
Referrer Policy: Implementation and Circumvention
Luqman Muhammad Zagi

Radboud University
Nijmegen, The Netherlands

luqman.zagi@ru.nl

Zahra Moti
Radboud University

Nijmegen, The Netherlands
zahra.moti@ru.nl

Gunes Acar
Radboud University

Nijmegen, The Netherlands
g.acar@cs.ru.nl

Abstract
The Referrer Policy (RP) standard makes it possible for websites
to control how much information will be shared in the Referer
[sic] header. In this study, we investigate the implementation and
circumvention of the Referrer Policy standard across 27,750 distinct
websites and over 100K pages from three vantage points: the United
States, Singapore and the Netherlands. Our findings reveal that
48.38% of websites implement document-wide referrer policies, and
13.39% apply element-specific referrer policies. The majority of the
sites (43.81%) use the Referrer-Policy HTTP response header to set
a document-wide policy, while 11.09% use HTML meta tags. Even
on websites with restrictive referrer policies, scripts can access
the full page URL and exfiltrate it — which we label as a referrer
policy circumvention. We identified RP circumventions on 77.20% of
websites often carried out by third-party advertising and analytics
scripts, including Google Analytics, Facebook, and TikTok Pixel.
While the ability to manage referrer information and the adoption
of more privacy-focused default policies represent positive gains
for user privacy, the widespread circumvention of these measures
by third-party script remains to be a problem. We recommend
implementing technical measures to restrict script access in order
to address this privacy and security issue.

Keywords
Referer, Referrer Policy, Online tracking, Privacy, Circumvention

1 Introduction
Modern webpages increasingly incorporate third-party content,
including content delivery networks (CDNs), analytics services and
advertising networks to monetize their content, offer new func-
tionalities and deliver content efficiently [69]. The Referer [sic]
header1, an HTTP header that enables the browser to capture and
transmit the URLs of referring pages to servers, has become an
essential component for facilitating this integration. The referrer
allows websites to monitor referral traffic for analytics and debug-
ging purposes. It also helps website owners to block traffic from
unknown sources. The referrer may include an empty string, an ori-
gin, or a full URL, but it omits fragments and userinfo subcomponent
(e.g., now deprecated username:password format) [19, 38]. While
the header enables functionalities such as analytics, logging and

1The header was misspelled “Referer” in the early HTTP specification. We use the
misspelled version only when referring to the header. [26].

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(3), 135–155
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0092

caching [58], it also raises significant privacy concerns. The header
may disclose sensitive information such as health conditions and
order confirmations [48, 64], without users’ awareness. Moreover,
the referrer can reveal a user’s name, gender, address, and passport
number to third parties embedded on a website [28, 48, 51, 64].
The header can also reveal online behaviors and preferences. For
instance, specific products being browsed or news articles being
viewed can easily be extracted from the Referer header.

The Referer header can also reveal privileged capability or telltale
URLs [1, 50]. These URLs may contain sensitive information them-
selves or act as a gateway to manage an account or order. Websites
including Emirates, Lufthansa, GrubHub and Spotify were found
to contain telltale URLs [64]. In a particular example, the train-
line.eu website inadvertently leaked unique user tokens to grant
direct access to booking details through the Referer header [50].
This allowed third-party entities to access sensitive booking details
without requiring additional login credentials. Similar referrer leaks
can also be used to take over user accounts when password reset
tokens are included in the URLs. When users request a password
reset, the reset token may be sent in the referrer to third parties—if
the token is included in the reset link. A malicious third party can
then use the token to reset the password, gaining unauthorized ac-
cess to the account. In 2021, this very vulnerability was discovered
on UPchieve, an online tutoring and counseling site, whose users
likely contain many high school students [3].

The “Referrer Policy” (abbreviated as RP), introduced as candi-
date standard in 2017, aims to limit the amount of URL information
sent to third-parties via the Referer header when retrieving the
subresources, prefetching, or navigation [34]. The policy allows a
website to determine what part of the URL should be sent under
different conditions, such as cross-origin or insecure requests. For
instance, to completely omit the Referer header, a website may
set its RP to no-referrer. The RP may also be set for individual
elements such as anchors (a) or images (img), which may either
trigger requests when clicked or loaded as a subresource.

Since November 2020, many browsers have adopted a more
privacy-focused default RP, limiting cross-origin request referrers
to the origin only, rather than the full page URL [24].While this shift
offers clear privacy benefits, the effectiveness of RP is challenged by
the complexity of modern web applications. Third-party advertising
and analytics scripts can often bypass the website owner’s preferred
RP [2], accessing and transmitting the full page URL to their servers.
To the best of our knowledge there has not been an empirical study
focusing on the circumvention of the RP standard.

Our study has two primary objectives: (1) to assess the preva-
lence of RP usage on the web, and (2) to identify instances of RP
circumventions—cases where a complete URL (or its components)
is shared despite a restrictive policy. To achieve the first goal, we
develop a custom crawler that collects HTTP headers, POST bodies,

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0092

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Figure 1: The URL components.

HTML source and JavaScript property accesses to location.href
and document.url — two host object properties that reveal the
current document’s URL. To detect RP circumventions, we iden-
tify cases where the page URL or its components were sent in a
third-party request in circumvention of the active RP. Determining
the active RP for each request is a complex process. We use the RP
provided for each request by the Chrome DevTools Protocol [42],
which our crawler uses under the hood.

Circumvention, in this context, does not refer to third parties
altering the Referer header. Rather, third parties typically transmit
the webpage URL through various vectors, such as in the POST
body, either with or without encoding. As a result, while the Ref-
erer header itself may not directly violate the RP, the URL is still
transmitted using alternative methods.

In summary, we make the following contributions
• We measure the implementation of RP on more than 27K
websites using vantage points from three continents (North
America, Asia, and Europe).

• We study how websites implement RP, by analyzing HTTP
headers, meta element attributes, element-specific policies
and relational attributes (rel).

• We develop a method to detect and measure RP circum-
ventions, building on a leak detection method from prior
work [36, 65].

2 Background and Related Work
In this section, we present technical preliminaries and related past
research.

2.1 Uniform Resource Locator (URL)
URL represents a subset of the Uniform Resource Identifier (URI)
that points to a specific resource on the World Wide Web [25]. A
URL consists of the following components, depicted in Figure 1 [19,
25]:

• Scheme: Specifies the protocol employed for communica-
tion, such as HTTP, HTTPS, or FTP.

• Authority: An optional component, denoted by a double
slash at the beginning and terminated by a slash, question
mark, or hash symbol. It may consist of three sub-components:
(a) user info (omitted from Figure 1 for simplicity), (b) host,
and (c) port.

• Path: Specifies the location of a resource on a web server.
Historically, it corresponded to a physical file location, but
modern web servers often treat paths as abstract identifiers
without direct physical mapping.

• Query: Contains additional parameters passed to the server,
typically used for filtering or customization.

• Fragments: Points to a specific part of a resource, usually
for navigation within a webpage, and is denoted by a hash
symbol (#).

2.2 Referrer
MDNWeb Docs2 describes the Referer header as “an HTTP header,
containing either the full or partial URL that denotes the source from
which a specific resource has been requested” [11]. For example,
when a user clicks a link to a target site from a source site, the
target site may receive the URL of the source site through the
Referer header in the HTTP request. This helps the target site
identify where the traffic is coming from, which can be useful
for tracking referrals, behavioral profiling and logging [58]. The
referrer information is sent by default in eachHTTP request and can
be accessed via JavaScript using the document.referrer property.

While RFC 9110 [38] specifies that the Referer header should ex-
clude sensitive information such as URL fragments and the userinfo
subcomponent [19], it may still contain privacy-sensitive infor-
mation about a user. To mitigate these concerns, the World Wide
Web Consortium (W3C) has introduced the Referrer-Policy stan-
dard [30], allowing website owners to control the level of detail
shared in the Referer header.

2.3 Referrer Policy (RP)
Referrer Policy (RP) governs the extent of data sent in the Referer
header [24, 30]. The header may contain no information, the origin
(scheme and authority) or the full URL (scheme, autority, path, and
query). The exact data sent in the referrer is determined by factors
such as the origin of the request (same-origin or cross-origin) and
the security protocol (HTTPS or HTTP). RP can take a total of
eight policy values. These policies and the associated behavior
are displayed in Table 1. In November 2020, the default policy in
the standard was changed from no-referrer-when-downgrade
to strict-origin-when-cross-origin [24]. Since this change,
conforming browsers only send the page’s origin in cross-origin
requests, unless a more permissive RP is specified. While the RP
standard defined eight possible values, Firefox and Safari do not
support the most permissive (insecure) three policies and upgrade
them to the default policy instead. A summary of the supported RP
values for each major browser is given in Table 2.

Implementation. The RP can be specified in five different ways,
as outlined below [30]. Example code for each method is provided
in Listing 1. When multiple RPs are encountered at different layers,
the precedence rules given in Figure 2 apply. In short, browsers
prioritize element-specific policies over document-wide policies.
Moreover, documents (e.g., frames) inherit their RPs from their
parent documents.

• Referrer-Policy Headers: The Referrer-Policy HTTP
response header defines how a user agent should handle
referrer information when making requests or creating new,
document-wide browsing contexts.

• HTML Meta-tags: A dedicated <meta> element with a name
attribute set to referrer and the desired policy value in the
content attribute determines the default behavior for the
entire document.

• Element-Specific Referrer Policies: Individual elements
such as anchors (a), images (img), inline frames (iframe) or
scripts (script) can have their own RP using the
referrerpolicy attribute.

2Formerly known as Mozilla Developer Network.
136

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

Table 1: The referrer policy’s effect onwhat part of the URL is
sent in the referrer under different conditions. None: empty
referrer; Origin: only the origin is sent; Full: all URL parts
except fragments and user information are sent.

Referrer Policy same
origin

cross
origin

HTTPS
to HTTP

no-referrer None None None
same-origin Full None None
strict-origin Origin Origin None
strict-origin-when-cross-
origin Full Origin None

origin Origin Origin Origin
origin-when-cross-origin Full Origin Origin
no-referrer-when-
downgrade Full Full None

unsafe-url Full Full Full

Table 2: Referrer policy types supported by browsers. Sa-
fari and Firefox intentionally upgrade the permissive poli-
cies listed under Ignores to the more private default policy.
Safari only sends the origin in the referrer in cross-site re-
quests [12].

Browser Notes

Chrome Supports all types
Edge Supports all types
Opera Supports all types

Safari
Cross-site: origin
Ignores: unsafe-url, origin-when-cross-origin
no-referrer-when-downgrade

Firefox Ignores: unsafe-url, origin-when-cross-origin,
no-referrer-when-downgrade

Figure 2: Following the HTML standard, this flowchart
shows how browsers choose a referrer policy for fetching
resources when multiple, potentially conflicting policies are
present [44].

1 <meta name="referrer" content="origin" />

2

3

4

5

Listing 1: Referrer policy implementation using HTML
elements and attributes. Using <meta> offers an alternative
to setting a document-wide policy using the Referrer-Policy
HTTP response header. The other two methods can be used
to set element-specific policies.

• Element-Specific Link Relations (rel): The rel=
“noreferrer” link relation on anchor (a) or area elements
act as a shortcut to set their policy explicitly to no-referrer.

• Inheritance: Referrer policy is inherited according to the
policy container inheritancemechanism defined in theHTML
standard [43].

Legacy referrer policies. Now deprecated legacy referrer poli-
cies such as origin and none-when-downgrade are defined in the
first draft of the RP standard, released in 2014 [35]. These policies
are automatically transformed to their modern counterparts by
modern browsers (Appendix A.1). We apply the same transforma-
tion to legacy RPs we encounter in our measurements — which is a
rare occurrence.

2.4 Third-Partyness
The “third-party” requests commonly refer to requests that have a
different eTLD+1 than the embedding page [55, 67]. In this study, we
define third-party requests based onKats et al.’s [48] notion of “ideal”
third-party relationships. Using DuckDuckGo’s Tracker-Radar en-
tity -> domains map [33], we label a request as a third party if it
belongs to a different entity (e.g., company or institution) and has
a different eTLD+1. For example, requests to google-analytics.com
are considered first-party on google.de, since both domains belong
to Google/Alphabet. If a domain is not present in DuckDuckGo’s
entity map, we use the domain’s eTLD+1 as its entity.

2.5 Related work
RP Implementations. Lavrenovs and Melon’s 2018 study on
HTTP security headers on one million websites [52] revealed low
adoption of the RP header. Only 0.05% of HTTP responses and 0.33%
of HTTPS responses included a RP header. This limited adoption
is likely due to the RP specification being relatively new at the
time, introduced in January 2017. While this study provided early
insights into the adoption of RP, it did not consider HTML-based
RP implementations and did not investigate RP circumventions.

Gadient et al. [39] extended the analysis to mobile app commu-
nication by examining 9,714 requests with unique URLs from 3,376
apps. Their findings revealed that only 7% of server responses in-
cluded any security-related headers, with a mere 2% containing the
RP header.

Prior studies [39, 52] on measuring the RP adoption have been
limited to HTTP header-based RP implementations, neglecting
HTML-based implementations. We present a more comprehensive
and accurate measurement of RP usage by including HTML-based
RP implementations at both document and element level.

137

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Other research has studied RP implementations onmobile browsers
and their effectiveness in online collaboration services. In a 2019
study, Luo et al. [57] identified that several popular mobile browsers
(e.g., Chrome and Opera Mini) lacked full implementation of the
RP standard. According to the web feature support website ca-
niuse.com [29], all mobile browsers except Opera Mini have added
RP support in the meantime.

Leakage via the Referer header. Kaleli et al. [47] studied on-
line collaboration services where improper RP implementations
and insufficient browser support led to the leakage of secret URLs
via the Referer header. A secret URL is a unique link that grants
access to a specific document, commonly used for facilitating easy
access. Their study revealed that if a file contains a link to certain
websites (e.g., an attacker’s website), these services inadvertently
leaked the secret URL via the Referer header to the attacker’s site,
compromising the confidentiality of the shared document. Their
study underscored that both implementation and browser compati-
bility are required for effective referrer control. While their work
highlighted the specific risk of secret link exposures due to insecure
referrer handling, it concentrates on a narrow use case—online
collaboration portals—rather than the broader web ecosystem.

Investigating sign-up flows of e-commerce websites, a 2021 study
by Dao and Fukuda [28] revealed that 42% of the 307 shopping
websites expose personal identifiable information (PII) to at least
one third-party domain. The information was exposed through
the Referer header on 2.3% of these websites, by request URL on
90.8%, payload body on 33.1%, and a cookie on 4%. They also found
that most PII leaks were encoded, with only 32.3% transmitted in
plaintext. The leaked data comprises email addresses, usernames,
and real names. While the research revealed personal information
leaks through the Referer header, it did not examine the impact of
RP on reducing these leaks.

A 2022 research by Kats et al. [48] has investigated information
leakage due to internal site search functionality. In their study, the
researchers discovered that 81.3% of these websites inadvertently
disclosed the search terms to third parties. In most (75.8%) cases,
the search terms were leaked via the Referer header.

HTTP Headers. Several studies have assessed the implemen-
tation and impact of HTTP headers. Siewert et al. [66] studied the
behavior of modern browsers when confronted with duplicate, con-
flicting, or misspelled security headers and directives. McGahagan
et al. [59] ranked the significance of HTTP headers in detecting
malicious websites. Lerenovs and Visky [53] showed how a single
HTTP header can often identify the class or model of specific device
connected to the Internet.

While numerous online tools can parse HTTP headers, we iden-
tified two useful resources for understanding RP implementations.
Outside academic research, Crawler Ninja [45] provides histori-
cal measurements of various security headers, including the RP.
Chrome Platform Status [40], on the other hand, offers aggregate
historical usage data on specific web features based on Google
Chrome telemetry data and HTTP Archive crawls [17].

Different than prior work, we take a broader approach to exam-
ining the RP, collecting data from different vantage points in the US,
Europe, and Asia to offer a global perspective. We perform a large-
scale measurement of how widely various websites adopt RP direc-
tives (via headers, meta tags, or element attributes) and whether

these measures are subverted in practice by third-party scripts. Our
findings reveal that even correctly specified RPs can be bypassed
by scripts that access and transmit the full page URL, negating the
intended privacy protections. Revealing these shortcomings can
provide guidance for future privacy-focused web standards, inform
policy making and motivate technical countermeasures.

3 Methods
Below, we describe our methods, including the selection of the
target websites, crawls, and data analysis.

3.1 Website list
In order to build a list of websites to study, we utilized the Tranco
top 1 million list [54] 3. Tranco uses a transparent ranking method,
openly sharing its data sourcing, filtering, and evaluation processes.
The Tranco list also offers localization and customization options
with various criteria [54]. We used the October 2023 version of
the Tranco list and applied two filters: retaining only pay-level
domains (eTLD+1) and including only domains present in the global
dataset of the Chrome User Experience Report [41]. Due to study
limitations, we (randomly) sampled 30,000 websites from this list.

Website Categorization. Website categorization allows us to
understand the nature and characteristics of the websites involved
by grouping them into similar categories based on shared attributes.
Each category encompasses websites with common content and
functionalities, allowing us to compare RP implementations and
circumventions within and across different categories.

The classification of websites depends on the tools and meth-
ods employed. In this study, we utilized the McAfee SiteLookup
service [7], which leverages McAfee Global Threat Intelligence
categories to classify websites into predefined groups, including
e-commerce, news, social media, finance and entertainment.

While domain categorization services are known to have incon-
sistencies, as highlighted by Vallina et al. [70], McAfee was found to
offer the most comprehensive coverage, making it a suitable choice
for our study.

3.2 Crawls
To measure RP usage and circumventions across websites, we ex-
tended the open-source crawler Tracker Radar Collector (TRC) [32].
TRC is a modular web crawler designed for large-scale web mea-
surements and has been used by several prior measurement stud-
ies [18, 68]. Built on top of Puppeteer and leveraging the Chrome
DevTools Protocol (CDP), TRC can collect data about network traf-
fic, JavaScript execution and web elements. We enhance TRC by
adding custom modules to collect data specific to our research ob-
jectives. The data collection is conducted in two steps: 1) collecting
inner page links and 2) measuring Referrer-Policy implementations
and circumventions.

3.2.1 Step 1: Collecting Inner Page Links. Wedeveloped and added a
LinkCollector module to the crawler to retrieve inner page URLs
from each target website. Inner page URLs containing both a host-
name and a path provide more detailed insights into referrer leaks
than homepage URLs (e.g., https://example.com/path). Homepages

3Available at http://tranco-list.eu/list/7PL6X
138

http://tranco-list.eu/list/7PL6X

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

Figure 3: An overview of the data collection and analysis pipeline. The Inner Page and Referrer Policy Crawlers are based on
DuckDuckGo’s Tracker Radar Collector [32].

typically lack a path component (e.g., https://www.example.com),
making it impossible to determine whether a referrer is leaking
only the origin or the full URL. Therefore, detecting potential full
URL or path leaks is more feasible on inner pages than on home-
pages. We applied a series of filtering rules to enhance the accuracy
and relevance of the data collected. The LinkCollector, following
an approach similar to that used by Moti et al. [61], prioritizes
links near the center of the viewport to avoid links from footers
or other less prominent areas. The goal of this approach is to pri-
oritize links that users are more likely to click. Then, the crawler
filters links based on several criteria: it excludes links to external
domains, links with common file extensions (e.g., ‘.jpg’, ‘.jpeg’,
‘.pdf’, ‘.png’, and ‘.xml’), links without a path or parameters,
and mailto: links. These filtering rules helped collect links to inner
web pages, rather than documents or images.

3.2.2 Step 2: Measuring Referrer-Policy Implementations and Cir-
cumventions . Recall that RPs can be set through HTTP headers, a
dedicated HTML meta-tag or element-specific attributes (§2.3). To
capture the necessary data for studying RP usage, we use multiple
collectors. In order to capture HTML-based implementations, we
develop a new collector called RPAttributeCollector. This collec-
tor gathers RP-related attributes from various HTML elements such
as links, images, iframes and scripts. The RPAttributeCollector
identifies and extracts relevant attributes from each of these ele-
ments, including href, src, title, text, and rel, as well as cap-
turing the attributes of the <meta name="referrer"> tag. Notably,
the collector processes both the main frame and any nested child
frames. This allows for analysis of RP implementations at both the
document and element levels while also considering cross-origin
frames.

Additionally, we modify the TRC’s requestCollector module
to capture the Referer and Referrer-Policy headers. For each request,
we also save the referrerPolicy property, which is provided by
the Chrome DevTools Protocol (CDP) to indicate the specific RP that
the browser uses for this request [42]. Note that this property is not
an actual header and is not sent over the wire. It rather indicates the
RP that the browser computed for each request after considering
all document-wide and element-specific policies. We capture and
use the referrerPolicy property to detect RP circumventions.
We further extended the requestCollector to record HTTP POST
request bodies in addition to request headers.We also added support
for additional HTTP methods, such as PUT and PATCH. Capturing

the POST request bodies and other request types enabled a more
comprehensive search for RP circumventions.

TRC’s JavaScript instrumentation (apiCollector) uses CDP to
set conditional breakpoints that trigger when specific functions
are called or properties are accessed. When a breakpoint is trig-
gered, the apiCollector collects the JavaScript stack trace and
metadata related to the function or property access [32, 68]. We
added breakpoints for window.location and document.URL prop-
erties to intercept script access to page URLs and their components.
Through testing we verified that even a script accesses a property
of these objects (e.g., window.location.href), we could intercept
the access. Capturing JavaScript access to URLs helped identify
scripts that bypass the Referrer Policy by directly accessing and
sharing page URLs with third parties.

Vantage Points andCrawlDates.We ran the crawls from three
distinct vantage points, to compare the RP measurements across
locations: San Francisco (SF), Amsterdam (Ams), and Singapore
(Sg). The decision to include Singapore was mainly motivated by
increasing the diversity of vantage points, which are commonly
limited to Europe [46, 65, 69, 73] and North America [16, 18, 37,
48, 58, 65, 69, 73]. The crawls were run in January 2024 and took
roughly twenty days to complete. Crawlers did not interact with
consent dialogs that may be present on websites. This approach
was chosen to preserve the initial conditions as they occur when a
webpage is loaded in a browser, ensuring that any circumventions
observed reflect events prior to user interaction with the page. In
addition, this passive approach made the results from different
vantage points more comparable, since interacting with consent
dialogs in the EU may lead to a different treatment, where data
protection laws are stricter.

3.3 Potential URL Leakage Detection
While prior studies [28, 48] focused on personal information leak-
age via the Referer header, our study examines whether third parties
receive the webpage’s URL, to detect RP circumventions. Detecting
URL leaks presents a challenge since URLsmay be sent in obfuscated
form to evade detection similar to other data exfiltrations [22, 28, 65].
To cope with this challenge, we adopted the Leak Detector tool
developed by Senol et al.[65], which draws upon research by En-
glehardt et al. [36]. Leak Detector considers diverse encoding and
hashing techniques such as Base64 and URL (percent) encoding

139

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

when searching for leaks in request details. In order to detect po-
tential leaks, we searched for the components of the page URL in
the third-party request details. Using Python’s urllib.urlparse
function, we parsed the URL into its components, including the
hostname, path, parameters, query and fragments. These compo-
nents served as search terms to identify potential URL leaks. The
search terms are then searched within the request URL, request
POST body, and request Referer header to detect any instances of
URL components in encoded or plain-text form.

We configure the leak detector to use an extensive array of
encoding-decoding techniques (list on Appendix A.3), with a depth
of two layers in encoding and decoding. This approach enables the
detection of double-encoded URLs, among others. We exclude hash
functions from the leak detection since hashed URLs are unlikely
to be useful to third parties due to the irreversibility property of
hashing.

3.4 Referrer Policy Circumvention Detection
Not all URL transmissions to third parties constitute an RP cir-
cumvention. If the RP permits, even the full URL (excluding frag-
ments) can be disclosed to third parties. To detect RP circumven-
tions, we compare the CDP-provided referrerPolicy property of
each third-party request with the transmitted URL parts detected in
the same request. We then classify the results into three categories:
1) circumvention (full URL), if it involves the transmission of the full
URL or origin combined with path or query parameters, when the
RP disallows the sharing of the full URL; 2) circumvention (partial),
if it is sending path or query when RP disallows or; 3) safe, if no
circumvention is detected.

The distinction between circumvention (full URL) and circum-
vention (partial) arose during our pilot project. We observed that
certain third-party requests did not include a complete URL. Instead,
they transmitted only the path or query parameters, possibly be-
cause the origin was already sent in the Referer header. To account
for this nuance, we introduced the circumvention (partial) category.

An additional challenge was due to a very short path and query
parameters detected as leaks, many of which appeared to be false
positives. To mitigate this issue, we only detected RP circumven-
tions for paths and queries if they were longer than ten characters.
Due to this filtering, we present the RP circumventions as percent-
ages or indicate the number of websites included in the analysis.
To test the reliability of our detection approach, we conducted a
false positive evaluation on 100 circumvention (partial) cases and
100 circumvention (full URL) cases. The method for this evaluation
is detailed in Appendix B, and the results are presented in § 4.2.

4 Results
For simplicity, results are based on the SF crawl unless otherwise
specified.

We limit our analysis to 124,202 pages (from 27,570 distinct
websites), which were successfully crawled from all three vantage
points. Approximately 96% of the pages were successfully visited
by our RP crawler (Table 3). Details of how we detect failed visits
can be found in Appendix A.2. We categorized the 27,570 websites
using McAfee SiteLookup service [7], which resulted in 35 distinct
categories with a minimum of 100 websites each (Figure 11 in

Table 3: Number of successfully crawled websites and pages.

SF Sg Ams

Successfully loaded websites 27,414 27,406 26,362
Successfully loaded pages 119,591 119,476 119,243
Successfully loaded pages (%) 96.29% 96.19% 96.01%

Table 4: Percentage of distinct websites applying a document-
wide referrer policy. Document-wide referrer policies can be
set by either meta-tags or RP response headers.

Referrer Policy SF Sg Ams

no-referrer 7.39% 7.35% 5.77%
same-origin 6.78% 6.96% 6.68%
strict-origin 1.33% 1.32% 1.22%
strict-origin-when-cross-origin 27.14% 26.54% 23.65%
origin 7.07% 6.71% 6.13%
origin-when-cross-origin 8.21% 8.18% 6.06%
no-referrer-when-downgrade 9.95% 9.83% 9.63%
unsafe-url 4.48% 2.74% 1.60%
Total 48.38% 47.73% 44.20%

Appendix C). We enforced the lower limit of 100 to avoid categories
with very few websites. The “Business” category emerged as the
most common, with 3,902 websites, while the “Content Server”
category was the least common, with 104 websites.

4.1 Referrer Policy Usage
4.1.1 Document-Wide Referrer Policies . The percentage of web-
sites setting a document-wide RP ranged from 44.20% (Ams) to
48.38% (SF). These policies were implemented using various meth-
ods, with 11.09% utilizing meta tags and 43.81% employing response
headers. The strict-origin-when-cross-origin policy was the
most common, observed on 27.14% of the websites. Table 4 shows a
detailed breakdown of these values. Across vantage points, we ob-
serve little difference in RP usage, with similar percentages overall.
The most restrictive RP (no-referrer), for instance, was used on
7.39% and 5.77% of the websites when visited from SF and Amster-
dam, respectively. The only exception to this trend is unsafe-url,
which was used on 4.48% and 1.60% of the websites when vis-
ited from SF and Amsterdam, respectively. The lower usage of
unsafe-url in the Amsterdam crawl might result from not inter-
acting with consent dialogs, as we find below that unsafe-url
is primarily employed by third-party frames. In §4.2.4, we report
on a small scale investigation comparing RP implementations and
circumventions in different consent modes. However, given the
scope of our consent crawl, the findings did not offer conclusive
evidence.

Referrer-Policy Response Headers.We observed one or more
RP response headers on 43.81% of the websites. The most common
policy strict-origin-when-cross-origin was found on 26.98%
of thewebsites, followed by no-referrer-when-downgrade (9.06%).
In contrast, the least popular policy strict-origin was observed

140

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

Table 5: Percentage of distinct websites with RP response
headers. In rare cases, when a website sends multiple RP val-
ues in the same header, we determine the applicable policy
based on precedence, prioritizing the rightmost value. If the
rightmost value is invalid—due to a typo, browser-imposed
restrictions (Table 2), or an unrecognized policy—it is disre-
garded, and the next valid value is selected.

Referrer Policy SF Sg Ams

no-referrer 5.15% 5.18% 4.99%
same-origin 6.75% 6.93% 6.65%
strict-origin 1.32% 1.31% 1.21%
strict-origin-when-cross-origin 26.98% 26.38% 23.47%
origin 4.87% 4.71% 4.47%
origin-when-cross-origin 4.26% 4.29% 4.02%
no-referrer-when-downgrade 9.06% 8.97% 8.77%
unsafe-url 3.60% 1.82% 0.69%

Figure 4: Total distinct websites with Referrer-Policy re-
sponse headers, grouped by third-partyness (first-party: blue;
third-party: orange).

on 1.32% of the websites (Table 5). Similar to aggregate document-
wide policies presented above, we find a lower usage of unsafe-url
in the Amsterdam crawl compared to SF and Sg crawls (SF: 3.60%,
Sg: 1.82% Ams: 0.69%). In §4.2.4, we present an exploratory investi-
gation on whether the low unsafe-url in the Amsterdam crawl
could be explained by lack of consent.

Figure 4 illustrates the distribution of RPs found in response
headers, categorized by first-party and third-party domains. No-
tably, the most permissive RP unsafe-url was almost exclusively
found in third-party responses, appearing on 891 websites, com-
pared to just 112 websites in first-party responses. Note that RPs
found in third-party responses may or may not cause any change
in what RP the browser uses. Allowing third parties to set the RP
for the whole website would render the RP standard useless. How-
ever, cross-origin iframes can set the active RP for their embedded
document and requests originating from that document.

Our analysis of response headers also revealed RPs that do not
follow the standard. Certain RP headers, for example, contained
newline characters (“\n”) to separate multiple RPs (Table 22, Ap-
pendix C), while the correct syntax requires commas for separation
(Table 23, Appendix C).

Table 6: Percentage of distinct websites with referrer policy
in HTML Meta Tags.

Referrer Policy SF Sg Ams

no-referrer 2.67% 2.57% 0.94%
same-origin 0.04% 0.04% 0.04%
strict-origin 0.01% 0.01% 0.01%
strict-origin-when-cross-origin 0.42% 0.42% 0.43%
origin 2.49% 2.17% 1.81%
origin-when-cross-origin 4.04% 3.98% 2.10%
no-referrer-when-downgrade 1.14% 1.12% 1.11%
unsafe-url 0.97% 0.99% 0.96%

Figure 5: Total distinct websites with meta-tag referrer policy
grouped by frame.

HTML Meta-tag. Our analysis revealed limited adoption of the
RP implementation via HTML meta tag, with only 7.15% websites
in Ams, 10.66% in Sg, and 11.09% in SF (Table 6). The most com-
mon policy origin-when-cross-origin was found on 4.04% of
the websites.

We find a significant disparity in RP usage between top-level
(parent, first party) and descendant (children) frames (Figure 5). The
most common policy in child frame meta tags was origin-when-
cross-origin, which was found on 1,069 distinct websites. On the
other hand, the highly permissive no-referrer-when-downgrade
policywasmost prevalent in top-level documentmeta tags (277web-
sites). Recall that no-referrer-when-downgrade implies sending
the full URL in the referrer, unless the protocol security is down-
graded from HTTPS to HTTP. We note that, we only find 2.15%
of the approximately 12 million requests captured in the SF crawl
were sent over insecure HTTP connections.

In addition, we identified two invalid policies: “none”, likely a
legacy form (§2.3) [43], and “noreferrer”, potentially due to a typo or
developer familiarity with the link relation attribute. These invalid
policies would be ignored by browsers. Furthermore, 3.90% of the
websites continue to utilize the legacy origin-when-crossorigin
meta tag RP, which omits the hyphen in “cross-origin”. Browsers
still respect legacy policies, which may disincentivize website own-
ers to update them. Table 20 in Appendix C shows other legacy
values we found in the RP meta tags.

4.1.2 Element-Specific Referrer Policies. Recall from §2.3 that web-
site owners can use rel and referrerpolicy attributes to specify

141

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Table 7: Distinct websites implementing rel=noreferrer.
Note that rel=noreferrer applied to and <script>
elements is not supported and will be discarded by
browsers [30].

Loc. a area img script

SF 1,342 2 7 1
Sg 1,327 2 7 1
Ams 1,340 2 7 1

Table 8: Most common referrer policies found in HTML el-
ement attributes. Indicated as the percentage of the total
websites. The complete version of the table can be found in
Table 21 in Appendix C

El. Location Most Common Referrer Policy

SF origin (0.35%)
Sg origin (0.36%)<a

>

Ams origin (0.47%)
SF unsafe-url (1.99%)
Sg unsafe-url (1.09%)

<i
fra

m
e>

Ams no-referrer-when-downgrade (0.89%)
SF origin (0.38%)
Sg origin (0.38%)

<i
m
g>

Ams origin (0.39%)
SF no-referrer (1.24%)
Sg no-referrer (1.24%)

<l
in
k>

Ams no-referrer (1.23%)
SF no-referrer (1.22%)
Sg no-referrer (1.22%)

<s
cr
ip
t>

Ams no-referrer (1.21%)

RPs for individual elements. Analyzing the data on 33 million el-
ements we captured in the SF crawl, we find that 0.17% of the
elements had an explicitly defined RP, originating from 13.39%
websites. Table 7 and Table 21 (Appendix C) provide detailed break-
downs of the observed element-specific RP values. We note that we
only saved information about elements that can take RP attributes
(e.g., images, links and anchors), as explained in §3.2.2.

Our results showed that “rel= noreferrer” attribute is much
more common than the referrerpolicy attribute. In the case of
<a> elements, we found rel=noreferrer usage on 1,342 distinct
websites (4.90%) (Table 7), significantly more than the combined
usage of the referrerpolicy in <a> elements (0.46%) (Table 21).

While “rel=noreferrer” is primarily intended for <a> and <area>
elements, we identified seven websites where it was used for
and <script> elements. Such non-standard implementations are
ignored by the browser and have no effect.

Our analysis revealed that 9.03% of distinct websites have at least
one element with referrerpolicy attribute. The most common
policy implemented in each element was the same in every loca-
tion, except for iframes where Ams has a different value (Table 8;
detailed breakdown in Table 21 in Appendix C). In the SF and Sg
crawls, unsafe-url was the most commonly observed RP for the

Table 9: Percentage of distinct websites with extracted re-
quest referrer policies. When multiple distinct RP values
were present on a single website, each distinct RP value was
counted separately.

Referrer Policy SF Sg Ams

no-referrer 9.56% 9.12% 7.25%
same-origin 2.33% 2.28% 2.28%
strict-origin 0.64% 0.64% 0.64%
strict-origin-when-cross-origin 100.00% 100.00% 100.00%
origin 8.08% 7.75% 7.33%
origin-when-cross-origin 5.41% 5.35% 3.54%
no-referrer-when-downgrade 9.50% 9.39% 8.86%
unsafe-url 5.26% 3.63% 2.33%

iframes: 537 (SF), 295 (Sg). Notably, on 405 of the 537 websites in the
SF crawl, the src domain of the <iframe>with the unsafe-url RP
was rubiconproject.com. The domain belongs to Magnite, an adver-
tising tech company that acts as a supply-side platform (SSP) [27].
Notably, an iframe with unsafe-url RP was only observed on only
15 websites in the Ams crawl (Table 21). As mentioned above, the
difference in unsafe-url usage in iframes could be attributed to lo-
cal data protection regulations and lack of interaction with consent
dialogs in the crawls. We share a comparison of RP implementations
and circumventions in different consent modes in §4.2.4.

The <a> and elements predominantly contained the origin
policy, indicating that only the origin component of the URL is
sent in the Referer header. In contrast, <link> elements contained
stricter policies, with no-referrer being the most common choice.
The <script> elements primarily contained no-referrer in all
three crawls. A detailed breakdown of element-specific RPs can be
found in Table 21 in Appendix C. These results show that while
element-specific RPs are rare, they show a distinction based on the
element type. More private policies are preferred for <link> and
<script> elements, which are commonly used to embed CSS and
JavaScript resources, respectively. On the other hand, least private
RPs are used for <iframe> elements, which can be used to load
cross-origin resources including advertisements.

4.1.3 Request Referrer Policy Values. Recall that CDP provides
a property called “referrerPolicy” for each request, which re-
flects the cumulative effect of all applicable RPs [42]. Importantly,
“referrerPolicy” is not an actual HTTP header, but is provided by
the CDP for diagnostic purposes. Examining “referrerPolicy” for
12million requests captured in the SF crawl reveals strict-origin-
when-cross-origin as the most prevalent policy (observed on all
websites), followed by no-referrer (9.56%) and no-referrer-when-
downgrade (9.50%) (Table 9).

While the median website utilizes a single policy, we observed
websites with up to six distinct RPs (e.g., breezeline.com). On aver-
age, websites employ 1.41 distinct RPs, with 32.09% using two or
more.

4.1.4 Permissive vs. Restrictive Referrer Policies. As noted in Ta-
ble 2, Safari and Firefox disregard the most permissive RPs; namely,
no-referrer-when-downgrade, origin-when-cross-origin and

142

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

unsafe-url. We group and compare these permissive policies
with restrictive RPs; namely, no-referrer, same-origin, and
strict-origin.

Comparing the proportion of websites that use permissive and
restrictive RPs across website categories, we find that the three
categories that use more permissive RPs are Blogs/Wikis, Portal
Sites, and General News, whereas the top three categories for re-
strictive RPs are Finance, Blogs/Wikis, and Job Search (Figure 6). A
possible explanation for news websites having more permissive RPs
could be that they are known to include more third-party trackers
compared to other categories [37].

To assess whether the use of permissive or restrictive RPs change
with websites’ popularity, we compared the Tranco ranks of web-
sites where we found these two types of RPs. Our analysis did not
reveal a meaningful difference: permissive RPs are used on 18.30%
of websites (median rank: 417,219.5), while restrictive RPs are used
on 18.10% of websites (median rank: 422,384).

4.2 Referrer Policy Circumventions
As outlined in §3.4 our analysis of RP circumventions is based on
three categories: 1) safe: no URL leaks; 2) circumvention (full URL):
full URL leak, when disallowed by the RP; and 3) circumvention
(partial): partial URL leak, when disallowed by the RP. Our results
indicate that circumventions with full URL leaks were observed in
21,084 websites, corresponding to 76.91% of the studied websites.
Circumventions with partial URL (path and/or query), on the other
hand, were detected on 2,704 websites (9.86%) (Table 10).

As previously discussed, circumvention (partial) occurs when
a third party transmits only the path and/or query parameters,
excluding the origin. This method relies on setting a minimum
character threshold for path or query components to mitigate false
positives.

To verify the detected leaks, we selected 100 random samples
from each of the circumvention (full) and circumvention (partial)
categories. We checked the detected leaks for false positives. The
evaluation of full URL leaks yielded no false positives. In contrast,
we found 12/100 false positives when manually reviewing the cir-
cumventions with partial URL leaks. Despite this, the dominant
trend remains that full URL circumvention is overwhelmingly preva-
lent. Among the 21,164 distinct websites where circumvention was
detected, 21,084 (99.62%) involved full URL leaks. While partial
circumvention was observed in 2,704 cases (12.78% of total circum-
ventions), only 80 instances did not overlap with full URL circum-
ventions. As a result, the 12% false positive rate associated with
partial circumventions does not significantly impact the overall
conclusions of our study.

From this subsequent subsection, we consolidate circumvention
(full URL) and circumvention (partial) into a single category, cir-
cumvention, as we now classify websites in both groups as having
breached the RP.

RP circumventions were identified on 77.20% of the websites (Ta-
ble 10) and in 11.57% of the third-party requests (Table 14). These
findings are similar across other vantage points. In Singapore, cir-
cumventions were observed on 77.02% of websites, while in Ams-
terdam, the rate was slightly lower at 76.27% (Table 14).

Table 10: Referrer policy circumventions in the SF crawl
based on the number of distinct websites. “Path” and “Path
and query” circumventions are limited to cases where a min-
imum of 10 characters is present to prevent false positives.
“# Websites” represents the number of websites that meet
specific conditions: in the “Path” row, it indicates websites
where the path component exists, while in the “Path and
Query” row, it refers to websites where both the path and
query components exist.

Leaking Circum. # Web. %

Full URL 21,084 27,414 76.91%
Path (without origin) 2,677 27,414 9.77%
Path and Query (without origin) 182 3,534 5.15%
Path or Query (without origin) 2,704 27,414 9.86%
Total 21,164 27,414 77.20%

Table 11: Percentage of distinct websites with referrer policy
circumventions. The percentage is calculated by dividing the
total number of circumventions found for a specific referrer
policy by the total number of distinct websites where that
policy appears (Table 9).

Referrer Policy SF Sg Ams

no-referrer 11.75% 11.84% 14.17%
same-origin 60.82% 61.82% 61.60%
strict-origin 65.14% 64.00% 61.93%
strict-origin-when-cross-origin 74.60% 74.38% 73.62%
origin 22.20% 20.40% 21.75%
origin-when-cross-origin 17.05% 16.97% 23.24%

Table 11 shows the percentage of circumventions for each RP.We
observed an RP circumvention on 11,75% of the websites that use
the no-referrer policy. The most frequently circumvented policy
was the strict-origin-when-cross-origin policy; 74.60% of the
websites with that policy had an RP circumvention. While the low
rate of circumventions on websites using no-referrer is a positive
finding, we observe this most restrictive policy on only 2,622 web-
sites, representing 9.56% of the total websites (Table 9). On the other
hand, themost circumvented policy (strict-origin-when-cross-
origin) is also the most prevalent policy, being observed on all
websites.

4.2.1 Circumventing Domains and Entities. Analyzing the domains
of the requests that contained RP circumventions, we find three
Google domains (google-analytics.com: 89.14%, google.com: 63.64%,
and doubleclick.net: 57.91%) to be the most common (Table 12). All
ten domains are associated with companies offering advertisement,
marketing or analytics services [7, 33, 60]. Table 13 shows the
top ten entities where requests with RP circumventions sent to
Google, Facebook and Microsoft top the list, while TikTok’s owner
ByteDance found to circumvent RPs on 88.85% of the websites it is
embedded on. Note that while TikTok is known for its mobile app,

143

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Figure 6: Comparison of website categories by referrer policy quality. Sorted by the percentage of permissive referrer policies.
The detail per referrer policy can be seen in Figure 12 in Appendix C.

Table 12: Count of third-party domains circumventing refer-
rer policy, based on their appearance on distinct websites.
Sorted by distinct websites with circumventions. (Table 9)

Third-party Domain Appears on Circumvents on

google-analytics.com 16,821 14,995 (89.14%)
google.com 16,069 10,226 (63.64%)
doubleclick.net 14,623 8,468 (57.91%)
facebook.com 7,886 6,531 (82.82%)
bing.com 2,521 1,289 (51.13%)
linkedin.com 1,860 1,198 (64.41%)
twitter.com 1,687 1,151 (68.23%)
yandex.com 1,230 1,124 (91.38%)
googleadservices.com 2,001 1,066 (53.27%)
adnxs.com 2,099 1,055 (50.26%)

Table 13: Count of third-party entities circumventing referrer
policy, based on their appearance on distinct websites. Sorted
by distinct websites with circumventions.

Third-party Entity Appears
on

Circum.
on

Google LLC 24,120 18,317 (75.94%)
Facebook Inc. 8,992 6,573 (73.10%)
Microsoft Corporation 5,818 3,721 (63.96%)
Yandex LLC 1,340 1,221 (91.12%)
Twitter Inc. 1,741 1,151 (66.11%)
Media.net Advertising FZ-LLC 1,359 1,043 (76.75%)
ByteDance Ltd. 1,121 996 (88.85%)
Pinterest Inc 1,047 911 (87.01%)
Akamai Technologies 1,182 812 (68.70%)
HubSpot Inc. 1,009 707 (70.07%)

it also offers TikTok Pixel for website owners who want to retarget
their visitors with ads on the TikTok app [5].

4.2.2 Circumventions by Website Categories . The RP circumven-
tions were observed across various website categories (Figure 12),
with Fashion/Beauty (86.69%), Shopping/Merchandising (84.06%),

Table 14: Percentage of referrer policy circumventions,
grouped by leak vector. Req: Distinct third-party requests;
Web: Distinct websites; Total: All vectors combined, counted
once if multiple circumvention vectors appear on a request
or a website. More detailed measurements are given in Ta-
ble 24.

Vector SF Sg Ams
Req Web Req Web Req Web

Referrer 0,63% 9.15% 0.57% 8.33% 0.51% 5.28%
Post 4.14% 32.57% 3.17% 32.12% 2.03% 29.13%
URL 13.21% 74.78% 13.85% 74.64% 13.09% 73.78%
Total 17.76% 77.20% 17.37% 77.02% 15.49% 76.27%

and General News (83.92%) emerging as the top three categories.
Conversely, Uncategorized (59.48%), Pornography (56.36%), and
Gambling (55.86%) were found to contain the least number of RP
circumventions. The lower rate of circumventions on websites with
objectionable content may stem from the higher privacy expec-
tations of visitors to such sites. For adult entertainment websites
specifically, the results are consistent with Altaweel et al.’s finding
that these sites tend to have fewer third-party trackers compared
to non-adult websites with comparable popularity [15]. On the
other hand, news and shopping websites are more likely to contain
third-party trackers for monetization and marketing purposes [37].

4.2.3 Circumventions by Leak Vectors. Table 14 (detailed on Table
24) shows that URL leaks were most commonly sent in the request
URL in RP circumventions (74.78% of the websites). This is followed
by 32.57% of the websites where we observed a leak in the POST
body. In those two cases, a script simply retrieves the current page
URL and sends it in the request URL (Figure 10) or in the POST
payload (Figure 9).

On 9.15% of thewebsites, however, we observe a RP-circumventing
leak in the Referer header. This is at first counter-intuitive, since the
browser should have enforced the active RP, preventing the sending
of the URL as the Referer. A closer look reveals that the page URL is
not sent as the referrer, but is appended to the cross-origin iframe’s
src attribute—which in turn was sent as the referrer.

144

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

Figure 7: Percentage of website categories with referrer policy circumventions

An example of this circumvention found on voyagingtheworld.com
is shown in Figure 8. The request originates from a cross-origin
iframe (ferryscanner.com) and sends the iframe’s src (or URL) in
the Referer header. However, the address bar URL (voyagingthe-
world.com) is appended to the iframe’s src, likely when the iframe is
injected to the page. Therefore, despite the active RP (strict-origin-
when-cross-origin) the third-party domain of the iframe receives
the full address bar URL. We note that this circumvention is only
possible with the cooperation of a script running with the top-level
document’s privileges, since scripts from the cross-origin iframe
cannot access the page URL due to Same-Origin Policy. While the
third party, in this case, seems to provide functionality to the web-
site, this method can be used for tracking-related purposes as well.

4.2.4 Interacting with Consent Dialogs. We conducted a small-scale
additional crawl from Amsterdam to explore how consent affects
RP implementations and circumvention. We randomly selected 100
websites and followed their inner links, yielding 309 total pages in
our sample (See Appendix B, for details). To automatically handle
consent dialogs on these pages, we employed DuckDuckGo’s au-
toconsent library [31], which is bundled with the Tracker Radar
Collector. Our analysis indicates that interacting with consent di-
alogs has only a minor impact on RP implementations (Table 17,
Appendix B) and circumventions (Table 19, Appendix B). Recall
that the use of unsafe-url was found to be lower in the Amster-
dam crawl compared to other vantage points (Table 4). We do not
observe an increase in unsafe-url usage in the optIn crawl. This
may indicate that third parties using the unsafe-url RP may not
be operating within the EU or on the websites we have crawled for
this small investigation. Turning to circumventions, when no inter-
action with the consent dialog occurred, we observed that 72 of the
100 websites exhibited at least one instance of RP circumvention.
In the optOut crawl, the number of websites with circumventions
slightly increased to 74. Finally, in the optIn crawl, we observed RP
circumvention on 79 of the 100 websites (Table 18, Appendix B).
Variations in circumvention across the three crawls may partly stem
from website dynamism. However, with measurements spanning
309 webpages across 100 sites, the likelihood of these differences
being solely due to dynamism is low. Overall, in this limited sample,
consent impacts circumvention by only a single-digit percentage.

4.2.5 Encodings Used in Referrer Policy Circumventions. In many
cases of circumvention, the URL is transmitted in an encoded form.
We identified 20,612 websites (out of 21,164) where at least one

Figure 8: An example referrer policy circumvention
via the Referer header. The full URL of the address
bar URL (https://www.voyagingtheworld.com/sxe...) is ap-
pended to the cross-origin iframe’s src attribute, which
is sent in the Referer header. The active referrer policy
(strict-origin-when-cross-origin) only allows for origin
to be sent in cross-origin requests, but this method bypasses
the policy. Note that this bypass method still requires the co-
operation of a script running with the first-party’s privileges
to access the top-level document’s URL.

circumvention instance across the three vectors utilized URL encod-
ing, while 2,791 websites employed Base64 encoding. Additionally,
we observed a third party (Yandex LLC) using HTML escaping
(html.escape), which appeared on three websites. A compression
method, LZString [63], was detected on 13 websites, with the high-
est usage attributed to CleverTap, a company specializingmarketing
and personalization, which implemented it on four websites.

4.2.6 Script Accesses to Document URLs. Recall that our crawler
intercepted access to JavaScript object properties that reveal the
current document URL such as location.href and document.URL.
Note that for scripts running in cross-origin iframes, these proper-
ties will return the iframe’s URL, not the address bar URL. Table15

145

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Figure 9: Example of referrer policy circumvention via POST
body. The full page URL (https://pieminister.co.uk/filo/) is
sent in the POST body, circumventing the strict-origin-
when-cross-origin policy.

Figure 10: Example of referrer policy circumvention via re-
quest URL. The request URL contains the full page URL
(https://psynip.nl/het-lidmaatschap/tarieven), circumvent-
ing the strict-origin-when-cross-origin policy.

shows the percentage of websites where we observed one or more
access to these properties. The location.href property, which
contains the full URL, was accessed on 89.63% of the websites. The
port component of the URL, which is rarely used since default ports
443 or 80 are assumed, is the least commonly accessed (13.19% of the
websites). Accessing these object properties does not necessarily
translate to RP circumventions, but it is a necessary condition. The
monitoring of access to these properties can also inform defenses
against RP circumventions. For instance, in the most extreme case,
we observe approximately 29,788 accesses (SF) to location.href
on the same website, with the highest count reaching over 53,000
access (Ams). These accesses were performed by a script from
infinity-tracking.com, which offers marketing “phone call analytics”
services [6].

Table 15: Percentage of distinct websites where one or
more third-party script accesses to window.location or
document.URL was observed.

SF Sg Ams

location.href 89.63% 89.53% 89.49%
location.protocol 85.41% 85.28% 84.81%
location.host 56.58% 56.50% 55.82%
location.hostname 84.83% 84.69% 84.36%
location.port 13.19% 12.68% 12.52%
location.pathname 79.47% 79.34% 78.96%
location.hash 71.49% 71.31% 70.75%
document.URL 34.37% 34.30% 30.21%

5 Discussion
Our analysis revealedwidespread circumvention ofwebsite-imposed
RPs by advertising and analytics scripts such as Google Analyt-
ics, Facebook Pixel and TikTok Pixel. While these third parties
do not exploit a vulnerability in the RP standard, they misuse the
unfettered access given to scripts even when the website uses a
restrictive RP. In that respect, the circumventions we identified in
this study are by design: third-party scripts running in the top-level
document’s context enjoy the same privileges as the first party.
This distinction even confuses some developers, who expect RP to
apply to third-party scripts when restrictive RPs are in place [13].

We propose an opt-in mechanism to manage script access to
referrer information, including the current top-level document
URL. Specifically, a new RP value could allow websites to opt-in
to trim document.referrer, location.href, and document.URL
for scripts, aligning with the document-wide RP. We acknowledge
that this approach may be challenging to implement. For instance,
in Chromium-based browsers, scripts in cross-origin frames can
access location.ancestorOrigins, regardless of the active RP. The
property exposes ancestor origins even when the RP prohibits it
(e.g., no-referrer) [10]. This issue led Firefox to forgo implementing
the location.ancestorOrigins property, resulting in inconsistencies in
browser support [4, 9]. Moreover, the location object is notoriously
complex and any changes to it would be challenging to implement
securely4.

We observed minor differences in RP implementations across
vantage points — especially a lower unsafe-url usage in the Am-
sterdam crawl (§ 4.1.1). This reduction may stem from local data
protection regulations and limited interaction with consent dialogs,
as unsafe-url is predominantly used by third-party frames (Ta-
ble 21, Appendix C). Overall, these differences are expected since
websites and advertisers dynamically localize their content based on
the user’s geographic location [16, 20, 56]. The number of websites
with RP circumventions did not differ across vantage points (SF:
77.20%, Sg: 77.02%, Ams: 76.27%) (§ 4.2). Similarly, our exploratory
analysis on the impact of consent revealed minimal differences
across three consent modes. The only exception was that opting

4The HTML standard contains the following warning: “The Location exotic object
is defined through a mishmash of IDL, invocation of JavaScript internal methods
post-creation, and overridden JavaScript internal methods. Coupled with its scary
security policy, please take extra care while implementing this excrescence.” [8]

146

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

in resulted in a single-digit increase in observed circumventions
(Appendix B).

The ability of third-party scripts to bypass the Referrer Policy
(RP) could have legal implications. If URLs containing personal
information are exfiltrated without user consent, they may poten-
tially breach the EU’s General Data Protection Regulation (GDPR)
or other relevant data protection laws. In fact, the similar num-
ber of leaks observed in the Amsterdam (EU) crawl suggests that
websites do not require user consent to load the third-party scripts
responsible for exfiltrating the page URL.

Gambling websites, which often handle sensitive personal and
financial information [14, 62], showed a relatively low circumven-
tion rate (55%) and minimal use of permissive RPs (8.43%) (§ 4.2.2).
However, this result does not imply that such websites are safe
since they are prime targets for malicious actors given the sensitive
data they possess [21, 23].

The differences in RP usage between parent and children frames
suggest that similar future measurement studies should capture
element-specific RP implementations in all frames, not just the
top-level document.

5.1 Limitations and Future Work
Consent Dialogs. Prior research [46, 49, 73] indicates that consent
dialogs are often designed to be easy to accept but difficult to decline,
and giving consent influences the type and amount of data shared
with third parties.

In our primary study, the decision to not interact with consent
dialogs allowed for more consistent comparisons across vantage
points, as all measurements were conducted under similar con-
ditions. However, this methodological choice likely rendered the
Amsterdam crawl (where GDPR applies) less representative of real
user experiences, as actual users may be required to interact with
consent dialogs to access content. Consequently, we argue that the
RP circumventions detected in our study—particularly in the Ams-
terdam crawl—likely represent lower bounds of the actual circum-
vention rates. In order to address this shortcoming, we conducted
an additional small-scale (100 website) crawl to assess the potential
impact of consent dialogs on RP circumventions (§4.2.4). While our
crawl provides a limited overview, future work can analyze this
effect more comprehensively.

Leak Detection False Positives. Leak detection module looks
for a URL or its components in millions of requests, leading to
potential false positives. To minimize false positives, we enforced a
lower limit of ten characters when searching the path and query
components. We also quantified the false positives in a random
sample (§ 4.2). Analyzing 200 detected circumventions (100 partial
and 100 full URL leaks) we found no false positives in full URL leaks
and 12 false positives in circumventions involving partial URL leaks.
Since full URL leaks constitute 99.6% of the circumventions, the
effect of false positives due to partial URL leaks on our results is
negligible.

Cookies as a Leak Vector. This study focused on three leakage
vectors: request URLs, POST body data, and the Referer header.
However, prior research [28, 55, 72] has demonstrated that cook-
ies can also be used as a vector for data leakage. Future studies
can extend the leak detection analysis to include cookies. Finding

circumventions on over 77% of the websites, we believe our study
adequately demonstrated RP’s shortcomings.

ScriptAccess to document.referrer.We intercepted and logged
script access to location.href and document.URL—two host ob-
ject properties that reveal the current document’s URL. However,
we did not similarly monitor document.referrer, which was unnec-
essary for our study and methods.

6 Conclusion
We investigated implementations and circumventions of the Refer-
rer Policy standard across 27,750 distinct websites. Based on crawls
from three vantage points, we found that 48.38% of the websites
implemented document-wide referrer policies, while 17.19% used
element-specific policies. On 43.81% of the websites the Referrer-
Policy HTTP response header was used, while only 11.09% of the
sites opted to set their referrer policy using an HTML meta tag. The
default strict-origin-when-cross-origin policy also found to
be the most commonly preferred (27.14%), while less than eight per-
cent of the sites opted to not send any referrer at all (no-referrer:
7.39%).

Our findings reveal that referrer policy circumventions are wide-
spread, with 77.20% of websites having at least one third-party re-
quest breaching their declared policies. Most circumventions stem
from third-party advertising and analytics scripts directly accessing
and disclosing full page URLs. The domain google-analytics.com ac-
counted for the highest number of referrer policy circumventions;
14,996 out of 16,999 websites, where it is embedded on. We did
not find any meaningful differences in referrer policy circumven-
tion across vantage points, but we observed slightly lower use of
unsafe-url policy in the Amsterdam and Singapore crawls (Ams:
1.60%, Sg: 2.74%, SF: 4.48%). Additionally, the Fashion/Beauty cate-
gory consistently ranked among the highest in circumvention rates,
exceeding 86% across all vantage points.

Our findings underscore the need for stricter access control mech-
anisms to prevent circumvention of referrer policies that websites
implement. We recommend that browser vendors explore provid-
ing websites with an opt-in mechanism to restrict script access to
referrer information. In the meantime, website operators and public
should be better informed about the limitations of the Referrer
Policy standard, an issue that our study contributes to.

Code and Data
The source code and the dataset from our study are publicly avail-
able at https://github.com/referrer-policy-pets-25.

Acknowledgments
The first author is supported by the scholarship and research fund-
ing provided by the Center for Financing of Higher Education
(BPPT) and the Indonesia Endowment Fund for Education (LPDP)
under the ‘Beasiswa Pendidikan Indonesia (BPI)’ scholarship pro-
gram. The preliminary investigation of Referrer Policy circumven-
tions was performed by Thomas van Ouwerkerk in his master
thesis [71]. The authors used generative AI based writing assis-
tant software to correct typos, grammatical errors, and awkward
phrasing.

147

https://github.com/referrer-policy-pets-25

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

References
[1] 2018. Good Practices for Capability URLs. https://w3ctag.github.io/capability-

urls [Online; accessed 30. Nov. 2024].
[2] 2020. Improving Privacy by Limiting Referrers. https://textslashplain.com/2019/

10/16/privacy-tweaks-limiting-referrer [Online; accessed 1. Dec. 2024].
[3] 2021. UPchieve Disclosed on HackerOne: Password Reset Token Leak on Third...

https://hackerone.com/reports/1177287.
[4] 2024. 1085214 - Implement Location.ancestorOrigins. https://bugzilla.mozilla.

org/show_bug.cgi?id=1085214#c23 [Online; accessed 30. Nov. 2024].
[5] 2024. About TikTok Pixel | TikTok Ads Manager. https://ads.tiktok.com/help/

article/tiktok-pixel [Online; accessed 30. Nov. 2024].
[6] 2024. Call Tracking | Infinity - Europe’s best call tracking tool. https://www.

infinity.co/uk/call-tracking [Online; accessed 30. Nov. 2024].
[7] 2024. Customer URL Ticketing System. https://sitelookup.mcafee.com/en. [Ac-

cessed 20-05-2024].
[8] 2024. HTML Standard. https://html.spec.whatwg.org/multipage/nav-history-

apis.html#location [Online; accessed 30. Nov. 2024].
[9] 2024. Meta: add ancestorOrigins warning due to continued disagreement by

annevk · Pull Request #2251 · whatwg/html. https://github.com/whatwg/
html/pull/2251/commits/3c9c428a9750066bbbd3ce517952e3de938312e2 [Online;
accessed 1. Dec. 2024].

[10] 2024. redact location.ancestorOrigins according to Referrer Policy · Issue #1918
· whatwg/html. https://github.com/whatwg/html/issues/1918 [Online; accessed
30. Nov. 2024].

[11] 2024. Referer - HTTP | MDN. https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Referer.

[12] 2024. Referrer Policy | Can I Use... Support Tables for HTML5, CSS3, Etc. https:
//caniuse.com/referrer-policy.

[13] 2024. third-party JavaScript access to document.location when a restrictive
Referrer-Policy is set? https://stackoverflow.com/questions/75860851/third-
party-javascript-access-to-document-location-when-a-restrictive-referrer-p
[Online; accessed 30. Nov. 2024].

[14] Lawrance Abrams. 2019. Online Casino Database Leaks Details of Over 100
Million Bets. https://www.bleepingcomputer.com/news/security/online-casino-
database-leaks-details-of-over-100-million-bets/.

[15] Ibrahim Altaweel, Maximillian Hils, and Chris Jay Hoofnagle. 2016. Privacy
on adult websites. In Altaweel et al., Privacy on Adult Websites, Workshop on
Technology and Consumer Protection (ConPro’17), co-located with the 38th IEEE
Symposium on Security and Privacy, San Jose, CA (2017).

[16] I. Anastácio, B. Martins, and P. Calado. 2010. Using the Geographic Scopes of
Web Documents for Contextual Advertising. In Proceedings of the 6th Workshop
on Geographic Information Retrieval, GIR’10. https://doi.org/10.1145/1722080.
1722103

[17] HTTP Archive. 2024. The HTTP Archive. https://httparchive.org [Online;
accessed 29. Nov. 2024].

[18] Muhammad Abu Bakar Aziz and Christo Wilson. 2024. Johnny Still Can’t Opt-
out: Assessing the IAB CCPA Compliance Framework. Proceedings on Privacy
Enhancing Technologies (2024).

[19] Tim Berners-Lee, Roy T. Fielding, and Larry M. Masinter. 2005. Uniform Re-
source Identifier (URI): Generic Syntax. Request for Comments RFC 3986. Internet
Engineering Task Force. https://doi.org/10.17487/RFC3986

[20] V. Bhatia and V. Hasija. 2016. Targeted Advertising Using Behavioural Data and
Social DataMining. In International Conference on Ubiquitous and Future Networks,
ICUFN, Vol. 2016-August. 937–942. https://doi.org/10.1109/ICUFN.2016.7536934

[21] Harry Bowles and Darragh McGee. 2023. Data Ownership, Athlete Rights and
the Global Sports Gambling Industry. In Gambling and Sport in a Global Age,
Darragh McGee and Dunn Christopher (Eds.). Emerald Group Publishing Ltd.

[22] Manolis Chatzimpyrros, Konstantinos Solomos, and Sotiris Ioannidis. 2019. You
Shall Not Register! Detecting Privacy Leaks Across Registration Forms. In Com-
puter Security: ESORICS 2019 International Workshops, IOSec, MSTEC, and FINSEC,
Luxembourg City, Luxembourg, September 26–27, 2019, Revised Selected Papers.
Springer-Verlag, Berlin, Heidelberg, 91–104. https://doi.org/10.1007/978-3-030-
42051-2_7

[23] Wolfie Christl. 2022. Digital Profiling in the Online Gambling Industry. Technical
Report. Clean Up Gambling.

[24] MDN Contributor. 2023. Referrer Policy | MDN. https://developer.mozilla.org/
en-US/docs/Web/HTTP/Headers/Referrer-Policy#unsafe-url_2 "Access Date:
3/09/2023".

[25] MDNContributor. 2023. What is a URL? | MDN. https://developer.mozilla.org/en-
US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL "Access
Date: 3/09/2023".

[26] Contributors to Wikimedia projects. 2024. HTTP referer - Wikipedia. https:
//en.wikipedia.org/w/index.php?title=HTTP_referer&oldid=1254661761 [Online;
accessed 1. Dec. 2024].

[27] Contributors to Wikimedia projects. 2024. Magnite Inc - Wikipedia. https:
//en.wikipedia.org/w/index.php?title=Magnite_Inc&oldid=1237463521 [Online;
accessed 30. Nov. 2024].

[28] Ha Dao and Kensuke Fukuda. 2021. Alternative to third-party cookies: Inves-
tigating persistent PII leakage-based web tracking. CoNEXT 2021 - Proceedings
of the 17th International Conference on emerging Networking EXperiments and
Technologies (12 2021), 223–229. https://doi.org/10.1145/3485983.3494860

[29] Alexis Deveria. 2024. Can I use... https://caniuse.com. [Online; accessed 29. Nov.
2024].

[30] Jochen Eisinger Dominic Farolino and Emily Stark. 2023. Referrer Policy. Editor’s
Draft. W3C. https://w3c.github.io/webappsec-referrer-policy/.

[31] DuckDuckGo. 2023. autoconsent. https://github.com/duckduckgo/autoconsent.
[Accessed 28 Feb. 2023].

[32] Duckduckgo. 2023. Duckduckgo/tracker-radar-collector:Modular, multithreaded,
puppeteer-based crawler. https://github.com/duckduckgo/tracker-radar-
collector

[33] Duckduckgo. 2024. GitHub - duckduckgo/tracker-radar: Data set of top third
party web domains with rich metadata about them — github.com. https://github.
com/duckduckgo/tracker-radar?tab=readme-ov-file. [Accessed 20-04-2024].

[34] Jochen Eisinger and Emily Stark. 2017. Referrer Policy. Candidate Recommenda-
tion. W3C. https://www.w3.org/TR/2017/CR-referrer-policy-20170126/.

[35] Jochen Eisinger andMikeWest. 2014. Referrer Policy First Working Draft. Working
Draft. W3C. https://www.w3.org/TR/2014/WD-referrer-policy-20140807/.

[36] Steven Englehardt, Jeffrey Han, and Arvind Narayanan. 2018. I never signed up
for this! Privacy implications of email tracking. Proc. Priv. Enhancing Technol.
2018, 1 (2018), 109–126.

[37] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. 1388–1401.

[38] Roy T. Fielding, Mark Nottingham, and Julian Reschke. 2022. HTTP Semantics.
Request for Comments RFC 9110. Internet Engineering Task Force. https://doi.
org/10.17487/RFC9110

[39] Pascal Gadient, Oscar Nierstrasz, and Mohammad Ghafari. 2021. Security Header
Fields in HTTP Clients. In 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security (QRS). 93–101. https://doi.org/10.1109/QRS54544.
2021.00020

[40] GoogleChrome. 2024. HTML and JavaScript usage metrics. https://chromestatus.
com/metrics/feature/timeline/popularity/1755.

[41] GoogleChrome. 2024. Overview of CrUX | Chrome UX Report | Chrome for
Developers. https://developer.chrome.com/docs/crux.

[42] Web Hypertext Application Technology Working Group. 2024. Chrome DevTools
Protocol - Network Domain. https://chromedevtools.github.io/devtools-protocol/
tot/Network/#type-Request. [Accessed 2024-10-15].

[43] Web Hypertext Application Technology Working Group. 2024. HTML Standard -
Semantics - Meta Referrer. https://html.spec.whatwg.org/multipage/semantics.
html#meta-referrer. [Accessed 2024-05-23].

[44] Web Hypertext Application Technology Working Group. 2024. HTML Standard
- URLs and Fetching - Referrer Policy Attributes. https://html.spec.whatwg.
org/multipage/urls-and-fetching.html#referrer-policy-attributes. [Accessed
2024-05-23].

[45] Scott Helme. 2024. Referrer Policy Report. https://crawler.ninja/files/rp-values.
txt.

[46] N. Jha, M. Trevisan, L. Vassio, and M. Mellia. 2022. The Internet with Privacy
Policies: Measuring the Web Upon Consent. ACM Transactions on the Web 16, 3
(2022). https://doi.org/10.1145/3555352

[47] Beliz Kaleli, Manuel Egele, and Gianluca Stringhini. 2019. On the Perils of Leaking
Referrers in Online Collaboration Services. In Detection of Intrusions and Malware,
and Vulnerability Assessment, Roberto Perdisci, Clémentine Maurice, Giorgio
Giacinto, and Magnus Almgren (Eds.). Springer International Publishing, Cham,
67–85. https://doi.org/10.1007/978-3-030-22038-9_4

[48] Daniel Kats, David Luz Silva, and Johann Roturier. 2022. Who Knows I Like Jelly
Beans? An Investigation Into Search Privacy. Proceedings on Privacy Enhancing
Technologies 2022, 2 (April 2022), 426–446. https://doi.org/10.2478/popets-2022-
0053

[49] Simon Koch, Benjamin Altpeter, and Martin Johns. 2023. The {OK} Is Not Enough:
A Large Scale Study of Consent Dialogs in Smartphone Applications. In 32nd
USENIX Security Symposium (USENIX Security 23). 5467–5484.

[50] Modi Konark. 2019. Watching Them Watching Us - How Websites Are Leak-
ing Sensitive Data to Third-Parties. https://dev.to/konarkmodi/watching-them-
watching-us-how-websites-are-leaking-sensitive-data-to-third-parties-1nn3.

[51] Balachander Krishnamurthy and Craig E. Wills. 2009. On the Leakage of Person-
ally Identifiable Information via Online Social Networks. In Proceedings of the 2nd
ACMWorkshop on Online Social Networks (WOSN ’09). Association for Computing
Machinery, New York, NY, USA, 7–12. https://doi.org/10.1145/1592665.1592668

[52] Arturs Lavrenovs and F. Jesus RubioMelon. 2018. HTTP security headers analysis
of top one million websites. 2018 10th International Conference on Cyber Conflict
(CyCon), 345–370. https://doi.org/10.23919/CYCON.2018.8405025

[53] Arturs Lavrenovs and Gabor Visky. 2019. Investigating HTTP Response Headers
for the Classification of Devices on the Internet. In 2019 IEEE 7th IEEE Workshop
on Advances in Information, Electronic and Electrical Engineering (AIEEE). 1–6.
https://doi.org/10.1109/AIEEE48629.2019.8977115

148

https://w3ctag.github.io/capability-urls
https://w3ctag.github.io/capability-urls
https://textslashplain.com/2019/10/16/privacy-tweaks-limiting-referrer
https://textslashplain.com/2019/10/16/privacy-tweaks-limiting-referrer
https://hackerone.com/reports/1177287
https://bugzilla.mozilla.org/show_bug.cgi?id=1085214#c23
https://bugzilla.mozilla.org/show_bug.cgi?id=1085214#c23
https://ads.tiktok.com/help/article/tiktok-pixel
https://ads.tiktok.com/help/article/tiktok-pixel
https://www.infinity.co/uk/call-tracking
https://www.infinity.co/uk/call-tracking
https://sitelookup.mcafee.com/en
https://html.spec.whatwg.org/multipage/nav-history-apis.html#location
https://html.spec.whatwg.org/multipage/nav-history-apis.html#location
https://github.com/whatwg/html/pull/2251/commits/3c9c428a9750066bbbd3ce517952e3de938312e2
https://github.com/whatwg/html/pull/2251/commits/3c9c428a9750066bbbd3ce517952e3de938312e2
https://github.com/whatwg/html/issues/1918
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referer
https://caniuse.com/referrer-policy
https://caniuse.com/referrer-policy
https://stackoverflow.com/questions/75860851/third-party-javascript-access-to-document-location-when-a-restrictive-referrer-p
https://stackoverflow.com/questions/75860851/third-party-javascript-access-to-document-location-when-a-restrictive-referrer-p
https://doi.org/10.1145/1722080.1722103
https://doi.org/10.1145/1722080.1722103
https://httparchive.org
https://doi.org/10.17487/RFC3986
https://doi.org/10.1109/ICUFN.2016.7536934
https://doi.org/10.1007/978-3-030-42051-2_7
https://doi.org/10.1007/978-3-030-42051-2_7
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy#unsafe-url_2
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy#unsafe-url_2
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/What_is_a_URL
https://en.wikipedia.org/w/index.php?title=HTTP_referer&oldid=1254661761
https://en.wikipedia.org/w/index.php?title=HTTP_referer&oldid=1254661761
https://en.wikipedia.org/w/index.php?title=Magnite_Inc&oldid=1237463521
https://en.wikipedia.org/w/index.php?title=Magnite_Inc&oldid=1237463521
https://doi.org/10.1145/3485983.3494860
https://caniuse.com
https://github.com/duckduckgo/autoconsent
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/duckduckgo/tracker-radar-collector
https://github.com/duckduckgo/tracker-radar?tab=readme-ov-file
https://github.com/duckduckgo/tracker-radar?tab=readme-ov-file
https://doi.org/10.17487/RFC9110
https://doi.org/10.17487/RFC9110
https://doi.org/10.1109/QRS54544.2021.00020
https://doi.org/10.1109/QRS54544.2021.00020
https://chromestatus.com/metrics/feature/timeline/popularity/1755
https://chromestatus.com/metrics/feature/timeline/popularity/1755
https://developer.chrome.com/docs/crux
https://chromedevtools.github.io/devtools-protocol/tot/Network/#type-Request
https://chromedevtools.github.io/devtools-protocol/tot/Network/#type-Request
https://html.spec.whatwg.org/multipage/semantics.html#meta-referrer
https://html.spec.whatwg.org/multipage/semantics.html#meta-referrer
https://html.spec.whatwg.org/multipage/urls-and-fetching.html#referrer-policy-attributes
https://html.spec.whatwg.org/multipage/urls-and-fetching.html#referrer-policy-attributes
https://crawler.ninja/files/rp-values.txt
https://crawler.ninja/files/rp-values.txt
https://doi.org/10.1145/3555352
https://doi.org/10.1007/978-3-030-22038-9_4
https://doi.org/10.2478/popets-2022-0053
https://doi.org/10.2478/popets-2022-0053
https://doi.org/10.1145/1592665.1592668
https://doi.org/10.23919/CYCON.2018.8405025
https://doi.org/10.1109/AIEEE48629.2019.8977115

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

[54] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. 2019. Tranco: A Research-Oriented Top Sites
Ranking Hardened Against Manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium (NDSS 2019). https:
//doi.org/10.14722/ndss.2019.23386

[55] Timothy Libert. 2015. Exposing the Invisible Web: An Analysis of Third-Party
HTTP Requests on 1 Million Websites. International Journal of Communication 9,
0 (Oct. 2015), 18.

[56] T.T.C. Lin and J.R. Bautista. 2020. Content-Related Factors Influence Perceived
Value of Location-Based Mobile Advertising. Journal of Computer Information
Systems 60, 2 (2020), 184–193. https://doi.org/10.1080/08874417.2018.1432995

[57] Meng Luo, Pierre Laperdrix, Nima Honarmand, and Nick Nikiforakis. 2019. Time
Does Not Heal All Wounds: A Longitudinal Analysis of Security-Mechanism
Support in Mobile Browsers. In Proceedings 2019 Network and Distributed System
Security Symposium. Internet Society, San Diego, CA. https://doi.org/10.14722/
ndss.2019.23149

[58] Masood Mansoori, Yuichi Hirose, Ian Welch, and Kim-Kwang Raymond Choo.
2016. Empirical Analysis of Impact of HTTP Referer on Malicious Website
Behaviour and Delivery. In 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA). 941–948. https://doi.org/10.
1109/AINA.2016.113

[59] John McGahagan, Darshan Bhansali, Margaret Gratian, and Michel Cukier. 2019.
A Comprehensive Evaluation of HTTP Header Features for Detecting Malicious
Websites. In 2019 15th European Dependable Computing Conference (EDCC). 75–82.
https://doi.org/10.1109/EDCC.2019.00025

[60] Mercedes Killeen. 2024. 28 Best Marketing Analytics Tools. https://
agencyanalytics.com/blog/best-marketing-analytics-tools [Online; accessed 28.
February. 2025].

[61] Z. Moti, A. Senol, H. Bostani, F. Zuiderveen Borgesius, V. Moonsamy, A. Mathur,
and G. Acar. 2024. Targeted and Troublesome: Tracking and Advertising on
Children’s Websites. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 121–121. https://doi.org/10.1109/
SP54263.2024.00118

[62] Phil Muncaster. 2020. Casino App Clubillion Leaks PII on “Millions” of Users.
https://www.infosecurity-magazine.com/news/casino-app-clubillion-leaks-pii/.

[63] Pieroxy. 2013. lz-string: JavaScript compression, fast! https://pieroxy.net/blog/
pages/lz-string/index.html.

[64] Tara Seals. 2018. DEF CON 2018: Telltale URLs Leak PII to Dozens of Third
Parties. https://threatpost.com/def-con-2018-telltale-urls-leak-pii-to-dozens-
of-third-parties/134960/

[65] Asuman Senol, Gunes Acar, Mathias Humbert, and Frederik Zuiderveen Bor-
gesius. 2022. Leaky Forms: A Study of Email and Password Exfiltration Be-
fore Form Submission. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 1813–1830. https://www.usenix.org/
conference/usenixsecurity22/presentation/senol

[66] Hendrik Siewert, Martin Kretschmer, Marcus Niemietz, and Juraj Somorovsky.
2022. On the Security of Parsing Security-Relevant HTTP Headers in Modern
Browsers. In 2022 IEEE Security and Privacy Workshops (SPW). 342–352. https:
//doi.org/10.1109/SPW54247.2022.9833880

[67] Oleksii Starov, Phillipa Gill, and Nick Nikiforakis. 2016. Are You Sure You
Want to Contact Us? Quantifying the Leakage of PII via Website Contact Forms.
Proceedings on Privacy Enhancing Technologies 2016, 1 (Jan. 2016), 20–33. https:
//doi.org/10.1515/popets-2015-0028

[68] Christof Ferreira Torres, Fiona Willi, and Shweta Shinde. 2023. Is Your Wallet
Snitching On You? An Analysis on the Privacy Implications of Web3. In 32nd
USENIX Security Symposium (USENIX Security 23). 769–786.

[69] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. 2020.
Beyond the Front Page:Measuring Third Party Dynamics in the Field. In Proceed-
ings of The Web Conference 2020 (Taipei, Taiwan) (WWW ’20). Association for
Computing Machinery, New York, NY, USA, 1275–1286. https://doi.org/10.1145/
3366423.3380203

[70] Pelayo Vallina, Victor Le Pochat, Álvaro Feal, Marius Paraschiv, Julien Gamba,
Tim Burke, Oliver Hohlfeld, Juan Tapiador, and Narseo Vallina-Rodriguez. 2020.
Mis-Shapes, Mistakes, Misfits: An Analysis of Domain Classification Services. In
Proceedings of the ACM Internet Measurement Conference. ACM, Virtual Event
USA, 598–618. https://doi.org/10.1145/3419394.3423660

[71] Thomas van Ouwerkerk, Eelco Herder, and Gunes Acar. 2022. Evading the Policy:
A Measurement on Referrer Policy Circumvention in 3k e-Commerce Websites.
Master’s thesis. Radboud University, Nijmegen.

[72] Huandong Wang, Chen Gao, Yong Li, Zhi-Li Zhang, and Depeng Jin. 2020. Re-
vealing Physical World Privacy Leakage by Cyberspace Cookie Logs. IEEE
Transactions on Network and Service Management 17, 4 (Dec. 2020), 2550–2566.
https://doi.org/10.1109/TNSM.2020.3013335

[73] Logan Warberg, Vincent Lefrere, Cristobal Cheyre, and Alessandro Acquisti.
2023. Trends in Privacy Dialog Design after the GDPR: The Impact of Industry
and Government Actions. In Proceedings of the 22nd Workshop on Privacy in the
Electronic Society. ACM, Copenhagen Denmark, 107–121. https://doi.org/10.
1145/3603216.3624963

Table 16: Conversion of legacy policy values to standard re-
ferrer policy values according to the HTML standard [43].

Legacy value Referrer policy

never no-referrer
default strict-origin-when-cross-origin
always unsafe-url

origin-when-crossorigin origin-when-cross-origin

A Appendices
A.1 The Algorithm to Parse Referrer Policy on

<meta> Elements
When a <meta> element is encountered within an HTML docu-
ment, the user agent (web browser) executes a specific algorithm
defined in the HTML standard [43] to determine what will be sent
in the Referer header. The algorithm prioritizes explicit instructions
provided by the <meta> element over the default behavior.

The algorithm follows these steps:

(1) Element Validation: It checks if the <meta> element is
present within the document tree (i.e., part of the HTML
structure). If not, it disregards the element.

(2) NameAttribute Check: It verifies if the element has a name
attribute set to “referrer” (case-insensitive). If not, it moves
on without processing the element.

(3) Content Attribute Check: It ensures the element has a
content attribute and its value is not empty. If either condi-
tion is not met, the element is ignored.

(4) Content Value Interpretation: If all the above conditions
are satisfied, the value of the content attribute is converted
to lowercase ASCII characters for further processing.

(5) Legacy Handling: If the lowercase value is a legacy value,
it is converted to a standard value according to the mapping
given in Table 16.

(6) Policy Mapping: Finally, the algorithm compares the policy
value to a list of recognized referrer policies. If the policy is
recognized, it is set for the entire document.

A.2 Failed Visit Detection
Building on Le Pochat et al.’s method [54], we categorize a visit as
failed if one of the following is true: (1) the initial request resulted in
a 4xx or 5xx error code; (2) no successful (200 OK) response was re-
ceived; (3) the first non-3xx response (root document) was less than
512 bytes in size; or (4) the landing page URL was “about:blank”.

A.3 Supported Encoding Methods for Leak
Detector

Base16, Base32, Base58, Base64, Urlencode, Entity, Deflate, Zlib,
Gzip, LZstring, Custom Map
(kibp8A4EWRMKHa7gvyz1dOPt6UI5xYD3nqhVwZBXfCcFe...
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi...)

149

https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.1080/08874417.2018.1432995
https://doi.org/10.14722/ndss.2019.23149
https://doi.org/10.14722/ndss.2019.23149
https://doi.org/10.1109/AINA.2016.113
https://doi.org/10.1109/AINA.2016.113
https://doi.org/10.1109/EDCC.2019.00025
https://agencyanalytics.com/blog/best-marketing-analytics-tools
https://agencyanalytics.com/blog/best-marketing-analytics-tools
https://doi.org/10.1109/SP54263.2024.00118
https://doi.org/10.1109/SP54263.2024.00118
https://pieroxy.net/blog/pages/lz-string/index.html
https://pieroxy.net/blog/pages/lz-string/index.html
https://threatpost.com/def-con-2018-telltale-urls-leak-pii-to-dozens-of-third-parties/134960/
https://threatpost.com/def-con-2018-telltale-urls-leak-pii-to-dozens-of-third-parties/134960/
https://www.usenix.org/conference/usenixsecurity22/presentation/senol
https://www.usenix.org/conference/usenixsecurity22/presentation/senol
https://doi.org/10.1109/SPW54247.2022.9833880
https://doi.org/10.1109/SPW54247.2022.9833880
https://doi.org/10.1515/popets-2015-0028
https://doi.org/10.1515/popets-2015-0028
https://doi.org/10.1145/3366423.3380203
https://doi.org/10.1145/3366423.3380203
https://doi.org/10.1145/3419394.3423660
https://doi.org/10.1109/TNSM.2020.3013335
https://doi.org/10.1145/3603216.3624963
https://doi.org/10.1145/3603216.3624963

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Table 17: Percentage of distinct websites applying a
document-wide referrer policy under each consent-
interaction mode. Document-wide referrer policies can be
set by either meta-tags or RP response headers.

Referrer Policy noAct optOut optIn

no-referrer 6.00% 6.00% 6.00%
same-origin 7.00% 7.00% 7.00%
strict-origin 3.00% 3.00% 3.00%
strict-origin-when-cross-origin 30.00% 30.00% 31.00%
origin 8.00% 8.00% 8.00%
origin-when-cross-origin 2.00% 2.00% 1.00%
no-referrer-when-downgrade 15.00% 15.00% 16.00%
unsafe-url 1.00% 1.00% 1.00%
Total 51.00% 51.00% 53.00%

B Interacting with Consent Dialogs
In order to characterize how consent affects RP implementations
and circumvention, we performed a small-scale crawl fromAmsterdam—
the only EU vantage point in our study. We first picked a random
sample of 500 websites, of which our crawler detected 178 as dis-
playing consent dialogs. To enhance the crawler’s effectiveness,
we filtered out generic consent dialogs and retained only those
recognized by TRC’s autoconsent [31], reducing the likelihood
of unsuccessful interactions. After this refinement, 161 websites
remained.

We randomly selected 100 websites from this subset and ob-
tained the inner pages for those sites that we extracted earlier in
the inner links collection crawl. Subsequently, we redeployed the
crawler using the same IP address to perform three separate crawls
with different interaction modes: no interaction (noAct), opting out
(optOut), and opting in (optIn). Overall, 309 inner pages per consent
mode were successfully crawled.

Table 17 summarizes the overall adoption rates of document-
wide RP for each consent-interaction mode. We observe no mean-
ingful difference across the crawls. Table 18 then examines how
RP circumventions change in each consent mode, for different leak
vectors (Referrer, POST body, and Request URL). Finally, Table 19
provides insights into which specific RP values were circumvented.
In sum, the differences across consent modes remained minimal for
both implementations and circumventions, with the exception of
slight increase of circumventions in the optIn mode.

C Additional Results

Table 18: Referrer policy circumvention by consentmode and
leak vector. Req: Distinct third-party requests; Web: Distinct
websites; Total: Combined distinct number of requests or
websites). More detailed measurements are given in Table 19.

Vector noAct optOut optIn
Req Web Req Web Req Web

Referrer 0.05% 1.00% 0.12% 2.00% 0.11% 6.00%
Post 3.09% 35.00% 2.60% 34.00% 2.89% 39.00%
URL 10.12% 70.00% 11.48% 72.00% 11.40% 77.00%
Total 13.18% 72.00% 14.13% 74.00% 14.32% 79.00%

Table 19: Distinct websites with specific referrer policies
value that circumvented referrer policy while interacting
with consent dialog. This table provides detailed information
about the “web” portion of data found in Table 14. Clustered
by leak vector: Referrer (R), Post body (P), and request URL
(U)

Referrer Policy noAct optOut optIn

no-referrer 0 0 0
same-origin 0 0 0
origin 0 0 0
strict-origin 0 0 0
strict-origin-when-cross-
origin

1 2 6
R

origin-when-cross-origin 0 0 0
R Total 1 2 6

no-referrer 0 0 0
same-origin 0 0 0
origin 1 1 1
strict-origin 2 2 2
strict-origin-when-cross-
origin

32 31 36
P

origin-when-cross-origin 1 1 1
P Total 35 34 39

no-referrer 0 0 0
same-origin 1 1 1
origin 2 2 2
strict-origin 2 2 2
strict-origin-when-cross-
origin

66 68 73
U

origin-when-cross-origin 1 1 1
U Total 70 72 77

150

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

Table 20: Legacy Referrer Policy found in Meta-tags. *: none would be ignored, while other legacy policies would be tranformed
according to the rules given in Table 16.

SF Sg Ams
Legacy RP Count % websites Count % websites Count % websites

origin-when-crossorigin 1,069 3.90% 1,052 3.84% 534 1.95%
always 108 0.40% 108 0.40% 106 0.39%
never 15 0.06% 14 0.05% 14 0.05%
none 1 0.00% 1 0.00% 1 0.00%
default 1 0.00% 1 0.00% 1 0.00%

Table 21: Total distinct websites implementing element-specific referrer policies.

Referrer Policy a iframe img link script

SF

no-referrer 4 53 35 340 334
same-origin 1 4 5 1
strict-origin 5 1 2
strict-origin-when-cross-origin 1 10 7 148
origin 96 125 104 167 129
origin-when-cross-origin 1 2 10 2
no-referrer-when-downgrade 21 318 48 3 278
unsafe-url 2 537 9 294

Sg

no-referrer 4 84 20 339 333
same-origin 1 4 5 1
strict-origin 5 1 2
strict-origin-when-cross-origin 1 10 7 156
origin 97 65 105 139 128
origin-when-cross-origin 2 10 2 2
no-referrer-when-downgrade 21 242 50 3 310
unsafe-url 2 295 10 244

A
m
s

no-referrer 4 57 21 337 330
same-origin 1 4 5 1
strict-origin 5 1 2
strict-origin-when-cross-origin 1 9 6 147
origin 100 60 108 126 133
origin-when-cross-origin 2 10 2 2
no-referrer-when-downgrade 22 237 44 3 240
unsafe-url 2 15 9 167

151

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Table 22: Total distinct websites implementing an invalid response referrer policy. These response referrer policies will be
disregarded by the browser.

Response Referrer Policy SF Sg Ams

strict-origin-when-cross-origin\nno-referrer-when-downgrade 57 59 59
strict-origin-when-cross-origin\nstrict-origin-when-cross-origin 30 32 32
same-origin\nsame-origin 24 24 24
no-referrer-when-downgrade\nno-referrer-when-downgrade 22 23 23
origin-when-cross-origin\norigin-when-cross-origin 11 11 12
nosniff 11 11 11
strict-origin-when-cross-origin\nsame-origin 9 9 9
strict-origin-when-cross-origin\n 7 7 6
no-referrer-when-downgrade\nstrict-origin-when-cross-origin 5 5 4
same-origin\nstrict-origin-when-cross-origin 5 5 5
strict-origin-when-cross-origin\norigin 5 5 6
no-referrer\nstrict-origin-when-cross-origin 4 4 5
strict-origin-when-cross-origin\nsame-origin\nsame-origin 3 3 3
strict-origin-when-cross-origin\nno-referrer 3 3 3
strict-origin-when-cross-origin\nstrict-origin 3 4 3
no-referrer-when-downgrade\nno-referrer 2 2 2
no-referrer\norigin-when-cross-origin 2 2 2
no-referrer-when-downgrade\n 2 2 2
no-referrer\nno-referrer-when-downgrade 2 2 2
no-referrer-when-downgrade\nsame-origin 2 2 2
origin-when-cross-origin\nno-referrer-when-downgrade 2 2 2
same-origin\nno-referrer-when-downgrade 2 2 2
strict-origin\nno-referrer-when-downgrade 1 1 1
unsafe-url\nunsafe-url 1 1
same-origin\nno-referrer 1 1 1
no-referrer-when-downgrade\norigin-when-cross-origin 1 1 1
strict-origin-when-cross-origin\nunsafe-url 1 1 1
same-orign 1 1 1
strict-origin\nstrict-origin-when-cross-origin 1 1 1
no-referrer\nno-referrer 1 1 1
strict-orign-when-cross-origin 1 1 1
origin\norigin 1 1 1
* 1 1 1
origin\nstrict-origin 1 1 1
strict-origin\nno-referrer 1 1 1
strict-origin-when-cross-origin\nno-referrer-when-downgrade\nno-referrer-when-downgrade 1 1 1
strict-origin\norigin 1 1 1
origin\nstrict-origin-when-cross-origin 1 1 1
no-referrer-when-downgrade\nstrict-origin 1 1 1
strict-origin-when-cross-origin\norigin-when-cross-origin\norigin-when-cross-origin 1 1 1
use strict-origin-when-cross-origin 1 1 1
same-origin\nno-referrer-when-downgrade\nno-referrer 1 1 1
same-origin\norigin-when-cross-origin\norigin-when-cross-origin 1 1 1

152

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

Table 23: Total distinct websites implementing a valid response referrer policy. For policies marked “multiple,” the browser will
choose the last valid option from right to left. For (blank), the browser will choose the default referrer policy.

Response Referrer Policy SF Sg Ams

origin-when-cross-origin, strict-origin-when-cross-origin 245 247 234
no-referrer, strict-origin-when-cross-origin 69 69 68
no-referrer-when-downgrade, strict-origin-when-cross-origin 16 16 16
origin,strict-origin-when-cross-origin 11 11 11
origin, origin-when-cross-origin, strict-origin-when-cross-origin 5 5
no-referrer, same-origin 3 3 3
same-origin,strict-origin-when-cross-origin 2 2 2
strict-origin-when-cross-origin, no-referrer-when-downgrade 2 2 2
no-referrer, no-referrer-when-downgrade 2 2 2
origin, strict-origin-when-cross-origin 2 2 2
no-referrer,same-origin,strict-origin-when-cross-origin 2 2 2
no-referrer-when-downgrade,strict-origin-when-cross-origin, no-referrer, strict-origin 1 1 1
no-referrer, strict-origin-when-cross-origin\norigin 1 1 1
same-origin, strict-origin-when-cross-origin 1 1 1
strict-origin, strict-origin-when-cross-origin 1 1 1
strict-origin-when-cross-origin, strict-origin-when-cross-origin, strict-origin-when-cross-
origin 1 1 1

no-referrer-when-downgrade\nno-referrer-when-downgrade, strict-origin-when-cross-origin 1 1 1
origin,unsafe-url 1 1 1
no-referrer-when-downgrade, no-referrer-when-downgrade 1 1 1
same-origin,no-referrer-when-downgrade 1 1 1
origin, strict-origin 1 1 1
no-referrer,no-referrer-when-downgrade,origin,origin-when-cross-origin,same-origin,strict-
origin,strict-origin-when-cross-origin,unsafe-url\nstrict-origin-when-cross-origin 1 1 1

no-referrer-when-downgrade,strict-origin-when-cross-origin 1 1 1
origin,no-referrer-when-downgrade 1 1 1
never, no-referrer 1 1 1

M
ul
tip

le

no-referrer,strict-origin-when-cross-origin 1 1 1
strict-origin-when-cross-origin 7036 6868 6059
no-referrer-when-downgrade 2468 2441 2384
same-origin 1852 1899 1818
no-referrer 1404 1412 1358
origin 1332 1288 1219
origin-when-cross-origin 1167 1174 1100
unsafe-url 984 488 184
strict-origin 357 355 326

Si
ng

le

(blank) 82 81 81

153

Proceedings on Privacy Enhancing Technologies 2025(3) Luqman Muhammad Zagi, Zahra Moti, and Gunes Acar

Figure 11: The number of studied websites in each category,
excluding categories with fewer than 100 websites.

Table 24: Distinct websites with specific referrer policies
value that circumvented referrer policy. This table provides
detailed information about the “web” portion of data found
in Table 14. Categorize in Referrer (R), Post body (P), and
request URL (U)

Referrer Policy SF Sg Ams

no-referrer 11 8 10
same-origin 7 6 8
origin 2 3 3
strict-origin 2 1 1
strict-origin-when-cross-
origin

2,443 2,192 1,360
R

origin-when-cross-origin 82 86 79
R Total 2,553 2,283 1,445

no-referrer 143 139 124
same-origin 165 160 147
origin 322 318 325
strict-origin 50 50 45
strict-origin-when-cross-
origin

8,484 8,365 7,558
P

origin-when-cross-origin 89 86 69
P Total 8,928 8,802 7,971

no-referrer 227 222 216
same-origin 372 372 369
origin 291 234 226
strict-origin 108 106 103
strict-origin-when-cross-
origin

19,801 19,750 19,480
U

origin-when-cross-origin 143 141 136
U Total 20,501 20,455 20,189

154

Referrer Policy: Implementation and Circumvention Proceedings on Privacy Enhancing Technologies 2025(3)

Figure 12: Comparison of website categories percentage by referrer policy values. This figure provides detailed information
from Figure 6. Categories may not add to exactly 100% because requests observed on a single website may operate under
different referrer policies due to, for example, element-specific referrer policies.

155

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Uniform Resource Locator (URL)
	2.2 Referrer
	2.3 Referrer Policy (RP)
	2.4 Third-Partyness
	2.5 Related work

	3 Methods
	3.1 Website list
	3.2 Crawls
	3.3 Potential URL Leakage Detection
	3.4 Referrer Policy Circumvention Detection

	4 Results
	4.1 Referrer Policy Usage
	4.2 Referrer Policy Circumventions

	5 Discussion
	5.1 Limitations and Future Work

	6 Conclusion
	Acknowledgments
	References
	A Appendices
	A.1 The Algorithm to Parse Referrer Policy on <meta> Elements
	A.2 Failed Visit Detection
	A.3 Supported Encoding Methods for Leak Detector

	B Interacting with Consent Dialogs
	C Additional Results

