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Abstract
Recent developments in the field of Dynamic Searchable Symmet-

ric Encryption (DSSE) with forward and backward privacy have

attracted much attention from both research and industrial com-

munities. However, most DSSE schemes with forward and back-

ward privacy schemes only support single keyword queries, which

impedes its prevalence in practice. Although some forward and

backward private DSSE schemes with expressive queries (e.g., con-

junctive queries) have been introduced, their backward privacy

either essentially corresponds to single keyword queries or for-

ward privacy is not comprehensive. In addition, the deletion of

many DSSE schemes is achieved by addition paired with a deletion

mark (i.e., lazy deletion). To address these problems, we present two

novel DSSE schemes with conjunctive queries (termed SDSSE-CQ
and SDSSE-CQ-S), which achieve both forward and backward pri-

vacy. To analyze their security, we present two new levels of back-

ward privacy (named Type-O and Type-O
−
, more and more secure),

which give a more comprehensive understanding of the leakages

of conjunctive queries in the OXT framework. Eventually, the secu-

rity analysis and experimental evaluations show that the proposed

schemes achieve better security with reasonable computation and

communication increase.
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1 Introduction
Dynamic searchable symmetric encryption (DSSE) enables the up-

date of the encrypted database while maintaining searchability,

which is a useful tool for protecting users’ data stored on the cloud.

However, the update operations would cause more leaked informa-

tion, which can be abused by the attackers [2, 7, 59]. In particular,

Zhang et al. [59] proposed file-injection attacks, which can recover

users’ queries through update. Specifically, the attacker (i.e., the

server) can inject some well-manipulated files. Then the search key-

words can be recovered by checking if the injected files have been

returned. Tomitigate the attacks, DSSE schemes are required to hold

two new security notions, namely forward privacy and backward

privacy, which are introduced by Stefanov et al. [51]. Informally,

forward privacy requires that the server cannot match newly up-

dated files to previously issued search queries. Correspondingly,

backward privacy does not allow the server to learn the files that

were previously added and later deleted
1
. The formal definition of

forward privacy and backward privacy for single keyword queries

are proposed by Bost [5] and Bost et al. [6], respectively. Due to its

complexity, Bost et al. [6] gave three levels of backward privacy,

namely Type-III to Type-I, from the weakest to the strongest. Since

then, many DSSE schemes with forward and/or backward privacy

have been introduced [1, 12, 19, 38, 54, 55, 62].

Nevertheless, most existing forward and backward private DSSE

schemes only support single keyword queries, which is not always

applicable in practice. As stated in [9, 34, 49], more expressive

1
To the best of our knowledge, currently, there are no specific attacks that can utilize the

leakages described in the backward privacy. However, these leakages could potentially

be leveraged by attackers in the future. Besides, as many prior works, such as the

original OXT paper [9], pointed out, one major goal of SSE designs is to minimize the

leakages with reasonable efficiency trade-offs.

440

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0024


Searchable Encryption for ConjunctiveQueries with Extended Forward and Backward Privacy Proceedings on Privacy Enhancing Technologies 2025(1)

queries such as conjunctive queries are often desired. It is not an

easy job to design forward and backward private DSSE supporting

conjunctive queries, as we need to consider not only the leakages

of each keyword in a conjunctive query but also the leakages of

the conjunction of the keywords in the conjunctive query. The

forward and backward privacy of DSSE for conjunctive queries

is essentially single keyword queries [28]. Recently, Patranabis et

al. [49] proposed a DSSE with forward and backward privacy for

conjunctive queries (named ODXT) by deploying the framework

of OXT [9], where it exists two encrypted datasets (named “TSet”

and “XSet”). The former is used to get files matching the least

frequent keyword in a conjunctive query, and the latter is used to

test whether the matching files contain the remaining keywords in

the conjunctive queries.

Time w2w1
t0

t2

t1

(a) (b)

Time w2w1
t0

t1

t2

t3 search, (w1,w2)

search, (w1,w2)

add, (w1, ind1)

add, (w2, ind1)
del, (w2, ind1)

add, (w1, ind1)

add, (w2, ind1)

(a) In OXDT, the server can repeat the query issued at time 𝑡1 after 𝑡2 and get

𝑖𝑛𝑑1 . This is due to the fact that 𝑖𝑛𝑑1 with 𝑤2 is recovered in the “XSet” with

the search query happened at time 𝑡1 , where the “XSet” is not forward private.

As a result, ODXT is not forward private in this circumstance since the server

learns the record inserted at 𝑡2 matched the previous search query.
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(b) At the time 𝑡2 , (𝑤2, 𝑖𝑛𝑑1 ) is deleted by inserting a new record with an

indicator “del", which is called “lazy deletion". However, for the query at 𝑡3 ,

the server still needs to check the 2 records related to 𝑤2 , which increases the

communication and interactions between the client and the server.

Figure 1: Illustration of conjunctive queries.

Unfortunately, ODXT [49]’s security is not comprehensive enough

for conjunctive queries with OXT framework. In particular, only the

forward privacy of “TSet” is guaranteed, but not for the “XSet”.

For example (see Fig. 1(a)), given the following update and search

queries: {𝑡0, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)}, {𝑡1, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1,𝑤2)}2, and {𝑡2, 𝑎𝑑𝑑 ,
(𝑤2, 𝑖𝑛𝑑1)}. For the search query that happened at time 𝑡1 (assume

𝑤1 is the least frequent keyword), the server first searches𝑤1 (in

the “TSet”) and gets 𝑖𝑛𝑑1. Then the server tests if 𝑖𝑛𝑑1 contains𝑤2

in the “XSet”, and the final result is that there are no matching files

for the query (𝑤1,𝑤2). After the update query happened at time 𝑡2,

the pair (𝑤2, 𝑖𝑛𝑑1) has been added to the “XSet”. Then, according

2 (𝑤1, 𝑤2 ) denotes a conjunctive query for keywords 𝑤1 and 𝑤2 .

to ODXT, the server still can use the previously issued search query

(happened at time 𝑡1) to search the updated “XSet” and get the final

result 𝑖𝑛𝑑1. However, forward privacy requires that a server can-

not map newly added files (e.g., 𝑖𝑛𝑑1) to previously issued search

queries (e.g., {𝑡1, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1,𝑤2)}).
In addition, many DSSE schemes deploy the “lazy deletion” [6,

49], where the deletion is achieved by insertion with an indicator

“del”. For example, as demonstrated in Fig. 1(b), assume there are fol-

lowing update and search queries: {𝑡0, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)}, {𝑡1, 𝑎𝑑𝑑, (𝑤2,

𝑖𝑛𝑑1)}, {𝑡2, 𝑑𝑒𝑙, (𝑤2, 𝑖𝑛𝑑1)}, and {𝑡3, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1,𝑤2)}. For the search
query that happened at time 𝑡3, 𝑖𝑛𝑑1 will not be returned, yet the

server still needs to store the encrypted 𝑖𝑛𝑑1 for both addition and

deletion, which incurs more storage cost. Keeping deleted items

as records also requires more communication and interactions be-

tween the client and the server, which greatly degrade the efficiency

of the DSSE schemes. We need more efficient deletions (e.g., mini-

mize the number of interactions).

Figure 2: Illustration of Type-O and Type-O− . In a Type-O

scheme, the server gets nothing when repeating the first query (𝑡1)

at 𝑡6, but can get 𝑖𝑛𝑑1 at 𝑡8 by reusing certain data from the query

issued at 𝑡7. In Type-O
−
, the server learns nothing at 𝑡6 and 𝑡8.

Note that, for ODXT, the server can get 𝑖𝑛𝑑1 at 𝑡6 when reusing the

first query (𝑡1).

Our Contributions. To address the aforementioned problems,

in this paper, we introduce two new schemes (named SDSSE-CQ
and SDSSE-CQ-S), where our schemes guarantee the forward and

backward privacy of both “TSet” and “XSet” by carefully apply-

ing Aura [54] with non-interactive deletion. Table 1 compares our

results with the related works. The concrete contributions of this

work are as follows:

• We point out that the forward privacy of the state-of-the-art

is not comprehensive. To address this problem, we first give a

newDSSEwith conjunctive queries (named SDSSE-CQ) based
on the framework of OXT [9], where the forward privacy of

both “TSet” and “XSet” is guaranteed. Moreover, to reduce

the deletion interactions, we apply a DSSE with forward and

backward privacy (termed Aura) from [54]
3
, which achieves

non-interactive deletion and the server can filter out deleted

entries in both “TSet” and “XSet”. To further reduce the

3
Note that Aura only supports single keyword queries, and it can be replaced with

any DSSE with forward and backward privacy for single keyword queries, e.g., the

OSSE proposed in [11].
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Table 1: Comparison with previous work

Scheme Client Storage
Communication Computation Non-interactive

FP BP
Query

Search Update Search Update Deletion Type

IM-DSSE [32] 𝑂 ( |W | +𝐷 ) 𝑂 (𝐷 ) 𝑂 ( |W | ) 𝑂 (𝐷 ) 𝑂 ( |W | ) ✓ ✓ Type-I Single

Aura [54] 𝑂 ( |W |𝑑 ) 𝑂 (𝑛𝑤 − 𝑑𝑤 ) 𝑂 (1) 𝑂 (𝑛𝑤 ) 𝑂 (1) ✓ ✓ Type-II Single

ODXT [49] 𝑂 ( |W | log𝐷 ) 𝑂 (𝑛𝑞 + 𝑑𝑞 ) 𝑂 (1) 𝑂 (𝑛𝑞 + 𝑑𝑞 ) 𝑂 (1) ✗ ✓† Type-II
‡

Conjunctive

SDSSE-CQ 𝑂 ( |W |𝑑 ) 𝑂 (𝑛𝑞 − 𝑑𝑞 ) 𝑂 (1) 𝑂 (𝑛𝑞 ) 𝑂 (1) ✓ ✓ Type-O Conjunctive

SDSSE-CQ-S 𝑂 ( |W |𝑑 ) 𝑂 (𝑛𝑞 − 𝑑𝑞 ) 𝑂 (1) 𝑂 (𝑛𝑞 ) 𝑂 (1) ✓ ✓ Type-O
−

Conjunctive

|W | denotes number of keywords in a database. 𝐷 and 𝑑 are the number of files in a database and the length of each entry for a keyword, respectively (note

that 𝑑 is slightly longer than log𝐷). 𝑛𝑤 (resp., 𝑛𝑞 ) and 𝑑𝑤 (𝑑𝑞 ) are addition and deletion numbers for a keyword 𝑤 (resp., a conjunctive query 𝑞). FP, BP,
Single and Conjunctive stand for Forward Privacy, Backward Privacy, Single keyword queries, and Conjunctive queries, respectively.

†
The forward privacy of

ODXT is not comprehensive for conjunctive queries.
‡
Type-II is not suitable for conjunctive queries. Type-O and Type-O

−
are for conjunctive queries with OXT

framework, and Type-O
−
is stronger than Type-O.

leakages of SDSSE-CQ, we introduce another scheme (named

SDSSE-CQ-S) by increasing the security of the “XSet” at the

cost of degraded efficiency. See Section 3 for details.

• To precisely quantify the leakages of our proposed schemes,

we introduce two new levels of backward privacy (named

Type-O and Type-O
−
, where Type-O

−
leaks less leakage than

Type-O), which can fully describe the leakages for conjunc-

tive queries with the OXT [9] framework. Type-O
−
is usually

harder to achieve and requires more computation time than

the scheme with Type-O. Informally, Type-O means both

“TSet” and “XSet” are individually backward private. That is,

after updating either “TSet” or “XSet” without processing

new queries, the server cannot link the updates (either add

or delete) with previous queries. However, the server could

do that after a new search. Type-O
−
addresses the issue. The

key difference between Type-O and Type-O
−
is that whether

the newly searched “xterm”s (e.g.,𝑤2 from (𝑡7, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤3,

𝑤2)) in Fig. 2) can be reused when repeating previously is-

sued queries with the same “xterm”. Note that other cases

(e.g., two queries with the same least frequent keyword) are

already considered in Type-O. Each keyword is protected by

a DSSE with forward and backward privacy for single key-

word queries. In other words, if we consider single keyword

queries only, then Type-O and Type-O
−
will be degraded to

Type-I/II/III
4
. See Section 4 for details.

• Eventually, the experimental evaluation of our schemes and

ODXT is given. Compared with ODXT, our proposed schemes

achieve better security with reasonable computation and

communication increase. See Section 5 for details.

1.1 Related Work
Song et al. [50] first addressed keyword search over encrypted data

by deploying symmetric encryption, which is known as searchable

symmetric encryption (SSE). However, it is less efficient since every

keyword in each file needs to be tested (searched). To improve the

4
It depends on which level of backward privacy the underlying DSSE achieves. For

example, we deploy Aura, and then they become Type-II backward privacy.

search efficiency, Goh [24] proposed a scheme with secure indexes,

where each file only needs to be tested once. To further improve

the search efficiency, Curtmola et al. [14] gave a sublinear search

time SSE by deploying an inverted index data structure. They also

formalized the SSE security (i.e., Real vs. Ideal), which has been

adopted by the following works. Later, many SSE schemes with

different improvements have been introduced (e.g., rich queries [9,

18, 20, 41, 61], dynamism [8, 36], multi-client model [14, 53], local-

ity [4, 10, 17, 43, 44], small client storage [16], etc.).

To make SSE support the update of the encrypted database, dy-

namic SSE (DSSE) schemes [8, 36] have been introduced. However,

these schemes leak extra information during updates. These can

be abused by adversaries [2, 7, 25, 26, 59], which highlights the

importance of forward and backward privacy. They are informally

introduced by Stefanov et al. [51]. Bost [5] has formally defined

forward privacy, and the formal backward privacy is formalized

by Bost et al. [6]. In particular, they introduced Type-I, Type-II,

and Type-III backward privacy, where Type-I is the strongest and

Type-III is the weakest. In addition, they gave several DSSE schemes

with varied backward privacy. Specifically, the Type-I backward

private (called MONETA) shows the feasibility of the Type-I backward
private DSSE, which is relied on the TWORAM [23]. Furthermore,

They proposed FIDESwith Type-II backward privacy. DIANA𝑑𝑒𝑙 and
Janus, achieve Type-III backward privacy, are more efficient.

To further improve the efficiency of Janus, Sun et al. [55] intro-

duced a Type-III backward private DSSE (Janus++), which deploys

their proposed Symmetric Puncturable Encryption (SPE). Concur-

rently, Chamani et al. [12] introduced a DSSE (MITRA) with forward

and Type-II backward privacy, while it needs to generate search to-

kens for each entry. To reduce the search tokens, they also deployed

the Path ORAM [52] to construct DSSE schemes with forward and

backward privacy (ORION and HORUS). Zuo et al. [62] introduced

FB-DSSE by using the bitmap index and simple symmetric encryp-

tionwith homomorphic addition, which achieves Type-I
−
backward

privacy. In particular, Type-I
−
does not include the insertion time

of documents containing the search keyword, while Type-I does.
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Recently, Sun et al. [54] introduced a non-interactive DSSE with

forward and Type-II backward privacy (named Aura).
A recent work [32] proposed to use an encrypted incidence

matrix to ensure efficient searches and updates with backward

privacy guarantees. With the matrix, search and update will be

transformed to a linear scan over one matrix row and column,

respectively. As shown in Table 1, although this method results in

higher asymptotic complexity and is unable to efficiently support

non-interactive updates, it can noticeably reduce the update leakage,

achieving a higher backward privacy level than Type-I. Besides,

the real-world runtime cost of a matrix-based construction can be

reduced by avoiding the use of asymmetric primitives.

However, the aforementioned DSSE schemes support single key-

word queries only. To address the problem, Kamara et al. [34]

presented a dynamic forward private DSSE for boolean queries

(named DIEX), which needs a forward private muti-map. However,

they did provide a concrete forward private muti-map instance.

In addition, it is not backward private. Later, Zuo et al. [61] gave

two forward/backward DSSE schemes with range queries (named

SchemeA and SchemeB), where the first scheme is forward private,

and the other one is backward private. Wang et al. [56] proposed

a generic DSSE with forward privacy for range queries based on

SchemeA. In addition, they deployed the “lazy deletion” technique

from [6] to make the scheme support backward privacy, which

is less efficient. After that, Zuo et al. [63] introduced FBDSSE-RQ,
which applies the framework of FB-DSSE [62]. Recently, Patranabis
et al. [49] introduced a DSSE with forward and backward privacy

for conjunctive queries (ODXT), which is based on the framework of

OXT [9]. However, as mentioned before, its security is not compre-

hensive for conjunctive queries. Guo et al. [28] proposed a forward

private verifiable DSSE for conjunctive queries, while its backward

privacy essentially corresponds to single keyword queries. It is not

an easy task to give full forward and backward private DSSE for con-

junctive queries because we need to quantify both the leakages of

each keyword in a conjunctive query and the keyword conjunction

leakages, which is complicated.

There is also a line of researches that design efficient DSSE

schemes [21, 22, 29, 30] based on secure hardware (e.g., Intel SGX [60]).

In particular, Hoang et al. [30] use SGX to propose an oblivious

search and update DSSE on a very large dataset. It is much more

efficient than other ORAM-based DSSE while maintaining the se-

cure search and update of the traditional ORAM scheme. To make

the oblivious DSSE work in the multi-user setting, many schemes

deploy a trusted proxy to execute an ORAM protocol over the net-

work, which incurs more communication cost. Thus, it requires a

high bandwidth network with low latency. To reduce the network

influence of proxy-based designs, Hoang et al. [29] proposed an

oblivious DSSE in the multi-user setting by utilizing the secure

enclaves of the SGX to execute the proxy logic.

Another genre of DSSE deploys multiple servers (i.e., distributed

setting) to achieve forward and backward privacy [13, 15, 31]. For

example, Hoang et al. [31] proposed a more efficient oblivious

distributed DSSE based on multiple servers by utilizing the com-

position of Private Information Retrieval (PIR) and generic ORAM.

Later, Dauterman et al. [15] proposed DORY by applying a differ-

ent technique (i.e., Distributed Point Function (DPF)) to multiple

servers, which is efficient. Recently, Chen et al. [13] proposed a

more secure file-sharing system (named Titanium) by deploying

circuit ORAM, which achieves confidentiality and integrity against

malicious servers and users.

Alongside the development of SSE, the leakage-abuse attacks

on them also have a long research line. The majority of existing

attacks primarily focus on single-keyword search [2, 7, 27, 33, 45–

47, 57–59] and range queries [39, 40, 42], and they mainly exploit

several types of leakage, such as the database’s statistics, access

pattern, search pattern, and volume of results. Those attacks also

work on OXT-based conjunctive SSEs, which usually leak more

leakage such as the co-occurrence of keywords in documents. Based

on the adversary’s behavior, the attacks are either passive or active.

In passive ones, such as [2, 33, 45, 47], the attackers just observe

and analyze the results of the client’s queries based on some auxil-

iary information. The active ones [58, 59] relax the requirement of

auxiliary information by allowing attackers to maliciously inject

or delete records from the databases and observing how they af-

fect the search results. Achieving forward and backward privacy is

necessary to prevent the active ones.

2 Preliminaries
In this section, we introduce the necessary cryptographic primitives

and the complexity assumption. | | denotes the concatenation of

two strings, |S| denotes the cardinality of the set S, and 𝜆 denotes

the security parameter.

2.1 Decisional Diffie-Hellman (DDH)
Assumption

Let 𝑎, 𝑏, 𝑐 ∈ Z∗𝑝 and 𝑔 be a generic generator of cyclic group G of

order 𝑝 = 𝑝 (𝜆). We say that DDH assumption holds in G if the

advantage AdvDDHA (𝜆) is negligible for any probabilistic polynomial

time (PPT) adversaryA to distinguish the tuple (𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) from
(𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 ). Formally,

AdvDDHA (𝜆) = | Pr[A(𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑎𝑏 ) = 1]−
Pr[A(𝑔,𝑔𝑎, 𝑔𝑏 , 𝑔𝑐 ) = 1] | ≤ 𝑛𝑒𝑔𝑙 (𝜆) .

2.2 Symmetric Encryption
A symmetric encryption (SE) consists of the following polynomial-

time algorithms SE = (SE·Enc, SE·Dec):
• 𝑐𝑡 ← SE·Enc(𝑘,𝑚): For a secret key 𝑘 ∈ K and a message

𝑚 ∈ M, the algorithm outputs a ciphertext 𝑐𝑡 ∈ CT , where
M, K , CT are the message space, key space and ciphertext

space, respectively.

• 𝑚 ← SE·Dec(𝑘, 𝑐𝑡): For the ciphertext 𝑐𝑡 and the secret key

𝑘 , this algorithm outputs the message𝑚.

Correctness. For all secret key 𝑘 ∈ K , message 𝑚 ∈ M and

𝑐𝑡 ← SE·Enc(𝑘,𝑚), it holds that𝑚 = SE·Dec(𝑘, 𝑐𝑡) .

Security. An SE is IND-CPA secure if for every probabilistic poly-

nomial time (PPT) adversary A, its advantage

AdvIND-CPASE,A (𝜆) = | Pr[A(SE·Enc(𝑘,𝑚0)) = 1]−
Pr[A(A(SE·Enc(𝑘,𝑚1)) = 1] |

is negligible, where the secret key 𝑘 ∈ K is kept secret, and A
chooses𝑚0,𝑚1 ∈ M with equal length. In addition, A can issue
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more encryption queries adaptively with the restriction that𝑚0,𝑚1

are never queried.

2.3 DSSE Definition
We parse a database DB into {𝑖𝑛𝑑𝑖 ,W𝑖 }𝐷𝑖=1

, where 𝑖𝑛𝑑𝑖 is file iden-

tifier, W𝑖 stands for all keywords in file 𝑖𝑛𝑑𝑖 and file numbers in

DB are denoted as 𝐷 . All different keywords in DB are denoted

as W = ∪𝐷𝑖=1
W𝑖 . 𝑁 =

∑𝐷
𝑖=1
|W𝑖 | stands for the number of key-

word/identifier pairs in DB. DB(𝑞) denotes the set of file identifiers
matching a search query 𝑞.

Now, we briefly introduce the definition of DSSE and its security

model (see [63] for details).

DSSE. In this paper, we consider a two-party model, where a client

interacts with a server to store and retrieve his/her private data.

A DSSE scheme usually contains algorithm Setup, Search, and
Update. Specifically, Setup is executed by the client. On input 𝜆

and DB, it outputs a secret state 𝜎 and an encrypted database EDB,
where the client keeps the 𝜎 secret and the server stores the EDB.
Search is executed by the client and the server. On input of a search

query 𝑞, 𝜎 and EDB, the client interacts with the server. Eventually,

the server outputs nothing and the client outputs files matching 𝑞

(DB(𝑞)). Update is executed by the client and the server. On input

𝑖𝑛 = (𝑖𝑛𝑑,W)5, 𝑜𝑝 ∈ {𝑎𝑑𝑑, 𝑑𝑒𝑙} and 𝜎 , this algorithm outputs an

updated encrypted database EDB′ to the server and an updated state

𝜎 ′ to the client.

Remark. In (D)SSE literature, two kinds of result models (i.e.,

result hiding [9] and result revealing [5, 6]) are usually consid-

ered. In particular, result hiding indicates that the server sends

encrypted results to the client and the client decrypts them. Corre-

spondingly, result revealing means the server decrypts encrypted

results and sends plaintexts to the client. We consider the result

hiding model throughout this paper. Note that, in our design, only

encrypted results are available to the server(see Alg. 1 and 2). How-

ever, DSSE’s security model usually assumes the server can infer

query results(file IDs) from client access patterns because clients

eventually access files based on queries. Although oblivious tech-

niques can be used to hide file access patterns with increased com-

putation costs, this is orthogonal to this work.

Common Leakage Functions. Before defining the common leak-

age functions, we define a conjunctive query 𝑞 = (𝑤1,𝑤2, · · · ,𝑤𝑛).
An update query 𝑢 = (𝑜𝑝, (𝑤, 𝑖𝑛𝑑)), where 𝑜𝑝 ∈ {𝑎𝑑𝑑, 𝑑𝑒𝑙} is the
update operation and (𝑤, 𝑖𝑛𝑑) denotes a file-identifier/keyword

pair. For a search query 𝑞, a search pattern leaks the repetition

of search queries on each keyword 𝑤 ∈ 𝑞. Formally, sp(𝑞) = {𝑡 :

{sp(𝑤)}𝑤∈𝑞}, where 𝑡 is a timestamp and sp(𝑤) = (𝑡 : (𝑡,𝑤))
leaks the search timestamp of a keyword𝑤 . We also define a result

pattern rp(𝑞) = {DB(𝑞)}.
Security Model. The security model of DSSE is simulation-based.

In particular, there are two worlds (i.e., REAL and IDEAL). REAL
follows the original DSSE, while IDEAL is simulated by a simu-

lator S with the input of defined leakage functions illustrating

the leakages leaked during Setup, Search and Update (i.e., L =

5
Note that, in this paper, we update one keyword/identifier pair for each update. If

you want to update more keyword/identifier pairs, you can update many times.

(L𝑆𝑒𝑡𝑢𝑝 ,L𝑆𝑒𝑎𝑟𝑐ℎ,L𝑈𝑝𝑑𝑎𝑡𝑒 )). If an adversary A cannot distinguish

REAL from IDEAL with overwhelming probability, then the DSSE is

L-adaptively-secure. Formally,

Definition 2.1. A DSSE is L-adaptively-secure if for every proba-

bilistic polynomial time (PPT) adversaryA, there exists an efficient

simulator S (with the input L) such that,

| Pr[REALA (𝜆) = 1] − Pr[IDEALA,S (𝜆) = 1] | ≤ 𝑛𝑒𝑔𝑙 (𝜆).

2.4 DSSE for Single Keyword Queries
In this subsection, we briefly recall the state-of-the-art forward and

Type-II backward private DSSE (named Aura [54]), which supports

single keyword queries only. As mentioned before, ODXT deploys
“lazy deletion” to achieve backward privacy, which incurs more

interactions and is not efficient. Tomitigate this, our schemes deploy

Aura, where Aura achieves non-interactive deletion6. Specifically,
Aura consists of the following polynomial-time algorithm Aura =

(Aura·Setup, Aura·Search, Aura·Update):
• (𝜎, EDB) ← Aura·Setup(1𝜆): This algorithm runs by the

client. For a security parameter 𝜆, it produces an encrypted

database EDB and a secret state 𝜎 , where 𝜎 is kept secret by

the client and the EDB is sent to the server.

• (𝜎 ′, EDB′) ← Aura·Update(𝑜𝑝, (𝑤, 𝑖𝑛𝑑), 𝜎 ; EDB): This is a
protocol executed between the client and the server. For an

operation 𝑜𝑝 ∈ {𝑎𝑑𝑑, 𝑑𝑒𝑙}, a keyword/identifier pair (𝑤, 𝑖𝑛𝑑),
the 𝜎 and an encrypted database EDB, it produces an updated

EDB′ to the server and an updated 𝜎 ′ to the client.

• Res← Aura·Search(𝑤, 𝜎 ; EDB): This is a protocol executed
between the client and the server. For a search keyword

𝑤 , the state 𝜎 and the encrypted database EDB, it produces
the search result Res to the client. Note that this algorithm

captures the functionality of the Search algorithm, which

ideally does not need the server to output information. In

fact, the server can learn some information (i.e., leakages)

during the interactions between the client and the server,

which is depicted in the following sections.

Correctness. Aura deploys a bloom filter, so it inherits the false-

positive of the bloom filter. As a result, Aura is probabilistic cor-
rect, where the false-positive can be negligible by carefully set-

ting the bloom filer. Let Aura be defined as above, it holds that

Pr[Aura·Search(𝑤, 𝜎 ; EDB) ≠ DB(𝑤)] ≤ 𝑛𝑒𝑔𝑙 (𝜆) .

Security. According to [54], we say Aura is forward and Type-II

backward private if for every PPT adversary A, its advantage

AdvFBAura,A (𝜆) = | Pr[REALAuraA (𝜆) = 1] − Pr[IDEALAuraA,S (𝜆) = 1] |

is negligible (see [54] for details).

We refer readers to Appendix A for detailed Aura protocol.

2.5 Forward Privacy
Informally, forward privacy requires that the server cannot match

newly updated files to previously issued queries. In 2016, Bost [5]

gave a formal forward privacy definition, which is described below.

6
Our schemes can be constructed from any DSSE with forward and backward privacy,

which supports single keyword queries.
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Definition 2.2. An L-adaptively-secure DSSE scheme is forward

private, if the update leakage function L𝑈𝑝𝑑𝑎𝑡𝑒 can be written as

L𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝, 𝑖𝑛) = L′ (𝑜𝑝, {(𝑖𝑛𝑑𝑖 , 𝜇𝑖 )}),

where 𝑖𝑛𝑑𝑖 is the updated file, 𝜇𝑖 is the number of keywords corre-

sponding to the updated file 𝑖𝑛𝑑𝑖 , and L′ is stateless.

In [49], Patranabis et al. deployed the OXT [9] framework to achieve

DSSE with forward and backward privacy for conjunctive queries

(named ODXT). However, as mentioned before, their security is not

comprehensive. This is because OXT contains two data structures
(namely “TSet” and “XSet”), and ODXT only guarantees the forward

privacy of the “TSet”. To address this problem, for each pair of

keyword/identifier update, we need to guarantee the forward pri-

vacy of both “TSet” and “XSet”. To achieve this, we need to define

the leakage function for both “TSet” and “XSet”. Specifically, the

leakage function for update is

L𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝,𝑤, 𝑖𝑛𝑑) = L′ ((𝑜𝑝, 𝑖𝑛𝑑)𝑇 , (𝑜𝑝, 𝑖𝑛𝑑)𝑋 ),

where (𝑜𝑝, 𝑖𝑛𝑑)𝑇 and (𝑜𝑝, 𝑖𝑛𝑑)𝑋 are the leakages of (𝑜𝑝, 𝑖𝑛𝑑) for
“TSet” and “XSet”, respectively.

2.6 Backward Privacy
Informally, backward privacy aims to suppress the information on

the updates that the server can learn upon the subsequent query.

In this section, we briefly recap the definition of backward privacy

and explain why we should reconsider it under the conjunctive

query with OXT framework.

Classic backward privacy definition [6] considers a query 𝑞 with

a single keyword 𝑤 , and depicts the information leaked from all

updates (insertion and deletion) regarding 𝑤 before issuing the

query. Bost et al. [6] gave three different levels of backward privacy

(namely, Type-III to Type-I, from least secure to most secure) for

single keyword queries, which can not describe the leakages of con-

junctive queries properly. In particular, we consider the conjunctive

queries with the OXT framework, which consists of a keyword “stag”

to access “TSet”, and a list of keywords “xtag”s to access “XSet”.

However, due to the conjunctive query protocol design, we ob-

serve that there will be an extra step for matching after querying

“TSet”, while its backward privacy is not considered by the classic

definition. Without loss of generality, with the extra information

leakage, if there are two two-keyword conjunctive queries with

the same “xtag” (i.e., 𝑞1 = (𝑤3,𝑤2) and 𝑞2 = (𝑤1,𝑤2), where𝑤2 is

the “xtag”) and several updates between 𝑞1 and 𝑞2 for keyword𝑤2.

An adversary can combine the query at 𝑞1 and the information ob-

tained from “XSet” at 𝑞2 to infer the update information regarding

𝑤2 between 𝑞1 and 𝑞2.

For instance, with the following updates and conjunctive queries:

{𝑡0, 𝑎𝑑𝑑, (𝑤3, 𝑖𝑛𝑑1)}, {𝑡1, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤3,𝑤2)}, {𝑡2, 𝑎𝑑𝑑, (𝑤2, 𝑖𝑛𝑑1)}, {𝑡3,
𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)}, {𝑡4, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑2)}, {𝑡5, 𝑑𝑒𝑙, (𝑤1, 𝑖𝑛𝑑1)}, {𝑡6, 𝑠𝑒𝑎-
𝑟𝑐ℎ, (𝑤1, 𝑤2)}, a strong backward-private design guarantees that

at 𝑡0 and 𝑡6, the query only reveals the number of matched docu-

ments, the insertion time, and total number of updates each query

keywords, i.e., (𝑤3,𝑤2) and (𝑤1,𝑤2), when accessing “TSet” and

“XSet”, respectively. However, with the above-mentioned leakage,

after the search query happened at time 𝑡6, the server can learn

a subset of “XSet” regarding 𝑤2. The server thus can combine it

with previously issued search query {𝑡1, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤3,𝑤2)} to find

that there is one file (i.e., 𝑖𝑛𝑑1) contains the keywords𝑤3 and𝑤2.

The above example demonstrates that even if all data structures

are satisfied with the prior backward privacy definitions, there

will be extra update information regarding the query (𝑤3,𝑤2) is
revealed. To formally describe this information, we define two new

levels of backward privacy for conjunctive queries (named Type-O

and Type-O
−
, Type-O

−
is more secure). Note that, for each keyword

in a conjunctive query, our schemes deploy Aura. Then the leakages
of each keyword are the same as the leakages of Aura, which is

Type-II backward private. Hence, if there is only one keyword for

queries, Type-O/O
−
will become Type-II. Specifically,

• Type-O
−
: For a conjunctive query 𝑞, it leaks file identifiers

that currently matching 𝑞. In addition, it also leaks the num-

ber of matching files of each {𝑤1,𝑤𝑠}𝑤𝑠∈𝑊 pair, where 𝑞 =

(𝑤1,𝑤2, · · · ,𝑤𝑛)7,𝑊 is the collection of any subset of {𝑤2, · · · ,𝑤𝑛}.
For each keyword𝑤 ∈ 𝑞, it leaks the total number of updates

and the corresponding update time
8
.

• Type-O: Apart from the leakages in Type-O
−
, it leaks the

number of matching files of each {𝑤∗,𝑤𝑠}𝑤𝑠∈𝑊 pair, where

𝑤∗ is one of the previously issued least frequent keywords

(including the current least frequent keyword𝑤1) and𝑊 is

the collection of any subset of {𝑤2, · · · ,𝑤𝑛}.
To formally define the notion, we need to introduce some new

leakage functions. For a conjunctive query 𝑞, we consider there is

an arbitrary number of updates on keywords in 𝑞 before issuing 𝑞,

Time(𝑞) depicts the update time 𝑡 for each keyword𝑤 ∈ 𝑞. Formally,

Time(𝑞) = {𝑡 : {𝑡, 𝑜𝑝, (𝑤, 𝑖𝑛𝑑)}𝑤∈𝑞}.

We let size(𝑤1,𝑊 ) = {|DB(𝑤1,𝑤𝑠) |}𝑤𝑠∈𝑊 denote the number of

matching files for any conjunctive queries with form {𝑤1,𝑤𝑠}𝑤𝑠∈𝑊 ,

where 𝑞 = (𝑤1,𝑤2, · · · ,𝑤𝑛), 𝑤𝑠 is a subset of the conjunctive

keywords from {𝑤2, · · · ,𝑤𝑛}, 𝑊 is the collection of any subset

of {𝑤2, · · · ,𝑤𝑛}, and |DB(𝑤1,𝑤𝑠) | denotes the number of matching

files for the conjunctive query (𝑤,𝑤𝑠) (e.g., (𝑤1,𝑤2), (𝑤1,𝑤2,𝑤3))9.
Similarly, we can define size(𝑤∗,𝑊 ) = {|DB(𝑤∗,𝑤𝑠) |}𝑤𝑠∈𝑊 , where

𝑤∗ denotes one of the previously issued least frequent keywords

(including the current least frequent keyword 𝑤1). For example,

for the following update and search queries: {𝑡0, 𝑎𝑑𝑑, (𝑤3, 𝑖𝑛𝑑1)},
{𝑡1, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤3,𝑤2)}, {𝑡2, 𝑎𝑑𝑑, (𝑤2, 𝑖𝑛𝑑1)}, {𝑡3, 𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑1)}, {𝑡4,
𝑎𝑑𝑑, (𝑤1, 𝑖𝑛𝑑2)}, {𝑡5, 𝑑𝑒𝑙, (𝑤1, 𝑖𝑛𝑑1)}, and {𝑡6, 𝑠𝑒𝑎𝑟𝑐ℎ, (𝑤1, 𝑤2)}. Af-
ter time 𝑡6 (assume 𝑤1 and 𝑤3 are the least frequent keywords),

we have size(𝑤1,𝑊 ) = {|DB(𝑤1,𝑤2) |} = {0} and size(𝑤∗,𝑊 ) =
{|DB(𝑤1,𝑤2) |, |DB(𝑤3,𝑤2) |} = {0, 1}, where𝑊 is {𝑤2}.

Definition 2.3. An L-adaptively-secure DSSE scheme is Type-

O
−
/O backward private if the update leakage function L𝑈𝑝𝑑𝑎𝑡𝑒 and

the search leakage function L𝑆𝑒𝑎𝑟𝑐ℎ can be written as the following

types, respectively:

• Type-O: L𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝,𝑤, 𝑖𝑛𝑑) = L′ (𝑜𝑝) and

L𝑆𝑒𝑎𝑟𝑐ℎ (𝑞) = L′′ (sp(𝑞), rp(𝑞), Time(𝑞), size(𝑤∗,𝑊 )),

7
We assume 𝑤1 is the least frequent keyword.

8
This is inherited from the Type-II backward privacy of Aura. For other DSSE for

single keyword queries, it can be changed accordingly (e.g., Type-III).

9
The number of matching files for each keyword 𝑤 can be deduced from the Time(𝑞) .
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• Type-O
−
: L𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝,𝑤, 𝑖𝑛𝑑) = L′ (𝑜𝑝) and

L𝑆𝑒𝑎𝑟𝑐ℎ (𝑞) = L′′ (sp(𝑞), rp(𝑞), Time(𝑞), size(𝑤1,𝑊 )),

where L′ and L′′ are stateless.

In Section 3, we present two constructions, namely SDSSE-CQ
and SDSSE-CQ-S. Our first construction (see Section 3.1) can achieve
Type-O backward privacy. To further reduce the leakage, we intro-

duce SDSSE-CQ-S in Section 3.2, which reaches Type-O
−
backward

privacy. Note that other potential leakage (e.g., two queries with the

same least frequent keyword) is already considered in SDSSE-CQ10.

3 Our Constructions
In this section, we present two DSSE schemes with conjunctive

queries. The first scheme (termed SDSSE-CQ) improves the for-

ward privacy of ODXT and supports non-interactive deletion. To

further reduce the leakages, we introduce the second DSSE (named

SDSSE-CQ-S) with a stronger level of backward privacy.

Overview. Before proceeding, we would like to briefly introduce the
high-level ideas of our constructions. OXT deploys two data struc-
tures, namely “TSet” and “XSet”, which can achieve sublinear search

efficiency. In particular, “TSet” is a map that keeps the mapping

between the keyword and a list of files that contain the keyword.

Meanwhile, “Xset” is a hash list that contains the cryptographic

hash values generated with all existing keyword/file ID pairs. When

executing a conjunctive query with OXT data structures, the query

is executed in two steps. The first step searches the (i.e., least fre-

quent) keyword in the “TSet” through “stag” and gets the matching

files. The second step generates an “xtag” with each pair of the file

IDs retrieved from the first stage and the remaining keywords in

a conjunctive query, and then tests whether the “xtag” is in the

“XSet”. If the “xtag” is in the “XSet”, it means the file retrieved from

the first stage also contains other keywords, thus will be included

in the conjunctive query result. For detailed construction, we refer

readers to Appendix B.

Since OXT does not support update, Patranabis et al. proposed

ODXT by applying a forward and backward private DSSE to the OXT
data structure [49]. Specifically, it only applies the DSSE scheme

to the “TSet” of OXT, while the “XSet” is not forward private. In

addition, as mentioned before, ODXT uses “lazy deletion”, which

incurs more interactions and communication cost. To address these

problems, we propose SDSSE-CQ by carefully integrating the non-

interactive DSSE scheme (i.e., Aura) to all OXT data structures to

ensure their forward and backward privacy while reducing the cost

of “lazy deletion”.

Furthermore, as we pointed out in Section 2.6, there will be a new

leakage under the backward privacy notion when leveraging OXT-

like data structures to enable dynamic updates. To further reduce

the leakages, we propose SDSSE-CQ-S by carefully adding extra

randomness to the “xtag” corresponding to a particular “stag”. As a

result, the “xtag” of the previous search query cannot be reused by

the following search queries, then the search leakages are reduced.

More details are depicted in the following sections.

10
Forward and backward privacy do not protect volume information. Although some

prior works [35, 48] can achieve the volume-hiding feature, we mark those works

orthogonal to our focus.

3.1 Our First Scheme
As mentioned before, the security model of ODXT [49] is not com-

prehensive enough for conjunctive queries with OXT [9] framework.

This is due to the fact that, similar to OXT, ODXT has two datasets

(named “TSet” and “XSet”). ODXT only guarantees the forward pri-

vacy of “TSet”, while “XSet” is not forward private. To address the

problem, we protect the forward privacy of both “TSet” and “XSet”.

In addition, for ODXT, the authors deploy the “lazy deletion” to sup-

port deletion, which incurs more interactions and is inefficient. To

reduce the interactions, we deploy the state-of-the-art construction

(Aura, see Section 2.4) from [54], which supports non-interactive

deletion and single keyword queries only. Note that, in our con-

struction, Aura can be replaced with any DSSE with forward and

backward privacy supporting single keyword queries.

Let Aura = (Aura·Setup, Aura·Search, Aura·Update) be the

forward and backward private DSSE from [54].We give SDSSE-CQ =

(SDSSE-CQ·Setup, SDSSE-CQ·Update, SDSSE-CQ·Search) in Algo-

rithm 1, which achieves forward and backward privacy as well as

supports conjunctive queries. Without loss of generality, we assume

𝑤1 is the least frequent keyword. The details of the algorithms are

described as follows:

• (EDB, 𝜎) ← SDSSE-CQ·Setup(1𝜆): A client inputs 𝜆, he/she

selects a secret key 𝑘 for keyed Pseudorandom function

(PRF) 𝐹 and keys 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧 for keyed PRF 𝐹𝑝 (with range

in 𝑍 ∗𝑝 , 𝑝 is a large prime). In particular, 𝑘 is used to gen-

erate the keys corresponding to each keyword “w” that is

used in the “TSet”, and 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧 are used to generate the

“xtag”s stored in “XSet”. Note that these keys are part of our

scheme (rather than Aura) and not used in the CT and the

EDB setup. Moreover, he/she sets an empty map CT, which
stores keyword/counter (𝑤/𝑐) pairs. In addition, he/she sets

two Aura instances, which are used for “TSet” and “XSet”,

respectively. Eventually, he/she outputs encrypted database

EDB = (EDB𝑇 , EDB𝑋 ) to a server and secretly keeps the state

𝜎 = (𝑘, 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧,CT, 𝜎𝑇 , 𝜎𝑋 ).
• (𝜎 ′, EDB′) ← SDSSE-CQ·Update(𝑜𝑝,𝑤, 𝑖𝑛𝑑, 𝜎 ; EDB): A client

inputs an operation 𝑜𝑝 , a keyword𝑤 corresponding to a file

identifier 𝑖𝑛𝑑 , a state 𝜎 and the server inputs the encrypted

database EDB. The client generates the encrypted identifier

𝑒 , 𝑦, and 𝑥𝑡𝑎𝑔. Then the client interacts with the server to

update (𝑒 | |𝑦 | |𝑐) and 𝑥𝑡𝑎𝑔 corresponding to keyword𝑤 by us-

ing the Aura·Update (Alg. 1: line 9-10 of SDSSE-CQ·Update).
Note that the (𝑒 | |𝑦 | |𝑐) and 𝑥𝑡𝑎𝑔 are the secret inputs of the

client, which are not revealed to the server before a search

query. In addition, (𝑒 | |𝑦 | |𝑐) (or 𝑥𝑡𝑎𝑔) acts as the role of “𝑖𝑛𝑑”
of Aura·Search, which is defined in Section 2.4. Eventually,

the server outputs an updated EDB EDB′ and the client out-

puts an updated state 𝜎 ′.
• I ← SDSSE-CQ·Search(𝑞 = (𝑤1,𝑤2, · · · ,𝑤𝑛), 𝜎 ; EDB): A
client inputs a conjunctive query 𝑞 = (𝑤1,𝑤2, · · · ,𝑤𝑛) and
a state 𝜎 , and the server inputs EDB. The client first retrieves
𝑐 from CT corresponding to keyword 𝑤1 (Alg. 1: line 1-

4 of SDSSE-CQ·Search, and we assume 𝑤1 is the least fre-

quent keyword). Then he/she generates the 𝑥𝑡𝑜𝑘𝑒𝑛 for each

𝑖 from 0 to 𝑐 and 𝑗 from 2 to 𝑛, which will be sent to the

server (Alg. 1: line 5-8 of SDSSE-CQ·Search). After that, the
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Algorithm 1 SDSSE-CQ

SDSSE-CQ·Setup(1𝜆 )

1: 𝑘
$←− {0, 1}𝜆 for PRF 𝐹 (used in “TSet”), 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧

$←− {0, 1}𝜆 for PRF

𝐹𝑝 (with range in 𝑍 ∗𝑝 and used in “XSet”)

2: CT← empty map

3: (𝜎𝑇 , EDB𝑇 ) ← Aura·Setup(1𝜆 )
4: (𝜎𝑋 , EDB𝑋 ) ← Aura·Setup(1𝜆 )
5: return (EDB = (EDB𝑇 , EDB𝑋 ) , 𝜎 = (𝑘, 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧 ,CT, 𝜎𝑇 , 𝜎𝑋 ) )

SDSSE-CQ·Update(𝑜𝑝, 𝑤, 𝑖𝑛𝑑, 𝜎 ; EDB)
Client:
1: 𝑐 ← CT[𝑤 ]
2: if 𝑐 =⊥ then
3: 𝑐 ← −1

4: end if
5: 𝑐 ← 𝑐 + 1, CT[𝑤 ] ← 𝑐

6: 𝑘𝑤 ← 𝐹 (𝑘, 𝑤 ) , 𝑒 ← SE·Enc(𝑘𝑤 , 𝑖𝑛𝑑 )
7: 𝑥𝑖𝑛𝑑 ← 𝐹𝑝 (𝑘𝑖 , 𝑖𝑛𝑑 ) , 𝑧 ← 𝐹𝑝 (𝑘𝑧 , 𝑤 | |𝑐 ) , 𝑦 ← 𝑥𝑖𝑛𝑑 · 𝑧−1

8: 𝑥𝑡𝑎𝑔← 𝑔𝐹𝑝 (𝑘𝑥 ,𝑤) ·𝑥𝑖𝑛𝑑 ⊲ 𝑔 is the generator of a cyclic group with

order 𝑝 .

Client↔ Server:
9: Run Aura·Update(𝑜𝑝, (𝑤, 𝑒 | |𝑦 | |𝑐 ), 𝜎𝑇 ; EDB𝑇 ) ⊲ This is a protocol

between the client and the server, where (𝑜𝑝, (𝑤, 𝑒 | |𝑦 | |𝑐 ), 𝜎𝑇 ) are the
inputs of the client and kept secret by the client.

10: Run Aura·Update(𝑜𝑝, (𝑤,𝑥𝑡𝑎𝑔), 𝜎𝑋 ; EDB𝑋 )
Note that 𝑒 | |𝑦 | |𝑐 (or 𝑥𝑡𝑎𝑔) acts as “𝑖𝑛𝑑” of Aura·Update defined in

Section 2.4.

SDSSE-CQ·Search(𝑞 = (𝑤1, 𝑤2, · · · , 𝑤𝑛 ), 𝜎 ; EDB)
Client:
1: 𝑐 ← CT[𝑤1 ], 𝑘𝑤

1
← 𝐹 (𝑘, 𝑤1 )

2: if 𝑐 =⊥ then
3: return ∅
4: end if
5: for 𝑖 = 0 to 𝑐 , 𝑗 = 2 to 𝑛 do
6: 𝑥𝑡𝑜𝑘𝑒𝑛[𝑖, 𝑗 ] ← 𝑔𝐹𝑝 (𝑘𝑧 ,𝑤1

| |𝑖 ) ·𝐹𝑝 (𝑘𝑥 ,𝑤𝑗 )

7: end for

8: Send 𝑥𝑡𝑜𝑘𝑒𝑛 to the server.

Client↔ Server:
9: Res𝑇 ← Aura·Search(𝑤1, 𝜎𝑇 ; EDB𝑇 ) ⊲ Getting file identifiers

matching the first keyword by searching “TSet”.

10: if Res𝑇 =⊥ then
11: return ∅
12: end if
13: XSet← empty set

14: for 𝑗 = 2 to 𝑛 do
15: Res𝑋 ← Aura·Search(𝑤𝑗 , 𝜎𝑋 ; EDB𝑋 ) ⊲ Getting the current

“xtag”s corresponding to the remaining keywords.

16: if Res𝑋 =⊥ then
17: return ∅
18: end if
19: XSet← XSet ∪ Res𝑋
20: end for
Server:
21: Res← empty set

22: for each (𝑒 | |𝑦 | |𝑐 ) ∈ Res𝑇 do
23: 𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒

24: for 𝑗 = 2 to 𝑛 do
25: if 𝑥𝑡𝑜𝑘𝑒𝑛[𝑐, 𝑗 ]𝑦 ∉ XSet then ⊲ Testing if the files matching

the first keyword contain the remaining keywords through “𝑥𝑡𝑜𝑘𝑒𝑛”.

26: 𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒

27: end if
28: end for
29: if 𝑓 𝑙𝑎𝑔 then
30: Res← Res ∪ 𝑒
31: end if
32: end for
33: Send Res to the client.

Client:
34: for each 𝑒 ∈ Res do
35: 𝑖𝑛𝑑 ← SE·Dec(𝑘𝑤

1
, 𝑒 )

36: end for

client interacts with the server to search 𝑤1 (gets the cur-

rent “xtag”s for keywords (𝑤2, · · · ,𝑤𝑛)) from EDB𝑇 (EDB𝑋 )
through Aura·Search (Alg. 1: line 9-20 of SDSSE-CQ·Search).
Note that, after a search query, the update time of Aura is

leaked. In other words, the counter 𝑐 is implicitly leaked

in Aura after a search query. Hence, the added counter 𝑐

does not incur a new leakage. The server retrieves all the

file identifiers corresponding to 𝑤1 and tests if they con-

tain the keywords𝑤2, · · · ,𝑤𝑛 with the 𝑥𝑡𝑜𝑘𝑒𝑛s. Finally, the

server sends all the encrypted file identifiers I back to the

client, and the client can decrypt them (Alg. 1: line 33-36 of

SDSSE-CQ·Search).

3.2 Stronger Backward Privacy
As mentioned before, SDSSE-CQ achieves Type-O backward pri-

vacy. To further reduce the leakage, we introduce Type-O
−
at

the cost of degraded efficiency, where the newly generated 𝑥𝑡𝑎𝑔s

cannot be used by previously issued search queries. To achieve

Type-O
−
backward privacy, we add a new random number (related

to a keyword/counter pair) to an 𝑥𝑡𝑎𝑔. Specifically, we propose

SDSSE-CQ-S = (SDSSE-CQ-S·Setup, SDSSE-CQ-S·Update, SDSSE-

CQ-S·Search), which is described in Algorithm 2 and the differ-

ences from SDSSE-CQ are highlighted in gray.

• (EDB, 𝜎) ← SDSSE-CQ-S·Setup(1𝜆): Apart from the keys

and maps generated in SDSSE-CQ· Setup, it additionally
chooses two new secret keys 𝑘 ′𝑥 and 𝑘 ′𝑧 for PRF 𝐹𝑝 .
• (𝜎 ′, EDB′) ← SDSSE-CQ-S·Update(𝑜𝑝,𝑤, 𝑖𝑛𝑑, 𝜎 ; EDB): This
protocol is almost the same as the SDSSE-CQ·Update ex-

cept that it puts a new randomness (related to the key-

word/counter𝑤 | |𝑐) to the𝑤𝑥𝑡𝑎𝑔 (Alg. 2: line 8 of SDSSE-CQ-S·
Update), which is used to avoid the newly generated𝑤𝑥𝑡𝑎𝑔s

to be reused by previously issued search queries (with differ-

ent least frequent keyword).

• I ← SDSSE-CQ-S·Search(𝑞 = (𝑤1,𝑤2, · · · ,𝑤𝑛), 𝜎 ; EDB):
This protocol is similar to the Search of SDSSE-CQ. The dif-
ferences are that the client puts the randomness 𝐹𝑝 (𝑘 ′𝑧,𝑤1)
(corresponding to the least frequent keyword 𝑤1) to the

𝑤𝑥𝑡𝑜𝑘𝑒𝑛s (𝑔𝐹𝑝 (𝑘𝑧 ,𝑤1 | |𝑖 ) ·𝐹𝑝 (𝑘𝑥 ,𝑤𝑗 ) ·𝐹𝑝 (𝑘′𝑧 ,𝑤1 )
) (Alg. 2: line 5-8 of

SDSSE-CQ-S·Search) and generates new tokens𝑤𝑥𝑡 (𝐹𝑝 (𝑘 ′𝑥 ,𝑤 𝑗 | |𝑐 𝑗 )·
𝐹𝑝 (𝑘 ′𝑧,𝑤1)) (Alg. 2: line 9-17 of SDSSE-CQ-S· Search). When

the server tries to recover a new “𝑥𝑡𝑎𝑔” from𝑤𝑥𝑡𝑎𝑔 (𝑤𝑥𝑡𝑎𝑔𝑤𝑥𝑡 ),

the randomness 𝐹𝑝 (𝑘 ′𝑥 ,𝑤 𝑗 | |𝑐 𝑗 ) will be canceled out, and the

447



Proceedings on Privacy Enhancing Technologies 2025(1) Zuo et al.

Algorithm 2 SDSSE-CQ-S (Differences from SDSSE-CQ are highlighted in gray)

SDSSE-CQ-S·Setup(1𝜆 )

1: 𝑘
$←− {0, 1}𝜆 for PRF 𝐹 , 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧 , 𝑘

′
𝑥 , 𝑘
′
𝑧

$←− {0, 1}𝜆 for PRF 𝐹𝑝 (with

range in 𝑍 ∗𝑝 )
2: CT← empty map

3: (𝜎𝑇 , EDB𝑇 ) ← Aura·Setup(1𝜆 )
4: (𝜎𝑋 , EDB𝑋 ) ← Aura·Setup(1𝜆 )
5: return (EDB = (EDB𝑇 , EDB𝑋 ) , 𝜎 = (𝑘, 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧 , 𝑘 ′𝑥 , 𝑘 ′𝑧 , CT, 𝜎𝑇 , 𝜎𝑋 ) )

SDSSE-CQ-S·Update(𝑜𝑝, 𝑤, 𝑖𝑛𝑑, 𝜎 ; EDB)
Client:
1: 𝑐 ← CT[𝑤 ]
2: if 𝑐 =⊥ then
3: 𝑐 ← −1

4: end if
5: 𝑐 ← 𝑐 + 1, CT𝑇 [𝑤 ] ← 𝑐

6: 𝑘𝑤 ← 𝐹 (𝑘, 𝑤 ) , 𝑒 ← SE·Enc(𝑘𝑤 , 𝑖𝑛𝑑 )
7: 𝑥𝑖𝑛𝑑 ← 𝐹𝑝 (𝑘𝑖 , 𝑖𝑛𝑑 ) , 𝑧 ← 𝐹𝑝 (𝑘𝑧 , 𝑤 | |𝑐 ) , 𝑦 ← 𝑥𝑖𝑛𝑑 · 𝑧−1

8: 𝑤𝑥𝑡𝑎𝑔← 𝑔𝐹𝑝 (𝑘𝑥 ,𝑤) ·𝑥𝑖𝑛𝑑 ·𝐹𝑝 (𝑘
′
𝑥 ,𝑤 | |𝑐 )−1

Client↔ Server:
9: Run Aura·Update(𝑜𝑝, (𝑤, 𝑒 | |𝑦 | |𝑐 ), 𝜎𝑇 ; EDB𝑇 ) ⊲ This is a protocol

between the client and the server, where (𝑜𝑝, (𝑤, 𝑒 | |𝑦 | |𝑐 ), 𝜎𝑇 ) are the
inputs of the client and kept secret by the client.

10: Run Aura·Update(𝑜𝑝, (𝑤,𝑤𝑥𝑡𝑎𝑔 | |𝑐 ), 𝜎𝑋 ; EDB𝑋 )
SDSSE-CQ·Search(𝑞 = (𝑤1, 𝑤2, · · · , 𝑤𝑛 ), 𝜎 ; EDB)
Client:
1: 𝑐 ← CT[𝑤1 ], 𝑘𝑤

1
← 𝐹 (𝑘, 𝑤1 )

2: if 𝑐 =⊥ then
3: return ∅
4: end if
5: for 𝑖 = 0 to 𝑐 , 𝑗 = 2 to 𝑛 do
6: 𝑤𝑥𝑡𝑜𝑘𝑒𝑛[𝑖, 𝑗 ] ←
7: 𝑔𝐹𝑝 (𝑘𝑧 ,𝑤1

| |𝑖 ) ·𝐹𝑝 (𝑘𝑥 ,𝑤𝑗 ) ·𝐹𝑝 (𝑘′𝑧 ,𝑤1
)

8: end for
9: for 𝑗 = 2 to 𝑛 do
10: 𝑐 𝑗 ← CT[𝑤𝑗 ]
11: if 𝑐 𝑗 =⊥ then
12: return ∅
13: end if

14: for 𝑘 = 0 to 𝑐 𝑗 do
15: 𝑤𝑥𝑡 [ 𝑗 ] [𝑘 ] ← 𝐹𝑝 (𝑘 ′𝑥 , 𝑤𝑗 | |𝑘 ) · 𝐹𝑝 (𝑘 ′𝑧 , 𝑤1 )
16: end for
17: end for
18: Send (𝑤𝑥𝑡𝑜𝑘𝑒𝑛, 𝑤𝑥𝑡 ) to the server.

Client↔ Server:
19: Res𝑇 ← Aura·Search(𝑤1, 𝜎𝑇 ; EDB𝑇 )
20: if Res𝑇 =⊥ then
21: return ∅
22: end if
23: WXSet← empty set

24: for 𝑗 = 2 to 𝑛 do
25: Res𝑋 ← Aura·Search(𝑤𝑗 , 𝜎𝑋 ; EDB𝑋 )
26: if Res𝑋 =⊥ then
27: return ∅
28: end if
29: for each 𝑤𝑥𝑡𝑎𝑔 | |𝑐 𝑗 ∈ Res𝑋 do
30: WXSet←WXSet ∪ 𝑤𝑥𝑡𝑎𝑔𝑤𝑥𝑡 [ 𝑗 ] [𝑐 𝑗 ]
31: end for
32: end for
Server:
33: Res← empty set

34: for each (𝑒 | |𝑦 | |𝑐 ) ∈ Res𝑇 do
35: 𝑓 𝑙𝑎𝑔← 𝑡𝑟𝑢𝑒

36: for 𝑗 = 2 to 𝑛 do
37: if 𝑤𝑥𝑡𝑜𝑘𝑒𝑛[𝑐, 𝑗 ]𝑦 ∉ WXSet then
38: 𝑓 𝑙𝑎𝑔← 𝑓 𝑎𝑙𝑠𝑒

39: end if
40: end for
41: if 𝑓 𝑙𝑎𝑔 then
42: Res← Res ∪ 𝑒
43: end if
44: end for
45: Send Res to the client.

Client:
46: for each 𝑒 ∈ Res do
47: 𝑖𝑛𝑑 ← SE·Dec(𝑘𝑤

1
, 𝑒 )

48: end for

randomness 𝐹𝑝 (𝑘 ′𝑧,𝑤1) (with respect to the𝑤1) will be added

to the new “𝑥𝑡𝑎𝑔” (Alg. 2: line 29-31 of SDSSE-CQ-S·Search).
Then these tags can only be used to test the existence of the

rest keywords in a conjunctive query (𝑤2, · · · ,𝑤𝑛) corre-
sponding to the current least frequent keyword𝑤1. In other

words, they can not be used to test the existence of the rest

keywords with a different least frequent keyword. As a result,

SDSSE-CQ-S achieves Type-O− backward privacy.

Remark. Although the aforementioned designs are for a single user,

we note that they would be able to support multi-user scenarios

with revocation capabilities after slightly editing the protocols. Our

insight on the protocols is that the cornerstone of our work is to put

“TSet” and “XSet” in OXT into a Type-II forward/backward private

data structure and update query design based on the Type-II DSSE

scheme to ensure its forward/backward privacy. Therefore, when

accessing those new data structures, we still need to generate PRF

tokens as in the original OXT. The above observation indicates that

we can follow the prior work [37] to control the PRF generation

process. Specifically, we can let the data owner distribute the PRF

token as (𝑛, 𝜃 )-Shamir’s shares to 𝑛 clients. Then, each client should

obtain help from 𝜃 − 1 clients to issue a correct query. Moreover,

the data owner can revoke access with a revocation token that can

be used to refresh the database and unrevoked users’ shares. The

entire process can ensure the security of multi-user SSE design

unless the attacker can compromise 𝜃 − 1 clients.

4 Security Analysis
Theorem 4.1. (Adaptive forward and Type-O backward privacy

of SDSSE-CQ). Let Aura be forward and backward private, 𝐹, 𝐹𝑝 be
secure PRFs, DDH assumption holds over G, SE be an IND-CPA secure
symmetric encryption. We define LSDSSE-CQ = (L𝑈𝑝𝑑𝑎𝑡𝑒SDSSE-CQ,L𝑆𝑒𝑎𝑟𝑐ℎSDSSE-CQ),
where L𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝,𝑤, 𝑖𝑛𝑑) = 𝑜𝑝 and L𝑆𝑒𝑎𝑟𝑐ℎ (𝑞) = (sp(𝑞), Time(𝑞),
size(𝑤∗,𝑊 )). Then SDSSE-CQ is LSDSSE-CQ-adaptively forward and
Type-O backward private.
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Proof Sketch: We update the “TSet” and “XSet” by using Aura,
hence the forward privacy of SDSSE-CQ is guaranteed by the for-

ward privacy of Aura. The non-interactive deletion is achieved by

using the Aura, which is Type-II backward private. To support con-

junctive queries, SDSSE-CQ deploys the OXT data structure, which
inherits the leakage of the number of matching files for the pair of

{𝑤∗,𝑤𝑠}𝑤𝑠∈𝑊 (𝑤∗ is one of the previously issued least frequent key-
words and𝑊 denotes the collection of any subset of {𝑤2, · · · ,𝑤𝑛}).
Hence, SDSSE achieves Type-O backward privacy. Due to the page

limitation, we defer the proof to the appendix C.

□

Theorem 4.2. (Adaptive forward and Type-O− backward privacy
of SDSSE-CQ-S). Let Aura be forward and backward private, 𝐹, 𝐹𝑝 be
secure PRFs, DDH assumption holds over G, SE be an IND-CPA secure
symmetric encryption. We define LSDSSE-CQ = (L𝑈𝑝𝑑𝑎𝑡𝑒SDSSE-CQ, L𝑆𝑒𝑎𝑟𝑐ℎSDSSE-CQ),
whereL𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝,𝑤, 𝑖𝑛𝑑) = 𝑜𝑝 andL𝑆𝑒𝑎𝑟𝑐ℎ (𝑞) = (sp(𝑞), Time(𝑞), size(𝑤1,𝑊 )).
Then we have SDSSE-CQ-S is
LSDSSE-CQ-S-adaptively forward and Type-O− backward private.

Proof Sketch: As mentioned before, for SDSSE-CQ, the newly

searched 𝑥𝑡𝑎𝑔s still can be used by previously issued search queries

(with different least frequent keywords). To avoid this, we introduce

SDSSE-CQ-S, which achieves Type-O
−
. Compared with SDSSE-CQ,

SDSSE-CQ-S combines the “𝑥𝑡𝑎𝑔” with a random value correspond-

ing to the least frequent keyword𝑤1, which does not influence the

forward privacy. The new “𝑥𝑡𝑎𝑔” (termed as 𝑤𝑥𝑡𝑎𝑔) can only be

used to test the remaining keywords corresponding to the current

least frequent keyword 𝑤1. Then SDSSE-CQ-S achieves Type-O
−

backward privacy. Due to the page limitation, we defer the proof

to the appendix C.

□

5 Experimental Evaluation
In this section, we give the experimental evaluation of our proposed

schemes and the state-of-the-art ODXT. In addition, we compare our

construction with the matrix-based construction IM-DSSE [32].

5.1 Implementation and Settings
The proposed schemes and ODXT are implemented with C++, and we

use Aura [54] to construct our schemes to support non-interactive

deletion. For Aura, we use the symmetric one-way technique of

FB-DSSE from [62] as the underlying forward private DSSE
11
. Simi-

lar to [54], the parameters for the bloom filter used in Aura are set

as follows: false positive (10
−4
) and the number of hash functions

(5). In addition, the client knows the (𝑤, 𝑖𝑛𝑑) pair, so we still use

this value to generate the tag for compressed symmetric revocable

encryption (CSRE, we refer readers to [54] for details). We leverage

the group G𝑇 12
of PBC with the input 𝑎.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 to enable the

elliptical curve-based cryptographic operations (e.g., group multi-

plication and exponentiation) involved in conjunctive queries.

11
Note that ODXT deploys the technique of MITRA [12] to achieve forward privacy.

However, for a search query, the client needs to generate many tokens for the list of

files matching a keyword 𝑤 and send them to the server.

12
We do not use the functions related to pairing, but the operations in G𝑇 (e.g.,

exponentiation, inversion in the exponent), which are quite efficient in comparison

with other groups.

Table 2: The query delay of conjunctive queries with two
keywords (𝑤1 ∧𝑤2) under ODXT (|𝑤2 | = 10

7)

|𝑤1 | 𝑑 = 10 𝑑 = 10
2 𝑑 = 10

3 𝑑 = 10
4 𝑑 = 10

5

Delay (ms) 0.1 1 10 100 1000

Table 3: Average addition and deletion time

Scheme SDSSE-CQ SDSSE-CQ-S ODXT IM-DSSE

Per addition (ms) 0.9 0.9 0.7 0.6

Per deletion (ms) 0.03 0.03 0.7 0.06

We use a testbed with Intel Xeon 2.60GHz and 128 GM RAM

to evaluate and compare our design with IM-DSSE and ODXT. For
the IM-DSSE, we pick the IM-DSSEI+II variant for comparison as

it is backward-private and has all optimizations presented in [32].

Since IM-DSSE only supports single-keyword queries, we execute

its source code in the same testbed and compare its performance

with our design over the single-keyword query setting. On the other

hand, the source code of ODXT is not publicly available. Hence, we

choose to compare our result with the result reported in [49]. Note

that the test machine in [49] is the same as ours, but their imple-

mentation leverages the multi-threading technology. As shown in

Table 2, ODXT only takes 1 s to handle the query with |𝑤1 | = 10
5
,

which is 10 − 20× faster than SDSSE-CQ.

5.2 Evaluation Results
Update Time.We respectively run the addition and deletion of our

proposed schemes and ODXT 10, 000 times and measure the average

running time. The results are presented in Table 3. From Table 3,

it can be seen that the addition time of our proposed schemes

is tiny (0.9 ms), while it is comparable to the addition time of

ODXT (0.7 ms). Although our schemes need to generate the CSRE

ciphertexts (see [54] for details) for both “TSet” and “XSet”, we

use preprocessed pairings to amortize this cost to make it almost

the same as in ODXT. For deletion, SDSSE-CQ and SDSSE-CQ-S only

need 0.01 ms because they are only required to insert the tag of

deleted keyword/identifier pair into a bloom filter, while ODXT uses

“lazy deletion”, which consumes the same amount of running time

as the addition. Note that, although our schemes consume slightly

more addition time than ODXT, our schemes achieve better security

and incur less deletion time.

On the other hand, IM-DSSE has a similar update cost compared

to our proposed schemes, although the theoretical complexity of

IM-DSSE is higher. This is because IM-DSSE needs to compute more

it relies on a stream cipher fashion to use an AES-CTR to mask

the matrix bit-wise instead of encrypting each element in the ma-

trix. Furthermore, the implementation is optimized with parallel

processing, mixing the computation process of AES-CTR and the

communication process of accessing the server-side matrix to re-

duce runtime cost [32].
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Figure 3: Search time of SDSSE-CQ, SDSSE-CQ-S and ODXT with
constant |𝑤1 |
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Figure 4: Search time of SDSSE-CQ, SDSSE-CQ-S and ODXT with
constant |𝑤1 | and 10% deletion

Search Time.We follow the same setting in [49] to evaluate the

schemes. In particular, we execute two types of two-keyword con-

junctive queries (𝑤1,𝑤2) for the schemes. In the first query type,

𝑤1 has a fixed number of corresponding files (i.e., 10), while the

number of files matching𝑤2 varies from 10 to 100, 000. Correspond-

ingly, the second query type has a fixed number of files (i.e., 10)

containing𝑤2, but the number of files matching keyword𝑤1 varies

from 10 to 100, 000.

The query delay of the first type queries is presented in Fig. 3. It

shows that the query can be processed in 0.005 to 20 s. Also, we ob-

serve that the query delay increases with the increases of |𝑤2 |. This
indicates the impact of SRE on our protocol. With the increases of

|𝑤2 |, our protocols should retrieve more tuples to recover the 𝑥𝑡𝑎𝑔s

in the “XSet”XSet from the SRE ciphertext. The above operations
incur extra costs upon the original OXT protocol. When introducing

10% deletions in the database, more delays can be observed because

extra efforts will be made to search the correct keys for decryptions

of SRE ciphertexts (see Fig. 4). On the other hand, the search time

of ODXT is constant and faster than our schemes because it has
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Figure 6: Search time of SDSSE-CQ, SDSSE-CQ-S and ODXT with
constant |𝑤2 | and 10% deletion

a fixed (small) amount of identifiers (i.e., 10) from “TSet” to test.

Nonetheless, although the search time of our schemes is longer

than the search time of ODXT when |𝑤2 | is increased, our schemes

achieve better security. Compared with ODXT, our schemes achieve

more comprehensive forward privacy (both “TSet” (e.g., 𝑤1) and

“XSet” (e.g., 𝑤2) are forward private, while ODXT only guarantees

the forward privacy of “TSet”) at the expense of increased search

time (i.e., more security operations in “XSet”).

A similar trend can be found in Fig. 5 and 6, which demonstrates

the search time of the second type of search queries. The difference

is that the search time of all schemes is similar and increases with

the increase of |𝑤1 |. This further demonstrates that the influence

of the underlying Aura is dominant in all schemes. In particular,

our two test cases retrieved the same amount of items from “TSet”

and “XSet”, which takes a fixed time to access the underlying EDB.

Besides, since we use preprocessed pairing in PBC, the cost of group

operations (e.g., exponentiations) is amortized by the preprocessing

operations of the PBC library.
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When considering the single keyword queries, both of our pro-

posed protocols will have the same process as the Type-II DSSE

scheme Aura we used. As additional operations introduced by OXT
are not required, our protocols are much faster when perform-

ing single keyword queries (See Fig. 7). Compared to IM-DSSE,
although our protocols have a better asymptotic complexity and

are symmetric-only for single keyword queries, IM-DSSE is still

faster since it is optimized to have more bit operations. We also ob-

serve that IM-DSSE shows a constant search time when the number

of files ≤ 1000. This is because IM-DSSE encrypts multiple matrix

entries in one cipher block, enabling the client to fetch multiple

entries at the same time. We believe this will be a potential way to

improve our design in future work.

Update Communication Cost.Next, we compare the update com-

munication cost of our proposed schemes with ODXT. We set the key

size of the maps, the identifier size, and the counter size to 4 bytes,

and the element size in the group Z𝑟 and G𝑇 is 20 and 128 bytes,

respectively. In addition, we set the operation size of ODXT to 1 byte.
As shown in Table 4, the communication cost of SDSSE-CQ-S is

slightly larger than the communication cost of SDSSE-CQ, because
SDSSE-CQ-S needs to store an additional counter for the “XSet”.

Thanks to Aura, the deletion of our schemes only involves opera-

tions on the client side without the interaction with the server (i.e.,

non-interaction), it does not incur any communication cost. For

ODXT, it has the same communication cost (156 bytes) for both the

addition and deletion process, which is slightly smaller than the

communication cost of our schemes.

IM-DSSE follows a different update logic, which makes its update

communication cost depend on the maximum number of keywords

that can be supported by the encrypted database. As a result, in

our setting with two keywords, IM-DSSE has a smaller communi-

cation cost (only 65 B) for both insertion and deletion. However,

with the increasing keyword set size, the update communication

cost of IM-DSSE will increase significantly. For instance, with 10

keywords, the communication cost will increase to 2.5 KB. For our

construction, the insertion communication cost will be constant if

Table 4: Update communication cost of each
keyword/identifier pair

Scheme SDSSE-CQ SDSSE-CQ-S ODXT IM-DSSE

Addition (Byte) 172 176 156 65

Deletion (Byte) 0 0 156 65

Table 5: Search communication cost for two-keyword
conjunctive queries

Scheme SDSSE-CQ SDSSE-CQ-S ODXT

1000 0.13 MB 0.15 MB 0.13 MB

10000 1.23 MB 1.42 MB 1.26 MB

100000 12.21 MB 14.12 MB 12.59 MB

we fix the number of hashes, and the deletion communication cost

is always 0 as our protocols are non-interactive.

Search Communication Cost. Table 5 shows the search commu-

nication cost of our proposed schemes and ODXT. The search query

is a two-keyword conjunctive query (𝑤1,𝑤2). The dataset consists

of different numbers of files (i.e., 1000, 10, 000, and 100, 000), where

each file contains keywords𝑤1 and𝑤2. In addition, we set the key

size of the keyed hash functions and AES encryption to 16 bytes.

From Table 5, we can see that the search communication cost of all

schemes is similar, and it increases with the increase of the num-

ber of files. The search communication cost of SDSSE-CQ is slightly

smaller than the cost of ODXT. This is due to the fact that ODXT needs
to generate an address for each file containing the keyword𝑤1. The

search communication cost of SDSSE-CQ-S is slightly larger than

ODXT. This is due to the fact that SDSSE-CQ-S needs to generate

additional tokens𝑤𝑥𝑡 for files containing keyword𝑤2. Note that

our schemes achieve better security than ODXT.
We further compare our proposed designs with IM-DSSE. Since

we only make comparisons under the single keyword setting, the

runtime cost of our protocols will be exactly the same as the un-

derlying Type-II DSSE scheme, i.e., Aura [54]. As shown in Table 6,

if there is no deletion with our design, it will have a tiny constant

communication cost (32 B) to send the keyword trapdoor and root

key for the GGM tree, which is much smaller than that in IM-DSSE.
On the other hand, if there is a 10% deletion, our design should

send the minimal coverage set of the GGM tree to the server, which

incurs 37 KB to 362 KB communication costs. We can see that this

cost is noticeably larger than IM-DSSE, but is still small in a modern

network (e.g., gigabit network). Besides, the asymptotic complex-

ity of our design is better than IM-DSSE (logarithm v.s. linear to

the number of files), as we can observe the communication cost

difference is decreasing with a larger database.

6 Conclusion
In this paper, we have proposed SDSSE-CQ and SDSSE-CQ-S based
on the framework of OXT [9]. In addition, we have given two dif-

ferent levels of backward privacy for conjunctive queries (named
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Table 6: Search communication cost for single-keyword
queries

Scheme

SDSSE-CQ/SDSSE-CQ-S

(No deletion)

SDSSE-CQ/SDSSE-CQ-S

(10% deletion)

IM-DSSE

1000 32 B 37 KB 0.13 KB

10000 32 B 205 KB 2 KB

100000 32 B 362 KB 16 KB

Type-O and Type-O
−
), where Type-O is less secure than Type-O

−
.

Our first scheme (SDSSE-CQ) achieves forward and Type-O back-

ward privacy, and our second scheme (SDSSE-CQ-S) can achieve a

stronger level of backward privacy (Type-O
−
). The security model

of our schemes is more comprehensive for conjunctive queries than

the ODXT. Moreover, our schemes do not need to send the deleted

files to the server, which reduces the interactions.
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A Aura
In [54], Sun et al. introduced the non-interactive DSSE scheme Aura.
Here, we recall the concrete Aura construction from [54] and refer

readers to [54] for more details.

Aura is based on the cryptographic primitive named Compressed

Symmetric Revocable Encryption (CSRE), which is also given in [54].
We now present a short description on CSRE, and then show how

to construct Aura with CSRE: Let a (𝑏, ℎ, 𝑛) bloom filter [3] be BF =

(BF·Gen, BF·Upd, BF·Check), and a multi-puncturable PRF be [54]

MF = (MF·Setup, MF·Punc, MF·Eval). A Compressed Symmetric Re-

vocable Encryption CSRE is described below.

• (𝑠𝑘,H, 𝐵) ← CSRE·KGen(1𝜆, 𝑏, ℎ): On input a security pa-

rameter 𝜆, and two integers 𝑏, ℎ, it runs BF·Gen(𝑏, ℎ) to get
(H, 𝐵), where H = {𝐻 𝑗 } 𝑗∈ℎ and 𝐵 = 0

𝑏
. Then it generates a

secret key 𝑠𝑘 by running MF·Setup(1𝜆).
• (𝑐𝑡, 𝑡𝑎𝑔) ← CSRE·Enc(𝑠𝑘,H,𝑚, 𝑡𝑎𝑔): On input a secret key

𝑠𝑘 , a set of hash functions H, and a message𝑚 with a tag

𝑡𝑎𝑔, it generates 𝑖 𝑗 ← 𝐻 𝑗 (𝑡) ∈ [𝑏], 𝑠𝑘𝑖 𝑗 ← 𝐹 (𝑠𝑘, 𝑖 𝑗 ), and
ciphertext 𝑐𝑡 𝑗 ← SE·Enc(𝑠𝑘𝑖 𝑗 ,𝑚), where 𝑗 ∈ [ℎ]. Then, it
outputs 𝑐𝑡 = (𝑐𝑡1, 𝑐𝑡2, · · · , 𝑐𝑡ℎ) together with the tag 𝑡𝑎𝑔.

• 𝐵𝑅 ← CSRE·Comp(H, 𝐵, 𝑡𝑎𝑔): On input a set of hash functions
H, a bit string 𝐵, a tag 𝑡𝑎𝑔, it outputs a revoked bit string 𝐵𝑅
by running BF·Upd(H, 𝐵, 𝑡𝑎𝑔). In particular, the entries of 𝐵

indexed by {𝐻 𝑗 (𝑡𝑎𝑔)} 𝑗∈[ℎ] are set to 1.

• 𝑠𝑘𝑅 ← CSRE·cKRev(𝑠𝑘,H, 𝐵𝑅): On input a secret key 𝑠𝑘 , a set
of hash functionsH, and a revoked bit string𝐵𝑅 , it first finds a

set of indices 𝐼 = {𝑖′ ∈ [𝑏]} from 𝐵𝑅 , where 𝐵𝑅 [𝑖′] = 1. Then

it computes the 𝑠𝑘𝐼 by running MF·Punc(𝑠𝑘, 𝐼 ) and outputs

𝑠𝑘𝑅 = (𝑠𝑘𝐼 ,H, 𝐵𝑅).
• 𝑚/⊥← CSRE·Dec(𝑠𝑘𝑅, 𝑐𝑡, 𝑡𝑎𝑔): On input a revoked secret key
𝑠𝑘𝑅 = (𝑠𝑘𝐼 ,H, 𝐵𝑅) and a ciphertext 𝑐𝑡 = (𝑐𝑡1, 𝑐𝑡2, · · · , 𝑐𝑡ℎ)
with a tag 𝑡𝑎𝑔, it first checks if BF·Check(H, 𝐵𝑅, 𝑡𝑎𝑔) = 1.

If true, it outputs ⊥. Otherwise, it finds an index 𝑖∗ ∈ [𝑏],
where 𝐵𝑅 [𝑖∗] = 0 and generates 𝑠𝑘𝑖∗ ← MF·Eval(𝑠𝑘𝐼 , 𝑖∗).
Finally, it gets the message𝑚 ← SE·Dec(𝑠𝑘𝑖∗, 𝑐𝑡𝑖∗).

With CSRE and a forward secure DSSE scheme Σ, we can con-

struct Aura as in Algorithm 3.

B OXT
OXT is an SSE scheme that supports conjunctive keyword queries.

In this section, we present a brief overview to help understand the

scheme. As mentioned, OXT relies on two data structures, including

a “TSet” that keeps the mapping between the keyword and a list

of files that contain the keyword, and a “XSet” that contains the

cryptographic hash values generated with all existing keyword/file

ID pairs. Also, it follows a two-step conjunctive query process,

where the first step searches obtain matched files from “TSet” with
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Algorithm 3 Aura

Setup(1𝜆 )
1: (EDBadd, 𝐾add, 𝜎add)← Σadd.Setup(1𝜆 )

2: 𝐾𝑠 , 𝐾𝑡
$←− {0, 1}𝜆 , EDB𝑐𝑎𝑐ℎ𝑒 ← ∅, MSK, C, D←⊥

3: Let 𝐾 = (𝐾add, 𝐾𝑠 , 𝐾𝑡 )

4: return
(
𝜎 = (𝜎add, MSK, C, D), EDB = (EDBadd, EDB𝑐𝑎𝑐ℎ𝑒 )

)
Update(op, (𝑤, 𝑖𝑛𝑑 ), 𝜎 ; EDB)

Client:
1: 𝑚𝑠𝑘 ← MSK[𝑤 ], 𝐷 ← D[𝑤 ], 𝑖 ← C[𝑤 ]
2: if𝑚𝑠𝑘 =⊥ then
3: 𝑚𝑠𝑘 ← SRE.KGen(1𝜆 ) , where𝑚𝑠𝑘 = (𝑠𝑘, 𝐷 )
4: MSK[𝑤 ] ←𝑚𝑠𝑘, D[𝑤 ] ← 𝐷

5: 𝑖 ← 0, C[𝑤 ] ← 𝑖

6: end if
7: Compute 𝑡 ← 𝐹𝐾𝑡 (𝑤, 𝑖𝑛𝑑 )
8: if op = add then
9: 𝑐𝑡 ← SRE.Enc(𝑚𝑠𝑘, 𝑖𝑛𝑑, 𝑡 )
10: Run Σadd .Update(𝐾add, add, 𝑤 | |𝑖, (𝑐𝑡, 𝑡 ), 𝜎add;EDBadd )
11: else (i.e., op = del)
12: 𝐷 ← SRE.Comp(𝐷, 𝑡 ) , D[𝑤 ] ← 𝐷

13: end if
Search(𝑤,𝜎 ; EDB)

Client:
1: 𝑖 ← C[𝑤 ], (𝑠𝑘, 𝐷 ) ← MSK[𝑤 ], 𝐷 ← D[𝑤 ]

2: if 𝑖 =⊥ then
3: return ∅
4: end if
5: Compute 𝑠𝑘𝑅 ← SRE.cKRev(𝑠𝑘, 𝐷 ) ⊲ 𝐷 is from D[w]
6: Send (𝑠𝑘𝑅, 𝐷 ) and 𝑡𝑘𝑛 = 𝐹 (𝐾𝑠 , 𝑤 ) to server

7: 𝑚𝑠𝑘 = (𝑠𝑘, 𝐷 ) ← SRE.KGen(1𝜆 ) ⊲ Update𝑚𝑠𝑘 for 𝑤 after search

8: MSK[𝑤 ] ←𝑚𝑠𝑘, D[𝑤 ] ← 𝐷 , C[𝑤 ] ← 𝑖 + 1

Client & Server:
9: Run Σadd .Search(𝐾add, 𝑤 | |𝑖, 𝜎add; EDBadd ) , and server gets a list

( (𝑐𝑡1, 𝑡1 ), (𝑐𝑡2, 𝑡2 ), . . . , (𝑐𝑡ℓ , 𝑡ℓ ) ) of ciphertext and tag pairs

Server:
1: Server uses (𝑠𝑘𝑅, 𝐷 ) to decrypt all ciphertexts { (𝑐𝑡𝑖 , 𝑡𝑖 ) } as follows
2: for 𝑖 ∈ [1, ℓ ] do
3: 𝑖𝑛𝑑𝑖 = SRE.Dec( (𝑠𝑘𝑅, 𝐷 ), 𝑐𝑡𝑖 , 𝑡𝑖 )
4: if 𝑖𝑛𝑑𝑖 ≠ ⊥ then
5: NewInd← NewInd ∪ { (𝑖𝑛𝑑𝑖 , 𝑡𝑖 ) }
6: else
7: DelInd← DelInd ∪ {𝑡𝑖 }
8: end if
9: end for
10: OldInd← EDB𝑐𝑎𝑐ℎ𝑒 [𝑡𝑘𝑛]
11: OldInd← OldInd\{ (𝑖𝑛𝑑, 𝑡 ) : ∃ 𝑡𝑖 ∈ DelInd s.t. 𝑡 = 𝑡𝑖 }
12: Res← NewInd ∪ OldInd, EDB𝑐𝑎𝑐ℎ𝑒 [𝑡𝑘𝑛] ← Res
13: return Res

a keyword trapdoor. The second step generates an “xtag” with each

pair of the file IDs retrieved from the first stage and the remaining

keywords in a conjunctive query, and then tests whether the “xtag”

is in the “XSet”. If the “xtag” is in the “XSet”, it means the file

retrieved from the first stage also contains other keywords, thus will

be included in the conjunctive query result. To ensure an efficient

check on “XSet”, a practical solution is to use a Bloom filter to store

cryptographic hash values and enable efficient membership testing.

The detailed algorithm in given in Algorithm 4. Note that OXT
is a static SSE scheme, which requires the database input during

the Setup phase, and there is no Update algorithm for the original

OXT scheme. Nonetheless, new privacy issues (i.e., forward and

backward privacy) should be considered when extending OXT to

support update functionality.

C Proof of Theorems
Theorem 4.1. (Adaptive forward and Type-O backward privacy
of SDSSE-CQ). Let Aura be forward and backward private, 𝐹, 𝐹𝑝 be
secure PRFs, DDH assumption holds over G, SE be an IND-CPA secure
symmetric encryption. We define LSDSSE-CQ = (L𝑈𝑝𝑑𝑎𝑡𝑒SDSSE-CQ,L𝑆𝑒𝑎𝑟𝑐ℎSDSSE-CQ),
where L𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝,𝑤, 𝑖𝑛𝑑) = 𝑜𝑝 and L𝑆𝑒𝑎𝑟𝑐ℎ (𝑞) = (sp(𝑞), Time(𝑞),
size(𝑤∗,𝑊 )). Then SDSSE-CQ is LSDSSE-CQ-adaptively forward and
Type-O backward private.

Proof. The proof consists of a series of games from REAL to

IDEAL, and we argue that the adversary A cannot distinguish be-

tween any two consecutive games.

Game 𝐺0: The game is exactly the same as the original DSSE

scheme (see Algorithm 1). Then we have

Pr[REALSDSSE-CQA (𝜆) = 1] = Pr[𝐺0 = 1] .

Game 𝐺1: In this game we replace the keyed PRFs 𝐹 (resp., 𝐹𝑝

with 𝑘𝑥 , 𝑘𝑖 , 𝑘𝑧 ) with a truly random function
13
. For a new keyword

𝑤 (resp., 𝑤 , 𝑖𝑛𝑑 , 𝑤 | |𝑐), they choose new values and store them in

table Key (resp., G𝑥 , G𝑖 , G𝑧 ). For a queried keyword, we retrieve the

values from the corresponding tables. Then we can establish an

adversary B1 to distinguish the keyed PRF from a truly random

function if an adversaryA can distinguish𝐺1 from𝐺0. So we have

Pr[𝐺0 = 1] − Pr[𝐺1 = 1] ≤ 4Advprf
𝐹,B1

(𝜆).

Game𝐺2: In this game, similar to [9], we choose a random value

𝑟 from𝑍𝑝 and generate the corresponding 𝑥𝑡𝑎𝑔← 𝑔𝑟 for the “XSet”.

In addition, we store the values in the set XTag. If an adversary A
can distinguish 𝐺2 from 𝐺1, then we can build an adversary B2 to

break the DDH assumption. So

Pr[𝐺1 = 1] − Pr[𝐺2 = 1] ≤ AdvDDHB2

(𝜆).
Game𝐺3: This game is similar to𝐺2 except that we encrypt a

constant 0 by using the symmetric encryption SE. If an adversary

A can distinguish 𝐺3 from 𝐺2, then we can establish an adversary

B3 to break the IND-CPA security of the standard symmetric key

encryption SE. So

Pr[𝐺2 = 1] − Pr[𝐺3 = 1] ≤ AdvIND-CPASE,B3

(𝜆) .
Game 𝐺4: In this game, we can use the leakage of Time(𝑞) and

size(𝑤∗,𝑊 ) to choose and set the random values for 𝑥𝑡𝑜𝑘𝑒𝑛s prop-

erly. This has no influence to the distribution of 𝐺4, Then

Pr[𝐺3 = 1] = Pr[𝐺4 = 1] .
Game𝐺5: For the update and search of Aura [54], we can use the

same technique to simulate the corresponding values by using the

leakages defined inLSDSSE-CQ. If the adversaryA can distinguish𝐺5

13
We replaced four keyed PRFs.
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Algorithm 4 OXT

Setup(1𝜆, DB)
1: Initialise TSet𝑇 ← ∅ indexed by keywords W.

2: 𝐾𝑆 , 𝐾𝐼 , 𝐾𝑍 , 𝐾𝑋
$←− {0, 1}𝜆 .

3: Run BF·Gen(𝑚,ℎ) to get (H, 𝐵) , where H = {𝐻 𝑗 } 𝑗 ∈ℎ and 𝐵 = 0
𝑚

to

keep XSet

4: for 𝑤 ∈ W do
5: Initialise t← {}.
6: Compute 𝐾𝑒 ← 𝐹 (𝐾𝑆 , 𝑤 ) .
7: for 𝑖𝑛𝑑 ∈ DB(𝑤 ) do
8: Set a counter 𝑐 ← 1.

9: Compute 𝑥𝑖𝑑 ← 𝐹 (𝐾𝐼 , 𝑖𝑛𝑑 ) .
10: Compute 𝑧𝑤 ← 𝐹 (𝐾𝑍 , 𝑤 | |𝑐 ) ; 𝑦𝑐 ← 𝑥𝑖𝑑 · 𝑧−1

𝑤 .

11: Compute 𝑒𝑐 ← Sym.Enc(𝐾𝑒 , 𝑖𝑛𝑑 ) .
12: Append (𝑦𝑐 , 𝑒𝑐 ) to t and set 𝑐 ← 𝑐 + 1.

13: end for
14: Set T[𝑤 ] ← t.
15: end for
16: for 𝑤 ∈ W do
17: for 𝑖𝑛𝑑 ∈ DB(𝑤 ) do
18: Compute 𝑥𝑖𝑑 ← 𝐹𝑝 (𝐾𝐼 , 𝑖𝑛𝑑 ) .
19: Compute 𝑥𝑡𝑎𝑔← 𝑔𝐹𝑝 (𝐾𝑋 ,𝑤) ·𝑥𝑖𝑑
20: Run BF·Upd(H, 𝐵, 𝑥𝑡𝑎𝑔)
21: end for
22: end for
23: return H,𝑚𝑘 = (𝐾𝑆 , 𝐾𝐼 , 𝐾𝑍 , 𝐾𝑋 , 𝐾𝑇 ) , EDB = (𝑇, 𝐵) .
Search(H,𝑚𝑘,𝑞 = (𝑤1 ∧ · · · ∧ 𝑤𝑛 ), EDB)
Client & Server:
1: Client computes 𝑠𝑡𝑎𝑔← 𝐹 (𝐾𝑇 , 𝑤1 ) and sends 𝑠𝑡𝑎𝑔 to the server.

2: Server Gets𝑇 from EDB.
3: Server retrieves 𝑡 ← 𝑇 [𝑠𝑡𝑎𝑔], sends |𝑡 | to client, and starts accepting

𝑥𝑡𝑜𝑘𝑒𝑛s computed by client as follows:

4: for 𝑐 = 1 : |t | do
5: Client computes 𝜂𝑤

1
← 𝐹𝑝 (𝐾𝑍 , 𝑤1 | |𝑐 ) .

6: for ℓ = 2 : 𝑛 do
7: Client computes 𝑥𝑡𝑜𝑘𝑒𝑛[𝑐, ℓ ] ← 𝑔𝜂𝑤1

·𝐹𝑝 (𝐾𝑋 ,𝑤ℓ ) .
8: end for
9: Client sets 𝑥𝑡𝑜𝑘𝑒𝑛[𝑐 ] ← (𝑥𝑡𝑜𝑘𝑒𝑛[𝑐, 2], . . . , 𝑥𝑡𝑜𝑘𝑒𝑛[𝑐, 𝑛] ) .
10: Client sends 𝑥𝑡𝑜𝑘𝑒𝑛[𝑐 ] to server.

11: end for
12: Gets 𝐵 from EDB.
13: Server initialises E ← {}.
14: for 𝑐 = 1 : |𝑡 | do
15: Server recovers (𝑦𝑐 , 𝑒𝑐 ) from the 𝑐-th component of t.
16: for ℓ = 2 : 𝑛 do
17: Server computes 𝑥𝑡𝑎𝑔 = 𝑥𝑡𝑜𝑘𝑒𝑛[𝑐, ℓ ]𝑦𝑐 .
18: if BF·Check(H, 𝐵, 𝑥𝑡𝑎𝑔) = 0 then
19: break

20: end if
21: Add 𝑒𝑐 into E
22: end for
23: end for
24: Server sends E to client.

25: Client computes 𝐾𝑒 ← 𝐹 (𝐾𝑆 , 𝑤1 ) ,
26: Client computes 𝑖𝑛𝑑𝑐 ← Sym.Dec(𝐾𝑒 , 𝑒𝑐 ) , and adds 𝑖𝑛𝑑𝑐 to Res for

all 𝑒𝑐 ∈ E.
27: return Res

from 𝐺4, then we can build an adversary B4 to break the forward

and backward privacy of Aura. Therefore

Pr[𝐺4 = 1] − Pr[𝐺5 = 1] ≤ AdvFBAura,B4

(𝜆) .

Simulator: sp(𝑞) =𝑚𝑖𝑛{sp(𝑤)}𝑤∈𝑞 can be used to simulate the

search queries. Moreover, the construction of encrypted database

EDB can be properly simulated by using the leakage of Time(𝑞)
and size(𝑤1 ∧𝑊 ) as the input of SDSSE-CQ·Search. Then we can

find that 𝐺5 can be simulated by the simulator S with the defined

leakages. Then we have

Pr[𝐺5 = 1] = Pr[IDEALSDSSE-CQA,S = 1] .

Eventually, any adversary A attacking SDSSE-CQ is

Pr[REALSDSSE-CQA (𝜆) = 1] − Pr[IDEALSDSSE-CQA,S = 1] ≤

4Advprf
𝐹,B1

(𝜆) + AdvDDHB2

(𝜆) + AdvIND-CPASE,B3

(𝜆) + AdvFBAura,B4

(𝜆) .

□

Theorem 4.2. (Adaptive forward and Type-O− backward privacy
of SDSSE-CQ-S). Let Aura be forward and backward private, 𝐹, 𝐹𝑝 be
secure PRFs, DDH assumption holds over G, SE be an IND-CPA secure
symmetric encryption. We define LSDSSE-CQ = (L𝑈𝑝𝑑𝑎𝑡𝑒SDSSE-CQ, L𝑆𝑒𝑎𝑟𝑐ℎSDSSE-CQ),
whereL𝑈𝑝𝑑𝑎𝑡𝑒 (𝑜𝑝,𝑤, 𝑖𝑛𝑑) = 𝑜𝑝 andL𝑆𝑒𝑎𝑟𝑐ℎ (𝑞) = (sp(𝑞), Time(𝑞), size(𝑤1,𝑊 )).
Then we have SDSSE-CQ-S is
LSDSSE-CQ-S-adaptively forward and Type-O− backward private.

Proof. Similar to the proof of Theorem 1, we can set a series of

games from REALSDSSE-CQ-SA (𝜆) to IDEALSDSSE-CQ-SA,S (𝜆) and proof that

every two consecutive games are indistinguishable.

The difference is that, in 𝐺1, we need to additionally use two

truly random functions to replace 𝐹𝑝 with two new keys 𝑘 ′𝑥 , 𝑘
′
𝑧 .

Then we can simulate the𝑤𝑥𝑡𝑎𝑔,𝑤𝑥𝑡𝑜𝑘𝑒𝑛, and𝑤𝑥𝑡14. As a result,

we can conclude that the advantage of any adversary A attacking

SDSSE-CQ-S is

Pr[REALSDSSE-CQ-SA (𝜆) = 1] − Pr[IDEALSDSSE-CQ-SA,S = 1] ≤

6Advprf
𝐹,B1

(𝜆) + AdvDDHB2

(𝜆) + AdvIND-CPASE,B3

(𝜆) + AdvFBAura,B4

(𝜆) .
□

Remark. The above proofs of the theorems have shown that our pro-

posed schemes are secure under the Real-Ideal world (i.e., proved

Definition 2.1), and thus are LSDSSE-CQ (or LSDSSE-CQ-S)-adaptively

secure schemes. In addition, forward privacy requires the update

not to leak keyword information (see Definition 2.2). In the security

proofs of the above theorems, the update does not leak this infor-

mation, which implies forward privacy (i.e., proved Definition 2.2).

14
We replaced six keyed PRFs.
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