
Does Coding Style Really Survive Compilation?
Stylometry of Executable Code Revisited

Muaz Ali
The University of Arizona

Tucson, AZ, USA
muaz@arizona.edu

Tugay Bilgis∗

The University of Arizona
Tucson, AZ, USA

tbilgis@arizona.edu

Nimet Beyza Bozdag∗

The University of Arizona
Tucson, AZ, USA

nbbozdag@arizona.edu

Saumya Debray
The University of Arizona

Tucson, AZ, USA
debray@arizona.edu

Sazzadur Rahaman
The University of Arizona

Tucson, AZ, USA
sazz@arizona.edu

Abstract

This paper describes a replication study of in�uential recent work

on binary-level code stylometry by Caliskan et al. [8]. Using the

Google Code Jam (GCJ) dataset that the original work used but with

possible di�erences in authors and tasks, the accuracy results we

obtain are signi�cantly lower than those originally reported. An

analysis of the features that contribute most to author classi�cation

decisions indicates that many such features are accidental artifacts

arising from the erroneous disassembly of data bytes embedded in

the binary and have little to do with programming style. Our re-

sults suggest that binary-level code stylometry. (1) is more sensitive

to code characteristics than previously suspected; (2) can be sig-

ni�cantly less accurate than previously reported (for 100 authors,

we achieved approximately 63% accuracy, compared to the 96%

reported in the original work); and (3) deserves careful attention

to accidental artifacts arising from the compilation and stylome-

try toolchains. We found 29/33 of the top ndisasm-based features

are the result of erroneous disassembly. Our analysis shows that

this can cause the model to pick spurious features and thereby

unknowingly in�ate the results.

1 Introduction

Stylometry refers to the analysis of the style characteristics of

individual authors to identify the authorship of documents. It has

been used for authorship attribution of a diverse range of works,

including natural language texts [21, 32], music [9, 46], and art [20,

33]. There has also been a considerable body of work on stylometry

applied to software, focusing on both source code [5, 22, 40, 44, 45]

as well as executable binaries [4, 8, 38].

Code stylometry has many legitimate uses. At the source code

level, it can be useful for detecting plagiarism and resolving copy-

right disputes; at the binary level, it can help identify the authors

of malicious software. However, it can also pose a profound threat

to the privacy of programmers who legitimately wish to remain

∗These authors contributed equally to the paper.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2025(3), 349–360

© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0102

anonymous. For example, programmers who develop software to

get around censorship or surveillance tools deployed by repres-

sive regimes [37] or organize protests or engage in online activism

[15, 23, 43] have reason to fear for their safety andwell-being should

their authorship of such software be unmasked. Conversely, errors

in code authorship attribution may falsely implicate people who

have nothing to do with the software in question. It is therefore

important to understand the capabilities and limitations of code

stylometry and circumstances that can impact its accuracy and

robustness. Since software is often distributed in binary form, it

is especially important to address these issues in the context of

binary-level code stylometry. Importantly, we are not concerned

with code obfuscation or adversarial techniques aimed explicitly

at hindering stylometry [19, 34]: our goal is to investigate stylom-

etry as applied to code written by “ordinary” programmers using

“ordinary” software development processes.

This paper explores the replicability and robustness of binary-

level code stylometry techniques proposed in an in�uential recent

paper by Caliskan et al. [8]. We used the code and experimental

setup publicly shared by the authors. We did not have access to

the datasets originally used for training and testing since these

were not shared due to privacy considerations, but we closely fol-

lowed the paper’s description of how they were constructed. In

particular, we followed Caliskan et al. [8] in using Google Code Jam

submissions. We used the same criteria as in their paper to select

authors and their submitted code samples. However, the authors

and tasks we sampled from the data might di�er from that of the

original work because we do not have access to the original dataset.

To ensure �delity when compiling these programs to executables

and extracting features from the executables, we used the same

tools as in their paper; where possible, we used information from

the GitHub repository speci�ed in the paper to use the same ver-

sions of the tools and invoked them with the same command-line

arguments. Overall, this replication study answers the following

research questions.

• RQ1 (Reproducibility study)–§5: To what extent are bi-

nary code authorship attribution results from [8] repro-

ducible and replicable to other settings?

• RQ2 (Cause Analysis)–§6:What are the di�erent factors

a�ecting the binary code authorship attribution results re-

ported in [8]?

349

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0102

Proceedings on Privacy Enhancing Technologies 2025(3) Ali et al.

RQ1 (Reproducibility Study).We �rst tried to reproduce the

base results of Caliskan et al. [8], namely, the accuracy of author

identi�cation from 32-bit x86 executables, as the number of authors

varies from 20 to 100. With 20 author datasets, we also studied how

the results would hold for binaries compiled at di�erent optimiza-

tion levels (-O1, -O2, -O3, -Os) or stripped binaries (32-bit x86 with

no optimizations enabled).

Overall, the accuracy numbers we obtained are considerably

lower than those originally reported by Caliskan et al. [8].

(1) For the baseline experiments involving 100 authors using

32-bit unoptimized x86 binaries (i.e., compiled using -O0),

Caliskan et al. report an accuracy of 96% [8] while we obtain

an accuracy of 63%.

(2) For various di�erent optimization levels (i.e., compiled using

-O1, -O2, etc) Caliskan et al. report accuracies ranging from

89% to 96% for 100 authors while we obtain lower accura-

cies of around 80% for much smaller datasets involving 20

authors.

(3) For stripped binaries (32-bit x86, no optimization), Caliskan

et al. report an accuracy of 72% for 100 authors while we

obtain an accuracy of about 57% for 20 authors.

RQ2 (Cause Analysis). To understand the reasons for these dif-

ferences in classi�cation accuracy, we identi�ed and analyzed the

features that contribute most to author classi�cation decisions.

(1) We found that data erroneously disassembled as code by

the ndisasm disassembler used by Caliskan et al. played a

signi�cant role in their classi�cation accuracy. The issue is

that, given an executable �le, ndisasm simply disassembles

the entire byte stream for the �le as code without any consid-

eration of whether or not the bytes being disassembled come

from a code region of the �le. This results in non-code bytes

from the �le, such as section headers, string table, symbol

table, etc., all being disassembled.

(2) To determine the extent to which our accuracy numbers

were being in�ated by such erroneous disassembly of data,

we repeated our experiments on a 20-author dataset where

ndisasm’s disassembly was limited to just the text section

(the other tools in the pipeline were una�ected). For the

20-author dataset, the classi�cation accuracy we initially

obtained was 82%. However, limiting ndisasm’s disassembly

to only the code bytes in the executables—and making no

other change to any other part of the pipeline—resulted in a

14% drop in classi�cation accuracy, from 82% to 68%. This

indicates that the erroneous disassembly of data signi�cantly

impacts classi�cation accuracy.

The reason is data bytes embedded in executable �les can come

from a variety of sources, such as string literals, numerical constants,

and symbols, as well as metadata, such as headers and byte o�sets

referring to di�erent points in the binary. Some of these sources

may be unexpected: e.g., commonly used compilers such as GCC

and Clang embed source �lenames into binaries as metadata even

when debugging is not enabled [36], which means that if source

�lenames in the experimental dataset incorporate author identi�ers

for convenience, these identi�ers will appear in the symbol tables of

unstripped binaries. Erroneous disassembly of such embedded data

can then a�ect stylometry in unexpected ways. Such e�ects indicate

the need for careful attention to toolchain-introduced e�ects, both

for the tools used to prepare the binaries and those used to analyze

them, to avoid inadvertently introducing errors into the stylometric

analysis.

Research Artifacts: To promote further reproducibility and repli-

cation, we open-sourced the artifacts created, generated, and used

in this research. These are available at: https://github.com/sprlab/

binary-stylometry

Organization. The remainder of this paper is organized as follows.

Section §2 provides background material, including a description

of Caliskan et al.’s approach [8]. Section §3 discusses various chal-

lenges that can arise in binary-level code stylometry due to the

e�ects of compilation and decompilation. Section §4 discusses the

speci�cs of our research methodology, and Section §5 describes

our reproducibility results, and Section §6 describes our in-depth

study of �nding the causes to explain the results. In Section §7,

we discuss the implications of our �ndings, threats to validity, and

lessons learned from this research. Finally, Section §8 discusses the

related works, and Section §9 concludes the paper.

2 Background

2.1 Structure of Executable Files

Stylometry of executable code relies fundamentally on parsing

executable �les to extract information about the code. It is, therefore,

helpful to understand the structure of such �les. Here, we brie�y

discuss the format of ELF (Executable and Linkable Format) binaries,

which are used on Linux systems; other systems use executable

formats that, while di�erent in details, are conceptually very similar.

An ELF �le consists of (1) an ELF header that describes properties

of the �le; (2) a Program Header Table that tells the operating

system how create a process image when the �le is executed; (3)

a sequence of sections containing code and data; and (4) a section

header table that describes these sections. Commonly occurring

sections in GCC-generated ELF executables include [2]: .text,

which contains the main body of executable code; .data, which

contains initialized static variables; .rodata, which contains read-

only data such as strings; .plt and .got, used for dynamic linking

of library code during execution; .symtab, the symbol table; and

.strtab, which contains strings associated with the symbol table,

e.g., symbol names.

References from one part of an ELF �le to another, e.g., from

the ELF header to the section header table, from section header

table entries to the corresponding sections, from instructions in

the .text section to global variables in the .data section, etc., are

typically given as o�sets in the �le. One implication of this is that

changes to the size of one section of an ELF binary, e.g., due to

optimization, can result in changes to the conceptually unrelated

o�sets embedded in other sections. This is signi�cant because, as

discussed later, erroneous disassembly of data bytes—including such

o�sets embedded in the binary—can signi�cantly impact binary

code stylometry results.

2.2 The Stylometry Pipeline of Caliskan et al.

The pipeline takes in a dataset of compiled binaries and produces

a Random Forest Tree Classi�er based on the features extracted

350

https://github.com/sprlab/binary-stylometry
https://github.com/sprlab/binary-stylometry

Proceedings on Privacy Enhancing Technologies 2025(3) Ali et al.

void f(int m, int k) {

for (; k > 0; k--) {

if (k % 2 == 0) /* k even */

m += 2*k;

else /* k odd */

m -= 1;

}

printf("%d\n", m);

}

int main(int argc, char **argv) {

int n = atoi(argv[1]);

f(n, 3);

return 0;

}

int main(int argc, char **argv) {

int n = atoi(argv[1]);

int m = n;

for (k = 3; k > 0; k--) {

if (k % 2 == 0) /* k even */

m += 2*k;

else /* k odd */

m -= 1;

}

printf("%d\n", m);

return 0;

}

int main(int argc, char **argv) {

int n = atoi(argv[1]);

int m = n;

int k = 3;

if (k % 2 == 0) /* iter 1 */

m += 2*k;

else

m -= 1;

k--;

if (k % 2 == 0) /* iter 2 */

m += 2*k;

else

m -= 1;

k--;

if (k % 2 == 0) /* iter 3 */

m += 2*k;

else

m -= 1;

k--;

printf("%d\n", m);

return 0;

}

int main(int argc, char **argv)

{

int n = atoi(argv[1]);

int m = n;

m -= 1; /* iter 1 */

m += 4; /* iter 2 */

m -= 1; /* iter 3 */

printf("%d\n", m);

return 0;

}

(ė) Original program (Ę) After function inlining (ę) After loop unrolling (Ě) After constant folding and

dead code elimination

Figure 2: An example of the e�ect of compiler optimizations (from Jacobsen et al., 2021 [19])

#include <stdio.h>

long w = 0x1234567890abcdef;

int main() {

printf("%d\n", (int)w);

return 0;

}

00ef add bh,ch

cdab int 0xab

90 nop

7856 js 0x306c

3412 xor al,0x12

Figure 3: An example of erroneous disassembly in ndisasm.

When the executable for the program on the left is disassem-

bled, the initialization constant 0x1234567890abcdef of the

variable w is disassembled as code, resulting in the spurious

instructions shown on the right (each spurious instruction is

shown preceded by its binary encoding). The order of bytes

in the disassembly is reversed compared to the source code

because the processor used was little-endian.

typically involves examining the binary code itself, e.g., by disassem-

bling the machine code to assembly code that is human-readable

and more amenable to processing, and possibly decompiling the dis-

assembled code to a higher-level representation such as source code.

Disassembly issues can a�ect authorship-relevant code features in

two ways. The �rst arises from the fact that distinguishing between

instructions and embedded data in a program’s code region is unde-

cidable in general, and disassemblers typically resort to heuristics

that can sometimes result in disassembly errors [41]. The second

arises from disassembly of non-code memory regions. Figure 3

shows an example of the second kind of error from the ndisasm dis-

assembler used in Caliskan et al.’s work. In each case, the resulting

disassembled code does not accurately re�ect the actual program

code and thus can distort the features used for stylometry.

There are three takeaways here. First: compiler optimizations can

profoundly a�ect the structure of the generated code, and thereby

in�uence stylometry-relevant features extracted from it. Second:

disassembly—the �rst step in any analysis of binary code—can

introduce its own inaccuracies and further blur and distort such

features. Third: the e�ects of compilation and decompilation can

vary depending on program characteristics, the compiler used and

compiler options selected, and the disassembler/decompiler used.

4 Methodology

4.1 Data Selection

The speci�c dataset used by Caliskan et al. [8] was not available

due to privacy considerations, so we followed their description of

dataset construction as closely as possible to create a dataset that

we believe is similar to theirs. In particular, we followed Caliskan

et al. [8] in using Google Code Jam submissions 2, and used the

same criteria as in their paper to select authors and their submitted

code samples. While our resulting dataset is not identical to that

of Caliskan et al., we believe they are similar–the only di�erences

between their dataset and ours are the following: a) they used GCJ

submissions from 2008 to 2014 while we used GCJ submissions

from 2008 to 2020, and b) the tasks and authors we selected may

di�er from the original dataset. 3

We extracted all �les available in the repository and �ltered for

C++ submissions to align with Caliskan et al.’s work. We mapped

all unique tasks to all unique authors who submitted to them and

used this mapping to identify the maximum number of authors that

2We fetched the Google Code Jam submissions from this public repository:
https://github.com/Jur1cek/gcj-dataset.
3We also experimented with GCJ submissions from 2008 to 2014, but found that the
resulting dataset showed a notable drop in accuracy for a small sample subset. For
these reasons, we focused our experiments with the dataset from 2008-2020.

352

Does Coding Style Really Survive Compilation?
Stylometry of Executable Code Revisited Proceedings on Privacy Enhancing Technologies 2025(3)

submitted to same 9 task combinations.4 We ended up with 801

authors who submitted to the 9 GCJ tasks. There were two submis-

sions per task in the dataset. We selected the �rst submission. To

understand the di�erence between two submissions, we computed

the average normalized edit distance between the two submissions

of all 801 authors and found that it was 0.025, suggesting that both

submissions were almost identical. Upon some manual inspection,

we found that submissions di�ered in the following ways: a) usage

of larger data types in the second submission (e.g., long instead of

int) and b) usage of di�erent static paths to load the dataset.

4.2 Data Processing

To ensure �delity when compiling these programs to executables

and extracting features from the executables, we used the same

tools as in their paper; where possible, we used information from

the GitHub repository speci�ed in the paper to use the same ver-

sions of the tools and invoked them with the same command-line

arguments. Speci�cally, we used the repository associated with

Caliskan’s work [1] to process the datasets. We developed wrapper

scripts around the code to adapt it to a new environment, and the

code was containerized using Docker to parallelize the pipeline. The

detailed description of the pipeline is given in Section 2.2. We also

performed some preprocessing to align the pipeline with the dataset.

For example, we preprocessed the GCJ dataset by removing the dot

character (‘.’) from the author names, as this was a requirement for

the pipeline to operate correctly. Initially, only 319 authors had a

successful compilation using the g++-4.8 compiler. We added the

-std=c++0x �ag to the compilation command, setting the standard

to C++11, which enabled the successful compilation of 647 authors.

We then discarded the authors who had any compilation errors. For

baseline unoptimized x86 compiled binaries, table 1 shows that 647

out of 801 authors remained after discarding due to compilation

errors. It is worth noting that this successfully compiled author

count is more than enough for our experimentation.

Number of authors who

submitted to all 9 tasks
801

Compiled Successfully 647

Table 1: The number of authors remaining after each step

for the 2008 to 2020 GCJ submissions.

Using IDAPro (version 8.3) as the decompiler, we decompiled

the binaries by using the following arguments:

-Ohexrays:{decompiledFile}:ALL -A {inputFile}

This con�guration decompiles all the functions in the code sec-

tion of the binary and dumps the decompiled code in the speci�ed

output �le. We used 9-fold cross-validation to create each dataset.

We did an 8/1 split of the 9 tasks for each author in the dataset in

each validation round; the training set contained 8 problems per

author, and the testing set contained 1 problem per author.

In respective sections, we discuss how we used this dataset to

answer our research questions.

4This is because Caliskan et al. use 9 common samples for each author.
5A distance of 0 means no di�erence at all, whereas a distance of 1 means complete
di�erence.

4.3 Performance Metrics

All the accuracies reported in this paper are an average score across

Ĥ di�erent datasets. For di�erent experiments, this number is de-

scribed further in Section 5.1. Following Caliskan et al. [8], for each

dataset, we calculated the accuracy over k-fold evaluation. Folds

refer to the 9 possible train-test splits of the tasks. Classi�cation

accuracies are computed as follows. The accuracy for a single fold

is given by:

ýĜğ =
number of correctly classi�ed authors

total number of all authors
.

Accuracy across ġ folds (in our case, ġ = 9) is computed as follows,

where ýĜğ represents the accuracy of the model on the ğ-th fold:

Accuracy =

1

ġ

ġ∑

ğ=1

ýĜğ

The average accuracy across Ĥ datasets is given by:

Average Accuracy =

1

Ĥ

Ĥ∑

ğ=1

ýğ

where ýğ represents the accuracy of the ğ-th dataset. This �nal

formula represents the accuracy used for results and Figures below.

5 RQ1: Reproducibility Study

The �rst part of our reproducibility study focuses on a collection

of unoptimized unstripped 32-bit executables for the Intel x86 ar-

chitecture that were obtained using the g++ compiler on a set of

C++ code submitted to Google Code Jam. It forms the core of the

work for reproducing [8]. The next part of our reproducibility study

considers two settings, i.e., the use of i) compiler optimizations,

ii) stripped binaries as originally considered by Caliskan et al. [8].

Here, we speci�cally answer the following research questions:

• RQ1.1: To what extent authorship attribution results from

[8] are reproducible for regular Intel x86 binaries without

code optimization?

• RQ1.2: To what extent authorship attribution results from

[8] are replicable for Intel x86 binaries with (1) di�erent code

optimizations enabled and (2) symbols stripped?

5.1 Experimental Setup

For all of our experiments presented in this work, we used 3 Ma-

chines with the following con�gurations:

• 2 × 6-core Intel® Xeon® CPU X5650 @ 2.67GHz

• 48 GB RAM

Next, we discuss experimental setups to answer each sub-RQ for

our reproducibility study.

Setup for Regular x86 binaries. We follow Caliskan et al.’s

compilation settings and compile all source code with g++4.8, -m32,

and -O0 �ags for x86 architecture. We created 20, 50, and 100-author

datasets. For each n-author dataset, we sampled n-authors randomly

with replacements from the pool of 647 authors. We create 5, 5, and

4 datasets for 20, 50, and 100 authors, respectively. The processing

times to compute the results for the regular x86 datasets were as

follows: approximately 2 days for the 20-author dataset, 10 days

353

Proceedings on Privacy Enhancing Technologies 2025(3) Ali et al.

Author Count
Accuracy

Caliskan et al.

Accuracy ± Std Dev

(Our Work)

20 99.0 81.55 ± 7.56

50 - 73.20 ± 4.60

100 96.0 62.89 ± 1.60

Table 2: Reproducibility of classi�cation accuracy: unopti-

mized unstripped 32-bit x86 binaries. A hyphen (‘-’) denotes

that the corresponding value is unavailable.

for the 50-author dataset, and 20 days for the 100-author dataset.

Since the runtime grows exponentially as the number of authors

increases, we chose 4 instead of 5 for the 100-authors experiment.

Setup for Optimized and Stripped Binaries. To study the

impact of optimization, we experiment gcc optimization �ags -O1,

-O2, -O3, and -Os. Although the original work did not report results

for -Os, we included it for the sake of completeness. For this study,

we chose the 20-author count to ensure a meaningful comparison

with baseline experiment results (RQ1.1), where we observed the

best performance on average. We compile all the code for the 32-bit

x86 architecture. The compilation commands used are:

g++-4.8 -m32 opt�ag where opt�ag ∈ {-O1, -O2, -O3, -Os}.

To replicate the results for strip binaries, we strip the executables

by adding the -s �ag to the compilation command.

5.2 Results

Performance on Regular x86 Binaries. Table 2 shows our results

for baseline author classi�cation accuracy on unstripped unopti-

mized 32-bit x86 binaries. There are two key takeaways here.

(1) There is considerable variability in classi�cation accuracy for

di�erent experiments. For example, for 20 authors, accuracy

ranges from a low of 70.0% to a high of 89.4%. This indicates

that the accuracy of binary-level code stylometry is sensitive

to code characteristics.

(2) The author classi�cation accuracy numbers we obtain are sig-

ni�cantly lower than those originally reported by Caliskan et

al. [8]. For example, Caliskan et al. report an accuracy of 96%

for 100 authors while we obtain an average accuracy of only

63%. It is possible that some of this di�erence in accuracy

may be due to di�erences in the code samples used (see the

previous point; recall that our dataset is similar to, but not

identical with, that used by Caliskan et al.). However, our

investigations suggest that toolchain-based e�ects, discussed

in Section 7, may also be a factor.

Performance on Code Optimization. Table 3 shows the classi-

�cation accuracy for di�erent levels of code optimization in the

column labeled "Accuracy (baseline)".

For optimization levels compiled using -O1, -O2, and -O3, Caliskan

et al. report accuracies ranging from 89% to 96% for 100-authors. In

our baseline experiments of 20-author datasets, our accuracy results

for di�erent optimization levels range in a narrow band between

79% and 81%. Our in-depth cause analysis in Section §6.2, reveals

Optimization
Accuracy

(baseline)

Accuracy (.text section

only disassembly)

-O0 81.55 68.22

-O1 80.66 57.44

-O2 79.11 54.22

-O3 80.11 54.00

-Os 80.22 56.22

Table 3: Performance comparison of di�erent disassembly

methods using ndisasm on 20-author datasets: RQ1.1 (unopti-

mized 32-bit binaries) and RQ1.2 (optimized 32-bit binaries).

‘Baseline’ means that the original disassembly method from

Caliskan’s work was used.

that features obtained from disassembling code with ndisasm actu-

ally contain non-code features, too. This is because ndisasm erro-

neously considers the whole binary a continuous stream of code

bytes – thus, it disassembles all the data, metadata, and symbols as

code. We hypothesize that the minimal e�ect of code optimization

may be due, at least in part, to the in�uence of dissembling non-code

sections. The reason is code optimizations do not change the non-

code sections and, therefore, do not signi�cantly impact features

obtained from these sections. To test this hypothesis, we retrained

the models by keeping only the ndisasm disassembly output of the

.text (code-based) section. For this experiment, we found that our

accuracy results for di�erent optimization levels range between 68%

and 57%. We see a signi�cant drop in performance after restricting

the ndisasm disassembly to the executable code section only. This

degrade lends support to our preceding hypothesis. We observe

that optimization with the -O2 and -O3 �ag results in the highest

accuracy drop with ∼14% when compared with -O0 �ag dataset.

Performance on Stripped binaries. Stripping a binary removes

symbol information from it; the code remains unchanged.

In our experiments, we get an accuracy of 57.74%. Hence, classi-

�cation accuracy for the 20-author datasets drops by about 24% for

stripped unoptimized binaries compared to unstripped ones. This

drop is consistent with the results of Caliskan et al. In Section §6,

we observe that most of the important features for classi�cation

are derived from the erroneous disassembly of non-code sections,

including the symbol table. We hypothesize that the large drop in

classi�cation accuracy resulting from the removal of symbol infor-

mation occurs in signi�cant part due to the consequent absence of

disassembly of symbol bytes.

6 RQ2: Cause Analysis

To understand the factors a�ecting classi�cation accuracy, we per-

formed an explanability analysis of a subset of our results.

6.1 Methodology

We followed the steps described below.

Model Selection. A model in this context means the Random

Forest Classi�er. We picked the models corresponding to the 20-

author count datasets from RQ1 as this is su�cient to provide us

354

Does Coding Style Really Survive Compilation?
Stylometry of Executable Code Revisited Proceedings on Privacy Enhancing Technologies 2025(3)

with important insights. There were �ve datasets in the 20-author

count. To have a better understanding of the overall performance,

we considered the best-performing and worst-performing datasets.

Within these two datasets, there were nine di�erent models for

each fold. We selected the top fold model from the best dataset and

the bottom fold model (in terms of classi�cation accuracy) from the

worst dataset, respectively.

Author Selection. We picked the top 5 correctly classi�ed au-

thors (in terms of con�dence score) from the top fold model and

the bottom 5 misclassi�ed authors from the bottom fold model.

Feature Selection. The Random Forest Classi�er (RFC) Model

used in the pipeline is built from 200 features. We used a subset of

these features for our analysis.

We used SHAP (SHapley Additive exPlanations) Framework to

analyze features [26]. SHAP is a commonly used framework to aid

the explainability of machine learning models. SHAP framework

computes ‘Shapley’ values that are linked to each feature in the

model. These Shapley values determine the relative importance of

features in predicting the output. We used SHAP’s Python imple-

mentation for our processing. Within the SHAP framework, we

used a black-box explainer called the Kernal SHAP [25]. Kernal

SHAP is a game theoretic technique that is based on weighted

linear regression to estimate the importance of each feature [25].

Since the RFC model is implemented in Weka [16], which is a

Java library, we performed the following steps to link the RFCmodel

with SHAP’s Python framework. We extracted the text version of

the Random Forest Tree fromWeka. Then, we parsed the RFCmodel

to implement it in a custom Python object. This object implemented

a prediction function that generated a classi�cation score for each

class given an input data point. To ensure �delity, we cross-checked

our function’s output against the original output from the Weka

library. This prediction function was provided as an input to the

SHAP’s Kernel explainer. We computed Shapley values per class: a

class in our context refers to an author. Therefore, we computed

Shapley values of features per author.

High Shapley values indicate that a feature is more important

for a given author, while low values indicate the opposite. We

selected the top 10 features (in terms of Shapley values) of the

selected authors. We also computed the corresponding Attribute

Importance values (by the Mean Decrease in Impurity method)

of such features to assess their overall impact on the model. The

mean Decrease in Impurity (MDI) of a feature is de�ned as the

weighted impurity decrease of the nodes in which a feature is

used in all the trees of the Random Forest [24]. A high MDI value

indicates high relevance of the feature in the model, whereas a

low value indicates the opposite[7, 24]. Weka library allows the

computation of these Attribute Importance values. Please note that

this importance value provides a measure of feature importance

across all authors, whereas Shapley values are importance values

of features per author.

Analysis Method. We then analyzed the selected features to

understand how these features contribute to the model.

Three types of features appear in top-10 features: ndisasm, AST,

and bjoern. The ndisasm-based features are n-grams derived from

the disassembly of a given program binary, generated using ndisasm.

Similarly, radare2-based features are n-grams from the disassem-

bly produced by radare2 for the same program binary. The AST-

node-based features are derived from the abstract syntax tree (AST)

of the decompiled C++ �le obtained through IDAPro. To analyze

AST-based features, we looked at the line and constructed in the

decompiled C++ �le from which the AST node originated.

To analyze ndisasm-based features, we followed these steps:

First, we matched each feature’s text with the text in the ndisasm

disassembly to identify the corresponding instructions from which

the feature text originated. Then, we retained the machine code of

these identi�ed instructions. Next, we located the section in which

this machine code occurred. Finally, we classi�ed each feature based

on its section of origin as either code-based or non-code-based. If a

feature appeared in both code-based and non-code-based sections,

it was classi�ed as code-based.

To analyze radare2-based features, we followed a similar ap-

proach: we matched the feature text with the radare2 disassembly

to identify the corresponding instructions. We then examined the

comments surrounding each feature to detect common patterns.

radare2 adds comments to instructions, such as function headers,

whenever a function is called within an instruction.

6.2 Findings

Our �ndings are structured as follows: we �rst discuss the key

characteristics of the dataset and discuss the top features, then

examine how speci�c features contribute to authorship attribution.

Dataset and feature characteristics

We considered the features of the best andworst-performing datasets

of 20-author count. The best-performing dataset has a classi�cation

accuracy of 89%, while the worst-performing dataset has a classi�ca-

tion accuracy of 70%. The top feature sources of the corresponding

models are listed in Table 4. Their types are further elaborated in

Table 5. In Table 5, we observe that most ndisasm-based features

are largely dictated by line bigrams. In Table 4, we observe that the

top features have very low Shapley values (0.001 to 0.01) but rela-

tively high importance (Mean Decrease in Impurity) values (0.5 to

0.8). There can be various reasons behind low Shapley values [10],

including the presence of redundant signals or the model relying on

a broad range of features rather than a single dominant one. High

attribute importance values indicate that these features play a role

in discriminating multiple authors. Next, we discuss the important

�ndings below.

Erroneous disassembly leads to erroneous features

ndisasm based features are the most frequent sources of the top

features of the top authors, as observed in Table 4 and. A problem

here is that ndisasm disassembles all of the bytes of the input binary

to instruction code without making any distinction between bytes

that occur in the code or non-code sections.We found out that 29 out

of 33 ndisasm based features resulted from erroneous disassembly

of machine code bytes from non-code based sections (e.g., .strtab)

to instruction code. To understand erroneous disassembly in the

model, we analyzed ASCII representations of the corresponding

machine code of features and categorized common patterns. Table 6

shows the classi�cation, with details provided below.

355

Proceedings on Privacy Enhancing Technologies 2025(3) Ali et al.

Feature Sources
Unique Features (64 out of 100)

SHAP value ranges Attribute Importance Range
High performing

Authors Only

Low performing

Authors Only
Common

ndisasm Disassembly 17 16 6 0.001-0.01 0.6-0.8

radare2 Disassembly 16 8 2 0.001-0.005 0.5-0.8

Decompiled code 2 5 0 0.002-0.007 0.6-0.8

Table 4: Features descriptions of top and low performing datasets for the selected authors of top and low performing datasets

for the selected authors.

Feature Type ndisasm radare2 Decompiled Code

Instruction Unigrams 1 4 -

Instruction Bigrams 3 8 -

Instruction Trigrams - 6 -

Line Unigrams - 2 -

Line Bigrams 29 4 -

AST Node Avg Dep - - 2

AST Node TF - - 1

AST Node TF-IDF - - 4

Total 33 24 7

Table 5: Feature types for the top and low-performing

datasets across selected authors.

• Source Filename: This feature correspond to source �le-

names. This is because g++ compiler embeds the �lename

of the source CPP �le into the binary. An example string is

“’58808576_timics23.cpp". This string contains the algorith-

mic problem identi�er and the author’s username. This is

problematic because the label (author username) encoded

as a feature is being used as a feature to classify the class

(author username). This indicates the contamination of train-

test data.

• Repetitive Strings: This feature corresponds to repetitive

strings used by the authors, located in the binary’s data

section. An example string is “0.out".

• Function strings symbols: This feature corresponds to

the function name used in the binary that is embedded as

a symbol string by the g++ compiler. An example string is

<freopen".

• Non-Alphanumeric Bytes: These features correspond to

byte sequences that do not translate to any alphanumeric

strings. Examples include �le o�sets embedded in the exe-

cutable (see Section 2.1).

• Miscellaneous Symbol Strings: These features corre-

spond to miscellaneous symbol strings found in the binary,

originating from various non-code sections, including the

.strtab section. An example symbol string is "endlIcSt11".

Erroneous features impact classi�cation accuracy

Due to our observation that the majority of ndisasm-based features

(29 out of 33) are the result of erroneous disassembly of non-code

Feature Type Freq. of Occurrence

Source Filename 6

Repetitive Strings 2

Function strings as symbols 4

Non-alphanumeric Bytes 6

Miscellaneous Symbols Strings 13

Table 6: Di�erent kinds of erroneous disassembly features

from ndisasm picked by the model. The frequencies (not mu-

tutally exclusive) are counted out of 29 such erroneous fea-

tures.

sections, we conducted the following experiment on the 20 author

datasets, we used for RQ1: we replaced ndisasm disassembly output

for all sections in the binaries with the disassembly output for only

the code section (.text). This would have the e�ect of removing

erroneous disassembly-based features from the model, as we only

included the disassembly of the code-based section. We then reran

the pipeline to get the accuracy results. The resulting accuracies are

shown in Table 3. As can be seen in the table, we observed a marked

decrease in accuracy for both unoptimized and optimized datasets.

This observation lends support to the hypothesis that erroneous

features derived from ndisasm are skewing the performance.

Duplication of features

Among the top features, 4 out of 16 radare2 disassembly-based

features and 2 out of 7 AST-based features correspond to the li-

brary function scanf. In radare2 disassembly, features are derived

from the text in radare2’s disassembly comments, which include

the names of functions called within instructions. Additionally, 2

erroneously disassembled features from ndisasm also correspond

to the usage of scanf. This implies that the pipeline is susceptible

to duplication of signals.

7 Discussion

7.1 Stylometric Implications of Disassembling
Data as Code

As discussed in Section 6.2, our experiments indicate that erroneous

disassembly of data, such as errormessages and format strings (from

the .rodata section of the binary), initialized global data (from the

356

Proceedings on Privacy Enhancing Technologies 2025(3) Ali et al.

two other researchers independently checked the compliance of the

pipeline with the original codebase released by Caliskan et al. [8].

For dimensionality reduction, the original paper mentions that

the extracted features were reduced by two dimensionality reduc-

tion approaches: a) Information Gain Criterion and b) correlation

based feature selection. We applied the �rst approach, as it was the

only approach available in the corresponding source code reposi-

tory. The original paper reduced the total features to 53 after dimen-

sionality reduction, but we found the performance with 53 features

to be low. Thus we chose to reduce the feature set to 200 instead as

it produced better performance.

7.3 Lessons Learned

Our experimental results and their analysis point to some lessons

that we believe are important for research on and applications of

binary code stylometry.

Toolchain artifacts can skew results.

Our experiments demonstrated two ways in which stylometric

results could be a�ected by artifacts inadvertently introduced by

the analysis toolchain: improper disassembly of data sections in the

binary and source �lenames embedded into the binary as symbols

by the compiler. It is possible that there are other such toolchain

artifacts that we did not detect. For stylometry work, this argues

for (1) careful preparation of datasets and analysis tools ahead of

time to guard against such artifacts; and (2) careful after-the-fact

analysis of the results to check that they have not been a�ected

by unexpected features. (On the latter point, it should be noted

that determining whether a feature is “unexpected” can be subtle

and require considerable domain expertise. In the course of this

work, for example, we were intrigued by the observation that many

highly ranked features used instructions, such as ‘arpl’, ‘insb’

and ‘outsd’, which in our experience are rare in application code.

Identifying where these instructions originated involved tracing

through the structure of ELF binaries, i.e., determining the o�sets

of these instructions in the binary and mapping the o�sets to the

sections they came from. This led us to the realization that they

originated from the binaries’ symbol table sections.)

Classi�cation accuracy is sensitive to code characteristics.

Our results indicate that there can be a high degree of variability in

the accuracy of author attribution. For example, for the 20-author

results shown in Table 2, the average accuracy is 81%, but for indi-

vidual datasets, it can be as low as 70%. An individual fold accuracy

of the same dataset can be even lower (e.g., 50%). From an applica-

tion perspective, this implies that average accuracy is not a good

indicator of how con�dent we can be in the classi�cation accuracy

for a particular code sample.

Misattribution can cause harm.

Much of the work on binary-level code stylometry has focused

on its ability to recover authorship-relevant information from bi-

naries. For example, for 100-author stripped unoptimized 32-bit

binaries, Caliskan et al. observe an average classi�cation accuracy

of about 72%7 [8] and conclude that “stripping symbol information

from executable binaries is not e�ective enough to anonymize an

7In the paper, this value is given as “a decrease . . . by 24%” from the 96% accuracy they
observe for unstripped binaries.

executable binary sample.” Meng obtains an average accuracy of

about 52% for 282 authors and concludes that “authorship identi�-

cation is practical at the basic block level” [29]. In each case, the

authors correctly point out that, from the perspective of extracting

authorship-relevant information from binaries, the accuracy results

obtained are signi�cantly better than random chance.

From a privacy perspective, however, these results are worrisome.

An average accuracy of 75% means that misattribution occurs 1/4

of the time on average; an accuracy of 52% means that attribution is

wrong almost half the time. Furthermore, as pointed out above, the

accuracy on any individual dataset may be considerably worse than

the average accuracy. This can be a problem, because—regardless

of the intent behind the stylometric analysis, e.g., identifying mal-

ware authors or unmasking protesters as described in Section 1—

attribution errors can cause harm to anyone who is incorrectly

identi�ed as an author of the software under analysis (especially if

the stylometry results are interpreted by authorities who may not

be attuned to such nuances). The potential for misattribution should

be understood and taken into consideration in any application of

binary code stylometry.

For these reasons, we believe that evaluating stylometry results

on binary code using only average accuracy values gives an incom-

plete picture. At a minimum, the variance should also be mentioned

for context, together with a clear description of characteristics of

the datasets used to obtain those results.

8 Related Work

Most of the research work on code stylometry has focused on

source code, though recent years have seen a growing interest on

stylometry for executable binaries.

8.1 Binary code stylometry

The earliest work on binary-level authorship attribution that we are

aware of is that of Rosenblum et al. [38]. Like the work of Caliskan

et al. [8], this work assumes that each program has a single author.

It uses clustering based on features derived from the control �ow

graph of the binary together with byte n-grams, instruction idioms,

and information about library calls. They evaluate their approach

using Google Code Jam data from 2009 and 2010 together with

code written by undergradate students for an operating systems

course; speci�cs of the binary creation process, such as machine

architecture, compiler, optimization level, and stripping, are not

discussed. The accuracy results reported are roughly comparable

to ours: 81% for 10 authors and 51% for 200 authors.

Meng considers the problem of binary-level authorship attribu-

tion under the more realistic assumption that the binary may have

multiple authors [29, 30]. Unlike most other work on this topic,

Meng focuses on authorship attribution at the level of individual

basic blocks, and accordingly uses code features derived from basic

block characteristics. On a collection of 831K basic blocks from

170 binaries with 282 authors, obtained using gcc with -O2 opti-

mization, this work achieves 52% average accuracy at attributing

authorship of individual basic blocks.

The work most closely related to ours is the binary-level stylom-

etry work of Caliskan et al. [8]: the work described here aims to

replicate their core �ndings. The technical details of their approach

358

Does Coding Style Really Survive Compilation?
Stylometry of Executable Code Revisited Proceedings on Privacy Enhancing Technologies 2025(3)

as well as their main results have already been discussed earlier, so

we do not repeat them here. In addition to the core results discussed

earlier, Caliskan et al. also apply their ideas to other settings, includ-

ing obfuscated binaries and malware, which are orthogonal to the

focus of our work and therefore not considered for this replication

study.

Abuhamad et al. describe a deep-learning-based approach to code

stylometry that is applicable at both the source code and binary

levels [3]. Their approach to binary code stylometry is to decompile

the binaries and apply deep learning to the resulting decompiled

code. The authors report very high classi�cation accuracies for a

Google CodeJam dataset, including for binaries compiled with dif-

ferent levels of code optimization, stripped binaries, and obfuscated

binaries. Their results are intriguing given that optimization and/or

obfuscation can change code characteristics profoundly (e.g., see

Figure 2), and it is conceivable that, for the optimized and obfus-

cated binaries used in their work, authorship clues may have been

derived from data such as error messages and format strings rather

than code, since such data are typically not a�ected by optimiza-

tion/obfuscation. However, the paper does not discuss which code

features recovered from decompiled binaries are relevant for stylo-

metric classi�cation, and the code and datasets used for this work

are unavailable, so we were unable to explore this issue further.

8.2 Source code stylometry

There is a considerable body of work on source-level code sty-

lometry, including both “regular” approaches aimed at identifying

authors [3, 5, 17, 22, 40, 44, 45] and adversarial approaches aimed

at hindering such identi�cation [19, 34]. Source-level stylometry

has two advantages compared to that at the binary level: (1) source

code is typically much richer in features that are strongly associ-

ated with individual programmer style, e.g., comments, variable

naming conventions, and indentation style; and (2) these features

are available as written by the programmer without the profound

transformations that can be e�ected by a compiler (see Section 3;

however, it should be noted that such features may be attenuated by

adherence to organizational style guidelines and/or the use of code

formatters such as GNU indent). Since source-level stylometry is

orthogonal to the focus of our work, we do not discuss it further.

8.3 Reproducibility and Replicability of Results

Reproducibility and replicability studies are important to locate

errors, biases, and drift in scienti�c evaluation. Most of the repro-

ducibility studies in security, internet, and software engineering

measurement show di�erent results than the originally reported [11,

13, 28]. Existing studies identi�ed that the main challenges towards

reproducibility are underspeci�ed scienti�c methodology or the

lack of precise description of the experimental setup [13, 14, 27, 28].

For example, Demir et al. [13] noted that slight di�erences in the

experimental setup directly a�ect the overall results in the context

of web measurement.

On the other hand, the leading cause of scienti�c studies falling

short on “replicability” is a mismatch between experimental and

real-world setups [6, 18, 31, 39, 42]. Arp et al. [6] showed that this

mismatch could lead to a wide range of problems in the context

of building machine learning-based security applications. Authors

also noted that the Google CodeJam dataset used by most of the

code authorship attribution works might not ideally represent real-

world setting [6]. This is because most of the authors in this dataset

tend to copy code snippets across multiple �les, which might lead

to in�ated results. This work explores the unique challenges for

authorship attribution of binary codes and studies their impacts.

9 Conclusion

We performed a replication study of in�uential recent work on

binary-level code stylometry by Caliskan et al. [8]. We found the

following important �ndings. The performance of binary code au-

thorship attribution, we found, is signi�cantly lower than reported

in the original work (for 100 authors, we achieved approximately

63% accuracy, compared to the 96% reported in the original work).

Secondly, an analysis of the features used in the pipeline indicates

a signi�cant number of features were a result of erroneous disas-

sembly. Speci�cally, we found 29/33 of top ndisasm-based features

were the result of erroneous disassembly. We found that this caused

the model to use spurious features, i.e., the original �le name, as

the g++ compiler embeds the �lename of the source CPP �le into

the binary – which might in�ate the results.

Acknowledgments

This workwas supported in part by the National Science Foundation

under award no. CCF-2217215. Aylin Caliskan provided helpful

feedback on an earlier draft of the paper.

The authors used Chatgpt4-o to re�ne the grammar and read-

ability of Section §6.

References
[1] 2015. calaylin/bda. https://github.com/calaylin/bda.
[2] 2020. https://docs.oracle.com/cd/E53394_01/html/E54833/elf-23207.html
[3] Mohammed Abuhamad, Tamer Abuhmed, David Mohaisen, and Daehun Nyang.

2021. Large-scale and robust code authorship identi�cation with deep feature
learning. ACM Transactions on Privacy and Security (TOPS) 24, 4 (2021), 1–35.

[4] Saed Alrabaee, Paria Shirani, Mourad Debbabi, and Lingyu Wang. 2017. On
the feasibility of malware authorship attribution. In Foundations and Practice of
Security: 9th International Symposium, FPS 2016, Québec City, QC, Canada, October
24-25, 2016, Revised Selected Papers 9. Springer, 256–272.

[5] Bander Alsulami, Edwin Dauber, Richard Harang, Spiros Mancoridis, and Rachel
Greenstadt. 2017. Source code authorship attribution using long short-term
memory based networks. In Computer Security–ESORICS 2017: 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part I 22. Springer, 65–82.

[6] Daniel Arp, Erwin Quiring, Feargus Pendlebury, Alexander Warnecke, Fabio
Pierazzi, Christian Wressnegger, Lorenzo Cavallaro, and Konrad Rieck. 2022. Dos
and Don’ts of Machine Learning in Computer Security. In 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin
R. B. Butler and Kurt Thomas (Eds.). USENIX Association, 3971–3988.

[7] Leo Breiman. 2001. Machine Learning 45, 1 (2001), 5–32. https://doi.org/10.1023/a:
1010933404324

[8] Aylin Caliskan, Fabian Yamaguchi, Edwin Dauber, Richard Harang, Konrad Rieck,
Rachel Greenstadt, and Arvind Narayanan. 2018. When Coding Style Survives
Compilation: De-anonymizing Programmers from Executable Binaries. In Pro-
ceedings 2018 Network and Distributed System Security Symposium (NDSS 2018).
Internet Society. https://doi.org/10.14722/ndss.2018.23304

[9] Jean-Baptiste Camps, Christelle Chaillou, Viola Mariotti, and Federico Saviotti.
2022. Textual, Metrical and Musical Stylometry of the Trouvères Songs. In Digital
Humanities 2022 (DH2022).

[10] Molnar Christoph. 2020. Interpretable machine learning: A guide for making
black box models explainable. (2020).

[11] Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein. 2021.
Lessons Learnt on Reproducibility in Machine Learning Based Android Malware
Detection. Empir. Softw. Eng. 26, 4 (2021), 74.

359

https://github.com/calaylin/bda
https://docs.oracle.com/cd/E53394_01/html/E54833/elf-23207.html
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.14722/ndss.2018.23304

Proceedings on Privacy Enhancing Technologies 2025(3) Ali et al.

[12] Saumya K Debray, William Evans, Robert Muth, and Bjorn De Sutter. 2000.
Compiler techniques for code compaction. ACM Transactions on Programming
languages and Systems (TOPLAS) 22, 2 (2000), 378–415.

[13] Nurullah Demir, Matteo Große-Kampmann, Tobias Urban, ChristianWressnegger,
Thorsten Holz, and Norbert Pohlmann. 2022. Reproducibility and Replicability of
Web Measurement Studies. In WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, Frédérique Laforest, Raphaël Troncy, Elena
Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini
(Eds.). ACM, 533–544.

[14] Jesús M. González-Barahona and Gregorio Robles. 2012. On the reproducibility of
empirical software engineering studies based on data retrieved from development
repositories. Empir. Softw. Eng. 17, 1-2 (2012), 75–89.

[15] L Gurak, John Logie, M McCaughey, and MD Ayers. 2003. Cyberactivism: Online
activism in theory and practice.

[16] Mark Hall, Eibe Frank, Geo�rey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. 2009. The WEKA data mining software: an update. SIGKDD
Explor. Newsl. 11, 1 (Nov. 2009), 10–18. https://doi.org/10.1145/1656274.1656278

[17] Aylin Caliskan Islam, Richard E. Harang, Andrew Liu, Arvind Narayanan, Clare R.
Voss, Fabian Yamaguchi, and Rachel Greenstadt. 2015. De-anonymizing Program-
mers via Code Stylometry. In 24th USENIX Security Symposium, USENIX Security
15, Washington, D.C., USA, August 12-14, 2015, Jaeyeon Jung and Thorsten Holz
(Eds.). USENIX Association, 255–270.

[18] Arthur Selle Jacobs, Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira,
Arpit Gupta, and Lisandro Z. Granville. 2022. AI/ML for Network Security: The
Emperor has no Clothes. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,
November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi
(Eds.).

[19] Ben Jacobsen, Sazzadur Rahaman, and Saumya Debray. 2021. Optimization
to the Rescue: Evading Binary Code Stylometry with Adversarial Use of Code
Optimizations. In Proceedings of the 2021 Research on O�ensive and Defensive
Techniques in the Context of Man At The End (MATE) Attacks. Association for
Computing Machinery, 1–10. https://doi.org/10.1145/3465413.3488574

[20] C Robert Jacobsen and Morten Nielsen. 2013. Stylometry of paintings using
hidden Markov modelling of contourlet transforms. Signal Processing 93, 3 (2013),
579–591.

[21] Patrick Juola. 2013. How a computer program helped reveal JK Rowling as author
of A Cuckoo’s Calling. Scienti�c American 20 (2013), 13.

[22] Vaibhavi Kalgutkar, Ratinder Kaur, Hugo Gonzalez, Natalia Stakhanova, and
Alina Matyukhina. 2019. Code authorship attribution: Methods and challenges.
ACM Computing Surveys (CSUR) 52, 1 (2019), 1–36.

[23] R Kelly Garrett. 2006. Protest in an information society: A review of literature
on social movements and new ICTs. Information, communication & society 9, 02
(2006), 202–224.

[24] Gilles Louppe, Louis Wehenkel, Antonio Sutera, and Pierre Geurts. 2013. Un-
derstanding variable importances in forests of randomized trees. In Proceedings
of the 26th International Conference on Neural Information Processing Systems -
Volume 1 (Lake Tahoe, Nevada) (NIPS’13). Curran Associates Inc., Red Hook, NY,
USA, 431–439.

[25] Scott Lundberg. 2024. SHAP Kernal Explainer. https://shap.readthedocs.io/en/
latest/generated/shap.KernelExplainer.html

[26] Scott M. Lundberg and Su-In Lee. 2017. A uni�ed approach to interpreting
model predictions. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 4768–4777.

[27] Zaheed Mahmood, David Bowes, Tracy Hall, Peter C. R. Lane, and Jean Petric.
2018. Reproducibility and replicability of software defect prediction studies. Inf.
Softw. Technol. 99 (2018), 148–163.

[28] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero, Yanick Fratantonio,
Mohamad Mansouri, and Davide Balzarotti. 2022. HowMachine Learning Is Solv-
ing the Binary Function Similarity Problem. In 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin R. B. Butler
and Kurt Thomas (Eds.). USENIX Association, 2099–2116.

[29] Xiaozhu Meng. 2016. Fine-grained binary code authorship identi�cation. In
Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations
of software engineering. 1097–1099.

[30] Xiaozhu Meng, Barton P Miller, and Kwang-Sung Jun. 2017. Identifying multiple
authors in a binary program. In Computer Security–ESORICS 2017: 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September 11-15, 2017,
Proceedings, Part II 22. Springer, 286–304.

[31] Jose G. Moreno-Torres, Troy Raeder, Rocío Alaíz-Rodríguez, Nitesh V. Chawla,
and Francisco Herrera. 2012. A unifying view on dataset shift in classi�cation.
Pattern Recognit. 45, 1 (2012), 521–530.

[32] Frederick Mosteller and David L Wallace. 1963. Inference in an authorship prob-
lem: A comparative study of discrimination methods applied to the authorship
of the disputed Federalist Papers. J. Amer. Statist. Assoc. 58, 302 (1963), 275–309.

[33] Hanchao Qi and Shannon Hughes. 2011. A new method for visual stylometry
on impressionist paintings. In 2011 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2036–2039.
[34] Erwin Quiring, Alwin Maier, and Konrad Rieck. 2019. Misleading authorship

attribution of source code using adversarial learning. In 28th USENIX Security
Symposium (USENIX Security 19). 479–496.

[35] Xiaolei Ren, Michael Ho, Jiang Ming, Yu Lei, and Li Li. 2021. Unleashing the
hidden power of compiler optimization on binary code di�erence: an empirical
study. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 142–157.

[36] Ross Ridge. 2014. Why do linked binaries contain the �le names of used object
�les, how to remove them? https://stackoverflow.com/questions/
25457447/why-do-linked-binaries-contain-the-file-names-of
-used-object-files-how-to-remov/25468506#25468506.

[37] Margaret E Roberts. 2020. Resilience to online censorship. Annual Review of
Political Science 23 (2020), 401–419.

[38] Nathan Rosenblum, Xiaojin Zhu, and Barton P Miller. 2011. Who wrote this code?
identifying the authors of program binaries. In Computer Security–ESORICS 2011:
16th European Symposium on Research in Computer Security, Leuven, Belgium,
September 12-14, 2011. Proceedings 16. Springer, 172–189.

[39] Christian Rossow, Christian J. Dietrich, Chris Grier, Christian Kreibich, Vern
Paxson, Norbert Pohlmann, Herbert Bos, and Maarten van Steen. 2012. Pru-
dent Practices for Designing Malware Experiments: Status Quo and Outlook. In
IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012, San Francisco,
California, USA. IEEE Computer Society, 65–79.

[40] Saloni Alias Puja Sarnot, Sanjana Rinke, Rayomand Raimalwalla, Raviraj Joshi,
Rahul Khengare, and Purvi Goel. 2019. Snapcode–a snapshot based approach
to code stylometry. In 2019 International Conference on Information Technology
(ICIT). IEEE, 337–341.

[41] Benjamin Schwarz, Saumya Debray, and Gregory Andrews. 2002. Disassembly
of executable code revisited. In Proceedings of the Ninth Working Conference on
Reverse Engineering. IEEE, 45–54.

[42] Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. In 31st IEEE Symposium on
Security and Privacy, SP 2010, 16-19 May 2010, Berleley/Oakland, California, USA.
IEEE Computer Society, 305–316.

[43] Emily Stacey. 2015. The Pamphlet Meets API: An Overview of Social Movements
in the Age of Digital Media. Promoting Social Change and Democracy through
Information Technology (2015), 1–25.

[44] NingfeiWang, Shouling Ji, and TingWang. 2018. Integration of static and dynamic
code stylometry analysis for programmer de-anonymization. In Proceedings of
the 11th ACM Workshop on Arti�cial Intelligence and Security. 74–84.

[45] Daniel Watson. 2019. Source Code Stylometry and Authorship Attribution for Open
Source. Master’s thesis. University of Waterloo.

[46] Cynthia Whissell. 1996. Traditional and emotional stylometric analysis of the
songs of Beatles Paul McCartney and John Lennon. Computers and the Humanities
30 (1996), 257–265.

360

https://doi.org/10.1145/1656274.1656278
https://doi.org/10.1145/3465413.3488574
https://shap.readthedocs.io/en/latest/generated/shap.KernelExplainer.html
https://shap.readthedocs.io/en/latest/generated/shap.KernelExplainer.html

	Abstract
	1 Introduction
	2 Background
	2.1 Structure of Executable Files
	2.2 The Stylometry Pipeline of Caliskan et al.

	3 Binary-Level Code Stylometry: Issues and Challenges
	4 Methodology
	4.1 Data Selection
	4.2 Data Processing
	4.3 Performance Metrics

	5 RQ1: Reproducibility Study
	5.1 Experimental Setup
	5.2 Results

	6 RQ2: Cause Analysis
	6.1 Methodology
	6.2 Findings

	7 Discussion
	7.1 Stylometric Implications of Disassembling Data as Code
	7.2 Threats to Validity
	7.3 Lessons Learned

	8 Related Work
	8.1 Binary code stylometry
	8.2 Source code stylometry
	8.3 Reproducibility and Replicability of Results

	9 Conclusion
	Acknowledgments
	References

