element that uses the hybrid composite post-quantum signature.

The hybrid post-quantum XML PKE can be also implemented
without modifying the SAML layer as only the underlying XML
encryption library needs to be modified to process the layered en-
cryption, i.e., decrypt twice if the EncryptedData has the MimeType
attribute enc/multilayer.

Since neither composite signatures nor hybrid post-quantum
encryption are backward compatible, this hybrid solution is also
not backward compatible. For example, an IdP cannot issue SAML
responses protected by post-quantum algorithms that are verifiable
by SPs that have not (yet) migrated their systems.

Experimental setup. To compare the performance between purely
and hybrid post-quantum SAML SSO (without backward compatibil-
ity), we performed essentially the same experiment as in Section 7.1.
In this experiment, we sign a SAML message and construct signa-
ture certificates using hybrid composite signatures. The classical
encryption (RSA) certificate is signed with the classical compo-
nent of the composite signature (ECDSA), while the post-quantum
certificate is signed with the post-quantum component (Dilithi-
um/Falcon). We chose this configuration because it allows a fair
comparison with the backward compatible solution presented in
the next section.
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Table 6: Performance of purely post-quantum SAML SSO

Sig. Alg. PKE Alg. Bandwidth SP time IdP time Total time

ECDSA (P-256) RSA (3072 bits) 9 481 11.38 ± 0.66 1.65 ± 0.38 13.03 ± 0.84
Dilithium (2) Kyber (1) 33 733 (×3.56) 1.38 ± 0.10 (×0.12) 1.80 ± 0.42 (×1.09) 3.18 ± 0.43 (×0.24)
Falcon (1) Kyber (1) 17 924 (×1.89) 1.89 ± 0.20 (×0.17) 2.07 ± 0.20 (×1.25) 3.95 ± 0.30 (×0.30)

Dilithium (2) BIKE (1) 36 890 (×3.89) 22.60 ± 0.52 (×1.99) 2.30 ± 0.43 (×1.39) 24.90 ± 0.69 (×1.91)
Falcon (1) BIKE (1) 21 065 (×2.22) 23.20 ± 0.63 (×2.04) 2.56 ± 0.19 (×1.55) 25.77 ± 0.68 (×1.98)

Dilithium (2) Cl. McEliece (1) 736 098 (×77.64) 22.05 ± 0.29 (×1.94) 12.27 ± 0.48 (×7.44) 34.32 ± 0.60 (×2.63)
Falcon (1) Cl. McEliece (1) 720 265 (×75.97) 22.61 ± 0.26 (×1.99) 13.40 ± 0.19 (×8.12) 36.02 ± 0.37 (×2.76)

SPHINCS+ (1) Kyber (1) 75 203 (×7.93) 1027.41 ± 6.50 (×90.28) 1028.46 ± 6.58 (×623.31) 2055.87 ± 12.17 (×157.78)
SPHINCS+ (1) BIKE (1) 78 360 (×8.26) 1048.58 ± 6.64 (×92.14) 1028.85 ± 6.56 (×623.55) 2077.43 ± 12.27 (×159.43)
SPHINCS+ (1) Cl. McEliece (1) 777 560 (×82.01) 1048.33 ± 6.84 (×92.12) 1039.09 ± 6.68 (×629.75) 2087.42 ± 12.58 (×160.20)

Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. SHA2-512 was used as a reference hashing function. ECDSA with
SHA2-256, SPHINCS+ parameters: SHA256, 128s/256s, simple. RSA-OAEP with MGF1-SHA1 [39].

Table 7: Performance of non-backward compatible hybrid post-quantum SAML SSO

Sig. Alg. PKE Alg. Bandwidth SP time IdP time Total time

ECDSA (P-256) RSA (3072 bits) 9 481 11.38 ± 0.66 1.65 ± 0.38 13.03 ± 0.84
+ Dilithium (2) + Kyber (1) 39 888 (× 4.21) 12.26 ± 0.56 (×1.08) 3.05 ± 0.63 (×1.85) 15.32 ± 0.97 (×1.18)
+ Falcon (1) + Kyber (1) 24 114 (× 2.54) 12.79 ± 0.25 (×1.12) 3.23 ± 0.24 (×1.96) 16.02 ± 0.38 (×1.23)

+ Dilithium (2) + BIKE (1) 43 053 (× 4.54) 33.58 ± 0.79 (×2.95) 3.43 ± 0.43 (×2.08) 37.00 ± 0.92 (×2.84)
+ Falcon (1) + BIKE (1) 27 279 (× 2.88) 34.13 ± 0.65 (×3.00) 3.74 ± 0.25 (×2.27) 37.87 ± 0.73 (×2.91)

+ Dilithium (2) + Cl. McEliece (1) 742 253 (× 78.29) 33.24 ± 0.60 (×2.92) 13.37 ± 0.50 (×8.10) 46.60 ± 0.85 (×3.58)
+ Falcon (1) + Cl. McEliece (1) 726 505 (× 76.63) 33.78 ± 0.61 (×2.97) 14.70 ± 0.48 (×8.91) 48.48 ± 0.84 (×3.72)

Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. SHA2-512 was used as a reference hashing function. ECDSA with
SHA2-256, SPHINCS+ parameters: SHA256, 128s/256s, simple. RSA-OAEP with MGF1-SHA1 [39].

Performance results. We present the results of our experiment
in Table 7. They show that using hybrid SAML SSO by combining
ECDSA with Dilithium or ECDSA with Falcon for signing and
combining RSA with Kyber for public key encryption is only about
20% slower overall. Bandwidth increases 4.2 times for the Dilithium
version and 2.54 times for the Falcon version. Using BIKE instead
of Kyber results in about the same bandwidth, but the slowdown is
almost 200%. Using Classic McEliece results in a bandwidth that is
almost 80× the bandwidth of the non-hybrid classical solution and
roughly 300% slowdown.

7.2.2 Backward compatibility. We present our solution to back-
ward compatible hybrid post-quantum SAML SSO.

We needed to find a reasonable trade-off between requirements
that are in part mutually exclusive. The reason is that we cannot
use hybrid post-quantum XML public-key encryption when we
want to achieve backward compatibility. Since classical SPs or IdPs
do not support post-quantum public-key encryption, they cannot
process the nested hybrid post-quantum ciphertexts.

We have therefore decided to not make secrecy of Assertion
post-quantum, but to use the classical encryption for this purpose.
We still use hybrid post-quantum TLS to secure the network chan-
nels. We justify our decision with the fact that only the encrypted
Assertion on the user’s local computer is not quantum-safe, which
we believe is a practically minor risk.

Design. We use the separate hybrid XML signatures presented
in Section 5.2.2 to implement our backward-compatible solution.
Recall that the separate hybrid post-quantum XML signature cre-
ates two Signature elements, where the post-quantum Signature
contains an additional step that removes the classical Signature
during the verification process.

We define the signing process of a SAML SSO AuthnRequest as
follows (similarly for Response); see Listing 2 for an illustration:

(1) The AuthnRequest is signed by the post-quantum signature.
The resulting Signature is placed inside the Extensions
SAML-defined element, which is a child of AuthnRequest.
The Signature element contains the additional Transform
to remove the first Signature that is a child of the root ele-
ment from the digest calculation. The transform is an XPath
filter with the attribute subtract as the XPath expression
being /saml2p:*/ds:Signature[1].5

(2) The AuthnRequest (with the post-quantum signature in
Extensions) is signed by the classical algorithm and the
Signature is placed as a child of AuthnRequest; its only
transforms are the canonicalization and the enveloped sig-
nature transforms.

5Recall from Section 3 that we assume the classical Signature is a child of
AuthnRequest or Response. If the SAML implementation places the Signature at a
different location, this attribute needs to be modified accordingly.
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A classical SP or IdP (who does not support post-quantum sig-
natures) can verify the resulting SAML message as follows. It ver-
ifies the classical signature, as this is compliant with the current
SAML standard, and ignores the post-quantum Signature inside
Extensions, as the standard does not impose any restrictions on
the content inside Extensions.

A hybrid post-quantum verifier first performs classical verifi-
cation and aborts if the classical signature is invalid. Then the
verifier runs the verification procedure for the Signature inside
the Extensions. This second verification procedure must be mod-
ified to process the additional Transform, since SAML libraries
should only allow the transforms specified in the standard, since al-
lowing any transform poses a security threat [67]. This means that
the verifier will accept the hybrid post-quantum SAML message if
and only if both signatures are valid.

Non-separability. Recall from Section 5.2.2 that our hybrid post-
quantum XML signature is inseparable, which guarantees that an
attacker cannot extract the classical Signature and use it as a
standalone signature of AuthnRequest.

On the other hand, an attacker could extract the post-quantum
Signature and try to use it as a standalone post-quantum XML
signature of the AuthnRequest. However, you can tell that this
signature was extracted from a hybrid XML signature because the
additional Transform element is also signed. Therefore, a SAML-
compliant verifier will reject this separated XML signature.

Experimental setup. As in the previous sections, we have imple-
mented and tested the performance of our SAML SSO solution.
We use the separate hybrid signatures and the hybrid XML public-
key encryption for a direct comparison with the non-backward-
compatible one. However, as mentioned before, using the hybrid
XML PKE makes the protocol non-backward compatible.

Performance results. We present the results of our experiment in
Table 9.

Let us now describe the performance differences between the
backward-compatible versions and the non-backward-compatible
versions (Section 7.2.1) that result from the different hybrid post-
quantum XML signatures used.

For example, we can see that the backward-compatible solution
is 17% slower than the non-backward-compatible solution for the
combination of Dilithium with Kyber, and 12% slower for the com-
bination of Falcon with Kyber. If BIKE is used instead of Kyber, the
difference is 6%, and combinations with Classic McEliece are about
30% slower.

The messages in the backward-compatible solution are also
larger because they contain two Signature elements instead of
one. As a result, for example, the combination of Dilithium and
Kyber uses 9% more bandwidth.

7.3 Discussion
We presented three solutions for post-quantum SAML.

The first and simplest solution is the purely post-quantum solu-
tion (Section 7.1). This solution has the advantage that it does not
modify the SAML layer and only requires modifying the underlying
libraries to support the post-quantum signatures and KEMs. It is
also significantly faster and uses less bandwidth than the others

because it does not use the additional classical algorithms. The
drawbacks of this solution are that it does not have hybrid post-
quantum security and it is not interoperable with classical-only
parties.

The second solution is the non-backward-compatible hybrid
solution that uses composite signatures (Section 7.2.1). It provides
hybrid post-quantum security in terms of authentication/integrity
and also confidentiality. Compared to the backward-compatible
solution (see below), it does not change anything at the SAML layer,
is faster, and uses less bandwidth. Its obvious disadvantage is that
it is not backward compatible.

The third solution is the backward-compatible solution (Sec-
tion 7.2.2). While we had to significantly modify the SAML process-
ing layer for this method and it is the least efficient solution, it is the
only one that provides backward compatibility, which is especially
useful for the upcoming migration period (see Section 4.3). It should
also be noted that the solution only provides classical security in
terms of confidentiality of the SAML assertion.

8 CONCLUSION
With our work, we have laid the foundation for securing XML
against future quantum attacks through the use of post-quantum
cryptography. The particular focus of this work was on the post-
quantummigration of the SAML single sign-on protocol. We intend
to extend our study to other practically relevant XML-based security
protocols in the future.

Through our extensive testing, we have shown which post-
quantum schemes can be used to efficiently implement the crypto-
graphic primitives in XML and the SAML SSO protocol, and which
are less likely to do so. For practical reasons, we studied not only
purely post-quantum versions, but also hybrid versions, which are
particularly useful for the upcoming migration period.

However, we also found in this work that the current XML and
SAML standards prevent more efficient post-quantum solutions,
in particular by not directly supporting KEMs for public-key en-
cryption and by doubling the symmetric layer in XML’s super-
encryption mode for nested encryption. We therefore advocate
that the next revision of the XML and SAML standards should con-
sider improving these aspects to enable a smooth migration to the
post-quantum era.
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A DETAILED PERFORMANCE RESULTS
In this section, we collect all of the detailed performance results
that we summarized in the main body, but did not have room to
include in the main body due to page limitations. See Tables 8 and 9.

B CONSTRUCTING A PKE FROM A KEM
There is a well-known construction of a public key encryption
scheme from a key encapsulation mechanism and a symmetric
cipher. It can be found in [41], but we also present it here for the
convenience of the reader.

Let 𝐾 = (𝐾.Gen, 𝐾 .Encaps, 𝐾 .Decaps) be a KEM,
let 𝑆 = (𝑆.Gen, 𝑆 .Enc, 𝑆 .Dec) be a symmetric cipher and let 𝜆 ∈ N
be the security parameter. We require that the key returned by the
encapsulation mechanism is a valid key for 𝑆 .

From these two primitives we construct a public key encryption
scheme 𝑃 = (𝑃 .Gen, 𝑃 .Enc, 𝑃 .Dec) as follows
• 𝑃 .Gen(1𝜆) runs 𝐾.Gen(1𝜆) → (pub𝐾 , priv𝐾 ) and returns
(pub𝑃 , priv𝑃 ) = (pub𝐾 , priv𝐾 ), i.e., the PKE keypair is the
KEM keypair.
• 𝑃 .Enc(𝑚, pub𝑃 ) runs 𝐾.Encaps(pub𝑃 ) → (𝑐𝐾 , 𝑘) and then
runs 𝑆.Enc(𝑚,𝑘) → 𝑐𝑆 . The output ciphertext
is 𝑐𝑃 ← (𝑐𝐾 , 𝑐𝑆 ).
• 𝑃 .Dec(𝑐𝑃 , priv𝑃 ) runs 𝐾.Decaps(𝑐𝐾 , priv𝑃 ) → 𝑘 and then
𝑆.Dec(𝑐𝑆 , 𝑘) → 𝑚 where (𝑐𝐾 , 𝑐𝑆 ) ← 𝑐𝑃 . The output is the
plaintext𝑚.
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Table 8: Efficiency of post-quantum algorithms

Algorithm Primitive Security level Public key size Signature/ciphertext size Sig./s Verif./s Encaps./s Decaps./s

RSA Sig. & KEM 1 (3072 bits) 387 384 113 6 842 6 712 112
5 (15360 bits) 1 923 1 920 1 313 311 1

ECDSA Signature 1 (P-256) 32 64 22 526 6 591 N/A N/A5 (P-521) 66 132 197 266

Dilithium Signature 2 1 312 2 420 5 156 15 829 N/A N/A5 2 592 4 595 2 572 5 592

Falcon Signature 1 897 666 4 232 25 382 N/A N/A5 1 793 1 280 2 090 13 196

SPHINCS+ Signature 1 32 7 856 2 1 626 N/A N/A5 64 29 792 1 726

Kyber KEM 1 800 768 N/A N/A 50 000 55 556
5 1 568 1 568 21 739 23 255

BIKE KEM 1 1 540 1 572 N/A N/A 3 676 210
5 5 122 5 154 498 27

HQC KEM 1 2 249 4 481 N/A N/A 4 405 2 976
5 7 245 14 469 965 667

Cl. McEliece KEM 1 261 120 128 N/A N/A 16 129 46
5 1 044 992 240 4 545 11

Sizes are in bytes. Security level refers to the claimed NIST security level for the specific parameter set. Source for sizes: [2], Section D with the exception of Falcon and Cl. McEliece,
where data is from [55] as values in [2] seem to be incorrect. Speed performance measured on Oracle Cloud VM.Standard.A1.Flex, Open Quantum Safe OpenSSL fork [69] (OpenSSL
3.2.1, liboqs 0.9.2, oqsprovider 0.5.3, KEM speeds were measured using provided liboqs’s speed_kem command). SPHINCS+ parameters: SHA256, 128s/256s, simple.

Table 9: Performance of backward compatible hybrid post-quantum SAML SSO

Sig. Alg. PKE Alg. Bandwidth SP time IdP time Total time

ECDSA (P-256) RSA (3072 bits) 9 481 11.38 ± 0.66 1.65 ± 0.38 13.03 ± 0.84
+ Dilithium (2) + Kyber (1) 43 559 (× 4.59) 13.68 ± 0.50 (×1.20) 4.21 ± 0.66 (×2.55) 17.89 ± 1.04 (×1.37)
+ Falcon (1) + Kyber (1) 27 718 (× 2.92) 13.74 ± 0.34 (×1.21) 4.18 ± 0.31 (×2.53) 17.92 ± 0.49 (×1.38)

+ Dilithium (2) + BIKE (1) 46 716 (× 4.93) 34.83 ± 0.76 (×3.06) 4.56 ± 0.46 (×2.76) 39.39 ± 0.93 (×3.02)
+ Falcon (1) + BIKE (1) 30 891 (× 3.26) 35.23 ± 0.68 (×3.10) 4.77 ± 0.30 (×2.89) 40.01 ± 0.80 (×3.07)

+ Dilithium (2) + Cl. McEliece (1) 745 932 (× 78.68) 40.75 ± 0.45 (×3.58) 20.93 ± 0.60 (×12.68) 61.68 ± 0.86 (×4.73)
+ Falcon (1) + Cl. McEliece (1) 730 099 (× 77.01) 41.02 ± 0.69 (×3.60) 21.86 ± 0.54 (×13.25) 62.88 ± 0.99 (×4.83)

Sizes are in bytes, time is in ms, value after ± is the standard deviation. (n) refers to the NIST security level. SHA2-512 was used as a reference hashing function. ECDSA with
SHA2-256, SPHINCS+ parameters: SHA256, 128s/256s, simple. RSA-OAEP with MGF1-SHA1 [39].

It is well known that such a construction achieves IND-CCA se-
curity iff the KEM is IND-CCA secure and the symmetric cipher is
IND-CCA secure [41]. All post-quantum KEMs in the NIST compe-
tition are IND-CCA secure. Any authenticated encryption scheme,
such as AES-GCM, is IND-CCA secure.

C QUANTUM SECURITY OF SYMMETRIC
PRIMITIVES

In this section, we discuss the quantum security of the symmetric
ciphers and hash functions which are used in XML signatures [79]
and XML encryption [77].

C.1 Symmetric ciphers
XML encryption supports AES with 128-bit, 192-bit or 256-bit keys,
as well as 3DES, which has 168-bit keys.

Grover’s algorithm [31] achieves a quadratic speedup over clas-
sical brute-force key search, i.e., it takes “only” 264 operations on
quantum computer to recover a 128-bit key instead of the 2128
operations on a classical computer.

However, quantum operations are different from classical oper-
ations and there is no known way how to effectively parallelize
Grover’s algorithm [82]. For this reason, some organizations [16,
44, 49, 81] still consider 128-bit ciphers to be secure even against
quantum adversaries.

Nevertheless, the conservative option is to double the key size
as recommended by ETSI [27] or the NSA [51].

Conclusion. In our implementation, we useAES-256-GCM,which
we also recommend for adopters of post-quantum XML encryption
as it is provides a conservative security and the performance cost
is typically negligible in the context of SAML or other XML-based
protocols.
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Generate an AES key

AES key

Encrypt the plaintext with AES

AES ciphertext

Encrypt the AES key with RSA

RSA ciphertext

EncryptedData XML element

Figure 4: XML encryption process.

C.2 Hash functions
Hash functions are mainly used within XML signatures [79] to
hash the document before applying the signature, but they are also
internal components of signatures. The XML signature standard
supports MD5, SHA-1, SHA-2, SHA-3 and Whirpool [25, 79]. It is
well known that MD5 and SHA-1 should not be used as they are
insecure.

The analysis of the quantum security of hash functions is ba-
sically the same as for symmetric ciphers because all quantum
speedups are also based on Grover’s algorithm [31].

Pre-image resistance. Finding a pre-image of a hash function
(with an output size of 𝑛 bits) by brute force requires 2𝑛 classical
operations, Grover’s quantum algorithm can reduce this complexity
to 2

𝑛
2 .

Collision resistance. Finding a collision requires on average 2
𝑛
2

classical operations but the BHT quantum algorithm [15] can re-
duce the complexity to 2

𝑛
3 . Note that the practicality of the BHT

algorithm is questionable as, according to [7], the BHT algorithm
has “fundamentally worse price-performance ratio” than classical
collision search algorithms.

Conclusion. Any cryptographic hash functionwith an output size
of ≥ 256 bits is considered quantum-secure. In our implementation
we use SHA2-512 for all reference digests. Ideally, we recommend
to use SHA2-256 or SHA3-256 with signatures that claim security
levels 1 or 2 and SHA2-512 or SHA3-512 with signatures that claim
security levels > 2.

This is because NIST security levels 2 and 4 are defined as the
quantum security of 256-bit and 512-bit hash functions, so it does
not make sense to use, e.g., SHA2-256with security level 5 Dilithium
as the hash function will be the weakest link and the attacker will
only need to find a collision to forge an XML signature.

D CONSTRUCTING HYBRID POST-QUANTUM
SIGNATURES

We present a simple construction of a hybrid post-quantum signa-
ture from a classical signature and a post-quantum signature.

Let 𝐶 = (𝐶.Gen,𝐶.Sign,𝐶.Verif) be a classical signature and let
𝑃𝑄 = (𝑃𝑄.Gen, 𝑃𝑄.Sign, 𝑃𝑄.Verif) be a post-quantum signature.

EncryptedData

AES ciphertext

RSA ciphertext

Decrypt the ciphertext with the private key

AES key

Decrypt the ciphertext with the AES key

Plaintext

Figure 5: XML decryption process.

We assume the Verif operation returns 1 if signature is valid and
0 otherwise. Let 𝜆 ∈ N be the security parameter.

Let 𝑒 : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an encoding function
and 𝑑 : {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be its corresponding decoding
function, i.e., ∀𝑥,𝑦 ∈ {0, 1}∗ : 𝑑 (𝑒 (𝑥,𝑦)) = (𝑥,𝑦).

We define the hybrid post-quantum signature
𝐻 = (𝐻.Gen, 𝐻 .Sign, 𝐻 .Verif) as follows
• 𝐻.Gen(1𝜆) runs 𝐶.Gen(1𝜆) → (pub𝐶 , priv𝐶 ),
𝑃𝑄.Gen(1𝜆) → (pub𝑃𝑄 , priv𝑃𝑄 ) and returns (pub𝐻 , priv𝐻 )
where pub𝐻 ← 𝑒 (pub𝐶 , pub𝑃𝑄 ), priv𝐻 ← 𝑒 (priv𝐶 , priv𝑃𝑄 ).
• 𝐻.Sign(𝑚, priv𝐻 ) decodes the private key
(priv𝐶 , priv𝑃𝑄 ) ← 𝑑 (priv𝐻 ), runs𝐶.Sign(𝑚, priv𝐶 ) → 𝜎𝐶
and 𝑃𝑄.Sign(𝑚, priv𝑃𝑄 ) → 𝜎𝑃𝑄 and returns 𝜎𝐻 where
𝜎𝐻 ← 𝑒 (𝜎𝐶 , 𝜎𝑃𝑄 ).
• 𝐻.Verif(𝑚,𝜎𝐻 , pub𝐻 ) decodes the public key
(pub𝐶 , pub𝑃𝑄 ) ← 𝑑 (pub𝐻 ), decodes the signature
(𝜎𝐶 , 𝜎𝑃𝑄 ) ← 𝑑 (𝜎𝐻 ) and returns
𝐶.Verif(𝑚,𝜎𝐶 , pub𝐶 ) · 𝑃𝑄.Verif(𝑚,𝜎𝑃𝑄 , pub𝑃𝑄 ), i.e., the sig-
nature is valid if and only if both component signatures are
valid.

The simplest encoding may be concatenation, if the classical
and post-quantum signatures/keys have a fixed size so that they
can be successfully decoded. More robust constructions have been
proposed, such as [56] (which we have implemented and used in
our solutions).
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#" Id="abcd" Type="http://www.w3.org/2001/04/xmlenc#Element">

3 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2009/xmlenc11#aes256-gcm" />

4 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

5 <xenc:EncryptedKey Id="bbcd">

6 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

7 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

8 </xenc:EncryptionMethod>

9 <ds:KeyInfo>

10 <ds:X509Data>

11 <ds:X509Certificate><!-- base64 encoded RSA certificate --></ds:X509Certificate>

12 </ds:X509Data>

13 </ds:KeyInfo>

14 <xenc:CipherData>

15 <xenc:CipherValue><!-- base64 encoded encrypted key --></xenc:CipherValue>

16 </xenc:CipherData>

17 </xenc:EncryptedKey>

18 </ds:KeyInfo>

19 <xenc:CipherData>

20 <xenc:CipherValue><!-- base64 encoded encrypted data --></xenc:CipherValue>

21 </xenc:CipherData>

22 </xenc:EncryptedData>

Listing 1: XML public key encryption example
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1 <!-- namespace attributes omitted -->

2 <saml2p:AuthnRequest ID="SP_50f55bc7-4bea-4f0b-a9b1-84fc881212a7" <!-- other attributes -->>

3 <saml2:Issuer>https://sp.example.com</saml2:Issuer>

4 <ds:Signature>

5 <ds:SignedInfo>

6 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

7 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256"/>

8 <ds:Reference URI="#SP_50f55bc7-4bea-4f0b-a9b1-84fc881212a7">

9 <ds:Transforms>

10 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

11 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

12 </ds:Transforms>

13 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512"/>

14 <ds:DigestValue><!-- base64 encoded digest --></ds:DigestValue>

15 </ds:Reference>

16 </ds:SignedInfo>

17 <ds:SignatureValue><!-- base64 encoded signature --></ds:SignatureValue>

18 <ds:KeyInfo>

19 <ds:X509Data>

20 <ds:X509Certificate><!-- base64 encoded ECDSA certificate --></ds:X509Certificate>

21 </ds:X509Data>

22 </ds:KeyInfo>

23 </ds:Signature>

24 <saml2p:Extensions>

25 <ds:KeyInfo>

26 <ds:X509Data>

27 <ds:X509Certificate><!-- base64 encoded encryption certificate --></ds:X509Certificate>

28 </ds:X509Data>

29 </ds:KeyInfo>

30 <ds:Signature>

31 <ds:SignedInfo>

32 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

33 <ds:SignatureMethod Algorithm="http://www.w3.org/2023/02/xmldsig-pqc#dilithium"/>

34 <ds:Reference URI="#SP_50f55bc7-4bea-4f0b-a9b1-84fc881212a7">

35 <ds:Transforms>

36 <ds:Transform Algorithm="http://www.w3.org/2002/06/xmldsig-filter2">

37 <dsig-xpath:XPath Filter="subtract">/saml2p:*/ds:Signature[1]</dsig-xpath:XPath>

38 </ds:Transform>

39 <ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

40 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

41 </ds:Transforms>

42 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512"/>

43 <ds:DigestValue><!-- base64 encoded digest --></ds:DigestValue>

44 </ds:Reference>

45 </ds:SignedInfo>

46 <ds:SignatureValue><!-- base64 encoded signature --></ds:SignatureValue>

47 <ds:KeyInfo>

48 <ds:X509Data>

49 <ds:X509Certificate><!-- base64 encoded Dilithium certificate --></ds:X509Certificate>

50 </ds:X509Data>

51 </ds:KeyInfo>

52 </ds:Signature>

53 </saml2p:Extensions>

54 <saml2:Subject>

55 <saml2:NameID>subject@example.com</saml2:NameID>

56 </saml2:Subject>

57 </saml2p:AuthnRequest>

Listing 2: Example of a backward compatible SAML AuthnRequest
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