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ABSTRACT
The Privacy Sandbox Attribution Reporting API has been recently

deployed by Google Chrome to support the basic advertising func-

tionality of attribution reporting (aka conversion measurement)

after deprecation of third-party cookies. The API implements a

collection of privacy-enhancing guardrails including contribution

bounding and noise injection. It also offers flexibility for the analyst

to allocate the contribution budget.

In this work, we present algorithms for optimizing the allocation

of the contribution budget for summary reports from the Attribu-

tion Reporting API. We develop a synthetic data model that we find

to accurately capture real-world conversion data, and extensively

evaluate our method on two real-world datasets and two synthetic

datasets. We show that optimizing the parameters that can be set

by the analyst can significantly improve the utility achieved by

querying the API while satisfying the same privacy bounds.

KEYWORDS
Attribution Reporting, Conversion Measurement, Contribution

Bounding, Contribution Budgeting, Discrete Laplace Mechanism,

Differential Privacy, Bias-Variance Trade-off

1 INTRODUCTION
In recent years, growing concerns around user privacy have led to

new efforts by web browsers and mobile platforms to limit perva-

sive tracking of users by websites, apps, and ad technology (aka,

ad-tech) providers. In particular, this led to the decision by several

browsers and platforms, including Safari [25], Mozilla Firefox [27],

and Google Chrome [22], to deprecate third-party cookies. How-

ever, third-party cookies had been widely used to support some

of the most critical functionalities powering digital advertising,

notably ad conversion measurement (aka attribution reporting),

where an ad-tech seeks to determine the volume of conversions
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attributed to ads shown on different publishers and as part of differ-

ent campaigns. Example conversion measurement queries include

the number of conversions attributed to ad impressions shown on

a given publisher, or the total conversion value for sales occurring

during a weekend and attributed to a particular ad campaign. This

made several platforms and browsers provide privacy-preserving

APIs that can support ad conversion measurement functionalities

after the deprecation of third-party cookies, including Private Click

Measurement (PCM) on Safari [26], SKAdNetwork on iOS [8], the

Interoperable Private Attribution (IPA) developed by Mozilla and

Meta [23], Masked LARK from Microsoft [6, 21], and Privacy Sand-

box Attribution Reporting API (ARA) from Google [2, 20].

The Attribution Reporting API, available on both the Chrome

browser [20] and the Android operating system [2], offers sum-
mary reports that could be used to estimate counts and values of

conversions attributed to ad campaigns (and broken down by other

impression and conversion features). The privacy guardrails in the

API [3] include contribution bounding as well as discrete Laplace

noise injection, which can be used to provide a differential privacy

(DP) [13] guarantee on the output summary reports. More precisely,

for each impression, the API enforces a fixed bound on the contri-

butions of all conversions attributed to it. Moreover, each of these

contributions is required to be discrete. The contributions from

different impressions (from possibly many users) are aggregated.

Discrete Laplace noise is then added to the vector of contributions,

and the result is the summary report.

While ARA provides a formal DP guarantee, the noise addition

and contribution bounding procedure represents a paradigm shift in

conversion measurement compared to third-party cookies; straight-

forward use of ARAmight result in large amount of noise. Concerns

have been raised that the degradation in accuracy after deprecation

of third-party cookies can in turn impact the downstream business

decisions made based on the measurements [15, 18].

This brings us to the main question of the paper: How can an
ad-tech obtain desired measurements via ARA that are as accurate
as possible? The flexibility of ARA allows the ad-tech to choose

their own encoding of the attributed information. (See Section 3.1

for formal descriptions.) By adjusting such an encoding, the ad-

tech can (implicitly) decide on several parameters, such as how

the contribution budget is allocated across different conversions
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that are attributed to the same impression. These choices by the

ad-tech can significantly impact the utility of the summary reports

for any fixed privacy bar. The focus of this work is to optimize

these summary reports to maximize utility for a given level of

(differential) privacy.

1.1 Summary of Contributions
We make the following contributions to the problem of optimizing

summary reports from the Attribution Reporting API (ARA):

⊲ We formally define the problem of optimizing the utility of con-

version aggregates based on summary reports from the ARA.

In the process, we flesh out subtle but important details regard-

ing how the constraints in the API (e.g., contribution bounding,

discretization requirements, encoding of multiple conversions

attributed to the same impression, noise injection) can shape the

optimization problem.

⊲ Given access to historical data that has not been contribution-

bounded and is noise-free, we provide an optimization problem

that yields the optimal choice of parameters to use the ARA on

future data. Such historical data could be available to ad-techs

who have thus far relied on third-party cookies for ad conversion

measurement (prior to the deprecation of third-party cookies).

⊲ We evaluate our algorithm on real-world conversion data, demon-

strating that it significantly improves utility compared to baseline

non-optimized summary reports. We also evaluate our algorithm

on synthetic datasets (for attributed conversion counts and val-

ues), which are sampled using generative models that we fit to

real conversion data. These data generation models might be of

independent interest for future research on (privacy-preserving)

ad conversion measurement.
1

⊲ While our algorithm can be used to optimize for a variety of error

measures, we discuss several qualitative advantages of using a

thresholded version of the root mean square relative error in ad

conversion measurement.

⊲ As our algorithm uses past (historical) data in order to set the

parameters used to measure conversions on future data, we com-

plement our empirical findings by proving generalization bounds

showing that parameters optimized using historical bounds yield

good results on similar future data.

We remark that, due to the rather specific nature of the At-

tribution Reporting API (and, to a lesser extent, DP conversion

measurements), we are not aware of any previous work that studies

the same setting as ours. Nonetheless, we discuss some related work

in Section 7.

1.2 Overview of the Rest of the Paper
In Section 2, we provide some basic definitions related to ad con-

version measurement, and to DP. In Section 3, we provide further

background on the problem setup; ARA is formalized in more detail

in Section 3.1, the problem of estimating conversion aggregates

(the focus of our work) is defined in Section 3.2, and we briefly

discuss the error metric in Section 3.3. In Section 4, we present our

optimization algorithm for contribution budgeting. We describe

our experimental evaluation and findings in Section 5. In Section 6,

1
Code from our evaluation can be found at https://github.com/google-research/google-

research/tree/master/ara_optimization

we prove generalization bounds that explain why our algorithm

does not overfit to the historical data. We discuss some related work

in Section 7. We discuss limitations and interesting directions for

future research in Section 8, and provide concluding remarks in

Section 9.

2 PRELIMINARIES
Wenow define themain terminology used in this paper. LetX be the

set of impression features, including a unique impression identifier

for each impression, let Y be the set of conversion features, and
let Z = X × Y. We denote a dataset as 𝐷 = (𝑧1, . . . , 𝑧𝑛) ∈ Z∗
where each record 𝑧𝑖 is of the form (𝑥𝑖 , 𝑦𝑖 ), consisting of impression

features 𝑥𝑖 ∈ X and conversion features 𝑦𝑖 ∈ Y. The impression

features are assumed to be known to the ad-tech, and can correspond
to an a priori unbounded number of conversions, which are assumed

to be unknown to the ad-tech.
2
We say that two datasets 𝐷, 𝐷 ′ are

adjacent, denoted as 𝐷 ∼ 𝐷 ′ if we can get one dataset from the

other by removing all records corresponding to a single impression.

We use the following running example to illustrate our notation.

Imagine a fictional gift shop called Du & Penc that uses digital
advertising to reach its customers. Their holiday sales are captured

in the dataset in Table 1, where each record contains impression

features of (i) an impression ID, (ii) the campaign, and (iii) the city

in which the ad was shown, as well as the conversion features of the

(i) number of items bought and (ii) total dollar value of items bought

as part of the conversion. Du & Penc, as an advertiser, want to know

if their ads are working, so they track conversions to see how many

people click on their ads and then take the desired action, such

as buying a product. Therefore, they track conversions and run

queries like ‘total sales per advertising campaign’ to ensure their

ads are effective and generating revenue. This helps them identify

which ads are performing well and which ones need improvement.

2.1 Differential Privacy
Definition 2.1 (DP [13]). For 𝜀 ≥ 0, a randomized algorithm A
is 𝜀-DP if for all adjacent datasets 𝐷 ∼ 𝐷 ′, and for every possible

output 𝑜 , it holds that Pr[A(𝐷) = 𝑜] ≤ 𝑒𝜀 · Pr[A(𝐷 ′) = 𝑜].

For an extensive overview of DP, we refer the reader to the mono-

graph [14]. A commonly used method in DP is the discrete Laplace

mechanism. To define it, we recall the notion of ℓ1-sensitivity, where

for any vector 𝑣 ∈ R𝑑 , we denote its ℓ1-norm as ∥𝑣 ∥1 :=
∑𝑑
𝑖=1 |𝑣𝑖 |.

Definition 2.2 (ℓ1-sensitivity). LetZ be any set, and 𝑓 : Z𝑛 → R𝑑
be a 𝑑-dimensional function. Its ℓ1-sensitivity is defined as Δ1 𝑓 :=

max𝐷∼𝐷′ ∥ 𝑓 (𝐷) − 𝑓 (𝐷 ′)∥1.

Definition 2.3 (Discrete Laplace Mechanism). The discrete Laplace
distribution centered at 0 and with parameter 𝑎 > 0, denoted by

DLap(𝑎), is the distribution whose probability mass function at

integer 𝑘 is
𝑒𝑎−1
𝑒𝑎+1 · 𝑒

−𝑎 |𝑘 |
. The 𝑑-dimensional discrete Laplace mecha-

nismwith parameter 𝑎 applied to a function 𝑓 : Z𝑛 → Z𝑑 , on input

a dataset 𝐷 ∈ Z𝑛 , returns 𝑓 (𝐷) + 𝜉 where 𝜉 is a 𝑑-dimensional

noise random variable whose coordinates are sampled i.i.d. from

DLap(𝑎) (abbreviated as 𝜉 ∼ DLap(𝑎)⊗𝑑 ).
2
Note that for the historical data both impression and conversion features are assumed

to be known.
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Impression features 𝒙 Conversion features 𝒚
Impression ID Campaign City #items value ($)

𝑧1 → 123 Thanksgiving New York 3 21

𝑧2 → 123 Thanksgiving New York 1 5

𝑧3 → 456 Thanksgiving Boston 1 99

𝑧4 → 123 Thanksgiving New York 2 23

𝑧5 → 101 Christmas Boston 2 50

𝑧6 → 789 Christmas New York 3 15

𝑧7 → 101 Christmas Boston 1 5

. . . . . . . . . . . . . . . . . .

Table 1: Running example showing the impression and conversion logs for Du & Penc, an online gift shop.

𝑥 ∈ X impression features

𝑦 ∈ Y conversion features

𝑧 ∈ Z all features (𝑥,𝑦) of an input record

Z𝑗 one slice of the input domainZ = Z1 ⊔ · · · ⊔ Z𝑚
𝜀 privacy parameter

𝐷 ∼ 𝐷 ′ adjacent datasets

𝑉𝐷 (𝑞) 𝑗 aggregate value of query 𝑞 on slice 𝑗 of dataset 𝐷

Γ ARA-defined contribution budget, set to 65,536

A,R pre/post-processing algorithms specified by ad-tech

C,S fixed algorithms performed by ARA

𝐾 set of aggregation keys {𝑘1, . . . , 𝑘𝑇 }
𝑤𝑧 histogram contribution A(𝑧)
𝑤𝑧
𝑘

aggregatable value corresponding to𝑤𝑧 and key 𝑘

Z𝑥 records corresponding to impression 𝑥

W𝑥
histogram contributions corresponding to 𝑥

Z𝑥 records corresponding to aggregatable reports for 𝑥

W𝑥
aggregatable reports for impression 𝑥

𝑤𝑥 sum of aggregatable reports for impression 𝑥

𝑊 summary report produced by algorithm S
𝑈 final estimate by after post-processing by R
𝑑 number of queries, excluding the count query

𝑚 number of slices of the data domain

𝐶 count limit

𝐶ℓ clipping threshold for query ℓ ∈ [𝑑]
𝛼ℓ contribution budget fraction for ℓ ∈ [𝑑]
𝜏 parameter of the RMSRE𝜏 error metric

Table 2: Summary of notation.

Lemma 2.4. For all 𝜀 > 0, the 𝑑-dimensional discrete Laplace
mechanism with parameter 𝑎 ≤ 𝜀/Δ1 𝑓 is 𝜀-DP.

Lemma 2.5. For all 𝑎 > 0, it holds that

E[DLap(𝑎)] = 0 and Var(DLap(𝑎)) =
2𝑒𝑎

(𝑒𝑎 − 1)2
.

The following is a well-known property of DP.

Lemma 2.6 (Post-processing). If A is 𝜀-DP, then for any (ran-
domized) algorithm A ′, it holds that A ′(A(·)) is also 𝜀-DP.

3 BACKGROUND AND SETUP
3.1 ARA Summary Reports
We now describe Summary Reports, which is a pre-defined frame-

work for ad measurement fixed in the ARA [24]. At a high-level,

ARA allows the ad-tech to specify the encoding algorithm from

each record to a vector. A contribution bounding procedure is then

applied to ensure that the total contribution corresponding to each

impression is bounded. Once this is done, they are sent to the aggre-

gation service who sums these vectors and adds a discrete Laplace

noise to the result. This (noisy) summary report is then returned to

the ad-tech.

More formally, a mechanism 𝑀 using ARA summary reports

operates as follows. To begin with, the ARA has a parameter called

contribution budget, which at this time of writing, is fixed to Γ :=

2
16 = 65, 536 (see [5]). To use the API, the ad-tech needs to specify

the following information beforehand:

⊲ a set 𝐾 = {𝑘1, . . . , 𝑘𝑇 } of aggregation keys, and
⊲ an encoding algorithmA that maps any record 𝑧 to a histogram
contribution𝑤𝑧 ∈ Z𝐾≥0, where𝑤

𝑧
𝑘
is called the aggregatable value

corresponding to the aggregation key 𝑘 ∈ 𝐾 .
Having specified the algorithmA, the summary report is generated

as follows:

(1) Each record is mapped to a histogram contribution usingA. For

each impression 𝑥 , let Z𝑥 := (𝑧𝑖1 , . . . , 𝑧𝑖𝑐 ) be the sequence of
records corresponding to the same impression 𝑥 , i.e., 𝑧𝑖 𝑗 =

(𝑥,𝑦𝑖 𝑗 ), and let W𝑥
be the sequence of corresponding his-

togram contributions (𝑤𝑧𝑖1 , . . . ,𝑤𝑧𝑖𝑐 ) obtained as𝑤𝑧𝑖 𝑗 = A(𝑧𝑖 𝑗 ).
(2) The histogram contributions for each impression 𝑥 are filtered

3

by C (Algorithm 1), such that the ℓ1-norm of the sum of the re-

turned vectors, called aggregatable reports, is at most Γ. For ease

of notation, we useW𝑥
to denote the sequence of aggregatable

reports for impression 𝑥 , and let 𝑤𝑥 :=
∑
𝑤∈W𝑥 𝑤 . Similarly,

we useZ𝑥 to denote the sequence of records corresponding to

aggregatable reports for impression 𝑥 .

(3) The aggregatable reports are passed on by C to the ARA aggre-
gation service S that adds all the aggregatable reports and adds

discrete Laplace noise, as given in Algorithm 2, and returns a

summary report𝑊 ∈ Z𝐾 back to the ad-tech.

3
Algorithm 1 as written requires all the inputs to be provided at once. But in practice,

it runs in an online manner, namely, the 𝑤𝑖 s arrive sequentially and the decision

of whether to include 𝑤𝑖 or not, is made without knowing the future 𝑤𝑖′ s, and the

algorithm only needs to remember a single 16-bit value 𝑏 for each impression 𝑥 .
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Algorithm 1 ContributionBounding C.

Params: Contribution budget Γ := 2
16 = 65, 536.

Input: Sequence of histogram contributions 𝑤1, . . . ,𝑤𝑐 ∈ Z𝐾≥0
corresponding to a single impression.

Output: Sequence of aggregatable reports𝑤1, . . . ,𝑤𝑐 ∈ Z𝐾≥0 such
that ∥∑𝑐𝑗=1𝑤 𝑗 ∥1 ≤ Γ and 𝑐 ≤ 𝑐 .

𝑆 ← ∅ and 𝑏 ← 0

for 𝑖 ∈ {1, . . . , 𝑐} do
if 𝑏 + ∥𝑤𝑖 ∥1 ≤ Γ then
𝑆 ← 𝑆 ∪ {𝑖} and 𝑏 ← 𝑏 + ∥𝑤𝑖 ∥1

return (𝑤𝑖 )𝑖∈𝑆

Algorithm 2 SummaryReport S.

Params: ⊲ Contribution budget Γ := 2
16 = 65, 536,

⊲ Privacy parameter 𝜀 > 0.

Input: Aggregatable reports𝑤1, . . . ,𝑤𝑟 ∈ Z𝐾≥0
Output: Summary report𝑊 ∈ Z𝐾

return 𝑊 ← ∑
𝑗 𝑤 𝑗 + DLap(𝜀/Γ)⊗𝐾

(4) Finally, the ad-tech can post-process the summary report𝑊

using any algorithm R to obtain the final estimate𝑈 ∈ R𝑑×𝑚 .

Note that algorithmA and C are executed on the browser/device

on which the impression occurred, and only the aggregatable re-

ports are passed on to S to produce the summary report, which

is executed in a trusted execution environment [1], and R is run

locally by the ad-tech as illustrated in Figure 1.

An important point to note is that algorithms C andS are fixed in

ARA, and the only parts that the ad-tech can control are algorithms

A and R. The design of ARA summary reports ensures that, no

matter what algorithms A and R are provided, it is guaranteed

that the end-to-end algorithm generating the final result received

by the ad-tech is 𝜀-DP. We include a short proof of this statement.

Theorem 3.1. For allA and R, the end-to-end algorithm combin-
ing Items 1 to 4 above satisfies 𝜀-DP.

Proof. We show that for any per-record input preprocessing

A performed in step 1, steps 2–3 are an instantiation of the Dis-

crete Laplace mechanism and thus satisfy DP by Lemma 2.4. The

conclusion then follows from the robustness of DP to arbitrary

postprocessing (Lemma 2.6).

The condition checked in the loop of AlgorithmC (step 2) ensures
that regardless of how algorithm A transforms each individual

record, the total contribution 𝑤𝑥 of each impression 𝑥 satisfies

∥𝑤𝑥 ∥1 ≤ Γ. Algorithm S then adds Discrete Laplace noise scaled

to this maximum sensitivity Γ, so the algorithm combining steps

1–3 instantiates the Discrete Laplace mechanism and is guaranteed

to be 𝜀-DP under adding or removing all conversions attributed to

a single impression,
4
by Lemma 2.4. Finally, in Item 4, algorithm R

4
Note that this is a simpler setting compared to adding or removing an impression,

which may create a “cascading effect” that leads to modifications in the conversions

attributed to multiple impressions at once. However, since the current version of the

ARA does not touch upon this issue, we will do the same in this paper.

post-processes the summary report𝑊 to obtain the final estimate

𝑈 ∈ R𝑑×𝑚 ; by Lemma 2.6, this remains 𝜀-DP. □

Recall that the goal of our paper is to design a mechanism in this

framework that minimizes a desired error metric. In order to design

a mechanism, we need to specify: (i) the set 𝐾 of aggregation keys,

(ii) algorithm A mapping records to histogram contributions𝑤𝑧 ,

and (iii) the reconstruction algorithm R for recovering estimates

of interest. As we will demonstrate through the rest of this paper,

careful selection of these can lead to significant utility improvement.

3.2 Estimating Conversion Aggregates
As mentioned earlier, we are interested in computing aggregate

statistics on attributed conversion where they can be “sliced” based

on certain attributes. This problem is formalized below.

Consider a fixed partition ofZ given asZ1⊔· · ·⊔Z𝑚 , where the

Z𝑗 ’s are pairwise disjoint (where ⊔ denotes a disjoint union). This

partition naturally induces a partition of 𝐷 given as 𝐷1 ⊔ · · · ⊔ 𝐷𝑚
where 𝐷 𝑗 = 𝐷 ∩ Z𝑗 ; we refer to each 𝐷 𝑗 as a slice of 𝐷 .5 We

use 𝑋 := {𝑥 : ∃𝑦 ∈ Y s.t. (𝑥,𝑦) ∈ 𝐷} and 𝑋 𝑗 := {𝑥 : ∃𝑦 ∈
Y s.t. (𝑥,𝑦) ∈ 𝐷 𝑗 }, whenever 𝐷 is clear from context.

A statistical query, denoted query in the rest of the article, is an

aggregatable value defined by a function𝑞 : Z → R.6 The aggregate
value7 associated with a query 𝑞 on dataset 𝐷 is𝑉𝐷 (𝑞) ∈ R𝑚 , given

as 𝑉𝐷 (𝑞) 𝑗 :=
∑
𝑧∈𝐷 𝑗

𝑞(𝑧), namely one aggregate for each slice of

𝐷 . Given queries 𝑞1, . . . , 𝑞𝑑 of interest, the goal is to construct an

𝜀-DP mechanism that estimates the corresponding aggregate values

𝑉𝐷 (𝑞1), . . . ,𝑉𝐷 (𝑞𝑑 ) as “accurately” as possible.
In the Du & Penc example, one could consider a partition of the

records, e.g., by Campaign or by City or by the pair (Campaign,
City). We could consider the following two queries: 𝑞1 (𝑧), which
returns #items and 𝑞2 (𝑧), which returns the dollar value in any

record 𝑧. In addition, we always consider another query of interest,

given as 𝑞0 (𝑧) = 1 for all 𝑧 ∈ Z; that is, 𝑉𝐷 (𝑞0) 𝑗 is precisely the

number of records in the 𝑗th slice.

3.3 Error Metrics for Experiment Evaluation
Since the values estimated using Summary Reports API are noisy,

API users should evaluate the impact of noise in reports carefully to

ensure that they are useful. For example, when Du & Penc executes
queries such as ‘total sales per advertising campaign’ to determine

the effectiveness of individual campaigns, the presence of added

noise may introduce slight or significant variations in the results.

Consequently, the utility of summary reports is called into question

when noise is present. A variety of utility metrics can be used to

evaluate the impact of noise. We provide a list of all metrics that

we have considered in Table 5 (Appendix A). There are several

desirable criteria for metrics. As listed in Table 6 (Appendix A),

we find out that only RMSRE𝝉 metric (defined below) satisfies all

desired properties. Therefore, we focus on this metric for our main

5
Slices may be any partition of the data domain. For example, slices might be specified

by a GROUP BY statement in SQL.

6
We emphasize that a query here is a function of a single data record, not a function

of the whole dataset. This usage is similar to the statistical query model in learning

theory, but here we allow queries to be real-valued, not just [0, 1]-valued.
7
The aggregation here is specifically summation; we use the term aggregate for con-

sistency with the API documentation [24]
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Attribution Reporting API

Trusted
Execution

Environment Ad-tech

HistogramContribution
(Algorithm 3)

ContributionBounding
(Algorithm 1)

SummaryReport
(Algorithm 2)

ReconstructValues
(Algorithm 4)

𝑈RS

C

C

C

A

A

A

A

A

A

(𝑥1, 𝑦1,1) = 𝑧1,1
(𝑥1, 𝑦1,2) = 𝑧1,2
(𝑥1, 𝑦1,3) = 𝑧1,3

(𝑥2, 𝑦2,1) = 𝑧2,1

(𝑥3, 𝑦3,1) = 𝑧3,1
(𝑥3, 𝑦3,2) = 𝑧3,2

Figure 1: Illustrative usage of ARA summary reports. Algorithms C and S are fixed in the API. The ad-tech designsA and R.

experimental evaluation. However, our approach can be applied

just as well to other error metrics, as discussed in Appendix B.

Definition 3.2 ([19]). For a dataset 𝐷 ∈ Z∗, a query 𝑞 : Z → R,
and a random vector 𝑢 ∈ R𝑚 , the root mean squared relative error
with parameter 𝜏 ∈ R>0 is defined as

RMSRE𝜏 (𝑢, 𝑞;𝐷) :=

√√√
1

𝑚

∑︁
𝑗 ∈[𝑚]

E

(
𝑢 𝑗 −𝑉𝐷 (𝑞) 𝑗

max{𝜏,𝑉𝐷 (𝑞) 𝑗 }

)
2

,

where the expectation is over the randomness of 𝑢. Similarly, for

parameters 𝝉 = (𝜏0, . . . , 𝜏𝑑 ), queries (𝑞0, . . . , 𝑞𝑑 ), and a randomized

report𝑈 ∈ R(𝑑+1)×𝑚 , we define

RMSRE𝝉 (𝑈 , (𝑞ℓ )𝑑ℓ=0;𝐷) :=

√√√
1

𝑑 + 1

𝑑∑︁
ℓ=0

RMSRE𝜏ℓ (𝑈ℓ , 𝑞ℓ ;𝐷)2,

where𝑈ℓ is the ℓth row of𝑈 .

4 CONTRIBUTION BUDGETING ALGORITHM
In this section, we present our algorithm for contribution budgeting.

Suppose we have 𝑑 queries 𝑞1, . . . , 𝑞𝑑 : Z → R≥0 for which an

ad-tech desires to estimate the aggregate values. We now describe

our approach for defining the aggregation keys 𝐾 , the encoding

algorithm A mapping records to histogram contributions, and the

method R for reconstructing the values.

4.1 Aggregation Keys & Histogram
Contributions

We take the set of aggregation keys to be𝐾 = ( [𝑑] ∪{⊥})× [𝑚], i.e.,
we define𝑑+1 aggregation keys corresponding to each slice 𝑗 ∈ [𝑚].
We choose a count limit 𝐶 , and additionally, corresponding to each

query𝑞ℓ , we choose a clipping threshold𝐶ℓ and a contribution budget
fraction 𝛼ℓ , subject to

∑𝑑
ℓ=1 𝛼ℓ = 1. We discuss how to choose the

parameters 𝐶 and (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] shortly.

For any record 𝑧, suppose 𝑣1, . . . , 𝑣𝑑 are given as 𝑣ℓ = 𝑞ℓ (𝑧). We

first clip each 𝑣ℓ to be at most 𝐶ℓ , namely, let 𝑣 ′
ℓ
= clip𝐶ℓ

(𝑣ℓ ) :=
min(𝑣ℓ ,𝐶ℓ ). Next, we scale 𝑣 ′

ℓ
to lie in [0, 1], by dividing by 𝐶ℓ ,

namely, let 𝑣 ′′
ℓ
= 𝑣 ′

ℓ
/𝐶ℓ . We will choose a histogram contribution

𝑤𝑧 that uses exactly ⌊Γ/𝐶⌋ of the total contribution budget, so that

at most𝐶 conversions can be accounted for per impression. To this

end, we rescale 𝑣 ′′
ℓ
by ⌊𝛼ℓΓ/𝐶⌋ so that the sum of contributions is

at most Γ/𝐶 , and moreover, we assign the remaining contribution

mass to ⊥. Finally, we apply a randomized rounding on the real

values to make them integer-valued, as required by the API.

These steps are formalized in Algorithm 3, where CRR is a ran-

domized method that clips and performs randomized rounding, de-
fined as follows:

CRR(𝑣 ;𝐶,𝐶ℓ , 𝛼ℓ ) := RR
(⌊
𝛼ℓ Γ
𝐶

⌋
·
clip𝐶ℓ

(𝑣)
𝐶ℓ

)
, (1)

where RR(𝜔) :=

{
⌈𝜔⌉ w.p. 𝜔 − ⌊𝜔⌋
⌊𝜔⌋ w.p. 1 − 𝜔 + ⌊𝜔⌋ .

(2)

We use RR instead of deterministic rounding because E[RR(𝜔)] =
𝜔 , which allows recovery of unbiased estimates from summary

reports.

Lemma 4.1. For any 𝑧, the vector 𝑤𝑧 returned by Algorithm 3
satisfies𝑤𝑧 ≥ 0 and ∥𝑤𝑧 ∥1 = ⌊Γ/𝐶⌋.

Proof. It is immediate to see that

∑
ℓ, 𝑗 𝑤

𝑧
ℓ,𝑗
+∑

𝑗 𝑤
𝑧
⊥, 𝑗 = ⌊Γ/𝐶⌋.

Let 𝑗 be such that 𝑧 ∈ Z𝑗 . To show that indeed all the values

are non-negative, we observe that 𝑤𝑧
ℓ,𝑗 ′ = 0 for all 𝑗 ′ ≠ 𝑗 , and

0 ≤ CRR(𝑣 ;𝐶,𝐶ℓ , 𝛼ℓ ) ≤ ⌊𝛼ℓΓ/𝐶⌋ and hence, we have∑𝑑
ℓ=1𝑤

𝑧
ℓ,𝑗
≤ ∑𝑑

ℓ=1

⌊
𝛼ℓ Γ
𝐶

⌋
≤

⌊
Γ
𝐶

∑𝑑
ℓ=1 𝛼ℓ

⌋
=

⌊ Γ
𝐶

⌋
,

and hence𝑤𝑧⊥, 𝑗 = ⌊Γ/𝐶⌋ −
∑
ℓ 𝑤

𝑧
ℓ,𝑗
≥ 0. □

Thus, we have that for any impression 𝑥 , at most the first 𝐶 con-

versions result in valid aggregatable reports.

609



Proceedings on Privacy Enhancing Technologies 2024(4) Aksu et al.

Algorithm 3 HistogramContribution A (ℓ∞ version).

Params: ⊲ Queries 𝑞1, . . . , 𝑞𝑑 : Z → R≥0,
⊲ Partition ofZ = Z1 ⊔ · · · ⊔ Z𝑚 ,

⊲ Parameters 𝐶 , (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] with
∑𝑑
ℓ=1 𝛼ℓ = 1,

⊲ Aggregatable Keys 𝐾 = ( [𝑑] ∪ {⊥}) × [𝑚].
Input: Record 𝑧 ∈ Z
Output: Histogram contribution𝑤𝑧 ∈ Z𝐾≥0
for slice 𝑗 ∈ [𝑚] do

for ℓ ∈ [𝑑] do

𝑤𝑧
ℓ,𝑗
←

{
0 if 𝑧 ∉ Z𝑗
CRR(𝑞ℓ (𝑧);𝐶,𝐶ℓ , 𝛼ℓ ) if 𝑧 ∈ Z𝑗

𝑤𝑧⊥, 𝑗 ←
{
0 if 𝑧 ∉ Z𝑗⌊ Γ
𝐶

⌋
−∑𝑑

ℓ=1𝑤
𝑧
ℓ,𝑗

if 𝑧 ∈ Z𝑗
return 𝑤𝑧

Figure 2 illustrates how this histogram contribution gets pre-

pared at the browser/device, using the example of the Du & Penc
dataset in Table 1. Consider queries 𝑞1 (𝑧) being the number of

items purchased and 𝑞2 (𝑧) being the corresponding dollar value,

and the slices corresponding to the “Campaign”. In this case, the set

of aggregatable keys 𝐾 is {1, 2,⊥} × {Thanksgiving, Christmas},
corresponding to all possible combinations of query and campaign,

as well as the remaining contribution ⊥ for each campaign.

Suppose we use count limit 𝐶 = 2, clipping thresholds 𝐶1 = 2,

𝐶2 = $30 and contribution budget fractions 𝛼1 = 𝛼2 = 0.5. Consider

the record 𝑧1 corresponding to Impression ID 123, corresponding
to the Thanksgiving campaign. The conversion consists of 𝑣1 = 3

items and value 𝑣2 = $21, which get clipped as 𝑣 ′
1
= clip𝐶1

(𝑣1) = 2

and 𝑣 ′
2
= clip𝐶2

(𝑣2) = $21. These get rescaled as 𝑣 ′′
1

= 𝑣 ′
1
/𝐶1 = 1

and 𝑣 ′′
2

= 𝑣 ′
2
/𝐶2 = 0.7. Finally, 𝑣 ′′

1
and 𝑣 ′′

2
are further rescaled

by ⌊𝛼1Γ/𝐶⌋ and ⌊𝛼2Γ/𝐶⌋, respectively, which are both equal to

Γ/4 = 16384. Thus, 𝑧1 gets mapped to the following aggregatable

values𝑤
𝑧1
𝑘
:

𝑤1,Thanksgiving = RR(16384 · 𝑣 ′′
1
) = RR(16384) = 16384

𝑤2,Thanksgiving = RR(16384 · 𝑣 ′′
2
) = RR(11468.8) e.g.,= 11469

𝑤⊥,Thanksgiving = 32768 − 16384 − 11469 = 4915

𝑤1,Christmas = 𝑤2,Christmas = 𝑤⊥,Christmas = 0

The histogram contribution𝑤𝑧1 consists of these aggregatable val-

ues.

We have ∥𝑤𝑧1 ∥1 = 32768 = Γ/𝐶; this holds for all records 𝑧,
not just 𝑧1. Since records 𝑧1, 𝑧2, and 𝑧4 in Table 1 all correspond to

the same impression 𝑥 , the histogram contribution𝑤𝑧4 will end up

being ignored in the aggregate, since ∥𝑤𝑧1 +𝑤𝑧2 +𝑤𝑧4 ∥ > Γ. That

is, Z𝑥 = (𝑧1, 𝑧2), and the aggregatable reports corresponding to

records 𝑧1 and 𝑧2 will simply be the histogram contributions𝑤𝑧1

and𝑤𝑧2 , while no aggregatable report will be produced for 𝑧4.

4.2 Reconstruction of Values
Given the summary report𝑊 (from Algorithm 2), we can post-

process to obtain estimates of𝑉𝐷 (𝑞ℓ ); see Algorithm 4. We useZ𝑥𝑗
to denoteZ𝑥 ∩Z𝑗 .

Impression
(Campaign = Thanksgiving)

aggregation_keys:
“Items, Campaign”: “Items, Thanksgiving”

“Value, Campaign”: “Value, Thanksgiving”

“⊥, Campaign”: “⊥, Thanksgiving”

Ad-tech
Publisher

Conversion
(#items = 3, value = $21)

aggregatable_trigger_data:
key_piece: “”, source_key: “Items, Campaign”

key_piece: “”, source_key: “Value, Campaign”

key_piece: “”, source_key: “⊥, Campaign”

aggregatable_values:
“Items, Campaign”: 16384

“Value, Campaign”: 11469

“⊥, Campaign”: 4915
Ad-tech
Advertiser

Histogram Contributions

key: “Items, Thanksgiving”, value: 16384

key: “Value, Thanksgiving”, value: 11469

key: “⊥, Thanksgiving”, value: 4915

Browser

Figure 2: Histogram contributions generation.

Algorithm 4 ReconstructValues R
Params: ⊲ Queries 𝑞1, . . . , 𝑞𝑑 : Z → R≥0,

⊲ Partition ofZ = Z1 ⊔ · · · ⊔ Z𝑚 ,

⊲ Parameter 𝐶 and scale parameters 𝛽1, . . . , 𝛽𝑑 .

For A as in Algorithm 3, 𝛽ℓ = 𝐶ℓ

/ ⌊
𝛼ℓ Γ
𝐶

⌋
.

Input: Summary report𝑊 ∈ Z𝐾 for 𝐾 = [𝑚] × ([𝑑] ∪ {⊥})
Output:𝑈 ∈ R(𝑑+1)×𝑚 with𝑈𝑘,𝑗 corresponding to slice 𝑗 , query

𝑞ℓ .

for slice 𝑗 ∈ [𝑚] do
for ℓ ∈ [𝑑] do
𝑈ℓ, 𝑗 ← 𝑊ℓ, 𝑗 · 𝛽ℓ

𝑈0, 𝑗 ← (𝑊⊥, 𝑗 +
∑
ℓ∈[𝑑 ]𝑊ℓ, 𝑗 )

/ ⌊ Γ
𝐶

⌋
return 𝑈

Theorem 4.2. For𝑈 returned by conjunction of Algorithms 1, 2, 4
and 6 as in Figure 1, it holds for all ℓ ∈ [𝑑], that

E[𝑈ℓ, 𝑗 ] =
∑
𝑥 ∈𝑋 𝑗

∑
𝑧∈Z𝑥

𝑗

clip𝐶ℓ
(𝑞ℓ (𝑧)) ,

and E[𝑈0, 𝑗 ] =
∑
𝑥 ∈𝑋 𝑗

|Z𝑥𝑗 | .

Moreover, the variances are given as,

Var(𝑈ℓ, 𝑗 ) ≤
(∑

𝑥∈𝑋𝑗
|Z𝑥

𝑗 |
4

+ Var(DLap(𝜀/Γ))
)
·𝐶2

ℓ

/ ⌊
𝛼ℓ Γ
𝐶

⌋
2

,

and Var(𝑈0, 𝑗 ) = Var(DLap(𝜀/Γ)) · (𝑑 + 1)
/ ⌊ Γ

𝐶

⌋
2

.

Proof. It is easy to see that

𝑊ℓ, 𝑗 =
∑
𝑥 ∈𝑋 𝑗

∑
𝑧∈Z𝑥

𝑗

RR
(⌊
𝛼ℓ Γ
𝐶

⌋
·
clip𝐶ℓ

(𝑞ℓ (𝑧))
𝐶ℓ

)
+ DLap

(
𝜀
Γ

)
.

Using the fact that E[RR(𝜔)] = 𝜔 and Var(RR(𝜔)) ≤ 1

4
, we get

E[𝑊ℓ, 𝑗 ] =
∑
𝑥 ∈𝑋 𝑗

∑
𝑧∈Z𝑥

𝑗

⌊
𝛼ℓ Γ
𝐶

⌋
·
clip𝐶ℓ

(𝑞ℓ (𝑧))
𝐶ℓ

,

Var(𝑊ℓ, 𝑗 ) ≤
∑
𝑥 ∈𝑋 𝑗

|Z𝑥

𝑗 |
4
+ Var

(
DLap

(
𝜀
Γ

) )
.
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Imp. features 𝒙 Conv. features 𝒚 Histogram Contributions𝒘𝒛

Imp. ID Camp. City #items value ($) 𝑤1,Th 𝑤2,Th 𝑤⊥,Th 𝑤1,Ch 𝑤2,Ch 𝑤⊥,Ch

𝑧1 → 123 Th N.Y. 3 21

A−−→ 16384 11469 4915 0 0 0

C−→ ✓

𝑧2 → 123 Th N.Y. 1 5

A−−→ 8192 2731 21845 0 0 0

C−→ ✓

𝑧3 → 456 Th Boston 1 99

A−−→ 8192 16384 8192 0 0 0

C−→ ✓

𝑧4 → 123 Th N.Y. 2 23

A−−→ 16384 12561 3823 0 0 0

C−→ ×

𝑧5 → 101 Ch Boston 2 50

A−−→ 0 0 0 16384 16384 0

C−→ ✓

𝑧6 → 789 Ch N.Y. 3 15

A−−→ 0 0 0 16384 8192 8192

C−→ ✓

𝑧7 → 101 Ch Boston 1 5

A−−→ 0 0 0 8192 2731 21845

C−→ ✓

↓

S
32768 30584 34952 40960 27307 30037

Sum of aggregatable reports

+
-2472 -993 -392 178 904 668

DLap(𝜀/Γ)⊗𝐾

⇐=30296 29591 34560 41138 28211 30705

Summary report

↓
Final estimate

R
Camp. #items value ($) count

Th 3.70 54.18 2.88

Ch 5.02 51.66 3.05

True values for comparison

Camp. #items value ($) count

Th 7 148 4

Ch 6 70 3

Figure 3: Summary report generation on dataset in Table 1 using 𝑪 = 2, 𝑪1 = 2, 𝑪2 = $30 and 𝜶1 = 𝜶2 = 0.5, with slices defined
for each campaign.

Similarly, we have that∑𝑑
ℓ=1𝑊ℓ, 𝑗 +𝑊⊥, 𝑗 =

∑
𝑥 ∈𝑋 𝑗

⌊ Γ
𝐶

⌋
· |Z𝑥𝑗 | +

∑𝑑
ℓ=0 DLap (𝜀/Γ) ,

and hence

E
[∑𝑑

ℓ=1𝑊ℓ, 𝑗 +𝑊⊥, 𝑗
]
=

∑
𝑥 ∈𝑋 𝑗

⌊ Γ
𝐶

⌋
· |Z𝑥𝑗 |,

Var
(∑𝑑

ℓ=1𝑊ℓ, 𝑗 +𝑊⊥, 𝑗
)
= (𝑑 + 1) · Var(DLap (𝜀/Γ)) .

The proof is now complete by observing that 𝑈ℓ, 𝑗 and 𝑈0, 𝑗 are

simply scaled versions of𝑊ℓ, 𝑗 and𝑊⊥, 𝑗+
∑𝑑
ℓ=1𝑊ℓ, 𝑗 respectively. □

In Figure 3, we provide a complete walk-through of how each

of the algorithms A, C, S, and R (in Figure 1) operate on the

dataset in Table 1. We start with the input records 𝑧1, . . . , 𝑧7 in the

top left. Algorithm A is then applied to each record, clipping the

number of items to 𝐶1 = 2, rescaling by ⌊𝛼1Γ/𝐶⌋ /𝐶1 = 8192 and

applying randomized rounding, and similarly clipping the price to

$30, rescaling by ⌊𝛼2Γ/𝐶⌋ /𝐶2 = 8192 and applying randomized

rounding, as described in Section 4.1. Algorithm C then applies

contribution bounding, producing aggregatable reports using the

histrogram contributions for six of the records but not for 𝑧4, since

the ℓ1 contribution budget Γ for impression 123 has already been

used up by records 𝑧1 and 𝑧2. For each query {1, 2,⊥} and campaign

{Th, Ch}, Algorithm S then sums the aggregatable reports for that

aggregation key and adds Discrete Laplace noise, producing the

summary report in the middle left of the figure. Finally, algorithm

R takes this summary report and rescales the values to obtain the

final estimate in the lower left. This entails multiplying the first

and fourth values in the summary report by 𝛽1 = 𝐶1/
⌊
𝛼1Γ
𝐶

⌋
=

1/8192 to get the estimated number of items for the two campaigns,

and the second and fifth values by 𝛽2 = 𝐶2/
⌊
𝛼2Γ
𝐶

⌋
= 15/8192

to get the estimated values for the two campaigns. The estimated

counts for each campaign are obtained by adding all three summary

report values corresponding to the campaign (the first three values

for campaign Th, the last three for campaign Ch) and scaling by

1/⌊Γ/𝐶⌋ = 1/32768.
We can compare the estimates obtained to the true total values

for each campaign in the lower right of the figure. The estimated

values in this walk-through are far from the true values for two

reasons: the dataset is too small to provide good accuracy, and the

value of 𝐶2 = $30 means that large values such as $99 and $50 get

clipped to $30.

4.3 Optimization of Parameters
Having understood the variance in the estimates, we turn to

the question of understanding the optimal choice of parameters 𝐶 ,

(𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] , with the goal of minimizing RMSRE𝝉 (𝑈 , (𝑞ℓ )𝑑ℓ=0;𝐷).
In this section, we optimize the choice of parameters, using knowl-
edge of the dataset 𝐷 . This is admittedly circular, as we are using

an 𝜀-DP mechanism to learn information about a dataset we do not
know. However, the eventual goal is that we will optimize the pa-

rameters using a historical dataset 𝐷 ′, which is “similarly behaved”

611



Proceedings on Privacy Enhancing Technologies 2024(4) Aksu et al.

Algorithm 5 ParameterOptimization

Params: ⊲ Queries 𝑞1, . . . , 𝑞𝑑 : Z → R≥0
⊲ Partition ofZ = Z1 ⊔ · · · ⊔ Z𝑚 .

Input: Dataset 𝐷 ∈ Z∗
Output: Parameters 𝐶 , (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] with

∑𝑑
ℓ=1 𝛼ℓ = 1.

𝑅current ←∞
𝐶max ← max𝑥 ∈𝑋 |Z𝑥 | (max conversions for an impression)

for 𝐶 = 1, 2, . . . ,𝐶max do
(𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] ← argmin(𝐶ℓ ,𝛼ℓ )ℓ∈[𝑑 ] 𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] )
if 𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] ) < 𝑅current then
(𝐶∗
ℓ
, 𝛼∗
ℓ
)ℓ∈[𝑑 ] ← (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ]

𝐶∗ ← 𝐶

𝑅current ← 𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] )
return 𝐶∗, (𝐶∗

ℓ
, 𝛼∗
ℓ
)ℓ∈[𝑑 ]

to 𝐷 and as we show in Section 6, this is a reasonable choice as

long as the two datasets are drawn from the same distribution.

We stress that, since our optimization procedure is performed

using the dataset 𝐷 ′ that is assumed to be public, this has no effect

on the DP guarantee of the sensitive dataset 𝐷 .

We focus on minimizing RMSRE𝝉 (𝑈 , (𝑞ℓ )𝑑ℓ=0;𝐷)
2
as a function

of𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] . The optimization problem we solve is as follows.

Problem 1. Given a fixed dataset 𝐷 , a partition of the data uni-

verse into 𝑚 slices Z1, · · · ,Z𝑚 , and 𝑑 + 1 queries 𝑞0, . . . , 𝑞𝑑 , let

𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] be decision variables. For each 𝑗 ∈ [𝑚], 𝑞 ∈ {𝑞0, . . . , 𝑞𝑑 },
let 𝑉𝐷 (𝑞) 𝑗 :=

∑
𝑧∈𝐷∩Z𝑗

𝑞(𝑧) and 𝑈 = R ◦ S ◦ C𝑘 ◦ A |𝐷 | , where
𝑘 denotes the number of impressions in 𝐷 and the algorithms are

called on dataset 𝐷 with the parameters specified by the other

variables. Minimize the objective function

𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] ) :=
√︄

1

(𝑑+1)𝑚
𝑑∑
ℓ=0

∑
𝑗 ∈[𝑚]

E
(
𝑈ℓ,𝑗−𝑉𝐷 (𝑞ℓ ) 𝑗

max{𝜏ℓ ,𝑉𝐷 (𝑞ℓ ) 𝑗 }

)
2

,

subject to the constraints 𝐶 > 0, 𝐶ℓ > 0, and 𝛼ℓ > 0 for all ℓ ∈ [𝑑],
and

∑𝑑
ℓ=1 𝛼ℓ = 1.

As discussed in Appendix B, we can also apply our approach with

other error metrics by replacing RMSRE𝜏 in the objective function

with the desired error metric.

Denoting 𝜋ℓ, 𝑗 := 1/max{𝜏ℓ ,𝑉𝐷 (𝑞ℓ ) 𝑗 }2, we can rewrite the objec-

tive as

𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] )2 := 1

(𝑑+1)𝑚
𝑑∑
ℓ=0

∑
𝑗 ∈[𝑚]

𝜋ℓ, 𝑗 · E(𝑈ℓ, 𝑗 −𝑉𝐷 (𝑞ℓ ) 𝑗 )2 .

(3)

That is, 𝑅 is a linear combination of the following terms for ℓ ∈
{0, . . . , 𝑑} and 𝑗 ∈ [𝑚], for which we can use the bias-variance

decomposition, namely

E(𝑈ℓ, 𝑗 −𝑉𝐷 (𝑞ℓ ) 𝑗 )2 = (𝑉𝐷 (𝑞ℓ ) 𝑗 − E𝑈ℓ, 𝑗 )2 + Var(𝑈ℓ, 𝑗 ).
Thus, we can choose the optimal parameters using a procedure as de-

scribed in Algorithm 5. Namely, we enumerate over various values

of𝐶 , and fixing𝐶 = 𝐶 , we optimize over the choice of (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] ,
and finally choose the value of 𝐶 and (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] that minimizes

𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] ). The challenging step is the one computing

argmin(𝐶ℓ ,𝛼ℓ )ℓ∈[𝑑 ] 𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] ). In our experiments, we use

the method scipy.optimize.minimize [7], but in general any off-

the-shelf optimizer could be used. In the worst-case, even if we do

not minimize the objective exactly, it is still better than choosing

the parameters in an ad hoc manner.

We show below that in fact 𝑅(𝐶, (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] ) is a non-convex
objective in the parameters (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] , which can be hard to

optimize in general. Nevertheless, we show that the objective is

convex in (𝐶ℓ )ℓ∈[𝑑 ] and (𝛼ℓ )ℓ∈[𝑑 ] separately. To recall,

Definition 4.3. A function 𝑓 : R𝑡 → R is convex if for all 𝑥,𝑦 ∈ R𝑡
and 𝜆 ∈ [0, 1], it holds that 𝑓 (𝜆𝑥 + (1−𝜆)𝑦) ≤ 𝜆𝑓 (𝑥) + (1−𝜆) 𝑓 (𝑦) .

Bias term. To simplify notation, let rem𝐶ℓ
(𝑣) := 𝑣 − clip𝐶ℓ

(𝑣) =
max{0, 𝑣 −𝐶ℓ }. For ℓ ∈ [𝑑], we have
𝑉𝐷 (𝑞ℓ ) 𝑗 − E𝑈ℓ, 𝑗
=

∑
𝑥 ∈𝑋 𝑗

∑
𝑧∈Z𝑥

𝑗
𝑞ℓ (𝑧) −

∑
𝑥 ∈𝑋 𝑗

∑
𝑧∈Z𝑥

𝑗

clip𝐶ℓ
(𝑞ℓ (𝑧))

=
∑
𝑥 ∈𝑋 𝑗

∑
𝑧∈Z𝑥

𝑗
∖Z𝑥

𝑗

𝑞ℓ (𝑧) +
∑
𝑥 ∈𝑋 𝑗

∑
𝑧∈Z𝑥

𝑗

rem𝐶ℓ
(𝑞ℓ (𝑧))

=: 𝐵ℓ, 𝑗 (𝐶) +𝐴ℓ, 𝑗 (𝐶ℓ ,𝐶) (4)

We observe that rem𝐶ℓ
(𝑞ℓ (𝑧)) is convex in𝐶ℓ , and hence𝐴ℓ, 𝑗 (𝐶ℓ )

is a convex function in 𝐶ℓ . Moreover, since (𝑉𝐷 (𝑞ℓ ) 𝑗 − E𝑈ℓ, 𝑗 ) is
non-negative, we have the following, where we use the fact that

the square of a non-negative convex function is convex.

Observation 4.4. (𝑉𝐷 (𝑞ℓ ) 𝑗 − E𝑈ℓ, 𝑗 )2 is convex in 𝐶ℓ .

Variance term. To simplify the optimization, we use the following

relaxations in our calculations, that are obtained by (i) approximat-

ing Var(DLap(𝑎)) ≈ 2/𝑎2 for 𝑎 ≪ 1, since we consider 𝜀 ≪ Γ,
(ii) ignoring the variance due to randomized rounding,

8
and (iii)

approximating ⌊𝛼ℓΓ/𝐶⌋ and ⌊Γ/𝐶⌋ as 𝛼ℓΓ/𝐶 and Γ/𝐶 respectively.

Relaxation 4.5. We use the following approximations.

Var(𝑈ℓ, 𝑗 ) ≈
2𝐶2𝐶2

ℓ

𝛼2

ℓ 𝜀
2

and Var(𝑈0, 𝑗 ) ≈ 2(𝑑+1)𝐶2

𝜀2
.

Finally, we note that the function 𝑎2/𝑏2 is non-convex in (𝑎, 𝑏).

Observation 4.6. Under Relaxation 4.5, for fixed 𝐶 ∈ Z≥0 and
ℓ ∈ [𝑑], Var(𝑈ℓ, 𝑗 ) is

⊲ convex in 𝐶ℓ for a fixed 𝛼ℓ .
⊲ convex in 𝛼ℓ for a fixed 𝐶ℓ .
⊲ non-convex in joint variables (𝐶ℓ , 𝛼ℓ ).

Putting it together. Thus, combining Observation 4.4 and Obser-

vation 4.6, we have the following.

Theorem 4.7. For fixed 𝐶 ∈ Z≥0, RMSRE𝝉 (𝑈 , (𝑞ℓ )𝑑ℓ=0;𝐷)
2 is

⊲ convex in (𝐶ℓ )ℓ∈[𝑑 ] for fixed (𝛼ℓ )ℓ∈[𝑑 ] , and
⊲ convex in (𝛼ℓ )ℓ∈[𝑑 ] for fixed (𝐶ℓ )ℓ∈[𝑑 ] ,
⊲ non-convex in joint variables (𝐶ℓ , 𝛼ℓ )ℓ∈[𝑑 ] .

5 EXPERIMENTAL EVALUATION
5.1 Datasets
5.1.1 Real-World Datasets.
8
The variance due to rounding in𝑊ℓ,𝑗 is at most |𝑋 𝑗 | ·𝐶/4, which we view as much

smaller than Var(DLap(𝜀/Γ)) ≈ (Γ/𝜀)2 . This is reasonable because, e.g., if 𝜀 = 1,

then (Γ/𝜀)2 = 2
32
, which is typically order of magnitude larger than |𝑋 𝑗 | ·𝐶/4 in

practice.
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Ad-tech Real Estate Dataset. This dataset consists of approxi-
mately 100,000 real estate conversions from a 30-day period. We

consider the following attributes: three known impression level

features F1, F2, F3, and two unknown conversion features Price
and Quantity.

Ad-tech Travel Dataset. This dataset consists of approximately

30,000 travel conversions from a 30-day period. We consider the

following attributes: three known impression level features F1, F2,
F3, and two unknown conversion features Price and Quantity.

These proprietary datasets were provided to us by an ad-tech that

wished to remain anonymous. The datasets were collected and used

consistently with local regulations and terms of use.

5.1.2 Synthetic Data. The impact of various options to use the ARA

can be evaluated by testing different configurations. However, such

empirical evaluation would require access to a conversion dataset.

Access to conversion datasets can be restricted and slow due to

privacy concerns, or such data may not be available to practitioners.

One way to address these difficulties is to use synthetic data that

replicates the characteristics of real data that is bucketed by the

summary reports in ARA.

In this context, we present a method for generating synthetic

data through statistical modeling of actual conversion datasets. Ini-

tially, we performed an empirical analysis of these real conversion

datasets to uncover relevant characteristics for ARA. Specifically,

we examined the count and value distributions within these real

conversion datasets. Subsequently, we designed a pipeline that

employs the acquired distribution knowledge to create a realistic

synthetic dataset, customizable by provided input parameters. In

the following sections, we elaborate on the distributions as well as

the process of generating data using this pipeline.

Name Feature type Side

campaignId Categorical(16)

Impressiongeography Categorical(8)

productCategory Categorical(2)

conversionType Categorical(5)

Conversion

value ∈ R≥0
Table 3: Impression and conversion side features.

5.1.3 Dataset Generation. Let us assume Du & Penc runs various
Ad campaigns with the features shown in Table 3. Records relevant

to the ARA are outlined below:

(1) Impressions: For every display of an advertisement, an impres-

sion record is generated on the client side. For a specific key,

e.g., ‘campaignId=1 & geography=3 & productCategory=2’,
there could be a few or numerous impressions. Modeling the

distribution of these impressions is the initial aspect to address.

(2) Conversions: An impression might lead to zero, one, or mul-

tiple conversion events. These conversion events are defined

within the ad-tech context and encompass various activities,

such as click, add-to-cart, purchase, spend-30-seconds, and achieved-
level-2 to provide a few examples. So the next aspect to model

is the count of conversions per impression, as well as the con-

version features associated to it, such as conversionType.
(3) Value Contributions: Not every conversion yields the same

return for advertisers. For instance, a purchase of $25 might

be more desirable than one of $5. Beyond simply considering

the number of conversions, it is crucial to take into account

the value that these conversions generate. This leads us to the

distribution of conversion values, which captures this aspect.

We propose a pipeline that generates both counts and values as

shown in Figure 4. Here, the data is not aggregated so that event

level processing such as count bounding and contribution budgeted

could be performed. First, we define the distributions that are used

in the pipeline.

Definition 5.1 (Power Law Distributions). The Power Law distribu-
tion with parameter 𝑏 > 0 is the distribution supported on positive

integers, whose probability mass function at integer 𝑘 is

Pr[𝑋 = 𝑘] =


𝑘−𝑏∑𝑘max

𝑘=𝑘
min

𝑘−𝑏
𝑘min ≤ 𝑘 ≤ 𝑘max

0 otherwise,

where 𝑏 is the shape parameter, 𝑘min > 0 is the lower bound and

𝑘max is the upper bound.

A well-behaved distribution typically exhibits parameters of

1 < 𝑏 < 3, 𝑘min = 1 and 𝑘max = ∞. However, when working with

real datasets, it is common to observe power-law behavior within a

specific range and arbitrary 𝑏 parameter.

Definition 5.2 (Poisson Distribution). The Poisson distribution
with parameter 𝜆 > 0 is a discrete probability distribution whose

probability mass function at integer 𝑘 is

𝑃 (𝑋 = 𝑘) = 𝜆𝑘𝑒−𝜆

𝑘!
,

where the parameter 𝜆 is the average rate of events.

Definition 5.3 (Log-Normal Distribution). The Log-Normal distri-
bution with parameters 𝜇 and 𝜎 is a continuous probability distri-

bution whose probability density function is

𝑓 (𝑥) = 1

𝜎𝑥
√
2𝜋

exp

(
− (log𝑥 − 𝜇)

2

2𝜎2

)
.

Having defined the relevant distributions, we now describe the

data generation in more detail. For convenience of the theoretical

analysis in the next section, we will describe the data generation

for a general choice of distributions:

⊲ Dimp

count
: the distribution of number of impressions per slice. In

our experiments, this is set to the power-law distribution (with

pre-specified parameter 𝑏).

⊲ Dconv

count
: the distribution of the number of conversions per im-

pression. In our experiments, this is set to the Poisson distri-

bution (with pre-specified parameter 𝜆). The conversions are

subsequently divided uniformly among the different values of

attributed keys.

⊲ Dconv

value
: the distribution of conversion values. In our experiments,

this is set to the Log-normal distribution (with pre-specified pa-

rameter 𝜇, 𝜎). Figure 5 displays conversion values extracted from

two datasets alongside the corresponding Log-Normal distribu-

tion fit.
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impression 
features

1,2,1 3

0,0,0 1

15,7,1 12

impressions (1) 

Step 1:
Generate impressions per slice

6
Imp. 1

12

5

Step 2:
Generate conversions for each key

Imp. 3

Imp. 2

conversions (2)

(1) Impressions drawn from power-law distribution.
(2) Conversions drawn from Poisson distribution.
(3) Conversion value drawn from log-normal distribution.

Step 3:
Generate conversion value

15.01,2,1,0Imp 1

12.01,2,1,1Imp 1

9.91,2,1,3Imp 1

8.51,2,1,1Imp 2

6.61,2,1,4Imp 2

value (3)attributed keyimp ID

8.21,2,1,0Imp 2

Figure 4: Overall dataset generation steps with features in
Table 3 used for illustration.

Our data generation pipeline works in the following stages:

Step 1 For each combination of impression features, sample #im-

pressions is independently sampled from the distribution

Dimp

count

9
. There will be

𝑇 =
∏
X𝑖 ∈X

|X𝑖 |

attributed slices, where X represents the set of dimensions

within the impression side. To illustrate, in the sample case

shown in Table 3, there will be 𝑇 = 16 × 8 × 2 slices.
Step 2 For each impression, independently sample #conversion

from the distribution Dconv

count
, and distribute each one uni-

formly at random between the various conversion features.

In the case of Table 3, there are 5 values of conversionType.
Step 3 For each conversion, independently sample the conversion

value from the distribution Dconv

value
.

Name

Step 1 Step 2 Step 3

𝑏 𝜆 𝜇 𝜎

synth-real-estate 1.03 10 0.87 0.43

synth-travel 1.14 10 1.95 1.14

Table 4: Synthetic datasets utilized in evaluations with pa-
rameters that mimic the corresponding real datasets.

Table 4 presents two synthetic datasets that were employed in

evaluations with parameters. It is possible to generate numerous

9
Sampling from discrete power-law distributions with arbitrary parameters 𝑏 is not

a straightforward process. To address this challenge, we adopted the approximation

method outlined in Appendix D of the work by Clauset et al. in [10]

datasets with specific parameters that closely mimicking the char-

acteristics of a target dataset. This could be particularly useful for

emulating privacy-restricted proprietary ad datasets.

5.2 Setup
We evaluate our algorithms on two real-world datasets and two

synthetic datasets, which are described in more detail in Section 5.1.

Each dataset is partitioned into a training set and a test set. For

the real-world datasets, the partition is based on timestamps; for

the synthetic data, separate training and test sets are generated

independently from the data distribution. The training set is used

to choose contribution budgets and clipping threshold parameters,

and the error is evaluated on the test set. For the synthetic datasets,

the training set is also used to choose a count limit 𝐶; for the real-

world datasets only click-level or conversion-level data is available,

so the count limit is set to 1.

We optimize using the Sequential Least-SQuares Programming

(SLSQP) optimizer provided in scipy.optimize.minimize [7], which

is a quasi-Newton method. This optimizer runs in time cubic in the

number of variables of the optimization problem, which is twice the

number of queries 𝑑 . In our setting, for each dataset and parameter

choice, we have 𝑑 ∈ {1, 2} and optimization took between 1–75

seconds. Our experiments are based on 15 days of data, but ad-

techs may choose to perform optimization more or less frequently

depending on their data distribution’s temporal stability.

We compare our optimization-based algorithm to several baseline
approaches that use fixed contribution budgets 𝛼ℓ and clipping

thresholds 𝐶ℓ set to a fixed quantile of the training data. For the

first baselines, we use equal contribution budgets for each query,

including the count query, so that 𝛼0 = · · · = 𝛼𝑑 = 1

𝑑+1 . This is the
approach outlined in the API documentation [20], and represents

the only previously published approach that we are aware of for

using the API. The clipping threshold quantiles used are 95% and

99% for the real-world datasets, and 90% and 95% for the synthetic

datasets. Note that to choose these thresholds, the baselines also

require access to training data.

We also compare against some more tailored baselines that take

into account domain-specific knowledge that an ad-tech using the

API may possess. In particular, the count query tends to be easier

to answer accurately (i.e. incurs lower error for a fixed contribution

budget) than the other queries, due to the fact that all values have

the same scale and no signal is lost due to clipping. Consequently, it

may be desirable to allocate a lower contribution budget to the count

query and a higher contribution budget to the remaining query or

queries. For each dataset we consider two additional contribution

budgeting strategies, setting the contribution budgets to be in a

2:2:1 or 10:10:1 ratio for the real-world datasets and a 2:1 or 5:1 ratio

for the synthetic datasets. For each contribution budget strategy,

we again choose clipping thresholds determined by the 95% and

99% quantiles of the training data for the real-world datasets and

the 90% and 95% quantiles for the synthetic datasets.

For each dataset, we partition it into slices based on one or more

impression features, and estimate multiple queries corresponding to

each slice. For the real-world datasets we consider three queries for

each slice, corresponding to the count and two additional conver-

sion features depending on the dataset. For the synthetic datasets
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Figure 5: Scatter plots of real-world datasets illustrating the probability of observing a conversion value. The fitted curves
represent best log-normal distribution models that effectively capture the underlying patterns in the data.
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Figure 6: RMSRE𝝉 for privacy budgets {1, 2, 4, 8, 16, 32, 64} for our algorithms and baselines on two real-world and two synthetic
datasets. Our optimization-based approach consistently achieves lower error than baselines that use a fixed quantile for the
clipping threshold and split the contribution budget equally among the queries.

we consider two queries for each slice, corresponding to the count

and a single conversion feature.

For the error metric RMSRE𝝉 , for each query 𝑞ℓ we choose 𝜏ℓ
to be five times the median value of the query on the records of

the training dataset. This ensures invariance of the error metric

to rescaling the data, and allows us to combine the errors from

features of different scales by taking 𝝉 = (𝜏0, . . . , 𝜏𝑑 ).

5.3 Results
We see in Figure 6 that the estimates produced by our algorithms

have substantially lower error than the baselines, on both the real-

world and synthetic datasets. Moreover, the excess error incurred

by each baseline depends on the data and overall privacy budget,

with different baselines performing better or worse in different

parameter regimes. In contrast, our optimization-based approach

is able to adapt to the privacy budget and data, and consistently

outperforms the baselines, often by a large margin. For the two

real-world datasets the improvements range from 2–36% to 14–66%,

respectively, depending on the value of the privacy parameter 𝜀. For

the two synthetic datasets the improvements range from 36–60%

to 18–83%, respectively, again depending on the value of 𝜀.10

In Appendix B and Figures 7–8 we show that our algorithmic

approach can also be applied to other error metrics such as RMSE
and ARE, and provides accuracy improvements for these as well.

In fact, for most datasets and parameter choices our algorithm

achieves an even larger improvement over the baselines, as large

as a 96% improvement for RMSE and a 85% improvement for ARE
on the real-world datasets. This underscores the flexibility of our

approach: in contrast to the baselines, which perform inconsistently

depending on the dataset, error metric, and choice of the privacy

parameter, our adaptive approach achieves strong performance in

each setting.

In Appendix C and Figure 9 we show that an ℓ1-based variant

of our optimization-based algorithm in Figure 9 provides modest

additional accuracy improvements on some datasets.

10
These improvements are calculated by comparing our algorithm to the best of six

baselines for each dataset and each value of 𝜀 . Since we run multiple baselines on the

test data and only compare to the best, this may allow the baselines to overfit to the

test data. Consequently, this evaluation may actually understate our improvement on

some inputs.
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6 GENERALIZATION BOUNDS
Since we optimize the parameters on the historical dataset, it is

important to ensure that we are not overfitting to this training

dataset in such a way that it performs badly on the actual (i.e.,

test) dataset. To support our empirical findings, in this section, we

formally prove—in a simplified setting—a generalization bound

showing that the expected RMSRE on the actual dataset is close to

optimal even with this procedure.

We work in the data generation model as in the previous section.

For the purpose of theoretical analysis, we consider a simplified

setting where: (i) there is only one conversion per impression (i.e.,

Dconv

count
is the point-mass distribution that is always equal to one)

and (ii) that there is only a single query (i.e., 𝑑 = 1).

Recall the notations from Section 4. Due to (i), we always set the

per-impression count capping to 𝐶 = 1; this also givesZ𝑥 = Z𝑥

for all impression 𝑥 . For convenience, we also define the following

notations:

bi𝐶1
(𝐷 𝑗 ) :=

∑︁
𝑥 ∈𝑋 𝑗

∑︁
𝑧∈Z𝑥

rem𝐶1
(𝑞1 (𝑧) 𝑗 ),

nc𝐶1
(𝐷 𝑗 ) :=

∑︁
𝑥 ∈𝑋 𝑗

∑︁
𝑧∈Z𝑥

1[𝑞1 (𝑧) 𝑗 > 𝐶1],

𝜋 (𝐷 𝑗 ) := max{𝜏1,𝑉𝐷 (𝑞1) 𝑗 },

𝑅𝐷 𝑗
(𝐶1) :=

1

𝜋 (𝐷 𝑗 )2

(
bi𝐶1
(𝐷 𝑗 )2 +

2𝐶2

1

𝜀2

)
,

where recall that 𝑋 𝑗 is the set of all 𝑥 such that (𝑥,𝑦) ∈ 𝐷 𝑗 for
some 𝑦, and 𝑅 is similar to Equation (3), but here, we only have

one argument, namely 𝐶1. bi𝐶1
(𝐷 𝑗 ) is the bias incurred in the es-

timate due to clipping; this is similar to the term in Equation (4),

and nc𝐶1
(𝐷 𝑗 ) counts the number of conversion values that were

clipped by the threshold at 𝐶1. As stated earlier, we assume that

the number of impressions in the 𝑗th slice is generated by Dimp

count

(with one conversion per impression) and the value of each conver-

sion is generated independently by Dconv

value
. We denote this entire

compound distribution by Dcomp.

Finally, we let

�̃�Dcomp
(𝐶1) := E𝐷∼Dcomp

[𝑅𝐷 (𝐶1)] ,

denote the expected loss 𝑅𝐷 (𝐶1), where 𝐷 is drawn from the dis-

tribution Dcomp.

In this simplified setting, the optimization objective reduces to

just minimizing

𝑅𝐷1,...,𝐷𝑚
(𝐶1) :=

1

𝑚

(
𝑅𝐷1
(𝐶1) + · · · + 𝑅𝐷𝑚

(𝐶1)
)

=
1

𝑚

∑︁
𝑗 ∈[𝑚]

1

𝜋 (𝐷 𝑗 )2

(
bi𝐶1
(𝐷 𝑗 )2 +

2𝐶2

1

𝜀2

)
.

Differentiating this (w.r.t. 𝐶1), we get

𝜕

𝜕𝐶1
𝑅𝐷1,...,𝐷𝑚

(𝐶1)

=
1

𝑚

∑︁
𝑗 ∈[𝑚]

1

𝜋 (𝐷 𝑗 )2

(
4𝐶1

𝜀2
− 2bi𝐶1

(𝐷 𝑗 ) · nc𝐶1
(𝐷 𝑗 )

)
.

In other words, the optimum contribution bounding threshold𝐶∗
1
=

𝐶∗
1
(𝐷1, . . . , 𝐷 𝑗 ) is such that∑︁

𝑗 ∈[𝑚]

1

𝜋 (𝐷 𝑗 )2

(
4𝐶∗

1

𝜀2
− 2bi𝐶∗

1

(𝐷 𝑗 ) · nc𝐶1
(𝐷 𝑗 )

)
= 0.

Let 𝜇𝑛 (D) denote the 𝑛th moment of the distribution D over

R, namely, 𝜇𝑛 (D) = E𝑥∼D |𝑥 |𝑛 . We can get the following general-

ization bound. Note that the LHS is the expected error of the fresh

(independent) slice if we optimize based on the 𝐷1, . . . , 𝐷𝑚 (i.e.,

historical data) drawn from the same distributionDcomp, while the

RHS is the expected error with respect to the optimal threshold for

the distribution.

Theorem 6.1. For any distributions Dimp

count
,Dconv

value
such that the

moments 𝜇4 (Dimp

count
) and 𝜇2 (Dconv

value
) are finite. For any 𝜁 , 𝜃 > 0,

there exists𝑚 ∈ N such that, with probability 1−𝜁 over𝐷1, . . . , 𝐷𝑚 ∼
Dcomp, and using 𝐶∗

1
= 𝐶∗

1
(𝐷1, . . . , 𝐷𝑚), we have

�̃�Dcomp
(𝐶∗

1
) ≤ min

�̃�1≥0
�̃�Dcomp

(𝐶1) + 𝜃 .

Proof. Let 𝐶∗
1
= argmin

�̃�1≥0 �̃�Dcomp
(𝐶1) denote the optimal

clipping threshold of the distribution. Since �̃�Dcomp
(𝐶1) is a contin-

uous function, there exists 𝜆 > 0 such that

�̃�Dcomp
(𝐶1) − �̃�Dcomp

(𝐶∗
1
) ≤ 𝜃 . ∀𝐶1 ∈ [𝐶∗1 − 𝜆,𝐶

∗
1
+ 𝜆] . (5)

Furthermore, let 𝜈 := E[ 1

𝜋 (𝑋 )2 ] > 0.

Recall that

𝜕

𝜕𝐶1
�̃�𝑋 (𝐶∗1) =

1

𝜋 (𝑋 )2

(
4𝐶∗

1

𝜀2
− 2bi

�̃�∗
1

(𝑋 ) · nc
�̃�∗
1

(𝑋 )
)
.

Note that E𝑋∼Dcomp

[
𝜕
𝜕𝐶1

�̃�𝑋 (𝐶∗1)
]
= 0 (due to 𝐶∗

1
being the mini-

mizer). Furthermore, we have

E𝑋∼Dcomp

[(
𝜕

𝜕𝐶1
�̃�𝑋 (𝐶∗1)

)
2

]
≤ 𝑂

(
1

𝜋2

(
(𝐶∗

1
)2

𝜀4
+ bi

�̃�∗
1

(𝑋 )2 · nc
�̃�∗
1

(𝑋 )2
))

≤ 𝑂
(
1

𝜋2

(
(𝐶∗

1
)2

𝜀4
+ bi0 (𝑋 )2 · nc0 (𝑋 )2

))
= 𝑂

(
1

𝜋2

(
(𝐶∗

1
)2

𝜀4
+ 𝜇2 (Dconv

value
)𝜇4 (Dimp

count
)
))
,

which is finite under the assumption in the theorem statement.

Thus,
𝜕
𝜕𝐶1

�̃�𝑋 (𝐶∗1) when 𝑋 ∼ Dcomp, �̃�
′
𝑋
(𝐶∗

1
) has a finite variance.

Similarly, the term
1

𝜋 (𝑋 )2 has a finite variance, simply because

its maximum value is at most 1/𝜏2
1
. Thus, for any 𝜁 , 𝜃 > 0, there

exists𝑚0 such that for any𝑚 ≥ 𝑚0, with probability 1 − 𝜃 over

𝐷1, . . . , 𝐷𝑚 ∼ Dcomp, both of the following hold:���� 𝜕

𝜕𝐶1
𝑅𝐷1,...,𝐷𝑚 (𝐶1)

���� =
������ 1𝑚 ∑︁

𝑗 ∈[𝑚]

𝜕

𝜕𝐶1
𝑅𝐷 𝑗
(𝐶∗

1
)

������ ≤ 4𝜆𝜈/𝜀2,
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and

1

𝑚

∑︁
𝑗 ∈[𝑚]

1

𝜋 (𝐷 𝑗 )2
≥ 𝜈/2.

Now, notice that the objective𝑅𝐷1,...,𝐷𝑚
(𝐶1) is

(
4

𝑚𝜀2

∑
𝑗 ∈[𝑚]

1

𝜋 (𝐷 𝑗 )2
)
-

strongly convex. As a result, when the above two inequalities hold

we have

|𝐶∗
1
−𝐶∗

1
| ≤

��� 𝜕
𝜕𝐶1

𝑅𝐷1,...,𝐷𝑚
(𝐶1)

���(
4

𝑚𝜀2

∑
𝑗 ∈[𝑚]

1

𝜋 (𝐷 𝑗 )2
) ≤ 𝜆.

From (5), this implies �̃�Dcomp
(𝐶∗

1
) − �̃�Dcomp

(𝐶∗
1
). □

We remark that, due to the use of continuity argument of �̃�Dcomp

(at 𝐶∗
1
), we do not achieve any explicit bound in the rate of conver-

gence. It remains an interesting question to extend this argument

to get a specific rate. Similarly, it remains interesting to incorporate

the privacy budgets (i.e., 𝛼ℓ ’s) in the presence of multiple queries

to the bounds as well.

7 RELATEDWORK
The work closest to ours is that on optimizing hierarchical queries

when using the Attribution Reporting API [12]. In our terminology,

this corresponds to aggregating with respect to multiple partitions

ofZ that are refinements of each other; our work is complementary

in that we focused on a single partition. In addition, our setting in-

volves aggregating different conversion values for each slice. Thus,

while [12] optimized for contribution budget allocation across dif-

ferent slices, our work optimizes the contribution budget allocation

across the different queries for each slice. Furthermore, [12] also

involved post-processing the estimates that ensured consistency of

estimates and reduced the overall noise; this was done by generaliz-

ing the methods in [11, 16]. Such post-processing is not relevant in

our context as we do not have any consistency constraints that are

satisfied by the noiseless data. Hence, it is possible to combine the

techniques in our work with the techniques in [12] to consider a set-

ting where we have hierarchical queries with multiple conversion

values to aggregate.

Private aggregation by contribution bounding and adding noise

is a common technique in DP. It was shown in [9] that in order to

minimize the ℓ1-error, the optimal threshold is to set the contribu-

tion bound to be the (1−1/𝜀𝑛)th percentile of the data. On the other
hand, in order to minimize the ℓ2

2
-error, it was shown in [17] that

bounding the range and adding Laplace noise achieves the smallest

error, thereby establishing a bias-variance-privacy trilemma; this is

precisely what we get in our approach as well, where we clip the

value range and add (discrete) Laplace noise, by optimizing the clip

threshold using historical data.

8 LIMITATIONS AND FUTURE DIRECTIONS
One limitation of our approach is that it relies on access to noise-

less historical data in order to optimize the contribution bounding

parameters for querying future data. While such non-contribution

bounded noiseless data might still be available for long-running

campaigns, new campaigns launched well after the deprecation of

third-party cookies would benefit from methods for continuously

updating the contribution bounding parameters based solely on the

outputs of privacy-preserving APIs.

A very interesting direction for future work is to develop al-

gorithms that rely on noisy privatized historical data or privately

generated aggregate statistics for historical data instead of noiseless

historical data. An approach based on this work would be to learn

the parameter(s) of the synthetic data distribution using past data,

and then sample repeatedly from this distribution to construct a

synthetic dataset that can be used for privacy budgeting for queries

on future data.

Another limitation is that the optimization problem is discrete,

since the contribution budgets must be positive integers. To avoid

the computational challenges of discrete optimization, we instead

work with a continuous approximation of the optimization problem.

Our results show that working with this continuous approximation

is sufficient for obtaining a high-accuracy solution to the original

discrete problem.

In addition to summary reports, ARA offers event-level reports [4]
which are also subject to (a different type of) contribution bounding

and noising; our method does not take these reports into account

when setting the contribution bounds for summary reports. It would

be interesting to explore whether event-level reports can be lever-

aged to optimize the summary reports in ARA.

As described in Section 3.1, summary reports in ARA are cur-

rently restricted by on-client attribution and by the separate com-

putation of the contributions of different attributed conversions.

It would be interesting to determine the utility improvement that

could be achieved if the contributions of different attributed con-

versions can be computed jointly, e.g., if attribution were to be done

off-client either in a trusted execution environment or via a secure

multi-party computation protocol, or alternatively if the contri-

butions of an attributed conversion can simply take into account

the contributions of previously attributed conversions on the same

client.

9 CONCLUSION
In this work, we studied the optimization of summary reports in

the ARA, which is currently deployed on hundreds of millions of

Chrome browsers. To the best of our knowledge, there has been no

prior work formulating the contribution budgeting optimization

problem for ARA. We hope that our rigorous formulation will equip

researchers with the right abstraction of the problem as well as the

API to develop DP algorithms for ad conversion measurement with

better privacy-utility trade-offs.

Our recipe, which leverages past data that is noiseless and that

has not been bounded, in order to bound the contributions in future

data when querying it with DP, is quite general and applicable to set-

tings (beyond advertising) where a system is queried continuously

over time, and a DP constraint is being continuously enforced.
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A ERROR METRICS FOR EVALUATING
REPORTS

In Table 5 above, we specify all metrics considered for utility evalu-

ation.

To choose a particular metric, we considered the desirable prop-

erties of an error metric that further can be used as an objective

function. Ideally, a good error metric should have the following

properties:

(1) Decision Stability: Some of our metrics are parameterized.

(E.g., RMSRE𝝉 is parameterized by 𝝉 ; see Definition 3.2.) For a

good metric, the decision from our optimization procedure (e.g,

count bound, contribution budgeting, etc.) should not be too

sensitive to the choice of parameters.

(2) Utility Stability: The utility measured by the metric is robust

to perturbations in the input (e.g., true conversion count). For

instance, the metric’s output should not change too much if

the true conversion count is slightly changed. This is important

because the true conversion count is often difficult to measure

accurately.

(3) Ease of Optimization: The metric is easy to calculate, and the

objective function based on it is easy to be optimized.

(4) Ease of Extension: The metric should be easy to extend to

aggregates after keyspace aggregation. The metric is for a slice

in aggregate API, which is any possible combination of keys

(keyspace value). For example, a slice for an advertiser may look

like: impression_date=‘8/1’, biddability=‘True’. To get
the total number of biddable conversions, one needs to sum up

all noised counts from slices with biddability=‘True’. This
accumulates a bunch of Laplace noise random variables, which

is no longer Laplace. It is desirable that the slice error metric

can be easily adapted to aggregates after keyspace aggregation.

(5) Defined at Zero: The metric should be well-defined when

conversion query value is zero. This is important since the

conversion data can be sparse.

(6) Differentiates Small/Large Values: The metric should differ-

entiate between large and small query values. Intuitively, this is

because noise added to large values will usually have less effect

on downstream tasks compared to the same amount of noise

added to small values.

Table 6 provides the list of criteria that each metric satisfies.

Intuition for RMSRE𝜏 . RMSRE𝜏 can be seen as a hybrid between

additive andmultiplicative error. When the query values are smaller

than the threshold 𝜏 , it becomes (a scaled version of) the root mean

squared error RMSE. Recall that

RMSE(𝑢, 𝑞;𝐷) :=

√√
1

𝑚

∑︁
𝑗 ∈[𝑚]

E
(
𝑢 𝑗 −𝑉𝐷 (𝑞) 𝑗

)
2

.

Meanwhile, if the query values are larger than 𝜏 , then it becomes

the root mean square relative error, defined as

RMSRE(𝑢, 𝑞;𝐷) :=

√√√
1

𝑚

∑︁
𝑗 ∈[𝑚]

E

(
𝑢 𝑗 −𝑉𝐷 (𝑞) 𝑗
𝑉𝐷 (𝑞) 𝑗

)
2

.

To give an intuition as to why RMSRE𝜏 is a good metric, we can

compare them with RMSE and RMSRE. The main advantage of

RMSRE𝜏 over RMSE is that RMSRE𝜏 can distinguish between the

small and large values (criteria (6) above). Meanwhile, RMSRE𝜏 is
defined even when the query values are zero, whereas RMSRE is

undefined (criteria (5) above).

B OPTIMIZATION FOR DIFFERENT ERROR
METRICS

We now show that our optimization algorithm also works well for

alternate error metrics besides RMSRE𝜏 . In particular, we show

experimental results optimizing for the error metrics RMSE in

Figure 7 and for ARE0.1 in Figure 8. In each plot we see that our

algorithm outperforms the baselines, often substantially.

Ourmethod can also be applied to a variety of other error metrics,

including those described in Table 5. For each of these metrics, we

can compute or estimate the expected error or expected squared

error for a given setting of hyperparameters, and optimize over

these hyperparameters. For RMSE, like RMSRE𝜏 , we can represent

the error as a combination of the variance from noise addition

and the bias from clipping; for ARE we can compute the error by

evaluating the cumulative density function of the error distribution

at inputs that depend on the bias from clipping. Many of the other

error metrics in Table 5 can be computed similarly.

In some of the experiments, particularly for RMSE on the real-

world datasets (the first two panels of Figure 7), the baselines per-

form quite poorly, and it is likely that using a different quantile

would improve performance somewhat. Unlike the baselines, which

have varied performance depending on the dataset, the error met-

ric, and the privacy parameter 𝜖 , our optimization-based algorithm

consistently has the lowest error in each setting.

In a few of these experiments, the optimizer was unsuccessful

at finding the minimum-error parameters. This is most visible in

the small-𝜖 values of Figure 7(a), where the reported errors for

our algorithm are not quite monotonically decreasing in 𝜖 as we’d

expect. It is likely that tweaking to the optimizer parameters or

using a different optimization library would improve the accuracy

on these inputs. Despite not necessarily achieving the true optimum

and exiting with a failure status on a few inputs, the optimizer

still obtained hyperparameters with error much smaller than the

baseline error.

C ℓ1 VERSION OF ALGORITHM 3
We present a variant of HistogramContribution in Algorithm 6,

which uses ℓ1-clipping instead of ℓ∞-clipping that is employed in

Algorithm 3. We show in Figure 9 that this variant can achieve a

modest improvement to performance on some inputs. The main

intuition for this algorithm is that ℓ1-clipping results in less loss of

signal, especially when the different query values are negatively

correlated or only weakly correlated with each other. Below, we

show that the histogram contributions generated this way respect

the same ℓ1-norm constraint as Algorithm 3.

Figure 9 shows the improvement achieved by this variant on the

ad-tech real estate and travel datasets. For the synthetic datasets

the ℓ1-optimization is equivalent to ℓ∞-optimization, since there is

only a single non-count query on these datasets.

Lemma C.1. For any 𝑧, the vector 𝑤𝑧 returned by Algorithm 6
satisfies𝑤𝑧 ≥ 0 and ∥𝑤𝑧 ∥1 = ⌊Γ/𝐶⌋.
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Short Name Error Metric (slice 𝑗 ) Sample Parameters Interpretation

ARE𝛼 Pr

[ |𝑈 𝑗−𝑉 (𝑞) 𝑗 |
𝑉 (𝑞) 𝑗 > 𝛼

]
𝛼 ∈ {0.1, 0.2} Probability of seeing large relative error.

AME𝜏 Pr

[
|𝑈 𝑗 −𝑉 (𝑞) 𝑗 | > 𝜏

]
𝜏 ∈ {1, 5} Probability of seeing large magnitude errors.

APME𝛼,𝜏 Pr

[ |𝑈 𝑗−𝑉 (𝑞) 𝑗 |
𝑉 (𝑞) 𝑗 > 𝛼 ∩ |𝑈 𝑗 −𝑉 (𝑞) 𝑗 | > 𝜏

]
𝛼 ∈ {0.2}, 𝜏 ∈ {1, 5} Probability of seeing large magnitude and relative errors.

EARE E
[ |𝑈 𝑗−𝑉 (𝑞) 𝑗 |

𝑉 (𝑞) 𝑗

]
Expected absolute relative error (to true value).

RMSE

√︂
E

[ (
𝑈 𝑗 −𝑉 (𝑞) 𝑗

)
2

]
Root mean squared error.

RMSRE

√︄
E

[(
𝑈 𝑗−𝑉 (𝑞) 𝑗
𝑉 (𝑞) 𝑗

)
2

]
Root mean squared relative error.

EARE𝜏 E
[ |𝑈 𝑗−𝑉 (𝑞) 𝑗 |
max(𝜏,𝑉 (𝑞) 𝑗 )

]
𝜏 ∈ {3, 5, 10} Mean absolute relative error at threshold 𝜏 .

EAREO E
[ |𝑈 𝑗−𝑉 (𝑞) 𝑗 |

𝑈 𝑗

]
Expected absolute relative error (to observation).

RMSRE𝜏

√︄
E

[( |𝑈 𝑗−𝑉 (𝑞) 𝑗 |
max(𝜏,𝑉 (𝑞) 𝑗 )

)
2

]
𝜏 ∈ {3, 5, 10} Root mean squared relative error at threshold 𝜏 .

Table 5: Error metrics considered for noise impact measurement. 𝑼𝒋 is observed and 𝑽 (𝒒)𝒋 true value.

Metric −→ ARE𝛼 AME𝜏 APME𝛼,𝜏 EARE RMSE RMSRE EARE𝜏 EAREO RMSRE𝜏

Decision Stability × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Utility Stability ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ✓
Ease of Optimization ✓ ✓ × ✓ ✓ ✓ ✓ × ✓
Ease of Agg. Extension × × ✓ × ✓ ✓ × × ✓
Defined at Zero × × ✓ × ✓ × ✓ ✓ ✓
Differentiates Small / Large ✓ × ✓ ✓ × ✓ ✓ ✓ ✓

Table 6: Desirable properties for different metrics.
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Figure 7: RMSE for privacy budgets {1, 2, 4, 8, 16, 32, 64} for our algorithms and baselines on two real-world and two synthetic
datasets.

Proof. It is immediate to see that

∑
ℓ, 𝑗 𝑤

𝑧
ℓ,𝑗
+∑

𝑗 𝑤
𝑧
⊥, 𝑗 = ⌊Γ/𝐶⌋.

Let 𝑗 be such that 𝑧 ∈ Z𝑗 . Clearly𝑤𝑧ℓ,𝑗 ′ = 0 for all 𝑗 ′ ≠ 𝑗 . We have

∑𝑑
ℓ=1𝑤

𝑧
ℓ,𝑗
≤ ∑𝑑

ℓ=1 ⌊𝑢𝑖 ⌋ ≤
⌊∑𝑑

ℓ=1 𝑢𝑖

⌋
=

⌊ Γ
𝐶

⌋
,

and hence𝑤𝑧⊥, 𝑗 = ⌊Γ/𝐶⌋ −
∑
ℓ 𝑤

𝑧
ℓ,𝑗
≥ 0. □

We can use the same algorithm for reconstructing the estimates (Al-

gorithm 4), with scales 𝛽ℓ = 𝐶ℓ/⌊Γ/𝐶⌋.
In Figure 9 we show that this variant with ℓ1-clipping has slightly

lower error on the real-world datasets.

The synthetic datasets have only a single non-count query, and

in this setting ℓ1-clipping is equivalent to the ℓ∞-clipping used in

the other experiments.
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Figure 8: ARE𝜶 for 𝜶 = 0.1 and privacy budgets {1, 2, 4, 8, 16, 32, 64} for our algorithms and baselines on two real-world and two
synthetic datasets.
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Figure 9: RMSRE𝝉 for privacy budgets {1, 2, 4, 8, 16, 32, 64} for our ℓ∞-based and ℓ1-based optimization algorithms as well as
baselines on two real-world datasets.

Algorithm 6 HistogramContribution (ℓ1 version)

Params: ⊲ Queries 𝑞1, . . . , 𝑞𝑑 : Z → R≥0
⊲ Partition ofZ = Z1 ⊔ · · · ⊔ Z𝑚
⊲ Parameters 𝐶 , (𝐶ℓ )ℓ∈[𝑑 ]

Input: Record 𝑧 ∈ Z
Output:Histogram contribution𝑤𝑧 ∈ Z𝐾≥0 for𝐾 = ( [𝑑]∪{⊥})×
[𝑚]
for slice 𝑗 ∈ [𝑚] do

if 𝑧 ∉ Z𝑗 then
(𝑤𝑧

1, 𝑗
, . . . ,𝑤𝑧

𝑑,𝑗
,𝑤𝑧⊥, 𝑗 ) ← 0

else
𝒗 ←

(
𝑞1 (𝑧)
𝐶1

, . . . ,
𝑞𝑑 (𝑧)
𝐶𝑑

)
∈ R𝑑

𝒖 ← 𝒗
max{1, ∥𝒗 ∥1 } ·

Γ
𝐶

(𝑤𝑧
1, 𝑗
, . . . ,𝑤𝑧

𝑑,𝑗
) ← (⌊𝑢1⌋ , . . . , ⌊𝑢𝑑 ⌋)

𝑤𝑧⊥, 𝑗 =
⌊ Γ
𝐶

⌋
−∑𝑑

ℓ=1𝑤
𝑧
ℓ,𝑗

return 𝑤𝑧
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