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Abstract
Federated Learning (FL) enables the distributed training of a model

across multiple data owners under the orchestration of a central

server responsible for aggregating the models generated by the

different clients. However, the original approach of FL has signif-

icant shortcomings related to privacy and fairness requirements.

Specifically, the observation of the model updates may lead to pri-

vacy issues, such as membership inference attacks, while the use

of imbalanced local datasets can introduce or amplify classification

biases, especially for minority groups. In this work, we show that

these biases can be exploited to increase the likelihood of privacy

attacks against these groups. To do so, we propose a novel inference

attack exploiting the knowledge of group fairness metrics during

the training of the global model. Then to thwart this attack, we

define a fairness-aware encrypted-domain aggregation algorithm

that is differentially-private by design thanks to the approximate

precision loss of the threshold multi-key CKKS homomorphic en-

cryption scheme. Finally, we demonstrate the good performance of

our proposal both in terms of fairness and privacy through experi-

ments conducted over three real datasets.

Keywords
Federated Learning, Fairness, Fully Homomorphic Encryption, Pri-

vacy Attacks, Differential Privacy

1 Introduction
Machine Learning (ML) based systems are becoming pervasive in

our connected society and have already led to countless practical

applications, (e.g., better health diagnosis or improved cyber-threat

management). However, these systems are vulnerable to various

privacy attacks [26]. Nonetheless, with growing public awareness
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and new legislations such as the GDPR
1
, CCPA

2
or Privacy Act

3
,

significant efforts have been dedicated to address these privacy

issues. In particular, collaborative approaches such as Federated

Learning (FL) propose to tackle these privacy issues by making a set

of clients, a.k.a. workers, train the same model without explicitly

sharing their sensitive data. Each client locally trains the model on

his private data. Then, all clients share their model updates with

an aggregation server that creates the common model.

Even though clients’ data are never shared directly with the

server, they are still vulnerable to privacy attacks against the learned

aggregated model [26, 45] as well as intermediary updates [69],

while suffering from increased biases due to the imbalanced and

non-diverse distribution of data.

Recent studies have also confirmed that privacy attacks are not

uniform across groups, showing in particular around 20% more

success for attacks against minority groups [14, 65].

The fairness-privacy duality has been explored in recent works

in centralized learning [3, 14, 63]. However, reconciling these two

ethical issues in decentralized training is even more challenging. In

this work, we propose to study these two notions in FL settings, in

which clients are often tasked with uploading extra information,

along with the updated model, to enhance global group fairness.

Our work aims to demonstrate the privacy-sensitive nature of

group-fairness local measures through an enhanced membership

inference, emphasising also that existing works tend to enhance

group fairness in FL at the expense of privacy. Furthermore, we

show that approximate homomorphic encryption (i.e., CKKS) can
inherently provide Differential Privacy (DP) at no extra cost when

evaluating a fairness-aware aggregation circuit over encrypted data.

To the best of our knowledge, this is the first work investigating

the relationship between CKKS RLWE (Ring Learning With Errors)

encryption noise and DP in the context of FL aggregation. The

contributions of this paper can be summarized as follows:

• We propose a membership inference attack for FL exploiting

the group fairness information
4
. Our proposed attack is based

on synthetically generated data through Generative Adversarial

1
https://gdpr-info.eu/

2
https://oag.ca.gov/privacy/ccpa

3
https://www.legislation.gov.au/Series/C2004A03712

4
Our attack code is available at https://github.com/Akram275/PETs_2024_99.git
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Networks (GAN) for training shadow models [69, 84]. More pre-

cisely, the proposed GAN relies on two discriminators to impose

dual constraints on the generated samples: closeness to real data

distribution and fairness. The fairness constraint, weighted by

a parameter 𝜆, enables our shadow models to closely align with

the fairness level of the target model. We show that considering

unbalanced data improves the membership inference accuracy

by around 20%, compared to the state-of-the-art.

• We introduce a privacy-preserving aggregation function achiev-

ing group fairness based on [30]. More precisely, to reconcile

privacy and fairness considerations in the aggregation process

within FL, we use CKKS, a Fully Homomorphic Encryption (FHE)

scheme to hide the value of the fairness metric from honest-but-

curious adversaries, while keeping the ability for the server to

obliviously assign a weight to each client’s update according to

how fair his model is over his private dataset.

• We strengthen the privacy requirements through the use of a

threshold multi-key version of CKKS algorithm to prevent single

client decryption collusion, and prove the support of the differ-

ential privacy (DP) from approximate homomorphic aggregation

precision loss by leveraging the key insights from the analysis

presented in [18]. Specifically, we observe that ciphertexts’ noise

retains their Gaussian nature throughout homomorphic oper-

ations, establishing a link between homomorphic operations’

precision loss and the DP via the Gaussian mechanism.

• We validate the proposed protocol through extensive experimen-

tal results, in which we quantify both the fairness level and utility

of the final model.

We collaboratively train models of various sizes, depending on

the datasets, and demonstrate scaling up to two million param-

eters for the more challenging FairFace dataset. Our training

approach implements an approximate FHE-based and fairness-

aware aggregation algorithm, leading to a FHE computational

overhead of only 5% as well as significant utility and fairness

improvement of the final global model.

The paper is organized as follows. First, Section 2 provides an

overview of algorithmic tools, and Section 3 reviews the prior re-

search on privacy-preserving and fairness-aware FL. Afterwards,

Section 4 describes the threat model and emphasizes the impor-

tance of hiding the fairness metric evaluation of a model through a

novel membership inference attack. Then, Section 5 proposes an

encrypted aggregation protocol to mitigate privacy issues through

the assignment of a weight w.r.t. the quality of an update. Finally,

Section 6 discusses the security of the proposed solution before

describing and analyzing in Section 7 the conducted experiments.

2 Background
This section reviews the background notions concerning fairness,

the CKKS FHE scheme as well as DP. Table 10 in Appendix A

introduces different notations, and acronyms.

2.1 Fairness in Machine Learning
Overview. Algorithmic fairness investigates the behaviour of

an algorithm with respect to inputs belonging to different groups

defined by a sensitive attribute S that can lead to discrimination

(e.g., race or gender). In this context, group fairness refers to the sta-

tistical independence of the model’s prediction 𝑌 from the sensitive

attribute S. Removing the sensitive attribute from the training data

does not solve the problem since indirect discrimination can still

occur due to other attributes that can act as proxies for the sensitive
attribute, thus, reproducing the same discriminatory behaviour (e.g.,
the zip code is highly correlated with ethnicity in USA, but remains

relevant to predict the income).

In addition, artificially removing statistical correlations between

sensitive and non-sensitive attributes is challenging, and often

results in a fairness-accuracy trade-off [56].

Finally, the imbalance of the training as well as the presence of

minority groups may lead to poor performance of the model over

these groups.

Group fairness. Group fairness definitions seamlessly align

with common societal discriminatory situations, and express the

need for equality in the predictive performances of a model across

different demographic groups. Furthermore, group fairness metrics,

both on datasets and on classifiers trained on biased datasets, pro-

vide a comprehensive overview of the underlying data distribution.

Fairness-aware FL solutions require clients to periodically share

these metric evaluations along with their updates, hence raising

strong privacy concerns.

In addition, some works argue that individual fairness is a spe-

cial case of group fairness, in which each group consists of a single

record, and thus, group fairness solutions can be extended to indi-

vidual fairness [93].

In the following, we discuss both data and classifier unfairness

w.r.t. sensitive attribute S. Without loss of generality, we consider

that S is a binary attribute with values {𝑠0, 𝑠1}.

Data unfairness. A labeled dataset may exhibit two distinct

forms of discrimination expressed in the distribution of the joint

features (X,S,Y), in which X is the set of non-sensitive attributes

and Y the class label.

• Disparate Treatment refers to the distribution 𝑃 (Y|S), and
therefore expresses the statistical correlations between the sen-

sitive attribute S and the label Y within a dataset. It is often

measured as a ratio between the proportion of positively labeled

elements from group S = 𝑠0 and group S = 𝑠1:

𝐷𝑇 (D,S) = 𝑃 (Y = 1|S = 𝑠0)
𝑃 (Y = 1|S = 𝑠1)

.

Therefore, if S ⊥ Y than 𝐷𝑇 (D,S) = 1.

• Disparate Impact extends the source of discrimination to non-

sensitive attributes X, considering them as statistical proxies

to the sensitive ones. Hence, it models the distribution 𝑃 (S|X).
A common measure of disparate impact is quantified from the

Balanced Error Rate (BER) [33] of the best performing adversarial

classifier
¯𝑓 : X → S that infers the attribute S given X. More

precisely, BER satisfies:

𝐵𝐸𝑅( ¯𝑓 ,S) = 𝑃 ( ¯𝑓 (X) = 1|S = 𝑠0) + 𝑃 ( ¯𝑓 (X) = 0|S = 𝑠1)
2

.

A low 𝐵𝐸𝑅( ¯𝑓 ,S) indicates a high correlation between S and X,
and therefore, high disparate impact in D.
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Classifier unfairness. Hereafter, we review the main group

fairness metrics for evaluating the impact of data unfairness, with

respect to a sensitive attribute, on a classifier’s behaviour (
ˆY).

• Statistical Parity Difference (SPD) [22] evaluates the propor-
tion of positive outcomes across different groups defined by a

sensitive attribute. For example, for profiles having the same

qualification, the proportion of males and females hired should

be roughly the same and satisfies: 𝑃 ( ˆY = 1|S = 𝑠0) = 𝑃 ( ˆY =

1|S = 𝑠1). In this case, SPD will be equal to 0 as it satisfies:

𝑆𝑃𝐷 = |𝑃 ( ˆY = 1|S = 𝑠0) − 𝑃 ( ˆY = 1|S = 𝑠1) |

However, SPD does not take into account the model’s accuracy. In

particular, a dummy model that systematically outputs 1 (ℎ(𝑥) =
1,∀𝑥 ) would perfectly satisfy the statistical parity test.

• Equal Opportunity Difference (EOD) [37] ensures that the
true positive rate is similar across different groups as defined by

a sensitive attribute.

𝐸𝑂𝐷 = |𝑃 ( ˆY = 1|S = 𝑠0,Y = 1) − 𝑃 ( ˆY = 1|S = 𝑠1,Y = 1) |

2.2 CKKS Cryptosystem
Overview. CKKS [18] is a homomorphic encryption scheme that

allows computing additions and multiplications of ciphertexts, and

relies on Ring-LWE [60] for encrypting messages encoded as poly-

nomial ring elements. It encrypts vectors of complex numbers and

supports homomorphic floating point arithmetic in the encrypted

domain, with parametric precision, hence, perfectly suiting privacy-

preserving machine learning tasks [53, 70, 77]. CKKS differs from

other homomorphic encryption schemes (e.g. BFV [31], BGV [11]

or TFHE [21]) regarding the interpretation of the native RLWE

noise. Indeed, this scheme considers the encryption noise as a part

of the message, as floating-point arithmetic for approximating real

numbers. It considers the approximation to be sufficiently close to

the exact value, such that FHE.Dec(𝑓 ( [𝑚]FHE.pk)) = 𝑓 (𝑚) + 𝑒𝑓 , in
which 𝑒𝑓 is the resulting approximation error. 𝑒𝑓 depends on the

encryption noise, and the multiplicative depth of the arithmetic

circuit 𝑓 . A detailed description of the CKKS building blocks, as

initially introduced in [18], is provided in Appendix E.

CKKS noise-growth. The term “noise” refers to both the RLWE

noise polynomial needed to ensure the security of the scheme, and

to the precision loss during the approximate homomorphic com-

putations. An informal definition of precision loss is the difference

between the output of a plaintext evaluation of an arithmetic circuit

and the decrypted output of the homomorphic evaluation of the

same circuit over the same encrypted input(s).

The so-called “average noise” tracking approach provides amech-

anism for tracking the stochastic properties of a ciphertext’s noise

(e.g., its distribution, mean, and variance) as it progresses through

each level of an arithmetic circuit evaluation. The Central Limit

Theorem plays a crucial role in asserting that the noise maintains

a Gaussian distribution throughout an entire arithmetic circuit in

CKKS. In the following, we summarize the main results from [23],

providing an average noise tracking of the CKKS scheme through

homomorphic addition and multiplication, which is sufficient to

characterize noise at the output of any homomorphic arithmetic

circuit. The following theorem characterizes the nature of the noise

component in a CKKS ciphertext after each transformation induced

by homomorphic computations.

Theorem 2.1 (Noise distribution-preserving homomorphic

operations). Let 𝑍 ∼ N(𝜇, 𝜌2I𝑁 ), and 𝑍 ′ ∼ N(𝜇′, 𝜌 ′2I𝑁 ) be two
polynomials with coefficients sampled from the multivariate Gaussian
distributions with respective covariance matrices 𝜌2I𝑁 and 𝜌 ′2I𝑁 .
The distribution of 𝑍 + 𝑍 ′ (𝑚𝑜𝑑𝑢𝑙𝑜 𝑋𝑁 + 1), 𝜆𝑍 (𝑚𝑜𝑑𝑢𝑙𝑜 𝑋𝑁 + 1)
and the rounding coefficient-wise ⌊𝑍 ⌉ are given by:

𝑍 + 𝑍 ′ ∼ N(0, (𝜌2 + 𝜌 ′2)I𝑁 ), 𝜆𝑍 ∼ N(𝜆𝜇, | |𝜆 | |2
2
𝜌2I𝑁 )

and ⌊𝑍 ⌉ ∼ N (𝜇, (𝜌2 + 1

12

)I𝑁 ) .

Table 13, in Appendix E, summarizes the noise evolution through

different homomorphic operations from [23].

2.3 DP and Gaussian Mechanism
Differential privacy, introduced by Dwork et al. [27], offers a math-

ematical framework for quantifying and ensuring the privacy of

individual data samples in databases. It enables the extraction of

global statistical information from a dataset while minimizing the

risk of revealing sensitive information about any specific sample.

More precisely, DP ensures that the output of the same randomized

mechanism applied to two adjacent datasetsM(D), andM(D′)
(i.e., identical except for a single entry) remains statistically indis-

tinguishable while quantifying this indistinguishability.

Achieving DP usually involves employing perturbation tech-

niques designed to blur the distinction betweenM(D), andM(D′),
hence protecting individual private elements within a dataset D
when observing M(D). This approach holds significant impor-

tance in the context of FL, especially when under a semi-honest

server that may collude with clients and gain access to plaintext

global model parameters 𝜃 𝑡𝑔 for all 1 ≤ 𝑡 ≤ 𝑇 . In supervised learning

settings, perturbation is typically applied through several strategies:

• A first possibility is to add noise to the training data [27, 46, 47].

For instance, randomized response mechanisms can be inter-

preted as data perturbation and achieve differential privacy [89].

• Alternatively, noise can be introduced during the initialization of

model parameters [46] or by incorporating additive noise into the

objective function (loss function) that we aim to minimize [16].

• Lastly, noise can be added into the outputted model parameters,

using Gaussian, Laplacian [27] or exponential mechanisms [28].

Definition 2.2 (𝑙𝑝 sensitivity). Let 𝑓 : R𝑘 ·𝑛 → R𝑑 be a randomized

mechanism operating on datasets represented as 𝑛 real vectors of

dimension 𝑘 . The 𝑙𝑝 sensitivity of 𝑓 , denoted Δ𝑝 𝑓 is:

Δ𝑝 𝑓 =𝑚𝑎𝑥D,D′ ∥ 𝑓 (D) − 𝑓 (D′)∥𝑝 ,

in which D,D′ are adjacent datasets.

Intuitively, the sensitivity quantifies how much the output of a

mechanism can change when changing one row in the input dataset.

In this work, and for convenience, we use the 𝑙2 sensitivity, which

will be referred to as “sensitivity”, unless stated otherwise.

Theorem 2.3 (Gaussian mechanism & (𝜖 , 𝛿)-differential pri-

vacy [27].). Let 𝑓 : N𝑘 ·𝑛 → R𝑑 be a randomized mechanism with 𝑙2
sensitivity Δ𝑓 . The addition of zero-mean Gaussian noise to the output
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of 𝑓 with variance 𝜎2 =
2𝑙𝑛 (1.25/𝛿 ) (Δ𝑓 )2

𝜖2
provides (𝜖, 𝛿)-differential-

privacy to the ouput of 𝑓 , which means:

𝑃𝑟 [𝑓 (D) + N(0, 𝜎2) = 𝑦]
𝑃𝑟 [𝑓 (D′) + N (0, 𝜎2) = 𝑦′] ≤ 𝑒𝑥𝑝 (𝜖) + 𝛿, (1)

in which the probability is taken over all (D,D′) adjacent datasets,
and the random behaviour of 𝑓 .

When 𝑓 is a supervised learning process, the randomness is

mainly due to the sampling of the data batches, as well as the

parameter initialization.

3 Related Work
3.1 Privacy-preserving and Fairness-aware FL
FL offers a privacy-preserving alternative to traditional training

methods by keeping data locally on clients’ devices. However, the

leakage of sensitive information can still occur through intermedi-

ate clients’ updates and the aggregated model [29, 55, 65, 78]. Thus,

FL still requires the use of privacy-enhancing technologies for secur-

ing the aggregation process. Existing privacy-preserving solutions

for FL target mainly two adversary models: honest-but-curious (or

semi-honest) adversaries and malicious adversaries [25]. To address

the honest-but-curious adversaries threat, several solutions imple-

ment techniques for secure aggregation [58, 66], including FHE

[8, 74, 86], functional encryption [82], MPC [12], pairwise masking

[61, 85], along with DP [58, 86, 92].

FL can improve fairness by leveraging the statistical diversity

offered by the distributed training datasets but also raises several

challenges. For instance, Chang and Shokri [15] have observed that

in FL, unfairness propagates from clients with highly biased data to

clients with fairer data. Zeng et al. [94] have shown that fair classi-

fiers in the FL setting usually display a lower performance than the

ones in the centralized setting. They proposed FedFB (Federated

FairBatch) as an alternative to FedAvg [64]. FedFB dynamically ad-

justs the batch sizes for different groups to improve the fairness of

the global model. Rodriguez et al. [79] have tackled the issue of DP’s
unfair impact on a classifier’s performance over under-represented

groups with differential multipliers [75]. Ezzeldin et al. [30] have
designed FairFed a fairness-aware aggregation, which re-weights

clients’ updates with respect to their local fairness metrics. It im-

proves the global model’s fairness compared to FedAvg.

3.2 Tensions between Privacy and Fairness
In centralized learning. Recent works show the existence of

significant tensions between fairness and privacy in ML [3, 14,

17, 65, 72]. The impact of implementing DP on fairness has also

been studied in [3, 14, 24, 35]. Previous works have demonstrated

an accuracy degradation due to the implementation of DP being

more significant for minority groups [6]. Pujol et al. have inves-
tigated why these groups are disproportionately impacted while

also proposing solutions to improve the fairness of the resulting

model [76]. Jagielski and collaborators [42] have proposed two

learning algorithms that aim to fulfill fairness, DP, and accuracy

requirements by exploring their trade-offs.

Privacy attacks and fairness. We distinguish two categories

of works investigating the relationship between the group fairness

of a model and its vulnerability against privacy attacks.

• Impact of fairness interventions on MIA vulnerability:
Kulynych et al. [49] have studied the disparate vulnerability

of MIA attacks, showing that fairness interventions could re-

duce disparate vulnerability and DP training limits the extent

of this vulnerability. Tian et al. [87] have evaluated three stan-

dard MIAs [57] against binary classifiers trained with and with-

out fairness interventions, demonstrating a significant accuracy

degradation of most attacks against the fair classifiers. While

the scores tend to increase for member data, they tend to align

with a normal distribution for non-member data after fairness

interventions.

However, these works are limited to empirically measuring the

impact of fairness interventions on a model’s membership vul-

nerability.

• Fairness information as an auxiliary knowledge in privacy
attacks: Ferry et al. [34] have proposed a generic approach

by which the knowledge of a fairness metric can enhance the

accuracy of an attribute inference attack by setting the fairness

metric value as an additional constraint to be satisfied by the

adversary’s guesses.

In federated learning. Fairness-aware FL methods [30, 32, 39]

can be subject to several privacy issues. For instance, Chen et
al. [17] have discussed the main FL privacy concerns and exist-

ing approaches to address the fairness-privacy trade-off. Padala et
al. [71] have studied the combination of local DP and group fairness.

More precisely, in their framework each client trains a fair and

accurate model using its local dataset before later learning a surro-

gate model to align the fair predictions from the initial model with

a guaranteed DP at the cost of an increased computation overhead.

However, building the differentially private surrogate introduces a

significant local computational overhead.

Uniyal et al. [88] have compared two algorithms for training

deep neural networks, namely DP-SGD and PATE, to analyze their

fairness-privacy trade-off, concluding that PATE [73] produces stu-

dent models with improved group fairness compared to DP-SGD [1].

Zhang et al. [95] have designed a secure aggregation that aims to

reduce bias in FL applications that are privacy sensitive. Whether

a client participates in a given round of training is based on the

current unfairness level of the global model and whether his lo-

cal data improves the global model’s fairness. Hence, the fact that

clients either participate or not in the training leaks information

on their local data distribution. Ruckel et al. [81] have combined

blockchain, local DP, and zero-knowledge proofs (ZKP) to achieve

privacy, clients’ fairness, and integrity. Nevertheless, the induced

computational overhead from integrity verification is significant.

Rodríguez-Gálvez et al. [79] extended the modified method of differ-

ential multipliers [75] to empirical risk minimization with fairness

constraints, thus providing a centralized fairness-aware training

algorithm, for which they provide a decentralized version, Hence

improving group fairness under differential-privacy constraints.

Tables 1 and 2 provide a comprehensive comparison of our pro-

posed solution against closely related work. More precisely, Table 1

compares each approach’s security and privacy properties under
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different threat models while Table 2 displays the theoretical per-

formances in terms of computation and communication overheads.

Our proposed solution consistently outperforms closely related

work, particularly in maintaining robust privacy protections while

considering group fairness, under the honest-but-curious threat

model with colluding entities. In summary, our work either out-

performs other approaches regarding computational and commu-

nication complexities or jointly integrates privacy and fairness

considerations not considered by these previous works.

4 Fairness-enhanced inference attack
4.1 Adversary model
We consider a FL setting in which 𝑛 entities collaborate to ob-

tain a global shared model with the support of a central server.

To evaluate the security of the proposed framework, we consider

honest-but-curious (or semi-honest) adversaries for both the aggre-

gating server and the participating clients. Some clients and even

the server may collude. They will not deviate from the protocol

as they are semi-honest, but they will attempt to use and merge

their respective knowledge to infer extra information about other

clients’ updates or datasets. We will refer to the colluding entities

as passive attackers. Our framework only requires the knowledge

of a bound 𝐵passive on the number of potentially passive attack-

ers (0 ≤ 𝐵passive < 𝑛). Additionally, the successive approximate

homomorphic aggregations with CKKS introduce additive noise

to the global model, which we show to exhibit characteristics of a

Gaussian mechanism. Hence, this provides a level of DP guarantees.

4.2 Membership Inference Attack from Fairness
Information

A standard approach for conducting a membership inference attack

is to train an attackmodel that predicts 𝑥 asmember or non-member

according to the behaviour of the classifierM when presented with

𝑥 (e.g., prediction confidence, logits or loss).

We follow the membership attack approach by Shokri et al. [84],
and include the knowledge of a fairness metric evaluation of the tar-

get model. Hereafter, we extend this attack framework by including

additional key information regarding the model’s behavior to imi-

tate. Specifically, we emphasize that imitating the unfairness level

of the target model by the set of shadow models in [84] enhances

the utility of the attack dataset (closer predictions to the ones of the

target model), and thus, improves attack classifier’s performance.

This highlights the privacy sensitivity of these measures.

Attack overview. The key steps of the attack are the following:

(1) When provided as input a target model’sM fairness metric

evaluation 𝑓target, a synthetic data generation monitored by

𝑓target is conducted, which produces a dataset containing a level

of bias proportional to 𝑓target.

(2) 𝑘 Shadow models (𝑆𝑖 )𝑖∈[𝑘 ] are trained using non-overlapping

portions of the previously generated data to exhibit similar

unfair behaviour w.r.t. the fairness metric: 𝐹𝑆𝑖 ≈ 𝑓target.
(3) The attack dataset consisting of inference of the previously

trained shadowmodels onmember and non-member data points

and their respective membership status is formed.

(4) Finally, the attack model is trained using the attack dataset.

The first step of the attack is particularly crucial as generating bi-

ased data in proportion to a specified parameter is a challenging

task. Indeed, the behavioural closeness of the shadow models to the

target model has a major impact on the attack model accuracy. For

instance in [84], the authors assume that the adversary has a collec-

tion of data following the same distribution as the target model’s

training data. Another possibility to train the shadow models is

the use of synthetic data. However, most synthetic data genera-

tion methods are primarily designed to closely match the training

data distribution rather than intentionally introducing tailored bias.

Figure 1 summarizes the different steps of the attack.

Shadow models'
 training data

Synthetic data 
generation

Shadow 
models

Discolsure of target model
fairness metric evaluation

Attack model

Member data
inference

Non-member data
inference

Target model 
(Black-Box Access)

1

2

4

3

Non-member
data

Attack dataset

Figure 1: Enhanced membership inference attack by exploit-
ing fairness metric disclosure.

Unfairness in synthetic data. To improve the membership

inference attack in [84], it is important to understand the process

of unfairness monitoring. The shadow classifiers’ fairness is influ-

enced by how discrimination is parameterized within synthetic data.

There are twomain types of discrimination: disparate treatment and

disparate impact. To monitor unfairness in a datasetD = (X,S,Y),
control over both 𝑃 (Y|S) and 𝑃 (S|X) is necessary.

Xu et al. [90] have designed FairGAN
5
; a GAN with a generator

network 𝐺Dec and two discriminator networks 𝐷1 and 𝐷2. 𝐷1 en-

suring that the distribution 𝑃𝐺 of data generated by𝐺Dec is as close

as possible to the real data distribution 𝑃data as done in classical

GAN architectures. Meanwhile, 𝐷2 distinguishes between the two

conditional distributions 𝑃𝐺 (X,Y|S = 1) and 𝑃𝐺 (X,Y|S = 0)
within the generated samples. Hence, 𝐷2 acts as an adversarial

model predicting S from X and Y. Consequently, the objective

of 𝐺Dec is twofold: (1) fooling 𝐷1 by making 𝑃𝐺 indistinguishable

from 𝑃data and (2) cheating 𝐷2, by making 𝑃𝐺 (X,Y|S = 1) as close
as possible to 𝑃𝐺 (X,Y|S = 0), thus reducing both disparate im-

pact and disparate treatment. More precisely, the loss 𝐿(𝐺𝐷𝑒𝑐 ,𝐷1 ) of
the generator w.r.t. 𝐷1 expresses the capability of 𝐺𝐷𝑒𝑐 to produce

seemingly genuine samples. Meanwhile, 𝐿(𝐺𝐷𝑒𝑐 ,𝐷2 ) is the loss of
𝐺 w.r.t. 𝐷2. It reflects the ability of 𝐺 to produce samples with in-

distinguishable sensitive attribute given the rest of the attributes

and the label. Finally 𝐺𝐷𝑒𝑐 is trained to minimize the expression

𝐿(𝐺𝐷𝑒𝑐 ,𝐷1 ) + 𝜆𝐿(𝐺𝐷𝑒𝑐 ,𝐷2 ) .

5
Further details on the FairGAN architecture are provided in Appendix B.
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Table 1: Comparison between our solution and other state-of-the-art approaches with respect to fairness and privacy require-
ments.

Threat Model Privacy Requirements Fairness Metrics

Honest but Curious Malicious Conf. of the updates Conf. of the agg. model Group Fairness Individual Fairness

[91] ✓ ✗ ✓(Functional Encryption) ✗ ✗ ✗

[71] ✓(no collusions) ✗ ✓(DP) ✓(DP) ✓(EOD) ✗

[94] ✓ ✗ ✓(DP) ✗ ✓(EQD/SPD) ✗

[86] ✓ ✗ ✓(Addiditive HE) ✓(DP) ✗ ✗

[95] ✓ ✗ ✓ ✗ ✓(TPR TNR difference) ✗

[62] ✓ ✓(Verifiable Computing) ✓(Addiditive HE) ✗ ✗ ✗

[79] ✓ ✗ ✓(DP) ✓(DP) ✓(FNR/ACCURACY) parities ✗

Proposed ✓(with collusions) ✗ ✓(FHE) ✓(FHE + DP) ✓(EOD/SPD) ✗

EQO denotes the Equalized Odds fairness metric, TNR refers to True Negative Rate and TPR refers to True Positive Rate (also known as Recall).

Table 2: Theoretical analysis of the computational and communicational complexities.

Proposed [91] [71] [94] [86] [95] [62] [79]

Datasets

Adult-Census-Income MNIST Adult-Census-Income Adult-Census-Income MNIST Adult-Census-Income

FEMNIST

Adult-Census-Income
Compas-Recidivism OptDigit Bank Compas-Recidivism CIFAR-10 Compas-Recidivism FEMNIST

FairFace FairFace Dutch

Comp. Cost

Client : 𝑂 (𝑛)+ 𝑇LT Client : 𝑇LT Client : 2TLT Client : 𝑇LT Client : 𝑂 (𝑇 (𝑑𝑁 + 𝑛𝑙𝑜𝑔𝑛)) + 𝑇LT Client : 𝑂 (𝑇 ) + 𝑝𝑇LT Client : LT + TagGen Client : 𝑇LT + 𝑂 (1)
Server : 𝑂 (𝑇 (𝑛𝑑 + 𝑛)) Server : 𝑂 (𝑇 (𝑛𝑑 + 𝑛)) Server : 𝑂 (𝑇 (𝑛𝑑 + 𝑛)) Server : 𝑂 (𝑇 (𝑛𝑑 + 𝑛)) Server : 𝑂 ((𝑑𝑛 + 𝑑𝑁 + 𝑛𝑙𝑜𝑔𝑛)𝑇 ) Server : 𝑂 (𝑇 (𝑛𝑑 + 𝑛)) +𝑂 (𝑇 ) Server : 𝑂 (𝑇 (𝑚𝑑 +𝑚)) + Sign Server : 𝑂 (𝑇 (𝑚𝑑 +𝑚))

Com. Cost

Client : 𝑂 (𝑛2 + 𝑑𝑇 ) Client : 𝑂 (𝑑𝑇 ) Client : 𝑂 (𝑑𝑇 ) Client : 𝑂 (𝑑𝑇 ) Client : 𝑂 ((𝑑 + 𝑛 + 𝑁 )𝑇 ) Client : 𝑂 (𝑝𝑑𝑇 )) Client : 𝑂 (𝑑𝑇 ) Client : 𝑂 (𝑑𝑇 +𝑇 )
Server : 𝑂 (𝑑𝑛𝑇 ) Server : 𝑂 (𝑑𝑛𝑇 ) Server : 𝑂 (𝑑𝑛𝑇 ) Server : 𝑂 (𝑑𝑛𝑇 ) Server : 𝑂 ((𝑑𝑛 + 𝑁 )𝑇 ) Server : 𝑂 (𝑑𝑛𝑇 ) Server : 𝑂 (𝑑𝑚𝑇 ) N.A Server : 𝑂 (𝑑𝑛𝑇 )

𝑛, 𝑑 and𝑇 are respectively the number of clients in the FL setting, the update dimension (i.e., model or gradients size) and the number of iterations. When𝑚 is used instead of 𝑛, this indicates client subset
sampling𝑚 ≤ 𝑛. LT denotes local training cost, therefore𝑇 LT indicates total local learning cost. Sign and TagGen indicate the overhead of the verifiable mechanism operations in [62]. 𝑁 denotes the dimension

of the LWE masking used in [86] secure aggregation’s approach. For [61], 𝐿 denotes the bound on tolerated client dropouts and𝐴 is an upper bound on the number of neighbors of a client (for a PRG pairwise

masking mechanism where pairs of clients secretly share their seeds). N.A denotes complexities that are expressed in a more complex case-by-case analysis. Regarding [95] 𝑝 indicates the proportion of rounds at

which each client participates.

The process of unfairness monitoring is ensured by the scal-

ing factor 𝜆. Setting 𝜆 = 0 removes the fairness constraint and

transforms FairGAN into a regular GAN achieving only 𝑃𝐺 ≈ 𝑃data.
It outputs synthetically generated data with a baseline unfairness

level 𝑓0 approximately equal to the training data’s unfairness. Larger

values of 𝜆 linearly improve fairness as shown in Figure 2. From

our experiments (up to 𝜆 = 1.7), the following relationship be-

tween the achieved fairness 𝑓 , and 𝜆 is satisfied, such that 𝑓 ≈
−2

5
𝜆 + 𝑓0 with 𝜆 ∈ [0, 1.7] .
Thus, to achieve a target fairness measure 𝑓𝑡 , the attacker evalu-

ates its shadow training data’s fairness 𝑓0 while parameterizing the

dual GAN with 𝜆 = −5

2
(𝑓𝑡 − 𝑓0). One limitation of our approach is

that an attacker cannot achieve a fairness level that is worse than 𝑓0
(i.e., 𝑓𝑡 > 𝑓0). Indeed, negative values of 𝜆 yield unstable GAN train-

ing and unpredictable fairness levels. Consequently, highly unfair

shadow training data are preferable, since they allow adversaries

to achieve unfairness levels within larger intervals.

Experiments and analysis. We have implemented the Fair-

GAN architecture, adopting a fully connected neural network gen-

erator featuring two hidden layers of 128 and 125 units, with a

BatchNormalization layer in between. The generator architecture

after iterative adjustments of hyper-parameters and dimensions,

operates in a latent (i.e., noise) space of dimension 100, producing

samples in an intermediate space of dimensions 75 for the Adult
samples and 50 for the Compas samples. These lower-dimensional

representations are transformed into synthetic data samples us-

ing the decoder component of a pre-trained autoencoder, which is

composed of a single hidden layer in each of the encoder and de-

coder halves. Regarding the two discriminators, we select classical

architectures that can provide an optimally performing classifier

on these datasets (to predict income and recidivism). This corre-

sponds to fully connected neural networks with two hidden layers

of 128 and 64 units. The autoencoder is trained on the original

datasets for 500 epochs, before incorporating its decoder half to the

generator to build the𝐺𝐷𝑒𝑐 component. In contrast, the GAN archi-

tecture is first trained without 𝐷2 for 1000 epochs, because the first

samples produced by the 𝐺𝐷𝑒𝑐 component are meaningless, and

therefore, searching for unfairness patterns within these records

might perturb the training process. Afterward, 𝐷2 is integrated into

the architecture for extra training epochs until the network reaches

a stable state (around 1500 additional training epochs). Overall, the

training process of the synthesizer for Adult, and Compas aligns

with the methodology outlined in [90], proving to be effective in

achieving notable results.

The membership inference attack is conducted through the im-

plementation of the shadow training available in Adversarial Ro-
bustness Toolbox 6

. The attack is tested with multiple datasets for

training the shadow models, which are generated using multiple

trained FairGAN networks with different values of 𝜆 ranging from

0 to 1.7. The attack performances are reported over 50 attack classi-

fiers from shadow models trained on various synthetic data from

FairGAN architecture with different values of 𝜆. Figure 3 depicts

the performance measures of all attack classifiers given the prox-

imity of their respective shadow models average fairness metric to

the target model fairness (EOD and SPD):

∑𝑛𝑠ℎ
𝑖=1

𝐹 (𝑆𝑖 )
𝑛𝑠ℎ

− 𝐹 (M), with
𝐹 ∈ {EOD, SPD}.

Controlling the fairness level enhances the membership attack

accuracy by around 19% (from 0.5 to 0.63) when the considered

metric is EOD and 15% when the metric is SPD. Overall, the EOD

metric is more dependent on the data distribution than SPD as it is

more sensitive to disparate impact within training data.

6
https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Adult Compas FairFace

Figure 2: Classifiers accuracy and fairness (SPD and EOD) for the groups "Male/Female" trained on synthetic datasets (20k
samples) generated using FairGAN with different 𝜆 (x-axis) and measured on the original Adult Dataset (32k samples).

EOD proximity SPD proximity

Figure 3: Membership attack accuracy on a classifier trained
on Adult dataset, for various fairness measures differences
between the average of shadow models’ fairness measures
and the target model’s fairness measure.

4.3 Weight-based Privacy Leakage Evaluation
In the following, we evaluate the relation between the weight 𝜔𝑖
assigned to a local update 𝜃 𝑡𝑖 from a client 𝑖 (whose value belongs

to [0, 1]) and the privacy leakage associated with his dataset. We

consider the scenario in which two clients with their datasets D1

and D2 upload their model updates 𝜃 𝑡
1
and 𝜃 𝑡

2
to the server.

Predictions’ distances. We further observe the distances be-

tween a prediction vector 𝑦 =𝑀𝜃𝑡+1

𝑔
(D) made by the aggregated

model on a set of data samples D at iteration 𝑡 , and the two predic-

tion vectors from the pair of models. We have 𝑦1 =𝑀𝜃𝑡−1

1

(D) and
𝑦2 =𝑀𝜃𝑡−1

2

(D). Figures 4 show the Euclidean distance between 𝑦

and 𝑦1 according to its aggregation weight.

Figure 4: Euclidean distance ∥𝑦 − 𝑦1∥2 as a function of 𝜔1

Experiments’ analysis. We analyze the vulnerability of each

client’s dataset tomembership attacks against a globalmodel trained

with FL (FedAvg). We refer to prediction unconfidence as the differ-
ence between the raw predictions (i.e., the sigmoid output), and

the predicted class. In the case of a binary classifier, the predic-

tion unconfidence is ⌈𝑀𝜃𝑔 (𝑥)⌋ −𝑀𝜃𝑔 (𝑥). The prediction unconfi-

dence is represented as an array 𝑃𝐶 computed over the predictions

on the union of the two datasets D1 and D2. Three binary ar-

rays represent the membership status of the two datasets: 𝐴1 [𝑖] =
{1 if 𝑥𝑖 ∈ D1, 0 Otherwise}, 𝐴2 [𝑖] = {1 if 𝑥𝑖 ∈ D2, 0 Otherwise}
and 𝐴3 [𝑖] = {1 if 𝑥𝑖 ∉ D1 ∪ D2, 0, Otherwise}.

For our analysis, we first observe the prediction unconfidence

evaluation of the global model over data samples from different dis-

tributions ofD𝑖 with distant values of𝜔𝑖 and𝜔2. Then, we evaluate

the Pearson correlations between the global model’s prediction un-

confidence on data samples from different sources, and the binary

vectors 𝐴1, 𝐴2, and 𝐴3, representing respectively the membership

status of D1, D2, and non-member data.

Prediction unconfidence distri-
butions of global model on data
from D1 and on data from D2

after 200 learning iterations
with constant weights 𝜔1 = 0.9

and 𝜔2 = 0.1

Evolution of Pearson’s corre-
lation between predictions un-
confidence and membership
status of D1, D2, and non-
member status, with constant
weights 𝜔1 = 0.9 and 𝜔2 = 0.1.

Figure 5: FL trained classifier’s behavior with respect to data
samples’ membership status and aggregation weights.

The main observation from Figure 5 is the existence of a per-

dataset overfitting phenomenon. Indeed, Pearson correlations show

a strong relationship between the weight assigned to an update and

the prediction (un)confidence for data samples in the dataset used

to compute those updates. The final global model behaves almost

similarly when given data samples from small-weighted datasets

(𝜔2 = 0.1) or non-member data samples (neither in D1 nor D2).
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Therefore, instead of a single-bit information attack (member/non-

member), this observation opens the perspective for membership

attacks on a final aggregatedmodel with the location of themember-

ship of a data sample (member at D𝑖 ). This analysis reveals that an
aggregation server that is granted access to the aggregation weights

or a metric value proportional to them can establish a ranking of

vulnerable clients’ datasets. This raises many issues: the server

would focus the privacy attacks on the highest-weighted clients

and clients would have minimal incentive to improve the quality of

their updates, as the improvement is linked to the extent of privacy

exposure they experience. Typically, in a fairness-driven aggrega-

tion strategy, clients are encouraged to improve their updates by

local data pre-processing. Hence, additional privacy guarantees

regarding the assigned weights should be considered.

5 Privacy-preserving and Fairness-aware
Federated Learning

Wewant to protect the privacy of individual updates, encompassing

trained models on local data and their respective fairness metrics.

To do so, we describe a privacy-preserving aggregation algorithm

for the FairFed framework [30]. We then show how to enhance the

security of FairFed by homomorphically aggregating the different

updates. For this purpose, we rely on CKKS and provide the support

of DP guarantees after decryption.

5.1 FairFed Description
The FairFed frameworkwas proposed by Ezzeldin et al. in 2021 [30].
It enables group fairness in a federated learning setting, by per-

forming the following steps at every iteration of the training:

(1) Each client 𝑖 computes a model update 𝜃 𝑡𝑖 and evaluates its

fairness metric 𝐹 𝑡𝑖 (i.e., EOD or SPD) on his test data (local

train/test partitioning). Then, he shares 𝜃 𝑡𝑖 and 𝐹 𝑡𝑖 with the

aggregation server.

(2) Upon receiving the set of model updates {𝜃 𝑡
1
, . . . , 𝜃 𝑡𝑛} (𝑛 is the

number of clients), and their respective fairnessmetrics {𝐹 𝑡
1
, . . . , 𝐹 𝑡𝑛},

the server computes for every update 𝜃 𝑡𝑖 the associated weight

𝜔𝑡𝑖 from 𝐹 𝑡𝑖 as:

𝜔𝑡𝑖 =
�̂�𝑡𝑖∑𝑛
𝑖=1
�̂�𝑡
𝑖

, 𝑠 .𝑡 : �̂�𝑡𝑖 =
𝑛𝑖∑𝑛
𝑘=1

𝑛𝑘
· 𝑒𝑥𝑝 (−𝛽 · |𝐹𝑔 − 𝐹 𝑡𝑖 |)

where 𝐹𝑔 is the global fairness evaluation (over the union of

clients datasets) computed by aggregating locally computed

and transmitted statistical measures (denoted𝑚𝑔𝑙𝑜𝑏𝑎𝑙,𝑘 in [30]).

We note that
𝑛𝑖∑𝑛

𝑘=1
𝑛𝑘

is scaled by a value in [0, 1] proportional
to the closeness of 𝐹 𝑡𝑖 to 𝐹𝑔 . Indeed, 𝑒𝑥𝑝 will tend to 1 if 𝐹 𝑡𝑖 is

close to 𝐹𝑔 , else it will tend to 0. That is, the final 𝜔𝑡𝑖 will tend

to
𝑛𝑖∑𝑛

𝑘=1
𝑛𝑘

if 𝐹 𝑡𝑖 is close to 𝐹𝑔 , else it will tend to 0.

(3) Finally, the server computes the aggregated model at iteration

𝑡 + 1 as 𝜃 𝑡+1

𝑔 =
∑𝑛
𝑖=1
𝜔𝑡𝑖 · 𝜃 𝑡𝑖 . As for any client 𝑖 , 𝜔𝑡𝑖 will tend

to 0 if 𝐹 𝑡𝑖 is not close to 𝐹𝑔 , only clients with a fair model will

participate to 𝜃 𝑡+1

𝑔 with their 𝜃 𝑡𝑖 .

Figure 6: Polynomial alternatives for 𝑒𝑥𝑝 (−𝛽 |𝐹 𝑡
𝑖
− 𝐹𝑔 | ) with 𝛽 ∈

{1, 2, 3}

5.2 Enabling Private and Fair Model Training
In this section, we provide a privacy-preserving alternative to

FairFed aggregation [30]. We propose to make each client 𝑖 en-

crypt his model update 𝜃 𝑡𝑖 and fairness metric 𝐹 𝑡𝑖 with CKKS before

their transmission to the aggregation server. As such, the server will

compute the aggregation on encrypted data. During the FairFed
aggregation, as 𝐹 𝑡𝑖 approaches 𝐹𝑔 , 𝑒𝑥𝑝 (−𝛽 |𝐹𝑔 − 𝐹 𝑡𝑖 |) tends to 1, and

the weight assigned to 𝜃 𝑡𝑖 gets closer to
𝑛𝑖∑𝑛

𝑘=1
𝑛𝑘

. In contrast, the

further 𝐹 𝑡𝑖 is from 𝐹𝑔 , the closer𝜔
𝑡
𝑖 becomes to 0. The homomorphic

unfriendliness of this function is due to:

(1) Computing 𝑒𝑥𝑝 on encrypted data requires polynomial approx-

imations. A good polynomial approximation of 𝑒𝑥𝑝 on the in-

terval [−1, 1] involves high degree polynomials (e.g., 1 + 𝑥 +
𝑥2

2!
+ 𝑥3

3!
+ 𝑥4

4!
+ 𝑥5

5!
), implying larger multiplicative-depth

7
, and

bigger parameters for CKKS, increasing the FHE overhead.

(2) The scaling approach introduced in [30] would require a ho-

momorphic computation of the absolute value function, which

is challenging in FHE. Indeed, it requires a homomorphic sign

function, often approximated by high-degree polynomials [51].

They ensure similar logic to the use of 𝑒𝑥𝑝 on the difference |𝐹 𝑡𝑖 −𝐹 𝑡𝑔 |.
However, they provide a marginally different weight decrease. As

the discrepancy between 𝐹 𝑡𝑖 and 𝐹
𝑡
𝑔 widens, the 𝑒𝑥𝑝 function im-

poses a steep penalty on small values of |𝐹 𝑡𝑖 − 𝐹 𝑡𝑔 |. This penalty
gradually diminishes as the two measures diverge, preventing an

excessive decline in the corresponding update utility. In contrast,

the considered polynomial functions slightly penalize small discrep-

ancies between 𝐹 𝑡𝑖 and 𝐹
𝑡
𝑔 but abruptly decrease in value when the

two measures exhibit significant divergence. Fortunately, a care-

ful choice of 𝛽 allows to linearly mimic the effect of the weight

assignation mechanism of FairFed. Furthermore, degree 2 poly-

nomials can be used to avoid the homomorphic evaluation of the

absolute value, which would have involved the homomorphic eval-

uation of the 𝑠𝑖𝑔𝑛 function through polynomials approximations

[51], thereby returning to the original non-linearity challenge. Ap-

pendix G provides an analysis of polynomial alternatives for the

weight assignment mechanism of [30].

After selecting a linear alternative for 𝑒𝑥𝑝 , the issue of divisions

remains. While normalization is employed in FairFed involving

a division by the sum of pre-normalized weights, FHE renders

it intractable, as dividing ciphertexts is infeasible. We propose to

delegate the normalization to the clients, who perform it in cleartext

after receiving the encrypted and aggregated model from the server.

With division being distributive over the sum, the server broadcasts

7
The total number of sequential homomorphic multiplications that can be performed

on a fresh ciphertext with respect to the FHE scheme’s parameters [11].
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encryptions of 𝜃 𝑡+1

𝑔 · ∑𝑛
𝑘=1

𝑛𝑘 and

∑𝑛
𝑘=1

𝑛𝑘 to the 𝑛 clients who

perform collaborative decryption of the latter elements, followed

by plaintext division to derive 𝜃 𝑡+1

𝑔 .

Table 3: Numerical examples of the polynomial alternative
to 𝑒𝑥𝑝 with 𝛽 = 1

𝐹 𝑡
𝑖
− 𝐹 𝑡𝑔 𝑒𝑥𝑝 (−𝛽 |𝐹 𝑡

𝑖
− 𝐹 𝑡𝑔 | ) −𝛽 (𝐹 𝑡

𝑖
− 𝐹 𝑡𝑔 )2 + 1

±0.10 0.90 0.99

±0.25 0.78 0.94

±0.5 0.60 0.75

±0.75 0.47 0.43

±0.90 0.40 0.19

5.3 Framework Workflow
Having overcome the challenges associated with adapting FairFed
aggregation for the encrypted domain, we now describe the steps

for enabling private and fair federated learning model training.

(1) Clients collaboratively derive homomorphic global and partial

secret CKKS keys, following the generic threshold key setup

protocol of Mouchet et al. for RLWE-based schemes [67] with

𝑡 = 𝐵passive + 1 (Details in Appendix E.2). Each client 𝑖 holds the

public key 𝑝𝑘 and a share of the secret key 𝑠𝑘𝑖 , collaboratively

derived with the participating entities during the setup phase.

The evaluation key 𝑒𝑣𝑘 is transmitted to the server.

(2) Each client 𝑖 encrypts 𝜃 𝑡𝑖 and the associated 𝐹
𝑡
𝑖 using his 𝑠𝑘𝑖 and

sends them to the aggregating server.

(3) Upon receiving the encrypted updates and the associated fair-

ness metrics evaluations of the participating entities, the server

homomorphically computes encryptions of the pre-normalized

weights {�̂�𝑡
1
, . . . , �̂�𝑡𝑛}, as detailed in section 5.2.

(4) The server shares the resulting encrypted aggregated model

with the clients, along with the sum of the pre-normalized

weights

∑𝑛
𝑖=1
�̂�𝑡𝑖 for a collaborative 𝑡-out-of-𝑛 decryption phase.

(5) Once the plaintext scaled global model parameters

∑𝑛
𝑖=1
�̂�𝑡𝑖 ·

𝜃 𝑡+1

𝑔 , and the sum

∑𝑛
𝑖=1
�̂�𝑡𝑖 are recovered from the collaborative

decryption, global model parameters for iteration 𝑡 + 1 are

obtained by plaintext division, and clients proceed to the next

iteration of the learning procedure.

5.4 FHE vs Pairwise-masking for Privacy and
Fairness in FL

Pairwise-masking allows the computation of the sum of confiden-

tial values held by clients without revealing them. The core idea

involves using additive masks on the messages, in which the masks’

modular sum cancels out to zero. Hence, it has been widely adopted

as a secure aggregation mechanism [7, 43, 66, 83]. However, when

a more elaborated aggregation strategy is involved, threshold FHE

is preferred for the following reasons:

(1) The masking mechanism does not inherently support scaling

by server-computed values. Therefore, implementing a fairness-

aware aggregation strategy relying on privacy-sensitive fairness

scores to determine aggregation weights would not be possible

using the naive pairwise-masking approach
8

(2) Using one-time pads requires a setup at each FL training round,

adding significant computational and communication overhead

in pairwise masking. While the use of Diffie-Hellman agreed-on

seeds with a Pseudo-Random Number Generator mitigates this

limitation [9], the setup must be repeated whenever the client

set changes [66].

(3) From a privacy viewpoint, in contrast to FHE-based aggregation,

the server obtains the plaintext aggregated model at every iter-

ation of pairwise-masking-based FL. Without DP guarantees,

the aggregated model can be subject to substantial privacy-

leakage [29]. Thus, to protect the privacy of the aggregated

model, a Distributed Differential Privacy (DDP) protocol would

need to be implemented [40, 44]. This in turn raises other chal-

lenges, in particular with respect to honest-but-curious clients

colluding to eliminate a large portion of the DP noise.

6 Security and Privacy Analysis
This section discusses the DP brought by CKKS approximations

and analyses the resistance of our framework against the different

adversaries, along with the main challenges induced by CKKS.

6.1 DP from CKKS Aggregation
The homomorphic evaluation of the aggregation function in Sec-

tion 5.3 using the CKKS scheme from homomorphically computed

weights over fairness measures, and encrypted updates yields :

FHE.DecFHE.sk (
𝑛∑︁
𝑖=0

[𝜔𝑡𝑖 ]FHE.pk · [𝜃 𝑡𝑖 ]FHE.pk) = 𝜃 𝑡+1

𝑔 + 𝑒agg

We follow the methodology introduced in [70] in which the

authors estimate DP guarantees for a ridge regression training on

CKKS encrypted data. Indeed, in this work, we establish that the

approximation noise 𝑒agg is Gaussian and centered and estimate its

variance, before finally bounding the sensitivity of the mechanism

subject to the Gaussian noise. These elements enable us to derive

bounds for the associated (𝜖 , 𝛿)-differential privacy obtained from

the approximate homomorphic fairness-aware aggregation.

Lemma 6.1. A homomorphic aggregation with encrypted updates,
and weights computed from encrypted fairness measures using the
CKKS in threshold mode (c.f., appendix E.2), provides a Gaussian
mechanism (from the approximate homomorphic computations) with
variance: 𝜎2

agg = 𝑛[ 1

Δ2
(𝜎2

model_scale + 𝜎
2

relin) + 𝜎
2

round] , such that:

• Δ is the scaling factor (i.e., a CKKS parameter described in App. E)
• 𝑛 is the number of clients updates
• 𝜎2

𝑚𝑜𝑑𝑒𝑙_𝑠𝑐𝑎𝑙𝑒 denotes the variance induced by the scaling of an en-
crypted update by the computed weight from the transmitted fair-
ness metric 𝐹 𝑡𝑖 and satisfies:

𝜎2

𝑚𝑜𝑑𝑒𝑙_𝑠𝑐𝑎𝑙𝑒 = 𝑁𝜎
2

fresh𝜎
2

fairness + 𝜎
2

fresh∥𝜃
𝑡
𝑖 ∥22 + 𝜎2

fairness∥𝜔
𝑡
𝑖 ∥22

where :
– 𝜔𝑡𝑖 is client 𝑖’s assigned update weight

8
Scaling the masked updates results in scaling the masks (𝑀𝑡

𝑖
). The scaled masks’ sum

does not cancel out:

∑𝑛
𝑖=1
𝜔𝑡
𝑖
(𝜃𝑡

𝑖
+𝑀𝑡

𝑖
) = 𝜃𝑡+1

𝑔 +∑𝑛
𝑖=1
𝜔𝑡
𝑖
𝑀𝑡

𝑖
and

∑𝑛
𝑖=1
𝜔𝑡
𝑖
𝑀𝑡

𝑖
≠ 0.
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– 𝜎2

fresh = (
4

3
𝑁 + 1)𝜎2

init is the noise variance of a fresh ciphertext
encrypting of the model’s parameters using the standard ∥𝑣 ∥2

2
=

2𝑁
3
, and ∥𝑠 ∥2

2
= 2𝑁

3
[18].

– 𝜎2

fairness is the noise variance of the ciphertext encrypting the
weight obtained from the encrypted fairness metric [𝐹 𝑡𝑖 ] when
the degree 2 linear alternative to 𝑒𝑥𝑝 is used with parameter 𝛽 :

𝜎2

fairness = 𝛽
2
2𝑁𝜎2

fresh + 4𝜎4

fresh∥𝐹
𝑡
𝑖 − 𝐹 𝑡𝑔 ∥22

Proof. The ciphertext encoding, addition, and multiplication

preserve the Gaussian nature of the additive RLWE noise [23]

(𝑒agg ∼ N(𝜇agg, 𝜎2

agg
)) . Hereafter, we characterize 𝜇agg, and 𝜎2

agg

• Mean: our computation involves (1) a plaintext/ciphertext ad-

dition ([𝐹 𝑡𝑖 ]FHE.pk − 𝐹 𝑡𝑔 ) with no impact on the [𝐹 𝑡𝑖 ]FHE.pk noise
mean, so remaining zero-centered as sampled at the encryption

phase. (2) The degree 2 polynomial evaluation on the ciphertext

( [𝐹 𝑡𝑖 − 𝐹 𝑡𝑔 ]FHE.pk) requires ciphertext multiplication, scalar multi-

plication, and ciphertext/ciphertext additions. These operations

preserve the zero-mean noise distribution. Hence the noise of

the ciphertext encrypting the non-normalized weights follows

a zero-mean Gaussian distribution: 𝑁 ( [𝜔𝑡𝑖 ]) ∼ N (0, 𝜎2

agg
). The

remainder of the aggregation entails the scaling of freshly
9
en-

crypted updates with noise mean 𝜇 = 0 by the computed weights.

Ciphertext/ciphertext multiplication induces a Gaussian noise

with mean 𝜇1𝜇2 where 𝜇1 and 𝜇2 are respectively first and second

ciphertexts noise mean. Consequently, scaling the updates by the

weights ensures the preservation of a Gaussian noise with a mean

of 0. Summing ciphertexts with zero-mean noise distributions

results in a zero-mean Gaussian noise. Hence, the mean 𝜇agg of

the noise polynomial 𝑒agg is equal to 0.

• Variance: The evaluation of the variance involves three main

operations: (1) subtracting [𝐹 𝑡𝑖 ]FHE.pk from 𝐹𝑔 , which does not

impact the noise variance of the ciphertext [𝐹 𝑡𝑖 − 𝐹𝑔]FHE.pk, (2)
evaluating the polynomial −𝛽𝑥2 + 1 on ([𝐹 𝑡𝑖 − 𝐹 𝑡𝑔 ]FHE.pk) follows
the ciphertext/ciphertext multiplication noise-growth, that is,

𝛽2
2𝑁𝜎2

fresh
+ 4𝜎4

fresh
∥𝐹 𝑡𝑖 − 𝐹 𝑡𝑔 ∥2. And (3) encrypting scalar values

implies encoding them in each of the (
𝑁
2
) slots of the encoded

polynomial, that is ∥𝐹 𝑡𝑖 − 𝐹 𝑡𝑔 ∥2 =

√︃
𝑁
2
|𝐹 𝑡𝑖 − 𝐹 𝑡𝑔 |. The sum of the 𝑛

independently scaled updates by their respective weights results

in an additive noise. Furthermore, the summed ciphertexts (scaled

updates) all have equal noise variance, since they originate from

the same independent homomorphic encryption followed by

identical FHE computation. Thus, the resulting variance ( 𝜎2

agg
)

is the sum of the identical variances.

□

6.2 Collusion-Resistance through CKKS
This section presents a security analysis of the proposed solution

w.r.t. the considered threat model in Section 4. The proposed solu-

tion relies on a 𝑡-out-of-𝑛 threshold cryptographic scheme, ensuring

that any subset of 𝑡 − 1 partial decryptions does not reveal any ad-

ditional information about the associated plaintexts.

Considering that 𝑡 = 𝐵passive + 1, we hereafter discuss the security

of the proposed solution against different adversaries.

9
A ciphertext that hasn’t been homomorphically evaluated.

6.2.1 Honest-but-curious clients. Our framework employs a two-

pronged approach to defend against honest-but-curious adversaries:

(1) threshold decryption: the use of a (𝑡, 𝑛) threshold decryption

scheme ensures that at least 𝑡 participating clients, including at

least one honest client, must provide their partial decryptions to

reconstruct the final model parameters. This requirement, with

𝑡 > 𝐵passive guarantees that even if 𝐵passive honest-but-curious

clients collude, they cannot decrypt the model parameters with-

out the participation of an additional honest client.

(2) DP protection: all clients are provided with a noisy global model

generated from the collaborative decryption process. This noisy

model offers a level of (𝜖, 𝛿)-DP w.r.t. the CKKS parameter set

and the number of clients (𝑛), as detailed in Section 6.1.

6.2.2 Honest-but-curious server. Clients’ updates are safeguarded
from an honest-but-curious server through the FHE layer of the

CKKS algorithm, which enables the server to obliviously process

both fairness metrics evaluations and clients’ updates, preventing

the server from gaining access to the raw update data.

6.2.3 Colluding entities. In a collaborative learning framework

where at least 𝑡 clients are required for decryption, two main collu-

sion scenarios arise. First, a client-to-client collusion occurs when

colluding clients leverage their respective knowledge to access their

peers’ model updates. The bound on the number of potentially

honest-but-curious actors ensures that colluding entities cannot

extract further information from the encrypted traffic, adhering to

the security assumptions of threshold schemes. Specifically, any set

of 𝑡 − 1 partial decryptions reveals no additional information about

the underlying plaintext. Second, a client-server collusion involves

a client sharing the plaintext aggregated model with the server after

successful decryption. In this case, the Gaussian mechanism em-

ployed for approximate fairness-aware computation ensures that

the honest-but-curious server can only access a noisy aggregated

model from potential colluding clients, significantly limiting its

ability to infer sensitive information.

7 Experimental Results
Experimental setup. The framework consists of two modules:

(1) an FHE module for homomorphic aggregation, collaborative

decryption, and threshold scheme setup, and (2) a learning module

for clients’ local training tasks. The FHE module uses the Lattigo

library
10
, which implements CKKS and a 𝑡-out-of-𝑁 variant. Perfor-

mance experiments were run on a 12th Gen Intel Core i7-12700H

with 22G memory, while the full FL workflow (Table 8 ) was exe-

cuted on an HPC cluster using 10 nodes, each with 2 Tesla P100

GPUs.

FHE implementation analysis. The first batch of experiments fo-

cuses on the runtime of different homomorphic operations, includ-

ing the framework’s setup phase, in which clients collaboratively

bootstrap a multi-key CKKS scheme, and the homomorphic execu-

tion of the fairness-aware aggregation. We perform several setups

for different values of 𝑡 and 𝑛, following two distinct situations: (1)

the majority of clients are honest, and therefore decryption thresh-

old is set to a small proportion of clients, and (2) the majority of

10
https://github.com/tuneinsight/lattigo
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clients are semi-honest, hence, decryption requires a larger pro-

portion of participants
11
. We vary the size (secret polynomial 𝑆

degree) of the secret key 𝑙𝑜𝑔2 (𝑁 ), which also directly constraints

floating point vectors that can be encrypted in a single ciphertext to

𝑙𝑜𝑔2 (𝑁 ) −1. These values are chosen to ensure that at least weights,

and biases of a dense layer for an appropriate classifier for Adult,
and Compas fit within a single CKKS ciphertext, and that at least

every flattened weight vector of the convolution layers for FairFace

fits a single CKKS ciphertext as well. The runtime results of these

different settings are reported in Tables 4 and 5 for the setup phase,

while Table 6 presents the FHE aggregation runtime.

Table 4: Sequential setup time in seconds (s) for the honest
minority case ( 3𝑛

4
≤ 𝑡 ≤ 5𝑛

4
).

𝑙𝑜𝑔2 (𝑁 ) Participants (𝑛, 𝑡 ) : Honest but curious majority

(100, 60) (100, 65) (100, 70) (100, 75) (100, 80)

11 23 23 26 27 29

12 47 53 58 62 68

13 102 111 117 126 146

14 199 205 240 232 330

15 389 395 416 532 676

Table 5: Sequential setup time in seconds (s) for the honest
majority case ( 𝑛

10
≤ 𝑡 ≤ 𝑛

5
).

𝑙𝑜𝑔2 (𝑁 ) Participants (𝑛, 𝑡 ) : Honest majority

(100, 5) (100, 10) (100, 15) (100, 20) (100, 25)

11 3 4 6 8 9

12 4 8 12 15 19

13 9 16 24 32 41

14 19 35 53 63 79

15 18 73 103 125 164

Table 6: Aggregation time in seconds for Adult, and Compas.

𝑙𝑜𝑔2 (𝑁 ) Participants 𝑛.

50 100 200 300 500

11 1 2 4 7 11

12 2 5 9 14 23

13 5 10 20 29 47

14 10 19 39 59 100

15 21 42 89 142 195

Bandwidth consumption and communication overhead. Ta-
ble 7 reports the bandwidth usage (i.e., data exchanged between

clients at the collaborative decryption) as well as the communi-

cation overhead with respect to a common network setting and

low latency equals to 5𝑚𝑠 and a common bandwidth that is around

1𝐺𝑏𝑝𝑠 . For our analysis, we considered various network settings,

with the results of our experiments being reported in Appendix I.

11
honest minority imposes a larger degree of the Shamir polynomial that produces

the set public shares, therefore, strongly impacting performance.

• Setup — The construction of Mouchet et al. [67] involves all

parties broadcasting shares of their additive secret key, as an

evaluation of a secret, bi-variate polynomial on each of the re-

maining 𝑛 − 1 other parties’ Shamir’s public points. The RLWE

nature of the secret implies that the shares and public points

are degree 𝑁 − 1 polynomials with coefficients in Z𝑄 . Therefore,
the setup communications involve two broadcast rounds: one

for the Shamir public points, and a second one for the polyno-

mial evaluations on each of these Shamir public points. In total,

2𝑛(𝑛 − 1)𝑁 log
2
(𝑄) bits of data are exchanged between clients

during setup. More details are provided in Appendix E.2.

• Decryption — During the collaborative decryption phase, clients

generate 𝑡-out-𝑡 additive keys by (at least) 𝑡 active parties, from

their respective𝑛 shares of the initial𝑛 additive secret keys. Apart

from revealing the active parties, the process of computing the 𝑡

(a.k.a. thresholdization) does not require data exchanged other

than what has been already exchanged during the setup. The last

step consists of broadcasting the respective partial decryption by

each of the 𝑡 active parties. A partially decryptedmessage consists

of a degree𝑁 polynomial with coefficients inZ𝑄 . Thus, the size of
data exchanged (for minimal 𝑡 active parties) is 𝑡 (𝑡 −1)𝑁 log

2
(𝑄)

bits for a single ciphertext. Encrypting a model update requires

⌈𝑑𝑖𝑚 (𝜃
𝑡
𝑖
)

𝑁 /2 ⌉ ciphertexts which is, 3 to 6 ciphertexts for Adult, and
Compas classifiers, and from 50 to 200 ciphertexts for FairFace

classifiers. For instance, FairFace classifiers have around 2 million

parameters, so with 2
14

coefficient per ciphertexts, results in 120

ciphertexts for the full model.

Table 7: Bandwidth consumption (GB) and communication
overhead (in seconds) for collaborative decryption of a single
ciphertext encrypting 𝑁

2
model parameters, log

2
(𝑄) = 60.

𝑙𝑜𝑔2 (𝑁 ) Performances

Active parties 𝑡

3 5 10 15 20

11

Bandwidth (GB) 0.09 0.30 1.38 3.22 5.83

Overhead (s) 0.01 0.03 0.14 0.32 0.58

12

Bandwidth (GB) 0.18 0.61 2.76 6.45 11.67

Overhead (s) 0.03 0.07 0.30 0.68 1.17

13

Bandwidth (GB) 0.37 1.23 5.53 12.90 23.35

Overhead (s) 0.06 0.14 0.64 1.48 2.58

14

Bandwidth (GB) 0.74 2.46 11.06 25.80 46.69

Overhead (s) 0.12 0.28 1.27 2.96 5.17

15

Bandwidth (GB) 1.47 4.91 22.11 51.60 93.34

Overhead (s) 0.23 0.54 2.40 5.60 9.90

Datasets partitioning for heterogeneous distributions. The
framework is applied to three datasets: Adult, Compas and FairFace.
We use the Dirichlet sampling method that samples distributions

from the probability simplex (a distribution over the distribution

space) to divide the datasets into 𝑛 distinct datasets. This method

allows the monitoring of the homogeneity or heterogeneity of

the 𝑛 distributions of the selected sensitive attribute
12

through

12
This method does not allow full monitoring of the fairness of the updates, it simply

allows to control the under/over-representation of a group in the dataset, which often

has a small impact on fairness.
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a concentration parameter
13 𝛼 ∈ R𝑘 where 𝑘 is the number of

classes of the selected attribute. For both Adult-Census-Income, and
FairFace datasets, we choose the ’Race’ attribute for the Dirichlet

sampling, and measure fairness (EOD/SPD) for the Black/White

groups. Similarly, for Compas dataset, we set the ’Female’ binary

attribute as the attribute of interest for sampling, and measure

fairness using the same metrics. The experiments are conducted

with 𝛽 = 1. Table 8 depicts the results obtained after 300 learning

iterations on the three datasets, with 𝑛 = 10 clients respectively

using FairBatch [80] and Reweighing [54] strategies to locally pre-

process datasets, and enhance the fairness of the model updates

throughout iterations. For CKKS, parameters, are selected such that

the degree of the RLWE polynomials allows to encrypt at least one

layer’s parameters (𝑙𝑜𝑔2 (𝑁 ) = 13), and noise parameters are chosen

to minimize approximation errors (𝑙𝑜𝑔2 (Δ) = 65), and ciphertext

modulus𝑄 that enables twomultiplications, while keeping standard

security levels 𝜆 = 128 [19].

Table 8: Encrypted FairFed performance global model per-
formance after 300 learning iterations.

Measures Heterogeneity level 𝛼

0.1 0.5 1 10 50

A
du

lt

Acc 0.8059 0.7939 0.7949 0.8015 0.7959

Precision 0.8812 0.8560 0.8215 0.8610 0.8327

Recall 0.6612 0.7631 0.7189 0.7134 0.7377

EOD -0.02410 0.0054 0.0492 0.01497 0.0137

SPD -0.00993 -0.126 -0.0970 -0.1103 -0.1007

C
o
m
p
a
s

Acc 0.6608 0.65257 0.6511 0.6529 0.6482

Precision 0.7531 0.7147 0.6929 0.6493 0.6353

Recall 0.5901 0.6100 0.6353 0.5998 0.6905

EOD -0.053 -0.0552 -0.0703 -0.0497 -0.0353

SPD -0.109 -0.1285 -0.1165 -0.1680 -0.1195

F
a
i
r
F
a
c
e

Acc 0.9250 0.9343 0.9388 0.9396 0.9413

Precision 0.8791 0.0.8904 0.8871 0.9117 0.9083

Recall 0.9730 0.9588 0.9603 0.9621 0.9801

EOD 0.0202 0.0178 0.0152 0.0098 0.0109

SPD 0.0137 0.01401 0.0081 0.0075 0.0071

Discussion of the obtained results.
• FHE Overhead— The FHE layer brings a natural computational

overhead to the fairness-aware aggregation. However, the homo-

morphic circuit of our solution is limited to a small number of

linear operations (degree 2 polynomial evaluation and scaling

models). Alternatively, the key setup depends on the proportion

of dishonest clients. A large proportion of honest-but-curious

clients enforces the use of larger degree Shamir polynomials, to

require a higher number of shares for full decryption, impacting

the local computation time of the shares (c.f., App. E.2). Never-

theless, the FL protocol involves local learning, which is the most

expensive operation, making the FHE overhead only induce an

extra 5% of the entire protocol runtime for Adult and Compas

training and only 2% for FairFace training, due to significantly

larger classifiers (CNNs), and dataset, making the local training

phase more computationally demanding.

13
This parameter defines the probability density function on the probability simplex
{ (𝑥0, · · · , 𝑥𝑘−1 ) ∈ R𝑘 : 𝑥𝑖 ≥ 0 and

∑𝑘−1

𝑖=0
𝑥𝑖 = 1}

• Predictive Performance and Fairness- Comparing the measures in

[30] onAdult and Compas datasets, with our results show a slight

degradation in the final aggregated model performance. This is

primarily due to the approximations introduced by the FHE layer

during the fairness-aware aggregation. Nevertheless, the impact

on fairness remains limited, thus preserving the effectiveness

of the FairFed method when transferred to the homomorphic

domain. The noise introduced by the approximations in the FHE

fairness-aware aggregation, however, has the potential to en-

hance privacy, behaving similarly to a Gaussian mechanism. Re-

garding the FairFace dataset, we compare our results to the ones

obtained in [50], in which centralized learning was performed to

assess the utility of the data. Similar to Adult and Compas, the

accuracy degradation from FHE approximations is also observed

for FairFace, as the centralized learning of [50] yields a classifier

of 0.95 accuracy. As for fairness evaluation, unlike Adult, and
Compas datasets that have inherent bias, FairFace was initially

created to eliminate racial bias in facial recognition systems [50].

Hence, the induced classifiers already have low unfairness values

for “Race”. Baseline values for a centralized training classifier are

0.0314, and 0.0203 for EOD and SPD respectively. Comparatively,

the FL-based classifiers with homomorphic fairness-aware aggre-

gation show a slight improvement in these values, especially for

low heterogeneity (𝛼 = {10, 50}).

Experimental evaluation of 𝑒agg. Interactions between the

distribution of 𝑒agg, and elements of the collaborative learning are

measured by the distance between an exact fairness-aware aggrega-

tion and an approximate one from encrypted fairness measures and

updates. We perform several aggregations with various parameters

of the CKKS scheme that have a significant impact on the preci-

sion loss, e.g., the scaling factor Δ, 𝜎2

init
, and the number of updates

(𝑛). The distributions of 1000 approximation errors from different

locations in the aggregated model layers are represented in figure

7. The shape of the distribution followed by the coefficients
14

of

𝑒agg confirms the Gaussian mechanism analysis in section 6.1. The

impact of Δ on the distribution is significant. It enhances the pre-

cision of the FHE computations at the rounding operations in the

encoding/decoding and rescaling steps, where a substantial part

of the precision loss occurs, preventing the loss of least significant

bits of the RLWE coefficients. Nevertheless, its impact is inversely

proportional to the privacy level. Indeed, higher Δ’s reduce the

variance of the induced Gaussian mechanism from homomorphic

approximations, leading to lower privacy levels (higher 𝜖 values).

We estimate 𝜖 by setting 𝛿 (failure probability) to multiple val-

ues {𝑒−4, 𝑒−6, 𝑒−7} and the experimentally observed 𝜎2

agg
from the

set of CKKS parameters with RLWE error polynomial coefficients

sampled from a zero-mean Gaussian distribution with standard

deviation 𝜎init = 3.2 [2]. Finally, 𝑛 is set to {10, 50, 100}.

Bounding the sensitivity. One last crucial step to formally esti-

mate a privacy budget is to compute a bound to the sensitivity of the

fairness-aware aggregation when viewed as a randomized mecha-

nism. This mechanism operates on the union of clients’ datasets

D =
⋃𝑛
𝑖=1
D𝑖 . Changing a single entry in D implies a change in

14
The distribution of the RLWE error polynomial (Subtraction of plaintext aggregation

from the decrypted one after FHE aggregation.
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log
2
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Figure 7: Distribution of 𝑒agg for different sizes of Δ and 𝑛 = 3.

a single dataset (D𝑗 ). Hence, this results in sensitivity only at the

client’s 𝑗 update 𝜃 𝑡𝑗 , leaving the 𝑛−1 other updates consistent. Thus,

sensitivity originates from local training (SGD).

To bound the sensitivity of local training, we rely on 𝑙2 gradients

clipping as described in [1]. Each client 𝑖 scales its per-entry gradi-

ent vectors 𝑔𝑖 (𝑥) within the ball of radius 𝐶 , whenever their norm

exceeds the threshold 𝐶 , at every local training epoch. That is:

𝑔𝑖 (𝑥) = 𝑔𝑖 (𝑥) ·min

(
1,

𝐶

∥𝑔𝑖 (𝑥)∥2

)
Under this assumption, a bound on the sensitivity of local SGD

but also the fairness-aware aggregation’s sensitivity is 𝐶 . Hence,

from theorem 2.3 [28], a formal estimate of the privacy budget 𝜖

given CKKS parameters, number of clients and clipping norm 𝐶 is:

𝜖 =

√︃
2 log( 1.25

𝛿
)𝐶

𝜎agg

Table 9 reports the estimations of 𝜖 for fixed CKKS parameters,

the number of clients 𝑛 for a model trained with FL on Adult, while
Tables 11 and 12 in Appendix E report the estimations for Compas,

and FairFace, respectively
15
.

Imperfect Gaussian noise. The Gaussian nature of the approxi-

mation noise from the homomorphic fairness-aware aggregation

is consistent with the definition of the Gaussian mechanism. Fur-

thermore, the non-perfect aspect of this noise, due to its discrete

nature and approximations, has been investigated in [13], showing

both experimentally and theoretically, similar privacy guarantees

to the continuous and perfect additive Gaussian noise (as in [28]).

Lastly, the modular (coefficient-wise) nature of RLWE ciphertexts

makes the approximation error of CKKS follow a Gaussian dis-

tribution over Z𝑄 (discrete and modular). However, 𝑄 is usually

huge next to standard deviations 𝜎init, and even 𝜎agg (e.g. 𝜎init = 3.2,

15
As pointed out in [1], a good practice is to set 𝐶 to be the median norm of the

unclipped gradients throughout training. We empirically estimate this value for Adult,
Compas and FairFace training to be respectively at most 0.5, 0.66 and 0.82, following

uniform initialization in [-1, 1].

Table 9: Estimation of 𝜖 from approximate homomorphic
fairness-aware aggregation for Adult.

𝛿 𝑙𝑜𝑔2 (𝑁 ) 𝑛 𝑙𝑜𝑔2 (Δ) 𝜎2

agg
𝜖

𝑒−4

13 10 40 2.992 · 10
−3

36.10

14 50 40 3.840 · 10
−2

9.46

15 100 40 8.293 · 10
−4

70.36

𝑒−6

13 10 50 3.2335 · 10
−3 ≥ 100

14 50 50 9.6135 · 10
−2

10.04

15 100 50 1.855 · 10
−2

23.00

𝑒−7

13 10 40 3.503 · 10
−1

6.53

14 50 40 4.235 · 10
−1

5.91

15 100 40 9.32 · 10
−1

40.28

and 𝑄 = 2
60
). Therefore, the likelihood of noise samples exceeding

𝑄 (wrapping-up) is vanishingly small
16
. As a result, the modular

nature of the distribution of approximation errors can be largely

disregarded when considering DP guarantees.

Differentially-Private aggregation via CKKS parameters. Tables 9,
11, 12 and Lemma 6.1 demonstrate that for a given CKKS parame-

ters, and FL setup (𝑛, training hyper-parameters, and aggregation

strategy), one can estimate the variance of the Gaussian noise in-

duced from a CKKS homomorphic aggregation when this scheme

is employed as a secure aggregation mechanism. Essentially, the

CKKS scheme, under this FL training setup, can be parameterized

for a dual purpose: (1) achieve a proper cryptographic security level

𝜆 ≥ 128 bits, (2) ensure a sufficient noise variance 𝜎2

agg
at each ag-

gregation to achieve a desired privacy budget 𝜖 . Hence, achieving

end-to-end privacy, throughout the FL process.

8 Conclusion
In this work, we demonstrate the importance of carefully evaluating

the privacy leakage in collaborative training protocols that aim at

enhancing group fairness and require the disclosure of different

fairness-related measures from participating entities. Indeed, most

privacy attacks rely on the assumption of overfitting models, which

expresses the disparities in the model’s performance when evalu-

ated on training and test data and is conceptually very close to the

idea of group fairness metrics, which also measures and expresses

a difference in a model’s behaviour when evaluated on two distinct

groups, defined by a sensitive attribute. Thus, sharing it along with

a model’s parameters or predictions should be meticulously consid-

ered from a privacy standpoint. Other leakages are shown to come

from weight disparities as most participating clients will experi-

ence a higher leakage. Beyond, emphasizing these privacy risks, we

proposed a framework that conciliates fairness and privacy with

small computational and communication overheads. Finally, we

leverage CKKS’s approximations to provide differentially-private

and fair aggregation.

16
Using Chebyshev inequality, this probability is bounded by

𝜎2

init

𝑄2
≈ 2
−100

.
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A Table of notations

Table 10: List of notations

Acronym or Symbol Definition

DP Differential Privacy

EOD Equal Opportunity Difference

FHE Fully Homomorphic Encryption

FL Federated Learning

GAN Generative Adversarial Network

(R)LWE (Ring) Learning with errors

SMC Secure Multi-party Computation

SPD Statistical Parity Difference

𝑛 number of clients

[𝑘] {0, · · · , 𝑘 − 1}
𝑛𝑘 number of datapoints at client 𝑘

𝑛𝑠ℎ number of shadow models

D𝑖 Client’s 𝑖 local dataset

𝜃 𝑡𝑖 Parameters update by client 𝑖 at iteration 𝑡

𝜃 𝑡𝑔 Global model parameters at iteration 𝑡

𝑀𝜃 (𝑥) Inference of model𝑀𝜃 on input 𝑥

[𝑥]FHE.pk FHE of 𝑥 with key FHE.pk
𝑁 ( [𝑥]FHE.pk) Noise random variable of [𝑥]FHE.pk

B Supervised and Federated Learning
B.1 Supervised learning
Supervised learning refers to the process of learning a set of param-

eters 𝜃 for a model ℎ on a collection of data samples (𝑥𝑖 )𝑖∈[𝐾 ] where
𝑥𝑖 is a feature vector of fixed dimension, and their corresponding

labels (𝑦𝑖 )𝑖∈[𝐾 ] , such that 𝑦𝑖 = ℎ𝜃 (𝑥𝑖 ) is as close as possible to 𝑦𝑖 .
The closeness of the predictions 𝑦𝑖 to the labels 𝑦𝑖 with respect to

the set of parameters 𝜃 is expressed by a loss function L(𝑦𝑖 , 𝑦𝑖 , 𝜃 ).
The training objective is to compute argmin𝜃L. by iteratively min-

imizing the average of L over all samples in batches from dataset,

following an SGD based approach. That is, differentiating the loss

function to obtain a gradient vector 𝑔 (𝑡 ) = ∇𝜃 (𝑡 )L(𝜃 (𝑡 ) ), followed
by parameter gradient descent 𝜃 (𝑡+1) ← 𝜃 𝑡 −𝛼𝑔 (𝑡 ) where 𝛼 controls

the amplitude of the descent (learning-rate).

B.2 Federated Learning
Federated Learning is a distributed learning framework wherein

a model is collaboratively trained to tackle the issue of dispersed

clients sharing resource without exposing raw information. Com-

mon learning strategies involve aggregating updates from data-

owners. FedAvg aggregates models parameters from data-owners∑𝑛
𝑖=1

𝑛𝑖∑𝑛
𝑖=1

𝑛𝑖
𝜃 𝑡𝑖 to produce a global model which is again trained on

clients edge. Updates can be locally computed gradients as well.

Aggregated gradients result in a global gradient vector which serves

to update global model with a global learning rate (𝜂).

𝑔𝑡+1 = 𝜔𝑡𝑖𝑔
𝑡
𝑖 and 𝜃 𝑡+1

𝑔 = 𝜃 𝑡𝑔 − 𝜂𝑔𝑡+1

Where 𝜔𝑡𝑖 scale participants updates according to a measure of its

quality. e.g. number of local data-samples in FedAvg)

C Membership inference attacks through
shadow training

Shokri, Stronati, Song and Shmatikov [84] have designed a member-

ship inference attack that relies on the use of shadow models. These
shadow models 𝑆𝑖 , are trained on datasets D𝑖 that closely resemble

the distribution of the training dataset of ℎ. Consequently, they

exhibit close behavior to ℎ when employed for inference tasks. The

statistical correlations between the model behaviour and the mem-

bership status of the data are then captured in an attack dataset
ˆD

composed of tuples (𝑥, 𝑆𝑖 (𝑥), 𝑦𝑚𝑒𝑚𝑏𝑒𝑟 = {1 if 𝑥 ∈ D𝑖 , 0 otherwise}).
Finally, the attack model is trained on

ˆD to capture these statistical

correlations. Hence, predicting the membership label 𝑦𝑚𝑒𝑚𝑏𝑒𝑟 with

high accuracy when provided with the target model predictions on

a given data point (𝑥, ℎ(𝑥)).

FairGAN architecture and loss functions
In addition to a generator and the dual discriminator, FairGAN

incorporates, an autoencoder model that is pre-trained, with his

half decoder being incorporated to the generator in theMedGAN [4]

fashion, such that 𝐺𝐷𝑒𝑐 (𝑧) := 𝐷𝑒𝑐 (𝐺 (𝑧)) as depicted in Figure 8.

The overarching objective function in the FairGAN architecture is

the sum of two functions that express the two constraints placed
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Figure 8: The FairGAN architecture.

upon the generator. 𝐺𝐷𝑒𝑐 :

min

𝐷1

𝑙 (𝐺,𝐷1) = 𝐸 (𝑥,𝑦,𝑠 )∼𝑃
data
(𝑠 ) [𝑙𝑜𝑔(𝐷1 (𝑥,𝑦, 𝑠))]

+𝐸𝑠∼𝑃
data

,(𝑥,�̂�)∼𝑃𝐺 (𝑥,𝑦 |𝑠 ) [𝑙𝑜𝑔(1 − 𝐷1 (𝑥,𝑦, 𝑠))]
It expresses the distinguishing task of 𝐷1, which is to output 1 on

real samples (from 𝑃data) and 0 on fake samples (from 𝑃𝐺 ). Mean-

while, the distinguishing task of 𝐷2 is expressed by

min

𝐷2

𝑙 (𝐺,𝐷2) = 𝐸 (𝑥,�̂�)∼𝑃𝐺 (𝑥,�̂� |𝑠=1) [𝑙𝑜𝑔(𝐷1 (𝑥,𝑦))]

+𝐸 (𝑥,�̂�)∼𝑃𝐺 (𝑥,𝑦 |𝑠=0) [𝑙𝑜𝑔(1 − 𝐷1 (𝑥,𝑦))]
This aims at providing an accurate prediction of 𝑠 given syntheti-

cally generated label and unprotected attributes (𝑥,𝑦).

D Privacy budget estimation for Compas, and
FairFace.

This section provides an estimation of the privacy budget 𝜖 from the

proposed approximate homomorphic fairness-aware aggregation

for both the Compas and FairFace datasets.

Table 11: Estimation of 𝜖 from approximate homomorphic
fairness-aware aggregation for Compas.

𝛿 𝑙𝑜𝑔2 (𝑁 ) 𝑛 𝑙𝑜𝑔2 (Δ) 𝜎2

agg
𝜖

𝑒−4

13 10 40 2.992 · 10
−3

37.90

14 50 40 3.840 · 10
−2

10.52

15 100 40 8.293 · 10
−4

71.30

𝑒−6

13 10 50 3.2335 · 10
−3 ≥ 100

14 50 50 9.6135 · 10
−2

9.89

15 100 50 1.855 · 10
−2

22.49

𝑒−7

13 10 40 3.503 · 10
−1

6.22

14 50 40 4.235 · 10
−1

5.90

15 100 40 9.32 · 10
−1

40.30

E Cryptographic background
E.1 CKKS functionalities
• Keygeneration : The secret key polynomial 𝑠 is sampled from a

distribution 𝑆 , and the secret key is the tuple 𝑠𝑘 = (1, 𝑠). As for
the public key generation, a polynomial 𝑎 is uniformly sampled

from 𝑍𝑁𝑞 = Z𝑞/(𝑋𝑁 + 1) where 𝑁 is a power of two. Hence,

Table 12: Estimation of 𝜖 from approximate homomorphic
fairness-aware aggregation for FairFace .

𝛿 𝑙𝑜𝑔2 (𝑁 ) 𝑛 𝑙𝑜𝑔2 (Δ) 𝜎2

agg
𝜖

𝑒−4

13 10 40 2.992 · 10
−3

37.0

14 50 40 3.840 · 10
−2

10.21

15 100 40 8.293 · 10
−4

70.1

𝑒−6

13 10 50 3.2335 · 10
−3 ≥ 100

14 50 50 9.6135 · 10
−2

10.42

15 100 50 1.855 · 10
−2

23.1

𝑒−7

13 10 40 3.503 · 10
−1

6.33

14 50 40 4.235 · 10
−1

5.51

15 100 40 9.32 · 10
−1

40.32

𝑋𝑁 + 1 is cyclotomic polynomial. Another error polynomial is

sampled from 𝑍𝑁𝑞 using a multivariate Gaussian distribution and

the public key is 𝑝𝑘 = ( [𝑎𝑠 + 𝑒]𝑞, 𝑎).
• Relinearization − KeyGen : Performing a component-wise mul-

tiplication of two ciphertexts results in a third quadratic term in

the secret key polynomial 𝑠 , and results in a quadratic growth in

the ciphertext size. Hence the need to transform the ciphertext

back to the standard RLWE ciphertext format composed of two el-

ements and a linear decryption in the secret key polynomial 𝑠 . To

do so a relinearization key is provided, which can be interpreted

as an encryption of 𝑠2
using 𝑠 .

RelinKey = ( [𝑎′𝑠 + 𝑒′ + 𝑃𝑠2]𝑃𝑞, 𝑎′)
• Encryption : Given 𝑝𝑘 = (𝑝𝑘0, 𝑝𝑘1) and𝑚 ∈ 𝑍𝑁𝑞 , sample 𝑣 from

the same distribution 𝑆 as the secret key polynomial 𝑠 , and sample

𝑒0, 𝑒1 from a multivariate Gaussian distribution. The encryption

of𝑚 under 𝑝𝑘 is :

(𝑐0, 𝑐1) = ( [𝑚 + 𝑝𝑘0𝑣 + 𝑒0]𝑄𝐿, [𝑝1𝑣 + 𝑒2]𝑄𝐿)

• Decryption : Given a ciphertext 𝑐 = (𝑐0, 𝑐1) encrypting a message

𝑚 ∈ 𝑍𝑛𝑞 . Decryption procedure outputs𝑚′ = [𝑐0 + 𝑐1 · 𝑠]𝑞𝑙 such
that𝑚′ is a good approximation of𝑚.

• Addition : Given two ciphertexts encrypted using the same pub-

lic key 𝑝𝑘 , 𝑐0 = (𝑐0,0, 𝑐0,1) and 𝑐1 = (𝑐1,0, 𝑐1,1). Homomorphic

addition is performed component-wise. That is : 𝑐0 +𝑐1 = ( [𝑐0,0 +
𝑐1,0]𝑄𝑙

, [𝑐0,0 + 𝑐1,0]𝑄𝑙
)

• Multiplication : Given two ciphertexts encrypted using the same

public key 𝑝𝑘 , 𝑐0 = (𝑐0,0, 𝑐0,1) and 𝑐1 = (𝑐1,0, 𝑐1,1). Homomorphic

multiplication (first step, also referred to as pre-multiplication)

is performed component-wise. That is :

( [𝑐0,0𝑐1,0]𝑄𝑙
, [𝑐0,0𝑐1,1 + 𝑐0,1𝑐1,1]𝑄𝑙

, [𝑐0,1𝑐1,1]𝑄𝑙
)

• Relinearization : From the first stage of ciphertext multiplication

producing a three-terms ciphertext, the goal of Relinearization is

to remove the quadratic term in 𝑠 , while maintaining the ability

to decrypt correctly. Given a component-wise product of two

ciphertexts (4) This is done by :

( [𝑐0,0𝑐1,0]𝑄𝑙
, [𝑐0,0𝑐1,1 + 𝑐0,1𝑐1,1]𝑄𝑙

) + [𝑃−1 [𝑐0,1𝑐1,1]𝑄𝑙
· 𝑅𝑒𝑙𝑖𝑛𝐾𝑒𝑦]𝑞

• Rescaling : To avoid a quadratic expansion of ciphertext size

through multiplications authors introduce a rescaling method

that consists in multiplying both terms of the ciphertext by the
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scaling factor Δ followed by a coefficient-wise rounding to the

nearest integer: (⌊ 1

Δ𝑐0⌉, ⌊ 1

Δ𝑐1⌉).
Therefore a full multiplication in CKKS consists in a component-

wise multiplication followed by a relinearization and a rescaling.

Table 13 gives the formulas for ciphertext noise growth with

respect to CKKS operations.

E.2 Threshold multi-key RLWE-based schemes
Threshold cryptography refers to encryption schemes with collab-

orative decryption mechanisms. That is, each participant holds a

share 𝑠𝑘𝑖 of the (global) secret key 𝑠𝑘 , which grants him the ability to

perform a partial decryption of a ciphertext�̂�𝑖 =Partial_Dec(𝑠𝑘𝑖 , 𝑐).
An access structure 𝑆 ⊂ PowerSet(𝑃) is the collection of all subsets

of parties with the ability to recover the plaintext message using

their secret key shares. A 𝑡-out-of-𝑛 scheme refers to the access

structure containing subsets of size 𝑡 .

∀𝑃 ⊂ 𝑆 we have𝑚 = Dec(𝑠𝑘, 𝑐) = Full_Dec(𝑃𝐷𝑒𝑐 )
with 𝑃𝐷𝑒𝑐 = {�̂�𝑖 ∀𝑖 with 𝑝𝑖 ∈ 𝑃}, the set of partial decryptions

from parties in 𝑃 .

The fundamental security assumption of threshold schemes is

that any strict subset of 𝑃 ∈ 𝑆 provides no additional knowledge

regarding𝑚 beyond what is already provided by the ciphertext 𝑐 .

Mouchet et al. [68] introduced an additive
17 𝑛-out-of-𝑛 multi-

party construction for ring learning with errors structure, and

therefore compatible with all RLWE-based homomorphic schemes.

Namely, BGV [11], BFV [31] and CKKS [18]. It was later extended

to 𝑡-out-of-𝑛 access structures for any 𝑡 ≤ 𝑛 using the share-re-
sharing technique by Asharov et al. [5] that enables to move from

an 𝑛-out-of-𝑛 construction to a 𝑡-out-of-𝑡 one, by re-sharing the

additive locally generated secret key through Shamir secret sharing,

and taking advantage of the commutative nature between additive

decryption reconstruction, and the interpolation of the secret key.

That is,

𝑠 =

𝑛∑︁
𝑖=1

𝑠𝑖 =

𝑛∑︁
𝑖=1

𝑡∑︁
𝑗=1

𝑆𝑖 (𝛼 𝑗 )𝜆 𝑗 =
𝑡∑︁
𝑗=1

𝜆 𝑗

𝑛∑︁
𝑖=1

𝑆𝑖 (𝛼 𝑗 ) =
𝑡∑︁
𝑗=1

𝑠′𝑗

Where 𝑆𝑖 denotes Shamir polynomials of each participant, and

𝛼𝑖 their Shamir public points. 𝑠′ are the 𝑡-out-of-𝑡 reconstructed
additive keys by the 𝑡 participants.

F FairFed’s algorithmic description
This section provides an overview of the the aggregation algorithm

of FairFed.
The algorithm starts by collecting general statistics about the

union dataset using individual statistics on clients’ datasets. These

measurements enable the computation of a global fairness mea-

sure 𝐹 𝑡𝑔 at every round. Subsequently, clients locally update the

global model (LocalUpdate) and transmit the required metrics to

the server. Along with the fairness-aware aggregation on the server

side, clients continuously perform a local debiasing [38, 80] before

computing their local update. The𝑚𝑡
𝑘
components are individual

statistics on each client’s update measured on its local dataset and

17𝑠𝑘 =
∑

𝑖∈ [𝑛] 𝑠𝑘𝑖 , refers to encryption schemes with collaborative decryption a

mechanism. The decryption consists of a product of the secret with the ciphertext is

compatible with addition < 𝑠,
∑

𝑖∈ [𝑛] 𝑠𝑘𝑖 >=
∑

𝑖∈ [𝑛] < 𝑠𝑘𝑖 , 𝑐 >

Algorithm 1 FairFed [30]

Require: A pool of data-holders (clients)

Ensure: A fair global modelM𝜃𝑔

Initialize global model parameters 𝜃
(0)
𝑔

Aggregate union dataset statistics:

{𝑃 (𝑌 = 1, 𝑆 = 𝑠0), 𝑃 (𝑌 = 1, 𝑆 = 𝑠1)} from clients.

for 𝑡 = 1 to 𝑇 do
for 𝑖 = 1 to 𝑛 do ⊲ clients in parallel

𝜃 𝑡𝑖 , 𝐹
𝑡
𝑖 ,𝑚

𝑡
𝑖 ← ClientLocalUpdate(𝜃 tg)

end for
𝐹 𝑡𝑔 ←

∑𝑛
𝑖=1
𝑚𝑡
𝑘

�̄�𝑡𝑖 ← exp(−𝛽 · | 𝐹 𝑡𝑖 − 𝐹 𝑡𝑔 |) ·
𝑛𝑖∑𝑛

𝑘=1
𝑛𝑘
∀𝑖 ∈ [𝑛]

𝜔𝑡𝑖 ←
�̄�𝑡
𝑖∑𝑛

𝑖=1
�̄�𝑡
𝑖

∀𝑖 ∈ [𝑛] ⊲ Weights normalization

𝜃 𝑡+1

𝑔 ← ∑𝑛
𝑖=1
𝜔𝑡𝑖 𝜃

𝑡
𝑖

end for
return 𝜃𝑇𝑔

collectively sum to the global fairness measure 𝐹 𝑡𝑔 . Their definition

depends on the considered fairness metric.

G FHE-friendly polynomial approximations
To comprehensively assess the impact of polynomial approxima-

tions on the utility and fairness of the global model, we conduct a

consistent plaintext FairFed workflow (Adult with identical dataset

partitioning, local debiasing techniques and identical 𝛽 values) us-

ing various polynomial approximations of the exp functions as

described in [30], which we compare to our degree 2 approxima-

tion provided in 5. The considered polynomial approximations are

inspired by FHE literature [18, 48]:

(1) Taylor expansion (degrees 2 and 4):

exp(𝑥) ≈ 1 + 𝑥 + 𝑥
2

2

+ 𝑥
3

8

+ 𝑥
4

24

(2) Chebyshev approximation (degrees 2 and 4):

exp(𝑥) ≈ 2.2772 + 1.2195𝑥 + 0.4991𝑥2 + 0.0948𝑥3 + 0.0296𝑥4

Table 14 presents the obtained results.

While the degree 2 Taylor and Chebyshev approximations rela-

tively preserve the final model’s utility,
18
they fail to maintain its

fairness. This loss in the fairness benefit is due to the polynomial

approximations’ low accuracy near zero, which undermines the in-

tended rationale for weight assignment in [30]. The degree 4 Taylor

and Chebyshev approximations demonstrate improved fairness in

the global model compared to their degree 2 counterparts. This im-

provement is comparable to our approximation, as the accuracy of

these approximations near zero increases, more closely replicating

the weight assignment mechanism described in [30].

Recall that the weight assignment mechanism in [30] involves

computing exp(−𝛽 |𝐹 𝑡
𝑘
− 𝐹 𝑡𝑔 |). Therefore, in addition to their higher

multiplicative depth compared to our approach (2 instead of 1), the

full weight assignment mechanism using these degree 4 approxima-

tions is challenging to compute homomorphically because the exp

18
This is due to weight normalization, which tends to smooth out abnormal values

from the polynomial approximations and helps stabilize the training process.
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Table 13: Average-case noise growth from [23]

Operation Noise variance
Encoding 𝜎2

encode
= 𝜎2 + 1

12

Encryption 𝜎2

fresh
= ( | |𝑣 | |2

2
+ ||𝑠 | |2

2
+ 1)𝜎2

init

Addition 𝜎2

add
= 𝜎2

1
+ 𝜎2

2

Const. addition 𝜎2

plain_add
= 𝜎2

(No growth)

Multiplication (without Relin. & Rescaling) 𝜎2

𝑚𝑢𝑙𝑡
= 𝑁𝜎2

1
𝜎2

2
+ 𝜎2

1
| |𝑚2 | |21 + 𝜎1

1
| |𝑚1 | |21

Square 𝜎2

square
= 2𝑁𝜎4 + 4𝜎2 | |𝑚 | |2

2

Const. (𝑐) Multiplication 𝜎2

plain_mult
= 𝑐2𝜎2

Relinearization 𝜎2

relin
= ( 1

12
𝑃−1𝑁𝑞2

𝑙
𝜎2) + 1𝑃∤𝑞𝑙𝜎2

round

Rounding 𝜎2

round
= 𝑁

18
+ 1

12

Full multiplication 𝜎full_mult =
1

Δ2
(𝜎2

mult
+ 𝜎2

relin
) + 𝜎2

round

NB: 𝜎2
denotes input ciphertext’s noise variance. For arithmetic operations involving two operands, 𝜎2

1
and 𝜎2

1
denote first and second

operand’s noise variance respectively, and 𝜎2

init
refers to the initial RLWE Gaussian noise variance, and is part of the scheme’s parameter-set.

Table 14: Plaintext FairFed performance after 300 learning
iterations with various approximations of exp.

Measures Taylor-2 Cheb-2 Taylor-4 Cheb-4 Ours

Acc 0.8309 0.8403 0.8240 0.8515 0.8419

Precision 0.8812 0.8560 0.8215 0.8610 0.8327

Recall 0.6612 0.7631 0.7189 0.7134 0.7377

EOD 0.1474 0.1638 0.0492 0.0134 0.0104

SPD -0.1793 -0.1427 -0.0970 -0.1203 -0.0911

function in [30] is applied to the absolute value representing the

distance between 𝐹 𝑡
𝑘
and 𝐹 𝑡𝑔 . In contrast to our approach, these ap-

proximations of exp include odd-degree terms. Hence, the absolute

value must be computed homomorphically, which requires using

sign function approximations [10, 20, 41, 52, 59] (|𝑥 | = sign(𝑥) · 𝑥 ).
To achieve this, prior works [10, 20] exploit the similarities be-

tween the sign function and tanh and use Taylor approximations

of tanh. In contrast, our approach avoids this due to the absence

of odd-degree terms, allowing the absolute value to be naturally

incorporated.

To further assess the effects of approximating the absolute value

on the models’ utility and fairness, we again conduct consistent

plaintext FairFed experiments (similar dataset partitioning, local

debiasing and 𝛽 value) using a degree 4 Taylor expansion of exp,

along with polynomial approximations of the sign function of vari-

ous degrees. Similarly to [36] we rely on the Taylor approximation

of tanh(𝑘𝑥) to compute the absolute value using the sign function.

Figure 9 illustrates these approximations. Additionally, Table 15

presents the obtained results, in terms of utility and fairness, of

composing the previous experiments (Table 14) using a degree-4

Taylor approximation of exp with several other Taylor approxima-

tions of the sign function to compute the full weight assignment

mechanism of [30].

Besides the cumbersome computational overhead, the use of two

composed polynomial approximations (to compute both exp and

tanh) strongly harms the accuracy of the weight assignment mech-

anism, which in turn leads in a clear degradation of the fairness

benefits of FairFed as observed in Table 15. Regarding the approx-

imation of the sign function for computing the absolute value, the

Proximity of tanh(𝑘𝑥 ) to
sign(x) as 𝑘 increases.

Taylor approximations of
tanh(𝑘𝑥 ) with 𝑘 = 2.

Figure 9: Polynomial alternatives of the sign function.

Table 15: Plaintext FairFed performance after 300 learning
iterations with various approximations of tanh(𝑘𝑥) with 𝑘 =

10 as sign function and degree 4 Taylor expansion of exp.

Measures 𝑑 = 1 𝑑 = 3 𝑑 = 5 𝑑 = 7 𝑑 = 9

Acc 0.8431 0.8211 0.8136 0.8531 0.8401

Precision 0.7991 0.8330 0.7422 0.7903 0.7911

Recall 0.8602 0.7798 0.8987 0.8551 0.8593

EOD 0.1522 0.1472 0.1652 0.1531 0.1634

SPD 0.1899 0.1699 0.1789 0.1312 0.1586

polynomial approximations are accurate only within a small inter-

val around 0, specifically when 𝐹 𝑡
𝑘
is close to 𝐹 𝑡𝑔 . When 𝐹 𝑡

𝑘
deviates

significantly from 𝐹 𝑡𝑔 , the quality of the polynomial approximation

deteriorates sharply, leading to anomalous values (greater than 1 or

less than -1). These anomalous values are then used as input to the

polynomial approximation of exp, exacerbating the anomalies and

ultimately rendering the homomorphically cumbersome weight as-

signment mechanism ineffective. This is observed in fairness levels

(EOD & SPD) of the final global model being equivalent (or even

worse) to those obtained from a centralized, or FL training, without

any fairness intervention.

H FHE overhead
In this section, we provide the computational cost of the key steps

of our approach in both plaintext (without the threshold FHE en-

cryption layer) and using the threshold FHE encryption. The FHE
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overhead of each step denotes the difference between a plaintext

execution and an execution on CKKS-encrypted data (with the spec-

ified parameters). More precisely, 100% FHE overhead indicates that

the runtime without the FHE-encryption layer is either negligible

or nonexistent while 0% overhead indicates identical costs.

Table 16: Step-wise runtimes (in seconds), and FHE computa-
tional overhead with 𝑛 = 100, 𝑡 = 25 and log(𝑁 ) = 12.

Steps Plaintext With FHE FHE Overhead (%)

Threshold Setup - 19 100%

LocalUpdate 53 53 0%

Encryption - 3 · 10
−3

100%

Weights computation 7 · 10
−6

1.2 ≈ 100%

Aggregation 3 · 10
−3

1.8 ≈ 100%

Collab. decryption - 1.7 100%

Total (𝑇 = 300) 15900 16800 5.3%

The threshold keys setup time being a non-iterative step, it is

amortized on the total number of training rounds (300). Encryption

time represents the CKKS encoding and the canonical RLWE en-

cryption and results in a very small computational overhead. The

collaborative decryption consists of a nearly negligible local com-

putation
19
and the runtime of this step is primarily induced from

the network latency. The local update step dominates the runtime

of each iteration. For large models and complex datasets, this step

accounts for a greater share of the computational load, making the

FHE overhead appear even less significant compared to the local

update.

I Communication overheads
Table 17 reports the bandwidth usage and the communication over-

head with respect to 3 network settings defined as follows:

• Setting 1 — Low latency (5𝑚𝑠), high bandwidth (1𝐺𝑏𝑝𝑠).

• Setting 2 — High latency (100𝑚𝑠), low bandwidth (100𝑀𝑏𝑝𝑠).

• Setting 3 — Medium latency (50𝑚𝑠), medium bandwidth

(500𝑀𝑏𝑝𝑠).

Note that the network performances’ results introduced in Table 7

refers to Setting 3.

19
Each client subtracts its partial secret key share from the ciphertext as in Appen-

dix E.2.
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Table 17: Data size, bandwidth consumption (in GB), and communication overhead (in seconds) for the collaborative decryption
phase of a single ciphertext encrypting 𝑁

2
model parameters, with log

2
(𝑄) = 60.

log
2
(𝑁 ) Active parties 𝑡

Setting 1 Setting 2 Setting 3
Bandwidth (GB) Comm. (s) Bandwidth (GB) Comm. (s) Bandwidth (GB) Comm. (s)

11

3 0.09 0.01 0.09 0.05 0.09 0.03

5 0.30 0.02 0.30 0.10 0.30 0.06

10 1.38 0.05 1.38 0.22 1.38 0.13

15 3.22 0.08 3.22 0.48 3.22 0.30

20 5.83 0.10 5.83 0.72 5.83 0.45

12

3 0.18 0.02 0.18 0.08 0.18 0.05

5 0.61 0.04 0.61 0.16 0.61 0.10

10 2.76 0.10 2.76 0.44 2.76 0.28

15 6.45 0.16 6.45 0.96 6.45 0.60

20 11.67 0.22 11.67 1.40 11.67 0.90

13

3 0.37 0.04 0.37 0.14 0.37 0.09

5 1.23 0.08 1.23 0.22 1.23 0.15

10 5.53 0.18 5.53 0.50 5.53 0.34

15 12.90 0.28 12.90 1.10 12.90 0.75

20 23.35 0.40 23.35 1.60 23.35 1.00

14

3 0.74 0.08 0.74 0.18 0.74 0.12

5 2.46 0.16 2.46 0.30 2.46 0.20

10 11.06 0.36 11.06 0.66 11.06 0.45

15 25.80 0.54 25.80 1.10 25.80 0.75

20 46.69 0.80 46.69 1.60 46.69 1.05

15

3 1.47 0.10 1.47 0.25 1.47 0.16

5 4.91 0.20 4.91 0.40 4.91 0.30

10 22.11 0.45 22.11 0.85 22.11 0.60

15 51.60 0.65 51.60 1.25 51.60 0.90

20 93.34 0.90 93.34 1.60 93.34 1.20

865


	Abstract
	1 Introduction
	2 Background
	2.1 Fairness in Machine Learning
	2.2 CKKS Cryptosystem
	2.3 DP and Gaussian Mechanism

	3 Related Work
	3.1 Privacy-preserving and Fairness-aware FL
	3.2 Tensions between Privacy and Fairness

	4 Fairness-enhanced inference attack
	4.1 Adversary model
	4.2 Membership Inference Attack from Fairness Information
	4.3 Weight-based Privacy Leakage Evaluation

	5 Privacy-preserving and Fairness-aware Federated Learning
	5.1 FairFed Description
	5.2 Enabling Private and Fair Model Training
	5.3 Framework Workflow
	5.4 FHE vs Pairwise-masking for Privacy and Fairness in FL

	6 Security and Privacy Analysis
	6.1 DP from CKKS Aggregation
	6.2 Collusion-Resistance through CKKS

	7 Experimental Results
	8 Conclusion
	Acknowledgments
	References
	A Table of notations
	B Supervised and Federated Learning
	B.1 Supervised learning
	B.2 Federated Learning

	C Membership inference attacks through shadow training
	D Privacy budget estimation for Compas, and FairFace.
	E Cryptographic background
	E.1 CKKS functionalities
	E.2 Threshold multi-key RLWE-based schemes

	F FairFed's algorithmic description
	G FHE-friendly polynomial approximations
	H FHE overhead
	I Communication overheads

