
Your Signal, Their Data: An Empirical Privacy Analysis of
Wireless-scanning SDKs in Android

Aniketh Girish
IMDEA Networks Institute /

Universidad Carlos III de Madrid

Joel Reardon
University of Calgary / AppCensus

Juan Tapiador
Universidad Carlos III de Madrid

Srdjan Matic
IMDEA Software Institute

Narseo Vallina-Rodriguez
IMDEA Networks Institute / AppCensus

Abstract
Mobile apps frequently use Bluetooth Low Energy (BLE) and WiFi
scanning permissions to discover nearby devices like peripherals
and connect to WiFi Access Points (APs). However, wireless inter-
faces also serve as a covert proxy for geolocation data, enabling
continuous user tracking and profiling. This includes technologies
like BLE beacons, which are BLE devices broadcasting unique iden-
tifiers to determine devices’ indoor physical locations; such beacons
are easily found in shopping centres. Despite the widespread use of
wireless scanning APIs and their potential for privacy abuse, the in-
terplay between commercial mobile SDKs with wireless sensing and
beaconing technologies remains largely unexplored. In this work,
we conduct the first systematic analysis of 52 wireless-scanning
SDKs, revealing their data collection practices and privacy risks. We
develop a comprehensive analysis pipeline that enables us to detect
beacon scanning capabilities, inject wireless events to trigger app
behaviors, and monitor runtime execution on instrumented devices.
Our findings show that 86% of apps integrating these SDKs collect
at least one sensitive data type, including device and user identi-
fiers such as AAID, email, along with GPS coordinates, WiFi and
Bluetooth scan results. We uncover widespread SDK-to-SDK data
sharing and evidence of ID bridging, where persistent and resettable
identifiers are shared and synchronized within SDKs embedded
in applications to potentially construct detailed mobility profiles,
compromising user anonymity and enabling long-term tracking.
We provide evidence of key actors engaging in these practices and
conclude by proposing mitigation strategies such as stronger SDK
sandboxing, stricter enforcement of platform policies, and improved
transparency mechanisms to limit unauthorized tracking.

Keywords
Privacy, BLE, WiFi, Location, Beacons, Android SDKs

1 Introduction
Imagine walking through a shoppingmall and, as you pass by stores,
your phone buzzes with personalized ads and notifications. This
seamless integration of the digital and physical worlds is powered
by technologies like GPS, Bluetooth, and WiFi, as their sensing ca-
pabilities facilitate detecting device proximity or location. However,

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(3), 361–381
© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0103

the use of these technologies raise significant privacy concerns
because geolocation data is inherently sensitive: either coarse- or
fine-grained geolocation data can reveal individuals’ daily habits,
work-home pairs [27], social structures [58, 133], and visits to sen-
sitive sites like places of worship [19]. Unfortunately, the demand
for location data by marketing, banking, and insurance firms has
fueled a complex supply chain of actors specializing in location data
collection, aggregation, and resale [74]. Companies like Azira [12]
and Venntel [70] have been reported selling location data, including
visits to sensitive locations such as abortion clinics [131] and even
private sites like Jeffrey Epstein’s island [129].

Despite the permission mechanisms implemented in Android
and iOS to protect access to precise GPS data [37, 61], app devel-
opers and third-party SDKs exploit alternative channels to bypass
these controls and obtain (or infer) users’ location, often in the
background without user awareness. One such mechanism is based
on scanning wireless devices and beacon signals, including classic
Bluetooth, Bluetooth Low Energy (BLE) beacons, and WiFi access
points.1 Such wireless scans can reveal users’ geolocation as Blue-
tooth or WiFi beacons are tied to specific physical locations like
stores, hotels, workplaces, or transit hubs [24]. Linking such geo-
location data with user or device IDs like the Android Advertising
ID (AAID) and MAC addresses make reversing users’ identity and
movement patterns straightforward [42].

The threats posed by the collection of wireless beacons as geo-
location data proxies are real and severe, as several high-profile
incidents and legal actions show. In 2014, the Snowden revela-
tions exposed how devices could be tracked via MAC addresses
through WiFi hotspots [91]. More recently, the Wall Street Jour-
nal reported that the FBI and ICE acquired location data through
SDKs embedded in mobile apps [70, 119]. The Federal Trade Com-
mission (FTC) has taken action against companies like X-Mode
(now Outlogic) [29], inMobi, and Kochava for harvesting and re-
selling extensive location data without user consent, leading to
serious concerns about constitutional rights in the U.S. [18–21].
A recent report by the German data protection authority reveals
that apps collecting location data, including military personnel
movements, was sold in data marketplaces, exposing intelligence
agency sites, military bases, secret facilities and their personnel’s
habits [109, 128]. In the academic sphere, researchers demonstrated
that wireless signal can be exploited to infer geographical locations
and social structures [24, 51, 57, 85, 108]. Reyes et al. [107] found

1In this paper, we collectively refer to SDKs with BLE and WiFi scanning capabilities
as “beacon SDKs”. Equally, for simplicity, we refer to BLE andWiFi broadcast messages
as “beacons.”

361

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0103

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

evidence of children-directed apps using WiFi APs as a proxy to
GPS locations, violating the COPPA Rule. Similarly, Girish et al. [53]
identified apps and SDKs leveraging local network scans to infer
user location without user consent in smart home networks.

Despite these efforts, SDKs exploiting wireless scans for covert
location tracking remain poorly understood. Consequently, exist-
ing app auditing mechanisms and privacy controls (including data
randomization) have been proven insufficient to detect and pro-
tect users against such invasive practices, respectively [53, 122]. To
fill this gap, we empirically analyze how 52 mobile beacon SDKs
leverage GPS, BLE, and WiFi as side channels to covertly track
individuals’ proximity and locations, covering 9,976 Android apps.
To uncover their scanning capabilities, data-sharing, and privacy
risks, we develop a hybrid analysis pipeline that combines (i) static
analysis, including API usage detection and control-flow analysis to
study cross-library interactions and (ii) dynamic analysis, using an
instrumented device that injects wireless events and signals at the
OS-level to trigger SDK behaviors and observe app runtime behav-
iors. To the best of our knowledge, this study is the first large-scale
empirical analysis of BLE and WiFi scanning SDKs in Android apps
to systematically uncover their characteristics, interrelationships,
and privacy implications. The key contributions of this work are:

• We identify 52 SDKs with WiFi and BLE scanning features in-
tegrated into at least 9,976 apps with an estimated cumulative
install count of 55B devices. We find that beacon SDKs often
offer a dual purpose, functioning both as beacon enablers and as
analytics or advertising libraries. Specifically, 43 SDKs support
analytics, 40 SDKs provide location services, and 9 SDKs inte-
grate advertising or user profiling features (§5.1). Among them,
we detect 28 SDKs that play a key role in extensive cross-library
interactions, potentially enabling colluding SDKs to silently share
with each other data such as Bluetooth, WiFi scans, and geoloca-
tion for advertising and tracking purposes (§5.2).

• We observe that 86% of beacon-enabled apps extensively collect
personally identifiable information (PII), along with GPS coor-
dinates, WiFi, and Bluetooth scan results (§6.2). However, their
data collection practices extend further, with 19% of beacon SDKs
engaging in ID bridging by linking persistent IDs (e.g., Android
ID and MAC addresses) with resettable ones (e.g., AAID) to build
detailed user mobility profiles, potentially violating Google Play
Store policies (§6.3). These risks are exacerbated by the use of
persistent proprietary IDs (e.g., Adobe’s Marketing Cloud ID),
unvetted cross-library data sharing, and by exploiting shortcom-
ings of Android’s permission and sandboxing models. Moreover,
71% of apps requesting location permissions fail to provide a
rationale through Android’s shouldShowRequestPermissionsRa-
tionale() API, leaving users unaware of why access is requested
(§6.4). We also observe SDKs abuse vulnerabilities in unpatched
devices to bypass the Android permissions governing BLE and
WiFi permissions.

• These widespread practices undermine existing privacy protec-
tions and controls. In §7, we propose mitigation strategies, in-
cluding: SDK sandboxing to restrict cross-library data sharing,
performing runtime audits to detect unauthorized tracking, en-
forcing stricter platform policies to curb ID bridging, and im-
proving transparency mechanisms by requiring clear permission

rationales and explicit disclosures of SDK data access practices.
Additionally, we advocate for stronger regulatory oversight, plat-
forms’ permission re-designs and stricter vetting processes (i.e.,
Google Play Protect) to proactively conduct large-scale audits and
enforcement actions against non-compliant tracking practices.

Responsible disclosure. We shared a preprint of this paper with
Google as operator of the Android platform, and with the European
Data Protection Supervisor (EDPS), the Spanish Data Protection
Agency (AEPD), and the French National Commission on Informat-
ics and Liberty (CNIL).
Research artifacts. To promote transparency, reproducibility, and
future research, we will release the final dataset, beacon detection
scripts, static analysis pipeline, and analysis code used in this study,
excluding proprietary components. These artifacts will be publicly
available at: https://github.com/wireless-scanning-SDKs/.

2 Background
This section provides an overview of BLE (§2.1) and WiFi (§2.2)
beacon technologies as location proxies, and an overview of the
existing Android permissions for restricting apps’ access to BLE
and WiFi scanning capabilities (§2.3).

2.1 BLE Beacons
A BLE beacon is a non-pairing device broadcasting unique IDs like
UUIDs or MAC addresses to infer proximity or location. Unlike
GPS-based positioning systems, BLE beacons are deployed in fixed
locations—e.g., stores, metro stations or offices—so that they pro-
vide fine-grained indoor location for like retail [68], healthcare,
logistics, or crowd management at events [89]. These fixed signals
are collected alongside GPS coordinates and are often aggregated
into publicly accessible databases such as Wigle [127], and pro-
prietary ones. This allows SDKs to infer a user’s location solely
through nearby BLE signals and access to such datasets.

BLE beacons are not a Bluetooth SIG standard; rather, they are
custom standards developed by large providers or groups of compa-
nies. Popular BLE beacon solutions include iBeacon by Apple [63],
the now deprecated Eddystone by Google [64], and the widely sup-
ported open-source and platform-agnostic AltBeacon [4], which
is becoming a predominant solution due to their cross-platform
interoperability. We note that standard Bluetooth devices can be
also scanned to collect device names and MAC addresses, which
could be used for environmental sensing (e.g., by inferring locations
based on paired BLE devices), and social network inference [81].

2.2 WiFi Beacons
WiFi Access Points (APs) broadcast beacon frames containing their
MAC addresses and received signal strength indicator (RSSI) over
802.11b/g/n channels. Mobile devices can passively scan these bea-
cons to locate and connect to nearby APs by sending association
frames. WiFi APs are typically deployed in known locations (e.g.,
homes, shops, hotels, and airports) and rarely move once deployed.
This means that correlating WiFi SSID and BSSID data2 with free
online databases (e.g., wigle.com) or commercial location services

2SSID is the name of a wireless network that devices use to identify and connect to it.
BSSID is the unique identifier for a specific access point within a wireless network
(i.e., MAC address).

362

https://github.com/wireless-scanning-SDKs/
wigle.com

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

(e.g., here.com) makes them highly effective for determining user
location. In fact, there are commercially-available WiFi Positioning
System (WPS) that facilitate inferring users’ locations from WiFi
signals, as a complement or alternative to GPS-based systems. Apple
integrates WPS [7] into iOS devices for enhanced location services,
though Rye et al. [110] recently highlighted the potential for mass
surveillance using this data. Similarly, Google maintains a WPS
populated through WiFi AP data collected from Android devices
and its ecosystem, which also serves as a data source for Android’s
coarse location permission [55, 121]. These WPSes expose APIs
that allow a client to submit WiFi scan data and receive location es-
timates in return. Other providers, such as Skyhook Wireless [114]
and Navizon [88], offer hybrid systems combining GPS, WiFi, and
cellular signals to triangulate device location.

2.3 Permission Overview
Android’s permission model regulates access to WiFi and Bluetooth
scanning functions to protect user privacy and security [36]. Over
successive releases, Android’s permission model has evolved to
impose stricter controls on BLE and WiFi scanning capabilities,
particularly due to their dual usage as location proxies.
Bluetooth. Initially, Bluetooth operations required only a generic
permission for scanning and connecting with nearby devices. How-
ever, starting with Android 6, apps also had to request the runtime3
ACCESS_COARSE_LOCATION permission, as BLE scans could indi-
rectly reveal location data [32]. This was later upgraded in Android
10, mandating the ACCESS_FINE_LOCATION permission for Blue-
tooth scanning due to its increased risk of exposing the precise
location data [71]. However, this security improvement only led to
confusion among users, especially when apps that did not inher-
ently need location data—such as those for connecting to Bluetooth
peripherals—were also forced to request location permissions [130].
To address this issue, Android 12 introduced a finer-grained model
with three new permissions: one for scanning (BLUETOOTH_SCAN),
one for establishing connections (BLUETOOTH_CONNECT), and one
to advertise as a peripheral (BLUETOOTH_ADVERTISE). Developers
must request both ACCESS_FINE_LOCATION and ACCESS_COARSE_
LOCATION to allow users to choose between precise or approximate
location access at runtime. Yet, without clear context, users may
unintentionally grant excessive location privileges—e.g., precise
location for Bluetooth pairing. To mitigate this, Android 12 intro-
duced the neverForLocation flag in 2021 to ensure that Bluetooth
scan data is not misused for location inference.
WiFi. Since Android’s first release, apps using WiFi must request
the CHANGE_WIFI_STATE and ACCESS_WIFI_STATE permissions to
toggle connectivity, modify settings, and provide connection de-
tails. Since Android 8, any app that scans the WiFi network is also
required to request at least one location permission (i.e., ACCESS_
FINE_LOCATION or ACCESS_COARSE_LOCATION). More recently, An-
droid 13 introduced a new runtime permission, NEARBY_WIFI_
DEVICES for connecting to nearby devices via WiFi. Android 13
also added support for the neverForLocation tag to specify WiFi
scan data is not used for location inference.

3Unlike normal permissions, which are granted during installation, runtime or danger-
ous permissions protect sensitive resources and data (e.g., location) and require explicit
user approval at runtime [36].

Location
platforms

Third-party trackers,
data brokers and
marketplaces.

Device and location metadata
(Nearby beacon scan data)

Beacon
configuration

Beacon
identifiers

BLE beacons

SSID/BSSID

Nearby WiFi
routers

Geofence (latitude, longitude)

Figure 1: Beacon data ecosystem.

Platform Fragmentation. Due to the high version fragmentation
in the Android ecosystem, many apps and SDKs intentionally ex-
ploit OS vulnerabilities and old (typically less restrictive) versions
of the Android permission model to perform BLE and WiFi scans.
Another key limitation of the permission model is its inability to
separate between permissions requested by the host app and those
by third-party SDKs [49], even for runtime permissions that grant
access to sensitive data. As a result, SDKs can piggyback on the
permissions requested by the host app for secondary purposes such
as surveillance or advertising.

3 Threat Model
We consider an adversary whose primary objective is to collect geo-
location data frommobile Android apps by scanning nearby devices
using Bluetooth or WiFi permissions (see Figure 1). This adversary
can be any party with programmatic access to the device for scan-
ning data, including the app developer (the first party) as well as
third party SDKs offering advertising, analytics, or location-based
solutions. We consider three key threats posed by such adversaries:
(1) Continuous Location Tracking through Proxy Sensors.

Wireless-enabled location SDKs or Android apps can silently
track users by continuously scanning for nearby WiFi and BLE
signals. Scan results can include: device information (e.g., device
name), network information (e.g., SSID/BSSID, MAC addresses),
and other unique device IDs as in the case of BLE beacons. To
infer user location, wireless scanning data can be correlated
with external databases that map MAC addresses, beacons and
WiFi AP BSSIDs and SSIDs to geographic coordinates as de-
scribed in the previous section. SDKs often enrich scan data
with precise GPS coordinates and other device or user identi-
fiers like the AAID to construct detailed mobility profiles of
millions of users. 4 Table 7 in the Appendix provides an exhaus-
tive description of the PII types and user/device IDs considered

4The Android OS allows app and SDK developers to programmatically access a wide
range of IDs with varying properties [38]. The MAC address of a WiFi AP are device-
specific, persistent and globally unique IDs. Similarly, the user’s email address, even if
hashed, is a user-specific, persistent and unique ID, unless it is shared by a group of
users. The AAID is a device-specific, resettable and globally unique ID. The Firebase
ID, instead, is a globally unique and app-specific ID that is resettable by reinstalling
the app to which it is scoped.

363

here.com

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

in this paper, categorized by their nature. These rich user pro-
files may reveal sensitive information such as social structures,
frequently visited locations and lifestyle patterns [42].

(2) ID Bridging. Beacon information facilitates collecting unique
user geolocation fingerprints—as demonstrated by de Mon-
tjoye [27]—due to the uniqueness of human mobility patterns.
Mobility fingerprints not only allow distinguishing individuals
even in anonymized datasets but also enable ID bridging, i.e.,
correlating and bridging users data and fingerprints for contin-
uous user tracking and profiling. These methods, particularly
when used to bridge resettable IDs like the AAID, significantly
undermine user attempts tomaintain anonymity on the Internet,
even if users opt-out of personalized ads through system set-
tings or by resetting their AAID. To mitigate these privacy risks,
Google has set various policies and best practices to inform and
educate app developers about which IDs would be better for spe-
cific purposes [99]. Google strictly prohibits linking resettable
IDs (e.g., AAID) with persistent or global IDs for advertising or
analytics purposes without sufficient transparency [38, 99]. §6.3
analyzes ID bridging practices across beacon SDKs, including
AAID bridging, while §5.2 shows how colluding SDKs program-
matically interact with each other to synchronize user profiles
without user awareness. Oftentimes, geolocation data is aggre-
gated and sold to advertisers, analytics companies, and other
entities like data brokers, causing significant privacy harm to
users.

(3) Exploitation of Outdated Permission Models. SDKs can
exploit vulnerabilities in Android’s permission model (§2.3) to
access sensitive data in unpatched devices. Methods to achieve
this include piggybacking on permissions granted to the host
app, using legacy APIs with less stringent requirements, or
leveraging side channels to bypass restrictions and infer infor-
mation without explicit permission requests. This type of attack
is facilitated by Android’s version fragmentation: according to
Statista, over 41% of Android devices run version 12 or below
as of January 2025. §6.2 reports evidence of SDKs using these
techniques to access location data.

4 Methodology
Figure 2 summarizes the methodology we developed to achieve
the paper objectives. We combine both static and dynamic analysis
techniques to comprehensively detect and analyze how apps collect
geolocation data through BLE and WiFi beacons, its dissemination
with user IDs, and the SDKs offering such solutions. We note that,
due to the inherent limitations of black-box testing, we do not
claim completeness. However, our methods provide actual evidence
of privacy concerns associated with the use of wireless scanning
capabilities by SDKs. We next describe each of the components of
our methodology.

4.1 Dataset
We use the AndroZoo dataset [3] to collect 1,008,539 apps uploaded
after January 2023. AndroZoo is a large-scale collection of Android
apps that includes over 10 million items historically indexed on
the Google Play Store. We filter this dataset to select 574K apps
available in the Google Play Store when accessed from the European

Figure 2: Methodology overview. Processes 2.a and 2.b. run
in parallel.

Union (EU) as of July 2024, ensuring that our study covers the
most recent app versions. We use an open-source Google Play
scraper [96] to collect metadata for each app, including its self-
disclosed app category, developer information, data safety labels,
and install counts.

4.2 Detecting Beacon SDKs
There is no publicly available inventory of SDKs offering BLE and
WiFi scanning capabilities. While some efforts document advertis-
ing and analytics SDKs [49, 82, 103, 104, 134], beacon-enabled SDKs
remain under-reported, often embedded within broader functional-
ities, making them difficult to detect and analyze. To address this
gap, we create a first-of-its-kind public dataset, capturing a repre-
sentative set of widely used SDKs with wireless scanning implemen-
tations. Our approach systematically identifies these SDKs through
a multi-step iterative process, combining third-party datasets and
manual searches to curate a structured list of SDKs actively engag-
ing in wireless scanning.

• Step 1: Identifying Known SDKs. To identify SDKs that per-
form BLE and WiFi scanning, we begin with an initial set of
SDKs listed by Exodus [103] and Libradar [82], two widely used
SDK detection tools. While these tools cover popular advertising
and analytics SDKs and label them based on their capabilities
(including BLE and WiFi capabilities), they are not comprehen-
sive, potentially missing newer or less-documented SDKs as well
as scanning-specific SDKs. From these sources, we identify an
initial list of 14 SDKs related to BLE/WiFi scanning.

• Step 2: Targeted Online Searches.We expand the initial list of
SDKs identified in Step 1 by conducting web searches for com-
mercial SDKs offering proximity, location, and Bluetooth/WiFi
scanning functionalities. For that, we perform targeted keyword

364

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

searches using Google’s search engine. 5 This process identi-
fied 22 additional SDKs that were not included in the initial list.
However, some results are false positives triggered by keyword
matches while the SDKs do not implement beacon scanning.
Hence to confirm functionality, we manually review official doc-
umentation, API references, integration guides, and discussions
in SDKs’ developer forum, along with source code repositories
(where available) to identify SDKs that explicitly invoke BLE or
WiFi scanning capabilities. 6

• Step 3: Refining & Expanding SDK Selection Through Static
Analysis. We refine and expand the set of SDKs populated in
the previous steps, by applying the static analysis techniques
illustrated in §4.3 to automatically analyze a subset of 362K apps
invoking methods indicative of beacon scanning. These features
are extracted from the curated list of SDKs identified in Steps 1
and 2, producing SDK signatures for each SDK that cover from
systemAPI calls related to BLE andWiFi scanning (e.g., ‘WifiMan-
ager.startScan()’ [35, 39]) to SDK attribution signals such as class
names, URL endpoints, and custom permissions. Additionally,
we search for special functionalities such as UUID broadcasting
and RSSI analysis, which further indicate BLE/WiFi scanning
behavior. For reference, an example set of signals is provided in
Table 9 in the Appendix. After applying our refinement process,
we identified a total of 55 SDKs.

Validation. To ensure high-confidence detection and minimize
false positives, we manually analyze the code of up to three repre-
sentative apps per SDK to confirm whether these SDKs implement
scanning capabilities. This check allowed us to remove three SDKs
designed for general connectivity with peripherals rather than for
wireless scanning. At the end of this manual process, we curate a
final signature set of 52 beacon SDKs features and signals, which
we use to statically identify at scale apps integrating these SDKs.

4.3 Static Analysis
We apply static analysis to examine how apps integrate and interact
with identified beacon SDKs. Specifically, we look for unique SDK
signatures (§4.2) to identify their presence across apps, including
app manifest metadata (declared permissions, services, and intent
filters) and code-level attributes. We also inspect execution paths
via control flow analysis to determine how apps invoke, interact
with, or delegate scanning capabilities to other integrated SDKs,
as we describe next. Our static analysis follows accepted research
practices, focusing on studying public code structures and API
calls, ensuring that no proprietary insights or trade secrets are
extracted [10, 52, 100, 124].
Permission Analysis. We use a custom-built parser to analyze
the manifest of each app, extracting AOSP and custom permissions
requested by apps and beacon SDKs, along with their declared ser-
vices, providers, and receivers. We also analyze metadata such as
the neverForLocation attribute which indicate whether location
permissions are used exclusively for non-location purposes, and

5We use keywords such as “beacon SDK,” “proximity SDK,” “BLE SDK,” and “WiFi
beacon SDK.”
6We manually identified more than 200 system APIs related to BLE and WiFi scanning
from Android’s official API reference and AOSP (Android Open Source Project) source
code. These methods are released as part of our open-science approach.

the shouldShowRequestPermissionRationale()API, which pro-
vides an educational UI explaining why a specific permission is
needed to enable a feature. App developers should declare these
attributes to ensure transparency so their absence can indicate a
lack of proper disclosure. These elements are studied in §6.4 to
assess beacon SDKs’ transparency over data collection.
Code Analysis. We use Androguard [5] to extract Dalvik byte-
code and identify SDK signatures (e.g., class names and APIs) that
indicate beacon SDK functionality and data dissemination. These
signatures are detailed in Table 8. To analyze execution paths, we
construct control flow graphs (CFGs) for each app, where nodes
represent methods or functions (with associated class names), and
edges denote function calls between them. CFGs trace execution
from source methods (e.g., Android lifecycle methods like onCre-
ate() and onResume(), where SDKs typically initialize) to sink APIs
that collect sensitive data, such as location (e.g., LocationMan-
ager.getLastKnownLocation()) or beacon data (e.g., WiFi scan re-
sults). A mapping of API calls considered in this process is provided
in Table 10. To attribute SDKs and identify SDKs actively being used
rather than dead code, we match class names in CFG nodes against
known SDK signatures extracted from decompiled app code.
API Usage. To analyze how beacon-enabled apps interact with
sensitive resources, we traverse the CFG to trace data flows. Starting
from sink APIs (e.g., ‘LocationManager.-getLastKnownLocation()’),
we visit nodes backward to locate the source methods invoking
these APIs. This approach links sensitive API calls to the Android
permissions protecting them, allowing us to study the data flows
within the app and also third-party SDKs that may piggyback on
these permissions (§6.1). As an official and updated comprehensive
permission mapping database is not available, we construct one by
combining: (1) pre-existing permission mappings from PScout [11],
Androguard, and Axplorer [13]; and (2) mappings derived from
the @RequiresPermission annotations in the AOSP source code,
which we publicly release as part of our research artifacts.
Cross-Library Analysis. We statically investigate interactions
between SDKs embedded within the same app to identify depen-
dencies and data-sharing practices between co-located SDKs. Specif-
ically, we identify cross-library interactions by studying function
calls where one SDK code invokes methods or accesses data from
another SDK. We attribute these interactions among SDKs by de-
tecting function calls between classes associated with beacon SDKs.
To distinguish cross-library interactions from app-internal calls, we
compare the class names of the caller and callee classes: if their top-
and second-level domains (1) do not match each other, and (2) do
not match the host app’s package name, the interaction is flagged
as cross-library. We manually validate all detected interactions to
avoid mis-reporting cross-SDK interactions.

4.4 Dynamic Analysis
Dynamic analysis allows us to gather actual evidence of beacon SDK
runtime behavior by executing apps on instrumented devices [1, 78,
105, 107]. Specifically, we observe how apps interact with sensitive
resources, handle beacon data (e.g., BLE, WiFi), transmit network
traffic, and respond to injected BLE and WiFi signals. To achieve
this, we use a device farm comprising eight Android 9 and eight
Android 12 Google Pixel 3a smartphones located in the EU, each
running an instrumented version of the operating system. This

365

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

dual-version approach allows us to analyze how app behaviors
adapt to changes in the Android permission model across different
versions and how SDKs may abuse legacy versions.
Instrumentation. We use a customized AOSP version to trans-
parently monitor runtime resource access, such as accesses to
permission-protected APIs, BLE/WiFi scans, I/O file operations,
and capturing all network traffic, by instrumenting the relevant
methods and APIs to capture their activity. We observe reads and
writes to TLS sockets by instrumenting relevant APIs, allowing us to
analyze network traffic without interfering with the TLS handshake
or using our own certificates. We also decode common encodings
like gzip and base64, along with bespoke obfuscation methods used
by popular SDKs (e.g., Forter, JPush, and Yandex) to identify dis-
seminated sensitive data, as discussed in §6.2. To complement our
static analysis-based SDK detection (§4.3), we instrument the An-
droid Runtime (ART) to log classes loaded at runtime by tracking
the FindClass method of the class linker to detect classes loaded
during execution. This approach effectively increases the reliability
of static signals and enables the identification of obfuscated classes
that static analysis might miss.
Automatization. We use Android Monkey [6] to automate app
executionwith synthetic UI inputs for 8-10minutes. To bypass regis-
tration walls, each device is configured with unique pseudonymous
identifiers (e.g., phone numbers, email addresses, and usernames),
allowing us to trace the potential dissemination of this data in
network flows for ID bridging. Our automation also handles stan-
dard logins, including Single Sign-On (SSO) flows like Google SSO
whenever applicable.
Beacon Signal Injection. In addition of automatizing UI inputs, it
is essential to simulate realistic beacon signals to trigger runtime
responses in SDKs implementing them. We achieve this by inject-
ing Bluetooth and WiFi scan results during app scans, simulating
nearby devices or networks directly on our AOSP instrumentation.
The injected BLE advertising data conforms to standard beacon
formats and includes beacon types such as iBeacon, AltBeacon,
Eddystone (URL, UID), and GAEN beacons, formatted according to
their respective standards [4, 62–65]. Additionally, we use a Rasp-
berry Pi 4 to replay intercepted BLE beacon payloads and MAC
addresses every 5 seconds, with the goal of exercising further app
activity upon beacons detection. Spurious WiFi networks are also
injected, including SSIDs and BSSIDs, as well as SSIDs appended
with _nomap and _optout, to evaluate whether SDKs respect router-
owners preferences to exclude their devices from scanning. We use
distinctive palindromic MAC addresses in the injected results to
monitor their dissemination in TLS flows to the cloud.

4.5 Limitations
Aswith any empirical measurement study, our analysis is inherently
constrained by the black-box nature of testing methods, the opacity
of SDKs, and the continuous evolution of implementations. In fact,
our list of beacon SDKs extracted with static analysis methods may
not offer a complete picture of this complex landscape due to code
obfuscation, reflection, and dynamic loading [22, 47, 84].

Dynamic analysis successfully executes 97% of the apps, despite
challenges like root detection, certificate pinning, emulator checks,
and behavioral fingerprinting, which may limit visibility into SDK

Table 1: Top 20 SDKs in the dataset, classified depending
on their beacon types: Bluetooth, WiFi or they operate as
integration partners. For the purpose of each SDK, in addition
to analytics and location,wemark SDKs that offer advertising
(•) and profiling (⋄) services.

SDK Name # Apps Total
Installs

Beacon
Type

Purpose
Type

BLE WiFi Integration Analytics Location
AltBeacon 4,022 5B ✓ ✓ ✓
Adobe Experience Platform 1,328 8B ✓ ✓
Kochava • 1,117 15B ✓ ✓ ✓ ✓
Salesforce Marketing Cloud • 1,080 6B ✓ ✓ ✓
Estimote 510 201M ✓ ✓ ✓
LeanPlum ⋄ 456 8B ✓ ✓ ✓ ✓
Gimbal • 396 3308M ✓ ✓ ✓ ✓
Radius Networks 369 359M ✓ ✓
mParticle 367 2B ✓ ✓
Ad4Screen • 198 1B ✓ ✓
Kontakt 195 31M ✓ ✓
CueAudio 190 9M ✓ ✓
Swrve ⋄ 153 2B ✓ ✓ ✓
Reveal Mobile 109 6M ✓ ✓ ✓ ✓
Exponea 99 191M ✓ ✓ ✓
Radar 93 482M ✓ ✓ ✓
IndoorAtlas 92 7M ✓ ✓ ✓ ✓
SignalFrame 89 56M ✓ ✓ ✓
Bazaarvoice 88 420M ✓ ✓ ✓
Huq Sourcekit 81 347M ✓ ✓ ✓ ✓

behaviors. Beacon injection effectively triggers scanning in most
cases but may not trigger SDKs relying on custom or proprietary
formats that are not publicly documented. Additionally, Android
Monkey automates standard interactions, though it cannot bypass
CAPTCHA or 2FA logins yet prior work [107] shows it explores
code paths 60% similar to human interaction.

We run our experiments on EU-based devices where stricter
privacy rules apply so it is possible that specific SDK behaviors
may vary in jurisdictions with more permissive regulations. Nev-
ertheless, these limitations do not compromise the validity of our
findings: while we do not claim completeness, our methodology
effectively uncovers previously undocumented tracking behaviors
within beacon SDKs, highlighting systemic privacy risks and the
need to regulate their usage.

5 Beacon SDK Landscape
This section studies the beacon SDK landscape, focusing on their
purpose, market share (§5.1), and integration capabilities to leverage
complementary features and data sharing (§5.2).

5.1 SDK Purposes and Prevalence
Using our SDK detection method (§4.2), we find the 52 SDKs with
beacon capabilities embedded in at least 9,976 apps collectively
installed on 55B devices.7 The market share and feature set of
beacon SDKs varies significantly. Table 1 lists the top-20 SDKs
categorized by beacon type (BLE, WiFi, or integration partners)
and their primary and secondary purposes (e.g., analytics, location
services, or advertising). A full list is provided in Table 6 in the
Appendix. The most widely used SDKs are AltBeacon (40% of apps),
Adobe Experience Platform (13% of apps), Kochava (11% of apps),
Salesforce Marketing Cloud (11% of apps) and Estimote (5% of

7Google Play install counts provide an approximate range of market reach, not exact
adoption figures. Prior work has used them as a standard reference for estimating user
base and impact, though they have limitations such as the exclusion of pre-installed
or sideloaded apps [123].

366

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

Table 2: Top 10 most common SDK combinations. Count is
the number of apps embedding each combination.

SDK Combination Count

(AltBeacon, Kontakt) 270
(AltBeacon, Radius Networks) 228
(CueAudio, Gimbal) 173
(AltBeacon, Areametrics, Cuebiq, Reveal Mobile) 117
(Adobe Experience Platform, Gimbal) 100
(AltBeacon, Cuebiq) 80
(LeanPlum, mParticle) 78
(AltBeacon, Salesforce Marketing Cloud) 73
(AltBeacon, Estimote) 67
(AltBeacon, Cuebiq, SignalFrame) 59

Total Unique SDK Combinations 281
Total Installs 6B

apps),8 which are collectively embedded in apps with a total of
37 billion installs. While we find beacon SDKs in apps from every
Google Play store categories, they are more prevalent in Lifestyle
(12%), Shopping (9%), and Sports (8%), with BLE and WiFi beacon
SDKs being more prominent in specific market sectors:

• BLE beacon SDKs are found in 54% of the apps with a total in-
stall count of 55B devices. They dominate the Lifestyle (20%) and
Business (12%) app categories, with SDKs like Radius Networks
(44%) and Estimote (34%) more likely integrated in Lifestyle apps.
Interestingly, all BLE beacon SDKs also support geofencing for
location-based services, including targeted advertising and prox-
imity marketing (e.g., Radius Networks and Estimote [44, 90]).

• WiFi beacon SDKs are found in 17% of the apps, totaling 72B
installs. They are commonly found in Sports (16%) and News
& Magazines (10%) apps. The SDKs Yinzcam Sobek and Gimbal
SDKs [67] specialize in sporting events and live stadium expe-
riences. Anecdotally, some apps in these categories also embed
audio beacon SDKs (e.g., CueAudio) to synchronize location data
with contextual audio signals, enhancing real-time interaction
and audience tracking [23].

Capabilities. Some of the beacon SDKs identified like Kochava
or Adobe Experience Platform are well-known advertising and
tracking services [104]. We analyze the capabilities offered by bea-
con SDKs by inspecting their public documentation (see §4.2). We
observe that most of them claim to offer multiple features to app
developers, primarily analytics services (43 SDKs, with a total in-
stall count of 52B installs), location services (40 SDKs, 41B installs),
advertising (9 SDKs, 21B installs), and user profiling (5 SDKs, 11B
installs). These features are not mutually exclusive. For example,
while the the main business area of Kochava, Salesforce Marketing
Cloud, and Adobe Experience Platform is an advertising, analytics
and identity graph services, respectively, they also integrate beacon
scanning capabilities in some of their SDK versions to enhance
their analytics and advertising businesses with location data. This
increases the privacy risks for consumers.

Figure 3: Cross-library interactions between beacon and non-
beacon SDKs (square nodes). Dotted lines represent interac-
tions between beacon SDKs, while solid lines show interac-
tions with non-beacon SDKs. Arrows indicate directionality,
from caller to callee SDK, with colors denoting the specific
APIs accessed.

5.2 Cross-Library Analysis
The 9,976 analyzed apps also include 331 non-beacon SDKs with fur-
ther data collection capabilities, including advertising and tracking
services.We study the interactions between beacon SDKswith other
SDKs (including non-beacon SDKs) that are co-located within the
same app using the methodology outlined in §4.3. Such co-existence
allows SDK operators to exchange sensitive data or complement
their functionality including their tracking capabilities. In total,
we identify 281 unique SDK combinations across the 9,976 apps
containing at least one beacon SDK. Table 2 reports examples of
such combinations, being AltBeacon and Kontakt the most common
combination, found in 270 apps (195M users).

Figure 3 captures SDK cross-invocations and data flows. We
detect 28 beacon SDKs exposing APIs for cross-library interaction
and data sharing to others. We note that location APIs (red) are the
most frequently invoked, often transmitting data from beacon SDKs
to advertising and analytics services. WiFi-based APIs (green) are
used for network-based geolocation, while BLE APIs (blue) enable
proximity-based functionalities. We classify these interactions in
two major categories:
Beacon SDK ↔ Beacon SDK Interactions. We find 17 beacon
SDKs invoking APIs from one another. Notably, AltBeacon and
Gimbal provide APIs frequently used by other beacon SDKs to
perform BLE scans and access location data. For example, X-Mode,
a location data aggregator, uses AltBeacon’s APIs for BLE scan
results, while mParticle, a data integration platform, calls Radar’s
APIs for location tracking. In some cases, multiple beacon SDKs co-
exist within the same app as in the French versions of McDonald’s
and Burger King apps to locate user at their premises, both using
AltBeacon for beacon scanning and indoor location tracking, and

8These percentages are relative to the total number of applications found with at least
one beacon SDK (𝑁 = 9, 976).

367

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

Woosmap for geofencing. Woosmap also invokes APIs from third-
party SDKs, such as Urban Airship, Salesforce Marketing Cloud,
and Batch, via REST/OAuth APIs, enabling seamless data sharing
and SDK-to-SDK integration.
Beacon SDK ↔ ATS Interaction. We identify 24 beacon SDKs
sharing BLE/WiFi scan results and geolocation data with 21 non-
beacon ATS SDKs. This behavior is concerning as advertising SDKs
like CleverTap and Twitter MoPub can use this information for
secondary purposes. Specifically, 11 ATS SDKs (e.g., UrbanAirship)
invoke WiFi scanning APIs of 6 different beacon SDKs (e.g., Gim-
bal), and 16 ATSes invoke geolocation APIs from 22 beacon SDKs.
Interestingly, the Yinzcam Sobek SDK calls APIs from Fluzo, an Au-
tomatic Content Recognition (ACR) SDK, for audio fingerprinting in
the La Liga app (version 7.2.1), a potential GDPR violation that was
investigated by the Spanish Data Protection Agency (AEPD) [43].
Such practices highlight the complexity of data sharing and syn-
chronization across-SDKs for secondary purposes like advertising.

Unfortunately, these capabilities introduce unexpected security
and privacy concerns due to Android’s coarse-grained sandbox and
permission model. Since there is no security boundary between
libraries within the same app process, one library can interact with
another (e.g., invoking functions) to access IDs and sensitive data
without restrictions or user awareness [124]. Unlike the same-origin
policy for limiting cross-site tracking on the web, Android’s lack of
cross-SDK isolation mechanism allows them to access and share
data within the same app process without any restrictions.

6 Privacy Analysis
Most of the analyzed apps with beacon SDKs (77%) self-disclose
the collection of user data through Google Play’s data safety labels.
The most frequently collected data are device IDs (62%), personal
information such as names, emails, and other user IDs (60%), and
location (35%) supposedly for app functionality (69%) and analytics
(68%), followed by account management (51%), and advertising or
marketing (36%). However, this information is self-disclosed by app
developers and may be erroneous or intentionally deceptive.

In this section, we use our dynamic analysis pipeline (§4.4) to an-
alyze the runtime data collection practices associated with beacon
SDKs across our 9,652 apps. Specifically, we study their permission
requests (§6.1) and monitor the dissemination of 18 sensitive data
types including beacon-specific data and user IDs (§6.2), demon-
strating how beacon data is often bridged with device IDs like the
AAID (§6.3). To contextualize our permission analysis in §6.1, we
conclude with an evaluation of how developers follow permission
consent best practices (§6.4). The results presented in this section
constitute actual evidence of the dissemination of geolocation data
linked to user IDs from apps to cloud services and across SDKs,
for potential secondary purposes like identity profiling, mobility
tracking, advertising and potentially data brokerage.

6.1 Permission Analysis
We compare declared permissions in each app’s manifest with stati-
cally identified APIs to flag cases of over-permissioning. Our analy-
sis shows that 82% of the apps request either fine or coarse-grained
location permissions, 79% of beacon-enabled apps request WiFi
permissions and 62% request Bluetooth-related permissions. This

Table 3: Usage of BLE, Location, andWiFi permissions by the
top 15 SDKs, showing manifest declarations, API calls, and
specific BLE_SCAN tags introduced in Android 12+.

SDK Name # apps # Android 12+ BLE Location WiFi BLE_SCAN
Man. API Man. API Man. API % Req % Tag

AltBeacon 4024 1822 95% 91% 96% 0% 73% 0% 57% 18%
Adobe 1328 514 35% 0% 80% 0% 89% 0% 9% 25%
Kochava 1118 499 20% 60% 42% 62% 97% 66% 5% 31%
Salesforce 1080 713 33% 0% 80% 0% 72% 0% 12% 25%
Estimote 510 197 97% 93% 88% 58% 53% 0% 17% 18%
LeanPlum 456 231 18% 0% 60% 0% 98% 74% 13% 14%
Gimbal 396 160 98% 82% 99% 81% 99% 58% 24% 3%
Radius Networks 369 94 86% 83% 91% 0% 84% 0% 31% 21%
Ad4Screen 198 75 0% 0% 0% 0% 0% 0% 8% 17%
Kontakt 195 82 94% 91% 99% 0% 62% 0% 84% 3%
Swrve 153 76 14% 0% 42% 0% 86% 0% 5% 25%
Exponea 99 68 24% 3% 78% 3% 79% 3% 6% 50%
Radar 93 61 38% 32% 99% 0% 80% 0% 25% 7%
Bazaarvoice 88 67 38% 0% 95% 0% 88% 0% 19% 31%
Rover SDK 50 26 98% 70% 94% 0% 84% 0% 12% 67%
Zendrive 34 16 85% 59% 100% 0% 100% 79% 75% 8.30%
Sensoro 4 2 100% 75% 100% 75% 75% 0% 100% 50%
Abbreviations Used: # Android 12+ - Number of apps targeting Android 12 or above;
% Req - Percentage of BLE_SCAN permission requests; Man. - Manifest;
API - API calls; % Tag - Percentage of apps using the neverForLocation tag.

suggests the existence of close ties between beacon SDKs and geo-
location services. Interestingly, 28% of these apps request audio
permissions, which in some cases could be used for ultrasonic
beaconing [9, 86, 97]. However, the analysis of audio-tracking tech-
nologies is outside the scope of this paper. Finally, over 40% of apps
request phone state permissions to access the IMEI on Android 9
and 35% the AAID on Android 12.

We inspect the code of apps requesting these permissions to de-
termine whether the caller class belongs to the app itself (first-party
code) or the beacon SDK (third-party code) using the backward
slicing technique described in §4. This process allows us to infer
the usage and purpose of API invocations by reasoning about the
business models of the SDKs requesting them according to publicly
available information. In line with our static permission analysis,
we find that API usage for location tracking closely matches de-
clared permissions. For WiFi, we observe an 11% decrease in API
usage compared to declared permissions, suggesting possible over-
permissioning or the presence of obfuscated code. For Bluetooth,
18% of apps invoke Bluetooth APIs without declaring the corre-
sponding permissions. This under-permissioning could stem from
cases like Facebook and Ogury Ad SDKs, which provide multiple
functionalities (i.e., advertising, location services, BLE), while app
developers may use them just for very specific purposes.

Meanwhile SDKs like, AltBeacon and Estimote seem to have
legitimate high rates of Bluetooth-related permission requests—95%
and 97%, respectively—for detecting and interacting with beacons.
Interestingly, 91% of apps integrating AltBeacon and also requesting
location permission never invoke the corresponding AltBeacon
location APIs in Java code, indicating that the permission request
could be a requirement for complying with Android versions 11
and lower. On the contrary, we observe how the majority of apps
integrating Estimote, LeanPlum, Gimbal or Radius Networks make
use of the corresponding location APIs, as described in §5.

The dual purpose of many Android permissions has been crit-
icized for causing confusion among developers and users. To il-
lustrate this, we analyze the manifest files to extract the presence

368

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

Table 4: SDKs collect location data and exfiltrate identifiers
classified under global persistent IDs, app persistent IDs,
global resettable IDs, app resettable IDs, WiFi/Bluetooth
scans, and GPS data (§3). Symbols indicate data collection on
Android 9 (^), Android 12 (▼), or both (⋆). Highlighted rows
represent SDKs from our dataset; others are co-embedded
SDKs detected through dynamic analysis.

SDK
(# of Apps)

Glob. Pers.
App.
Pers.

Glob.
Rst. App

Rst.

WiFi/BLE scan GPS

#
A
pp

.I
ns

ta
ll
s

Bo
ot

ID
G
SF

ID
IM

EI
H
W

ID
W
iF
iM

A
C

Em
ai
l

A
nd

ro
id

ID

A
A
ID

BL
E
N
am

e

FI
D

BL
E
ib
ea
co
n
M
A
C

ib
ea
co
n
U
U
ID

Ro
ut
er

M
A
C

Ro
ut
er

sc
an

M
A
C

Ro
ut
er

Sc
an

SS
ID

Ro
ut
er

SS
ID

Co
ar
se

ge
lo
g.

Fi
ne

ge
ol
oc
.

Kochava (220) 2B ^ ⋆ ⋆ ⋆ ⋆
Yandex (220) 572M ^ ⋆ ^ ⋆ ⋆ ⋆ ⋆ ⋆
Amplitude (190) 988M ^ ^ ^ ⋆ ⋆ ⋆ ⋆
Datadog (140) 146M ^ ^ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Sentry (81) 53M ^ ^ ⋆ ^ ▼ ⋆ ⋆ ⋆ ⋆
Omniture (49) 1B ^ ^ ⋆ ⋆ ⋆ ⋆
Forter (34) 297M ^ ^ ^ ^ ⋆ ⋆
Radar (33) 280M ^ ^ ⋆ ⋆ ⋆
Huq Sourcekit (24) 25M ^ ⋆ ⋆ ⋆ ^ ^ ⋆ ⋆
cellrebel (18) 134M ⋆ ⋆ ⋆ ⋆
Vizbee (16) 164M ^ ⋆ ⋆ ⋆ ⋆ ⋆
Cuebiq (6) 50M ⋆ ⋆ ⋆ ⋆ ⋆ ^ ^
taobao (6) 1B ^ ^ ⋆
My Tracker SDK (6) 132M ⋆ ⋆ ⋆
AdsWizz (6) 9M ⋆ ^ ⋆ ⋆
phunware (5) 78K ⋆ ⋆ ^ ⋆ ⋆ ⋆
conviva (5) 134M ^ ⋆ ⋆ ⋆ ⋆ ⋆
PayPal (5) 100M ⋆ ^ ^ ^ ⋆ ^ ⋆ ⋆ ⋆
Singlespot (5) 30M ⋆ ⋆
Incognia (5) 38M ⋆ ^ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Colocator (4) 395K ^ ⋆
Swrve (3) 9M ^ ⋆
JPush (3) 346K ⋆ ⋆
Kontakt (3) 23K ⋆
Proxy Cloud (2) 7M ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
pingID (1) 3M ^ ^ ▼ ⋆
appICE (1) 3M ⋆ ⋆ ⋆ ^ ^
Tangerine (1) 3M ⋆ ⋆
Proximi.io (1) 162K ▼

of the BLUETOOTH_SCAN permission and the usage of the neverFor-
Location flag, introduced for apps targeting Android 12 or higher,
as the official Android documentation recommends [34]. As sum-
marized in Table 3, only 18% of apps that include AltBeacon and
request Bluetooth scan permissions set also the neverForLocation
flag, indicating that the remaining apps likely use this permission
both for BLE scanning and location purposes. Furthermore, only
3% of the apps integrating Kontakt SDK set this flag. Among the
SDKs offering location data aggregation—e.g., Kochava, Adobe Ex-
perience Platform, and Salesforce Marketing Cloud—the use of this
flag ranges from 25% to 35%. We observe that, while apps can use
the neverForLocation flag with the NEARBY_WIFI_SCAN permission,
only 11 apps request this permission, and only 6 set the flag.

Overall, our results show that only a minority of apps using
scan APIs explicitly declare the intention of not to use these meth-
ods for location tracking purposes through mechanisms like the
neverForLocation flag. Meanwhile, a significant proportion of apps
integrating SDKs like Gimbal, LeanPlum, or Kochava appear over-
permissioned, requesting more access than may be necessary. Un-
fortunately, these practices can create potential opportunities for
third-party data harvesting, as we show next.

6.2 Beacon Data Collection
We study the runtime data access practices of beacon-enabled apps
using the dynamic analysis pipeline described in §4.4. We find that
they collectively contact over 25K unique domains, with 86% of
apps and 20% of domains collecting at least one of the sensitive
data types detailed in Table 4. While our dynamic analysis results
are a lower-bound estimation of the potential practices due to
inherent coverage limitations of runtime analysis, they provide
actual evidence of SDK behaviors and potential privacy abuses.
Additionally, dynamic analysis extends SDK detection beyond static
methods by uncovering wireless scanning behaviors in advertising,
analytics, and fraud-detection SDKs missed by static analysis due
to code obfuscation or reflection (§4.5).

We observe discrepancies between the app’s runtime behavior
and the declared safety labels. We find that 2,292 apps collect device
identifiers without disclosing them. For location data, a different
pattern emerges: only 23% of the 3,535 apps both declare the col-
lection of location data and transmit it at runtime while 563 apps
transmit location data without disclosing it in their data safety la-
bels. For the rest of the analysis, we report how SDKs collect beacon
and geolocation data across apps and distinguish beacon SDKs from
non-beacon SDKs that also exhibit beacon scanning behaviors.
Router: SSIDs and BSSIDs represent the names and MAC addresses
of connected and nearby WiFi networks. They serve as precise loca-
tion proxies [105]. We find that 1.95% and 1.62% of apps collect the
router SSID and BSSID of their connected WiFi access points, re-
spectively. At the SDK level, 29 of them collect either router SSIDs or
BSSIDs, with only 4 SDKs collecting both. Furthermore, 0.32% of the
apps and 8 different SDKs extend their reach to the SSID and BSSID
of nearby WiFi access points. Leading beacon SDKs collecting AP
data include Kochava, Colocator, Cuebiq—which was removed from
the Play Store due to invasive data collection practices [69]—and
non-beacon SDKs like Yandex, JPush [106], and Incognia that offer
advertising, fraud prevention, and push notifications solutions [66].
Jointly, these SDKs account for 4B total installs.
BLE: we observe 218 apps disseminating the device’s Bluetooth
name—i.e., the user-friendly name often defined by users and po-
tentially containing PII like a user’s name [31]—to cloud services.
Additionally, 18 apps collect the AltBeacon UUID and 6 collect the
iBeacon UUID, both of them being unique and persistent IDs tied
to a specific physical location. At the SDK level, 7 beacon SDKs
collect the device’s Bluetooth address, 3 targets the iBeacon UUID,
and 1 collects the iBeacon MAC address. Huq Sourcekit, Kontakt,
and Radar are the most prevalent SDK with such capabilities, with
a cumulative install count of 280M users. These results suggest that
BLE scanning is comparatively less prevalent than WiFi scanning.
This discrepancy could stem from the more controlled scanning
methods offered by SDKs, or the use of geofencing—where scans are
only enabled within specific areas—that limit our dynamic testing
approach, as detailed in §4.5.
GPS Sensors: 20% and 18% of apps actively collect coarse or fine
geolocation data, respectively. The majority of apps with beacon
SDKs declare access to Android geolocation permissions, either
fine (78%) or coarse location (77%) and even when the app is put in
the background (20%). The 13 beacon SDKs collecting location data

369

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

com.geomobile.tiendeo outbound to api.radar.io:443

POST /v1/logs HTTP /1.1

Content -Type: application/json

Host: api.radar.io

..

"androidid ":" XXXXXXXXXXXXXX"

{

"createdAt ": 1720523270332 ,

"level": "DEBUG",

"message ": "Ranged beacon | beacon.type = IBEACON; beacon.uuid = 01022022 -

fa0f -0100 -00ac-dd1c6502da1c; beacon.major = 53479; beacon.minor =

42571; beacon.rssi = -12"

},

{

"createdAt ": 1720523270334 ,

"level": "DEBUG",

"message ": "Handling beacon entry | beacon.type = IBEACON; beacon.uuid =

01022022 -fa0f -0100 -00ac-dd1c6502da1c; beacon.major = 53479; beacon.

minor = 42571; beacon.rssi = -12"

},

"events ":[], "nearbyGeofences ":[{" _id ":"6318 a0381c18820019e1e07e", "live":true ,

"type ":" circle", "tag":"es.s.m"," externalId ": "103769" ," geometryCenter ":

{" coordinates ":[longtitude: -X.XXXXX ,latitude: XX.XXX],"type ":" Point"},

Figure 4: iBeacon advertisements and geofence data exfil-
trated to Radar.io, including Android ID, beacon details
(UUID, major, minor, RSSI), and geofence metadata (coor-
dinates and type).

include Radar, Salesforce Marketing Cloud, Rover SDK, LeanPlum,
and Huq Sourcekit, with a cumulative install count of 4B devices.
Additionally, we observe 33 non-beacon SDKs within the same
apps accessing the location data, with OneSignal, Amplitude, Braze,
and Flurry being the most prevalent ones. Among the SDKs that
collect the device’s GPS location, 15 gather also the WiFi AP SSID
and BSSID. Similarly, as shown in Figure 4, Radar SDK collects the
device’s GPS location along with BLE ibeacon data to potentially
improve location accuracy and enable precise location tracking [16].
Yet, this collection of location data solely for advertising or analytics
purposes may potentially violate Google’s Play Store policies [98].
Side-channels:we identify two non-beacon SDKs exploiting known
vulnerabilities in older Android versions to perform wireless scans
by bypassing permission requirements as of August 2024. The pres-
ence of such SDKs on the Play Store suggests that Google Play
Protect may fail to detect apps invoking vulnerable APIs.
• Vizbee SDK is a third-party library for mobile-to-TV deep-
linking present in apps with over 164M installs. Vizbee exploits
the side channel vulnerability CVE-2020-0454 [95] to collect AP’s
SSIDs in Android versions 9 and below. The SDK uses the on-
CapabilitiesChanged callback function, registered via Connec-
tivityManager’s NetworkCallback, which inadvertently provides
SSID data. Vizbee caches and transmits this data to metrics.
clasptws.tv under the key WIFI_SSID (See Table 12 in the Ap-
pendix). The transmission also includes GEO_LAT and GEO_LONG
fields with values set to UNKNOWN, indicating that location
permission is denied in this test. Vizbee stores the SSID in a vari-
able named hackedSsid, suggesting a deliberate attempt to bypass
Android permission controls.

• Forter SDK (v2.4.11) present in apps with over 297M installs,
exploits the legacy API ‘WifiConfiguration.SSID‘ in Android 9
devices to collect SSIDs without requiring location permissions.
According to current market shares, these vulnerabilities remain
active on approximately 9% of Android devices globally [116].

20%

10%
15%

 5%
 0 In

te
rs

ec
tio

n
si

ze

20%
20%

33%
40%

49%
70%

Global persistent ID
App resettable ID

WiFi/BLE scan
GPS data

App persistent ID
Global resettable ID

Figure 5: The UpSet plot illustrates how SDKs collect differ-
ent combinations of ID categories. The top bars represent the
percentage of SDKs collecting specific combinations (indi-
cated by connected dots below), while the left bars show the
total percentage of SDKs collecting each category, regardless
of other data types collected.

This SDK transmits sensitive data, including SSIDs, security types
(e.g.,WPA_PSK), network associations, and device IDs like the
IMEI. In contrast, version 2.4.12 of the Forter SDK integrated in
apps targeting Android 12 collects even more extensive network
data, from DNS and DHCP details to WiFi scan results of nearby
SSIDs and their security configurations, device traffic statistics,
device IDs, and DNS settings.

6.3 ID Bridging
ID bridging is a privacy-intrusive practice that weakens the privacy
protections of resettable identifiers (e.g., AAID) and allows the cre-
ation of rich and persistent user profiles for advertising, identity
profiling, and surveillance. We identify 61 SDKs potentially per-
forming ID bridging, including 16 beacon SDKs and 45 non-beacon
SDKs. Figure 5 summarizes the instances of ID bridging captured by
our dynamic analysis pipeline, showing how beacon SDKs bridge
various types of device IDs, geolocation, and BLE/WiFi scan results.

Overall, 70% of the beacon SDKs also collect global resettable IDs
like the AAID and BLE device name, and 41% collect global persis-
tent IDs like the GSF ID. Oftentimes, both persistent and resettable
global IDs are bridged alongsideWiFi or BLE scans (32% of all SDKs)
or geolocation coordinates directly collected from the GPS sensor
(39% of SDKs). We note that the uniqueness of human mobility
traces makes user de-anonymization through geolocation data fea-
sible, as demonstrated in prior work [27]. ID bridging strengthens
this risk by linking mobility data with other identifiers, allowing
precise user re-identification and persistent tracking. Prominent
beacon SDKs such as Kochava, Adobe Experience Platform, and
Cuebiq, as well as non-beacon SDKs present in the analyzed apps
like Yandex, Adjust and AdColony appear to perform these prac-
tices. We highlight some notable cases next.
WiFi/BLE Scans with Global IDs: 33% of SDKs collect WiFi or
Bluetooth scan data, 10% combine this data with global persistent
IDs, and another 15% with resettable IDs. These practices typically
follow three main patterns:
• Connected Router Data: 19% of SDKs collect either resettable
or persistent user/device IDs along with connected WiFi network
information (e.g., router MAC, router SSID), while 15% of SDKs
extend this by linking the Android ID with connected router de-
tails. Namely, beacon SDKs such as Kochava, Adobe Experience

370

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

Table 5: Packages with Yandex SDK, collecting multiple IDs.

Router

Package Name In
st
al
ls

A
A
ID

A
nd

ro
id

ID
W

iF
iM

A
C

IM
EI

M
A
C

SS
ID

Sc
an

M
A
C

Sc
an

SS
ID

ru.dvaberega 968K x x x
com.numplates.nomera3 576K x x x x x
com.zenhotels.android 261K x x x x x x x x
com.wromanticgirlgame_10378860 60K x x x x x
com.weSPPTPBBKotaBogor_13752947 39.4K x x x x x
com.ratehawk.android 34.5K x x x x x x x x
com.wMadaniQaidahUrdu_15187981 515 x x x x x
com.wBukuMenwa_15656972 179 x x x x x
com.AirportTransportation_4990860 85 x x x x x

Platform, and Colocator, along with non-beacon SDKs like Con-
viva, PingID, AppICE, Taobao, Vizbee, and Datadog, combine the
AAID with the persistent GSF ID. For example, Figure 7 shows
Kochava collecting AAID with connected WiFi MAC. Similarly,
non-beacon SDKs like Yandex and Alipay incorporates the An-
droid ID andWiFi MAC, enabling cross-session tracking linked to
precise network settings, regardless of AAID resets. We observe
these practices in 5% of the apps that we analyze.

• NearbyWiFi Scans: Six SDKs upload nearbyWiFi network data
(e.g., router scan SSID, router scan MAC), along with user IDs.
For instance, Cuebiq and Incognia combine AAID and Android
ID alongside both nearby and connected router scan data to track
user movements across WiFi contexts, as shown in Figure 8. This
data may be collected to enhance location services via crowd-
sourcing. Notably, Yandex combines AAID, Android ID, WiFi
MAC, IMEI (in Android 9 and below), and even clipboard data
with both connected and nearby router data. Table 5 lists popular
apps with this behavior integrating the Yandex SDK.

• BLE Beacon Data: our analysis shows that three SDKs collect
BLE beacon IDs such as iBeacon UUIDs or MAC addresses. This
approach offers finer granularity than WiFi-based data and GPS
location indoors. Proximi.io collects iBeacon UUIDs with device
fingerprints, while the Kontakt SDK gathers iBeacon MAC ad-
dresses. Radar further integrates iBeacon UUIDs with GPS data,
Android IDs, and AAIDs to enable detailed location-based track-
ing tied to physical BLE infrastructure even after AAID resets.

GPSDatawithGlobal Resettable or Persistent IDs: 39% of SDKs
collect GPS data along with user IDs. This includes beacon SDKs
such as LeanPlum, Huq Sourcekit, and Cuebiq, and non-beacon
SDKs like Vizbee, Incognia, and Conviva. Interestingly, Incognia
goes a step further by harvesting the Boot ID, a 64-bit unique hex
string ID generated on a device’s first boot and stored securely, that
should remain constant for the lifetime of the device unless the
user performs a factory reset.
AAID Bridging: We find that 14% of SDKs link the AAID with
global persistent IDs such as the IMEI (available only on Android
9 or below) or GSF ID. In more than 180 apps, beacon-enabled an-
alytics and marketing SDKs such as Adobe Experience Platform
and LeanPlum appear alongside non-beacon counterparts like Am-
plitude, Sentry, and MixPanel, which appear to bridge the IMEI

with the AAID. To protect users’ privacy, the Google Play Store
user data policy explicitly prohibits linking persistent IDs with
resettable ones like AAID for advertising or analytics purposes
unless explicitly disclosed to users via privacy policies or in-app
consent dialogs [38]. However, our findings suggests that such link-
ing still occurs, which could potentially enable cross-app tracking,
profiling, targeted advertising, and third-party data aggregation for
resale. We also find non-beacon SDKs like MixPanel, Amplitude,
and New Relic bridging other IDs like the Android ID with the IMEI
(in Android 9 and below) in 244 of the analyzed apps. MixPanel
further enriches this profile by adding GSF ID. The privacy impli-
cations of our findings are concerning. In fact, beacon SDKs like
Huq Sourcekit, Radar, Incognia, and Vizbee seem to opportunis-
tically attempt to piggyback on the permissions requested by the
app developer to collect the full spectrum of IDs along with GPS
and BLE/WiFi data. For geolocation data, SDKs like Huq Sourcekit
and Radar do not directly invoke location APIs but instead appear
to collect location data indirectly via host app permissions. We
demonstrate the risks of ID bridging with two case studies:

• Amplitude: This mobile analytics platform performs extensive
data collection practices by bridging precise GPS coordinates
with IDs like the AAID, the Android IDs, and the IMEI (in An-
droid 9 and below). Combining location data with persistent or
resettable IDs for analytics purposes may violate Google’s pol-
icy [98]. Additionally, Amplitude collects user email addresses, as
seen in apps like br.com.brainweb.ifood (100M+ downloads),
where emails are transmitted during the Sign In with Google
OAuth event triggered in our testing. Of particular concern is
Amplitude’s ability to track every user interaction within the
app that embeds the SDK. Each user-triggered event is transmit-
ted to Amplitude’s servers, along with precise GPS coordinates,
hence potentially enabling semi-continuous tracking of users’
interactions and the exact locations where they occur.

• Adobe Experience Platform collects various user identifiers
through demdex.net and *.omtrdc.net domains, including reset-
table (AAIDs), globally persistent (WiFi MACs, hashed emails),
geolocation (router SSIDs, GPS), and app- or device-scoped IDs
(Firebase installation IDs, Android IDs). Additionally, Adobe sets
its proprietary marketingCloudId, a “persistent and universal iden-
tifier designed to track users across all Adobe Experience Cloud
products and subsidiaries” [2]. Such SDK-specific IDs add opacity,
limit user control and enabling potential ID bridging. In over
16 apps, we find the adobedtm tracker to collect hashed emails
alongside the marketingCloudId. This data is stored in a dictio-
nary labelled “PII” and logged under an event named PiiInfor-
mationReceived, suggesting an intentional collection of PII. We
also observe cross-library interactions and potential data sharing.
In com.totalwine.app.store (1M+ downloads), themarketing-
CloudId is shared with Appsflyer alongside AAIDs, suggesting a
direct interconnection with Adobe’s identity graph solutions.

6.4 Permission Usage Rationale
Android’s official developer guidelines recommend that apps clearly
communicate the necessity of the permission requests and the po-
tential impact if the user denies it [33]. Android 6.0 introduced the

371

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

shouldShowRequestPermissionRationale() method to inform develop-
ers if their app should explain to the user the purpose of a requested
dangerous permission.

Beacon SDK-enabled apps pose significant privacy risks to users
while offering them little to no control over data collection. To
demonstrate this, we measure their compliance with Android’s
permission request guidelines when requesting dangerous permis-
sions. We do this by statically searching for instances where beacon
SDKs invoke the shouldShowRequestPermissionRationale() and re-
questPermissions() methods. We then parse the permission strings
associated with these function calls. Finally, we analyze the app’s
UI components to detect any consent dialogs, such as alerts and
banners, that might be used to explain the permissions. By contex-
tually linking all these elements, we infer whether the app clearly
provides a rationale for the requested permissions.

We find that 24% of apps in our dataset do not implement the
shouldShowRequestPermissionRationale() API and include a ratio-
nale for permission requests. Among those that do implement the
API, 92% rely on third-party SDKs to provide such explanations cor-
rectly, a transparency feature beyond the control of app developers.
Additionally, the presence of these justifications varies significantly
across permission types: 71% of apps requesting location data fail to
justify access, only 13% of apps justify FINE_LOCATION access, 7%
for COARSE_LOCATION, and 8% for BACKGROUND_LOCATION,
in all cases primarily handled by third-party SDKs. The lack of
justification is even worse for Bluetooth permissions, with 97% of
apps providing no explanation despite its known tracking risks.
Our results suggest that, most developers underestimate BLE data
risks compared to location data.

On the other hand, only five beacon SDKs in our dataset use
the shouldShowRequestPermissionRationale() API to explain specific
dangerous permissions. Estimote shows rationales for coarse loca-
tion in 75% of apps embedding it. Radar, SalesforceMarketing Cloud,
and Singlespot show fine location rationales in 42%, 54%, and 55%
of apps, respectively. Additionally, InMarket provides rationales for
accessing background location in 52% of apps. In contrast, SDKs like
Swrve and IndoorAtlas delegate this responsibility entirely to app
developers despite invoking permission-protected APIs themselves.
Swrve implements a callback to check if the rationale was shown to
the user [118], allowing it to piggyback on the app’s permissions.

These findings highlight systemic transparency failures in how
beacon-enabled apps handle permission requests, leaving users
with little insight or control despite the dual usage of these permis-
sions. Stricter auditing, policy interventions and broader ecosystem
reforms are necessary to address these gaps as we discuss next.

7 Discussion
Our study reveals the pervasive tracking risks of beacon-enabled
SDKs in Android. By analyzing behaviors, cross-library interactions,
and data collection practices, we show how beacon SDKs track
users across apps and services. Building on Dehaye and Reardon’s
premise [29], our findings challenge the assumption that BLE-based
distance authentication is secure against global passive adversaries.
The belief that large-scale Bluetooth surveillance is economically
unfeasible is flawed, as SDKs turn millions of everyday apps into
passive scanners. This shifts costs—power and data collection—to
users while enabling tracking of individuals who never installed

these apps. Their wireless devices, such as headphones or AirTags,
can be continuously observed by passive scanners. While our fo-
cus is on mobile apps, similar tracking risks may exist—including
connected platforms (e.g., IoT)—highlighting the need for better
transparency, accountability, and regulatory safeguards.
Beacon SDKs and Location Surveillance. In §6 we demonstrate
how beacon SDKs continuously scan for WiFi, Bluetooth, and GPS
signals, supporting a vast data ecosystem of targeted advertising
and data brokers [73]. For instance, Singlespot, a French marketing
firm, claims to have collected data from 2 million users and sells it
for up to $20,000 via platforms like Datarade [113]. If persistent iden-
tifiers are linked to specific geolocations, SDKs can then leverage
WPS, data brokers and public databases to infer the users’ location
and accurately track their movements. Such knowledge is harmful
to users’ privacy because it can disclose information about their
personal beliefs or sexual orientation, or it can even reveal classified
information such as the location of secret facilities [27, 42, 59, 128].
Beyond first-hand data collection, beacon SDKs may also share or
repurpose the data they obtained [73]. As we analyzed in §5.2, SDKs
co-located on the same app can exchange the collected information.
This interconnectivity enables pervasive data flows across orga-
nizations, where user-tagged beacon data spreads across multiple
third parties. Similarly, as shown in §6.3, proprietary identifiers like
Adobe’s Marketing Cloud ID get linked with persistent and reset-
table user IDs and then shared with other SDKs. These practices
circumvent user control and blur accountability.
Platform Policy Enforcement. Google Play has introduced poli-
cies designed to protect user privacy by imposing strict rules on
what data apps can collect and how they use it. According to these
policies, developers are responsible for ensuring that any SDKs
embedded in their apps do not sell or misuse sensitive user informa-
tion they collect [99]. For instance, one policy explicitly prohibits
linking user data or resettable IDs (e.g., AAID) with persistent de-
vice IDs or PII for advertising [98]. However, while analyzing apps
in practice, we find that 14% of SDKs (§ 6.3) bridge resettable iden-
tifiers with persistent ones. Such identifier bridging undermines
Android’s privacy safeguards, as resetting identifiers no longer
limits continuous user tracking. A second recital mandates clear
user disclosure for any location data collected for ads, ensuring
transparency and data minimization. Unfortunately, these policies
shift the burden to developers. As they rush their market release,
regulatory complexity, inexperience, and incomplete SDK docu-
mentation hinders compliance. To enforce compliance and detect
policy violations, marketplaces could implement stricter indepen-
dent audits before app release, runtime monitoring, and publicly
disclose audit results for transparency.
Regulation and Transparency. Regulatory efforts in the EU and
the US aim to mitigate privacy risks and enhance transparency
in mobile platforms. GDPR [45] mandates data minimization and
consent, yet enforcement remains a challenge due to opaque SDK
data-sharing practices. Meanwhile, CNIL and AEPD have issued
guidelines to curb passive wireless tracking [26, 28]. CNIL advises
app developers to map data flows, SDK providers to document
compliance, and marketplaces to enforce vetting. However, en-
forcement gaps persist as widespread over-permissioning (§6.1),
proprietary identifier use by SDKs (§6.3), and uncontrolled SDK-
driven data sharing beyond user control enable large-scale tracking,

372

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

making regulatory oversight difficult. Our empirical findings re-
veal how beacon SDKs evade existing protections through wireless
scanning, cross-SDK interactions, and non-compliant tracking. By
highlighting these risks, our analysis calls for strengthening audits,
mandating SDK disclosures, and stricter enforcement to ensure
compliance and curb unchecked data collection.
Defense Measures. Our work highlights systemic transparency
failures and policy gaps in the data collection practices of beacon-
enabled apps and Android’s transparency features. Mitigating these
risks requires stronger privilege separation and sandboxing to limit
cross-library data sharing. While Google’s Privacy Sandbox is in
the right direction, it only isolates advertising SDKs [56]. Stricter
runtime audits and app store vetting are needed to detect covert
SDK behavior, yet these rely solely on platform enforcement, leav-
ing users with no control over beacon data collection and sharing.
This lack of control is worsened by the absence of transparency
mechanisms in the beacon ecosystem. As shown in §6.4, the should-
ShowRequestPermissionRationale() API designed to improve user
awareness is rarely used, exposing gaps in permission governance.
Existing privacy controls offer little protection against abuse. The
FCC suggests setting Bluetooth to hidden mode, but this only pre-
vents device discovery, not beacon scanning [17]. Addressing these
risks requires a multi-layered approach, including stricter app store
policies, independent audits, and technical safeguards to curb un-
regulated beacon tracking. While our work focuses on policy and
platform-level privacy controls, future research can explore usabil-
ity improvements to enhance user awareness and transparency.

8 Related work
WiFi and BLE Scanning. Studies have shown how WiFi probe
requests, which lack encryption and authentication, are exploited
to track users and establish social links using SSIDs and BSSIDs [24,
50]. This data contributes to large databases created through tech-
niques like wardriving, enabling passive location tracking by third
parties [111]. Rye and Levin [110] highlighted the risks by revealing
how Apple’s WiFi Positioning System (WPS) mapped geolocations
for over 2 billion BSSIDs globally, enabling mass surveillance. On
the other hand, vulnerabilities in Bluetooth have been exploited to
track users [14, 25, 48, 72, 79], spoof, and perform denial-of-service
attacks [76] and exfiltrate private data [102]. Achara et al. [1] high-
lighted how Android’s WiFi permissions were exploited by apps
to infer user locations, prompting stricter controls by linking WiFi
data to location permissions.

Several studies also identified privacy abuses across apps and
SDKs. Reyes et al. [107] exposed children’s apps harvesting WiFi
data to infer locations, violating COPPA. Reardon et al. [105] un-
covered covert channels in Android used to infer user locations.
Dehaye and Reardon [29] showed SDKs like X-Mode harvesting
Bluetooth scans for user tracking to demonstrate the existance of
global passive adversaries in the context of contact tracing apps.
Building on this, our work provides the first empirical, large-scale
analysis of the Android beacon ecosystem, revealing how SDKs
utilize GPS, BLE beacons, and WiFi signals to track user proximity
with high precision and link this data to the user or device IDs.
Location. Location privacy has drawn significant research atten-
tion due to the rise of location-based services (LBS). A large body
of work has focused on GPS data dissemination in location-based

social networks (LBSNs) [40, 41, 135, 137, 138], crowdsourced lo-
cation tracking [58, 112, 126, 133], and how GPS data from mobile
apps [40, 41, 137] inadvertently reveals sensitive information such
as military base locations or can be exploited for stalking and harass-
ment [133, 138]. On the other hand, studies of Call Detail Records
(CDRs) and Twitter geolocation data revealed the uniqueness and
predictability of human mobility patterns [27, 42, 54]. De Mon-
tjoye et al. [27] demonstrated that with just four location points it
is possible to uniquely identify 95% of individuals However, there
is a gap in the literature on how location data is collected, who
operates these location data services within the mobile ecosystem,
and how they can be misused to track users and their movements.
Mobile App Privacy. Privacy risks in mobile apps have been
extensively studied using static [10, 80, 87, 94, 125, 137] and dy-
namic [40, 78, 104, 105, 120] analysis techniques to uncover ma-
licious behaviors, third-party code implications [49, 83, 104, 132],
transparency issues [8, 46, 78], and regulatory compliance gaps [75,
77, 92, 93, 136]. However, the limitations of relying solely on static
or dynamic analysis [15, 22, 52, 100] have led to hybrid approaches
that more effectively expose side and covert channels [101, 105, 124]
and privacy risks from analytical SDKs [30, 104, 115, 117]. Despite
several proposed solutions like privacy policies and labels, discrep-
ancies still persist between stated and actual data usage [8, 60, 132].
Our work does not use formal privacy accounting frameworks that
rely on mathematical models to estimate privacy issues, such as
data de-anonymization or re-identification [27, 40, 41, 133]. On
the contrary, we align with prior empirical privacy research that
combines static and dynamic analysis to measure the prevalence
of beacon data-collection behaviors and estimate the number of
affected users [49, 78, 81, 93, 104, 105, 107].

9 Conclusions
This paper presents the first large-scale empirical analysis of wireless-
scanning SDKs in the Android ecosystem. By combining static and
dynamic analysis with signal injection and runtime monitoring,
we reveal how 52 SDKs across 9,976 apps exploit Bluetooth and
WiFi scanning to infer user location and collect sensitive data. Our
findings reveal that this ecosystem is tightly connected with adver-
tising and tracking purposes and operates with minimal oversight.
Most SDKs collect geolocation data for such secondary purposes
and violate platform policies by engaging in ID bridging—linking
persistent and resettable identifiers to construct detailed user pro-
files without user consent or knowledge for persistent user track-
ing. Some SDKs even intentionally exploit side channels to access
sensitive data and IDs without requesting the pertinent Android
permissions. We provide concrete evidence of non-compliance with
platform policies and inadequate enforcement of existing rules. Our
study demonstrates that existing privacy protections are insuffi-
cient, highlighting the need for stricter regulatory control, robust
SDK sandboxing to limit cross-library data sharing, proactive audits
to curb policy violations, and stronger transparency mechanisms
to prevent large-scale tracking and ensure user control.

Acknowledgments
We thank the reviewers and the shepherd for their valuable feed-
back and suggestions for improving our paper. We used OpenAI’s

373

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

ChatGPT to correct grammatical errors and to improve the clar-
ity and coherence of our paper. The AI model was used with the
following prompt: "please improve the clarity and coherence of the
text while maintaining the original intent". This research was par-
tially supported by project PID2022-143304OB-I00 (PARASITE)
funded by MCIN/AEI /10.13039/501100011033/ and by the ERDF
“A way of making Europe”, the Spanish National Cybersecurity
Institute (INCIBE) under Proyectos Estratégicos de Ciberseguri-
dad – CIBERSEGURIDAD EINA UNIZAR, and by the Recovery,
Transformation and Resilience Plan funds, financed by the Eu-
ropean Union (Next Generation), the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) (funding reference
number RGPIN/04237-2018), and the Spanish AEI grant CYCAD
(PID2022-140126OB-I00). Dr. Srdjan Matic was partially funded by
the Atracción de Talento grant (Ref. 2020-T2/TIC-20184), funded
by Madrid regional government. Prof. N. Vallina-Rodriguez was
appointed as 2019 Ramon y Cajal fellow (RYC2020-030316-I) funded
by MCIN/AEI/10.13039/501100011033 and ESF Investing in your fu-
ture. The opinions, findings, and conclusions, or recommendations
expressed are those of the authors and do not necessarily reflect
the views of any of the funding bodies.

References
[1] Jagdish Prasad Achara, Mathieu Cunche, Vincent Roca, and Aurélien Fran-

cillon. 2014. Wifileaks: Underestimated privacy implications of the AC-
CESS_WIFI_STATE Android permission. In Proceedings on Security and privacy
in wireless and mobile networks.

[2] Adobe. 2023. Identifying Visitors in Adobe Target Delivery API.
https://experienceleague.adobe.com/docs/target-dev/developer/api/delivery-
api/identifying-visitors.html.

[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories.

[4] AltBeacon. 2024. AltBeacon Specification. https://github.com/AltBeacon/spec.
[5] Androguard. 2024. Androguard. https://github.com/androguard/androguard.
[6] Android Developers. 2025. UI/Application Exerciser Monkey. https://developer.

android.com/studio/test/other-testing-tools/monkey
[7] Apple. 2024. Location Services and Privacy. https://support.apple.com/en-

us/HT207056.
[8] Ioannis Arkalakis, Michalis Diamantaris, Serafeim Moustakas, Sotiris Ioannidis,

Jason Polakis, and Panagiotis Ilia. 2024. Abandon All Hope Ye Who Enter Here:
A Dynamic, Longitudinal Investigation of Android’s Data Safety Section. In
Proceedings of the USENIX Security Symposium.

[9] Daniel Arp, Erwin Quiring, Christian Wressnegger, and Konrad Rieck. 2017.
Privacy Threats through Ultrasonic Side Channels on Mobile Devices. In IEEE
European Symposium on Security and Privacy.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In ACM sigplan notices.

[11] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. PScout:
Analyzing the Android Permission Specification. In Conference on Computer
and Communications Security (CCS).

[12] Azira. 2024. Homepage. https://azira.com.
[13] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and

Sebastian Weisgerber. 2016. On Demystifying the Android Application Frame-
work: Re-Visiting Android Permission Specification Analysis. In Proceedings of
the USENIX Security Symposium.

[14] Johannes Becker, David Li, and David Starobinski. 2019. Tracking Anonymized
Bluetooth Devices. In Proceedings on Privacy Enhancing Technologies (PoPETs).

[15] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: Are We There Yet?. In Proceedings on
Automated Software Engineering (ASE).

[16] Wolfie Christl. 2024. Tracking Indoor Location, Movement and Desk Occu-
pancy in the Workplace. https://crackedlabs.org/en/data-work/publications/
indoortracking.

[17] Federal Communications Commission. 2024. How to Protect Yourself Online.
https://www.fcc.gov/consumers/guides/how-protect-yourself-online.

[18] Federal Trade Commission. 2016. Mobile Advertising Network InMobi
Settles FTC Charges It Tracked Hundreds of Millions of Consumers’ Loca-
tions Without Permission. https://www.ftc.gov/news-events/news/press-
releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-
tracked-hundreds-millions-consumers.

[19] Federal Trade Commission. 2024. FTC Order Prohibits Data Broker X-
Mode/Outlogic from Selling Sensitive Location Data. https://www.ftc.gov/news-
events/news/press-releases/2024/01/ftc-order-prohibits-data-broker-x-mode-
social-outlogic-selling-sensitive-location-data. In FTC Press Releases.

[20] Federal Trade Commission. 2024. FTC v. Kochava Inc. https://www.ftc.gov/legal-
library/browse/cases-proceedings/ftc-v-kochava-inc.

[21] Federal Trade Commission. 2024. How "Location, Location, Lo-
cation" Can Lead to "Enforcement, Enforcement, Enforcement".
https://www.ftc.gov/business-guidance/blog/2024/01/how-location-location-
location-can-lead-enforcement-enforcement-enforcement. In FTC Business
Guidance Blog.

[22] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puc-
cetti, Ali Zand, Christopher Kruegel, Giovanni Vigna, et al. 2017. Obfuscation-
Resilient Privacy Leak Detection for Mobile Apps Through Differential Analysis..
In Proceedings of the Network and Distributed System Security Symposium (NDSS).

[23] Cue. 2024. Cue - Creating Unforgettable Experiences. https://www.
connectwithcue.com/.

[24] Mathieu Cunche, Mohamed Ali Kaafar, and Roksana Boreli. 2012. I know who
you will meet this evening! linking wireless devices using wi-fi probe requests.
In IEEE Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM). IEEE.

[25] Aveek K. Das, Parth H. Pathak, Chen-Nee Chuah, and Prasant Mohapatra. 2016.
Uncovering Privacy Leakage in BLE Network Traffic of Wearable Fitness Track-
ers. In International Workshop on Mobile Computing Systems and Applications.

[26] Commission Nationale de l’Informatique et des Libertés (CNIL). 2024. Recom-
mandation relative aux applications mobiles. https://www.cnil.fr/sites/cnil/files/
2024-09/recommandation-applications-mobiles.pdf.

[27] Yves-Alexandre de Montjoye, Cesar Hidalgo, Michel Verleysen, and Vincent
Blondel. 2013. Unique in the Crowd: The privacy bounds of human mobility. In
Nature.

[28] Agencia Española de Protección de Datos. 2024. Tecnologías de seguimiento
Wi-Fi: Orientaciones para responsables del tratamiento. https://www.aepd.es/
guias/orientaciones-wifi-tracking-seguimiento.pdf.

[29] Paul-Olivier Dehaye and Joel Reardon. 2020. Proximity Tracing in an Ecosystem
of Surveillance Capitalism. In Proceedings of the Workshop on Privacy in the
Electronic Society.

[30] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston Zhang, and Carl A Gunter.
2016. Free for all! assessing user data exposure to advertising libraries on an-
droid.. In Proceedings of the Network and Distributed System Security Symposium
(NDSS).

[31] Loleta Detweiler. 2023. How To Name Bluetooth Devices. https://robots.net/
tech/how-to-name-bluetooth-devices.

[32] Android Developers. 2024. Android 6.0 Changes: Behavior Changes.
https://developer.android.com/about/versions/marshmallow/android-6.0-
changes#behavior-hardware-id.

[33] Android developers. 2024. App permissions best practices | Android Developers.
https://developer.android.com/training/permissions/usage-notes.

[34] Android Developers. 2024. Bluetooth Permissions. https://developer.
android.com/develop/connectivity/bluetooth/bt-permissions#assert-never-
for-location.

[35] Android Developers. 2024. Find Bluetooth Devices. https://developer.android.
com/develop/connectivity/bluetooth/find-bluetooth-devices.

[36] Android Developers. 2024. Permissions on Android. https://developer.android.
com/guide/topics/permissions/overview.

[37] Android Developers. 2024. Request Location Permissions. https://developer.
android.com/develop/sensors-and-location/location/permissions.

[38] Android Developers. 2024. User Data and Identifiers in Android. https://
developer.android.com/identity/user-data-ids.

[39] Android Developers. 2024. Wi-Fi Scan. https://developer.android.com/develop/
connectivity/wifi/wifi-scan.

[40] Karel Dhondt, Victor Le Pochat, Yana Dimova, Wouter Joosen, and Stijn Vol-
ckaert. 2024. Swipe Left for Identity Theft: An Analysis of User Data Privacy
Risks on Location-based Dating Apps. In Proceedings of the USENIX Security
Symposium.

[41] Karel Dhondt, Victor Le Pochat, Alexios Voulimeneas, Wouter Joosen, and Stijn
Volckaert. 2022. A Run a Day Won’t Keep the Hacker Away: Inference Attacks
on Endpoint Privacy Zones in Fitness Tracking Social Networks. In Conference
on Computer and Communications Security (CCS).

[42] Kostas Drakonakis, Panagiotis Ilia, Sotiris Ioannidis, and Jason Polakis. 2019.
Please Forget Where I Was Last Summer: The Privacy Risks of Public Loca-
tion (Meta)Data. In Proceedings of the Network and Distributed System Security
Symposium (NDSS).

374

https://experienceleague.adobe.com/docs/target-dev/developer/api/delivery-api/identifying-visitors.html
https://experienceleague.adobe.com/docs/target-dev/developer/api/delivery-api/identifying-visitors.html
https://github.com/AltBeacon/spec
https://github.com/androguard/androguard
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://support.apple.com/en-us/HT207056
https://support.apple.com/en-us/HT207056
https://azira.com
https://crackedlabs.org/en/data-work/publications/indoortracking
https://crackedlabs.org/en/data-work/publications/indoortracking
https://www.fcc.gov/consumers/guides/how-protect-yourself-online
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2016/06/mobile-advertising-network-inmobi-settles-ftc-charges-it-tracked-hundreds-millions-consumers
https://www.ftc.gov/news-events/news/press-releases/2024/01/ftc-order-prohibits-data-broker-x-mode-social-outlogic-selling-sensitive-location-data
https://www.ftc.gov/news-events/news/press-releases/2024/01/ftc-order-prohibits-data-broker-x-mode-social-outlogic-selling-sensitive-location-data
https://www.ftc.gov/news-events/news/press-releases/2024/01/ftc-order-prohibits-data-broker-x-mode-social-outlogic-selling-sensitive-location-data
https://www.ftc.gov/legal-library/browse/cases-proceedings/ftc-v-kochava-inc
https://www.ftc.gov/legal-library/browse/cases-proceedings/ftc-v-kochava-inc
https://www.ftc.gov/business-guidance/blog/2024/01/how-location-location-location-can-lead-enforcement-enforcement-enforcement
https://www.ftc.gov/business-guidance/blog/2024/01/how-location-location-location-can-lead-enforcement-enforcement-enforcement
https://www.connectwithcue.com/
https://www.connectwithcue.com/
https://www.cnil.fr/sites/cnil/files/2024-09/recommandation-applications-mobiles.pdf
https://www.cnil.fr/sites/cnil/files/2024-09/recommandation-applications-mobiles.pdf
https://www.aepd.es/guias/orientaciones-wifi-tracking-seguimiento.pdf
https://www.aepd.es/guias/orientaciones-wifi-tracking-seguimiento.pdf
https://robots.net/tech/how-to-name-bluetooth-devices
https://robots.net/tech/how-to-name-bluetooth-devices
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/about/versions/marshmallow/android-6.0-changes#behavior-hardware-id
https://developer.android.com/training/permissions/usage-notes
https://developer.android.com/develop/connectivity/bluetooth/bt-permissions#assert-never-for-location
https://developer.android.com/develop/connectivity/bluetooth/bt-permissions#assert-never-for-location
https://developer.android.com/develop/connectivity/bluetooth/bt-permissions#assert-never-for-location
https://developer.android.com/develop/connectivity/bluetooth/find-bluetooth-devices
https://developer.android.com/develop/connectivity/bluetooth/find-bluetooth-devices
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/develop/sensors-and-location/location/permissions
https://developer.android.com/develop/sensors-and-location/location/permissions
https://developer.android.com/identity/user-data-ids
https://developer.android.com/identity/user-data-ids
https://developer.android.com/develop/connectivity/wifi/wifi-scan
https://developer.android.com/develop/connectivity/wifi/wifi-scan

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

[43] Rachel England. 2018. Spanish soccer league app spied on fans to catch pirate
broadcasts. https://www.engadget.com/2018-06-13-spanish-soccer-app-la-liga-
spying-pirate-broadcast.html.

[44] Estimote. 2018. Estimote Proximity SDK for Android. https://github.com/
Estimote/Android-Proximity-SDK.

[45] EU. 2018. General Data Protection Regulation. https://gdpr-info.eu/.
[46] Ming Fan, Jifei Shi, Yin Wang, Le Yu, Xicheng Zhang, Haijun Wang, Wuxia

Jin, and Ting Liu. 2024. Giving without Notifying: Assessing Compliance of
Data Transmission in Android Apps. In Proceedings on Automated Software
Engineering (ASE).

[47] Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Manoj Singh Gaur, Mauro Conti,
and Muttukrishnan Rajarajan. 2014. Evaluation of android anti-malware tech-
niques against dalvik bytecode obfuscation. In IEEE Conference on Trust, Security
and Privacy in Computing and Communications.

[48] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. 2016. Protecting Privacy of
BLE Device Users. In Proceedings of the USENIX Security Symposium.

[49] Álvaro Feal, Julien Gamba, Juan Tapiador, Primal Wijesekera, Joel Reardon,
Serge Egelman, and Narseo Vallina-Rodriguez. 2021. Don’t accept candy from
strangers: An analysis of third-party mobile sdks. In Data Protection and Privacy:
Data Protection and Artificial Intelligence.

[50] Julien Freudiger. 2015. How talkative is your mobile device? An experimental
study of Wi-Fi probe requests. In Proceedings on Security and Privacy in Wireless
and Mobile Networks (WiSec).

[51] Guillaume Gagnon, Sébastien Gambs, and Mathieu Cunche. 2024. RSSI based
attacks for identification of BLE devices. Computers & Security.

[52] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan Tapiador, and
Narseo Vallina-Rodriguez. 2020. An Analysis of Pre-installed Android Software.
In 2020 IEEE Symposium on Security and Privacy (SP).

[53] Aniketh Girish, Tianrui Hu, Vijay Prakash, Daniel J. Dubois, Srdjan Matic,
Danny Yuxing Huang, Serge Egelman, Joel Reardon, Juan Tapiador, David
Choffnes, and Narseo Vallina-Rodriguez. 2023. In the Room Where It Hap-
pens: Characterizing Local Communication and Threats in Smart Homes. In
Proceedings of the Internet Measurement Conference (IMC).

[54] Marta C González, César A Hidalgo, and Albert-László Barabási. 2008. Under-
standing individual human mobility patterns. In Nature.

[55] Google. 2024. Geolocation API Overview. https://developers.google.com/maps/
documentation/geolocation/overview.

[56] Google Developers. 2025. Privacy Sandbox on Android. https://developers.
google.com/admob/android/privacy/sandbox

[57] Ben Greenstein, Ramakrishna Gummadi, Jeffrey Pang, Mike Y Chen, Tadayoshi
Kohno, Srinivasan Seshan, and David Wetherall. 2007. Can Ferris Bueller Still
Have His Day Off? Protecting Privacy in the Wireless Era. In Proceedings of the
USENIX Workshop on Hot Topics in Operating Systems (HotOS).

[58] Alexander Heinrich, Milan Stute, Tim Kornhuber, and Matthias Hollick. 2021.
Who can find my devices? security and privacy of apple’s crowd-sourced blue-
tooth location tracking system. In Proceedings on Privacy Enhancing Technologies
(PoPETs).

[59] Urs Hengartner and Hui Zang. 2011. Anonymization of Location Data Does
Not Work: A Large-Scale Measurement Study. In Proceedings of the Conference
on Mobile Computing and Networking (MobiCom).

[60] Hiroki Inayoshi, Shohei Kakei, and Shoichi Saito. 2024. Detection of Inconsisten-
cies between Guidance Pages and Actual Data Collection of Third-party SDKs
in Android Apps. In Proceedings on Mobile Software Engineering and Systems.

[61] Apple Inc. 2024. About Privacy and Location Services in iOS, iPadOS, and
watchOS. https://support.apple.com/en-us/102515.

[62] Apple Inc. 2024. Exposure Notification Bluetooth Specification. https://developer.
apple.com/documentation/exposurenotification.

[63] Apple Inc. 2024. Getting Started with iBeacon. https://developer.apple.com/
ibeacon/.

[64] Google Inc. 2024. Eddystone Protocol Specification. https://github.com/google/
eddystone.

[65] Google Inc. 2024. Exposure Notifications API. https://developers.google.com/
android/exposure-notifications/exposure-notifications-api.

[66] Incognia. 2024. Incognia Documentation. https://developer.incognia.com/docs/.
[67] Infillion. 2007. Gimbal Ad Platform. https://infillion.com/gimbal-ad-platform-

learn-more/.
[68] iTransition. 2024. Beacons in Retail: How TheyWork and Benefits for Businesses.

https://www.itransition.com/retail/beacons.
[69] Adrianne Jeffries and Bennett Cyphers. 2020. How SDKs, hidden trackers in your

phone, work. Vox (2020). https://www.vox.com/recode/2020/7/8/21311533/sdks-
tracking-data-location

[70] The Wall Street Journal. 2024. House Investigating Company Selling Phone
Location Data to Government Agencies. https://www.wsj.com/articles/house-
investigating-company-selling-phone-location-data-to-government-
agencies-11593026382.

[71] Tom Karpiniec. 2023. The Road to Good Bluetooth Permissions on Mobile.
https://ditto.live/blog/bluetooth-permissions-on-mobile.

[72] Edden Kashi and Angeliki Zavou. 2020. Did I Agree to This? Silent Tracking
Through Beacons. In HCI for Cybersecurity, Privacy and Trust.

[73] Jon Keegan and Alfred Ng. 2021. There’s a Multibillion-Dollar Market for Your
Phone’s Location Data. https://themarkup.org/privacy/2021/09/30/theres-a-
multibillion-dollar-market-for-your-phones-location-data

[74] Tom Kemp. 2022. A Look at the Different Types of Data Brokers. https://www.
tomkemp.ai/blog/2022/10/05/a-look-at-the-different-types-of-data-brokers.

[75] Simon Koch, Benjamin Altpeter, and Martin Johns. 2023. The {OK} is not
enough: A large scale study of consent dialogs in smartphone applications. In
Proceedings of the USENIX Security Symposium.

[76] Constantinos Kolias, Lucas Copi, Fengwei Zhang, and Angelos Stavrou. 2017.
Breaking BLE Beacons For Fun But Mostly Profit. In Proceedings of the European
Workshop on Systems Security.

[77] Konrad Kollnig, Pierre Dewitte, Max Van Kleek, Ge Wang, Daniel Omeiza,
Helena Webb, and Nigel Shadbolt. 2021. A fait accompli? an empirical study
into the absence of consent to {Third-Party} tracking in android apps. In
Symposium on Usable Privacy and Security (SOUPS).

[78] Konrad Kollnig, Anastasia Shuba, Reuben Binns, Max Van Kleek, and Nigel
Shadbolt. 2021. Are iphones really better for privacy? comparative study of ios
and android apps. In Proceedings on Privacy Enhancing Technologies (PoPETs).

[79] Aleksandra Korolova and Vinod Sharma. 2018. Cross-App Tracking via Nearby
Bluetooth Low Energy Devices. In Proceedings of the ACM Conference on Data
and Application Security and Privacy.

[80] Haoran Lu, Qingchuan Zhao, Yongliang Chen, Xiaojing Liao, and Zhiqiang Lin.
2023. Detecting and measuring aggressive location harvesting in mobile apps
via data-flow path embedding. In Proceedings of the ACM on Measurement and
Analysis of Computing Systems.

[81] Allan Lyons, Julien Gamba, Austin Shawaga, Joel Reardon, Juan Tapiador, Serge
Egelman, andNarseo Vallina-Rodríguez. 2023. Log:{It’s} Big,{It’s} Heavy,{It’s}
Filled with Personal Data! Measuring the Logging of Sensitive Information in
the Android Ecosystem. In Proceedings of the USENIX Security Symposium.

[82] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast and
accurate detection of third-party libraries in Android apps. In Proceedings of the
International Conference on Software Engineering Companion.

[83] Samin Yaseer Mahmud, K Virgil English, Seaver Thorn, William Enck, Adam
Oest, and Muhammad Saad. 2022. Analysis of Payment Service Provider SDKs
in Android. In Proceedings on Computer Security Applications Conference.

[84] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
2015. Stealth attacks: An extended insight into the obfuscation effects on android
malware. In Computers & Security.

[85] Célestin Matte, Jagdish Prasad Achara, and Mathieu Cunche. 2015. Device-to-
identity linking attack using targeted wi-fi geolocation spoofing. In Proceedings
on Security and Privacy in Wireless and Mobile Networks (WiSec).

[86] Vasilios Mavroudis, Shuang Hao, Yanick Fratantonio, Federico Maggi, Christo-
pher Kruegel, and Giovanni Vigna. 2017. On the Privacy and Security of the Ul-
trasound Ecosystem. In Proceedings on Privacy Enhancing Technologies (PoPETs).

[87] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min
Yang. 2018. Finding clues for your secrets: semantics-driven, learning-based
privacy discovery in mobile apps. In Proceedings of the Network and Distributed
System Security Symposium (NDSS).

[88] Navizon. 2024. Navizon. http://www.navizon.com/.
[89] Neoma. 2024. IoT and Crowd Management: Insights and Solutions. https:

//neoma.ai/thinking/blog/13/iot-and-crowd-management.html.
[90] Radius Networks. 2014. Proximity Kit for Android. https://github.com/

RadiusNetworks/proximitykit-android.
[91] The Hacker News. 2014. Spying Agencies Tracking Your Location.

https://thehackernews.com/2014/01/spying-agencies-tracking-your-
location_31.html.

[92] Trung Tin Nguyen, Michael Backes, Ninja Marnau, and Ben Stock. 2021. Share
First, Ask Later (or Never?) Studying Violations of {GDPR’s} Explicit Consent
in Android Apps. In Proceedings of the USENIX Security Symposium.

[93] Trung Tin Nguyen, Michael Backes, and Ben Stock. 2022. Freely given consent?
studying consent notice of third-party tracking and its violations of gdpr in
android apps. In Conference on Computer and Communications Security (CCS).

[94] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective {Inter-Component} communi-
cation mapping in android: An essential step towards holistic security analysis.
In Proceedings of the USENIX Security Symposium.

[95] National Institute of Standards and Technology. 2020. CVE-2020-0454 Detail.
https://nvd.nist.gov/vuln/detail/CVE-2020-0454.

[96] Facundo Olano. 2015. Google Play Scraper. https://github.com/facundoolano/
google-play-scraper.

[97] Moritz Pfister, Robert Michael, Max Boll, Cosima Kö rfer, Konrad Rieck, and
Daniel Arp. 2024. Listening between the Bits: Privacy Leaks in Audio Finger-
prints. In Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA).

[98] Google Play. 2023. Developer Program Policy. https://support.google.com/
googleplay/android-developer/answer/9857753

375

https://www.engadget.com/2018-06-13-spanish-soccer-app-la-liga-spying-pirate-broadcast.html
https://www.engadget.com/2018-06-13-spanish-soccer-app-la-liga-spying-pirate-broadcast.html
https://github.com/Estimote/Android-Proximity-SDK
https://github.com/Estimote/Android-Proximity-SDK
https://gdpr-info.eu/
https://developers.google.com/maps/documentation/geolocation/overview
https://developers.google.com/maps/documentation/geolocation/overview
https://developers.google.com/admob/android/privacy/sandbox
https://developers.google.com/admob/android/privacy/sandbox
https://support.apple.com/en-us/102515
https://developer.apple.com/documentation/exposurenotification
https://developer.apple.com/documentation/exposurenotification
https://developer.apple.com/ibeacon/
https://developer.apple.com/ibeacon/
https://github.com/google/eddystone
https://github.com/google/eddystone
https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://developer.incognia.com/docs/
https://infillion.com/gimbal-ad-platform-learn-more/
https://infillion.com/gimbal-ad-platform-learn-more/
https://www.itransition.com/retail/beacons
https://www.vox.com/recode/2020/7/8/21311533/sdks-tracking-data-location
https://www.vox.com/recode/2020/7/8/21311533/sdks-tracking-data-location
https://www.wsj.com/articles/house-investigating-company-selling-phone-location-data-to-government-agencies-11593026382
https://www.wsj.com/articles/house-investigating-company-selling-phone-location-data-to-government-agencies-11593026382
https://www.wsj.com/articles/house-investigating-company-selling-phone-location-data-to-government-agencies-11593026382
https://ditto.live/blog/bluetooth-permissions-on-mobile
https://themarkup.org/privacy/2021/09/30/theres-a-multibillion-dollar-market-for-your-phones-location-data
https://themarkup.org/privacy/2021/09/30/theres-a-multibillion-dollar-market-for-your-phones-location-data
https://www.tomkemp.ai/blog/2022/10/05/a-look-at-the-different-types-of-data-brokers
https://www.tomkemp.ai/blog/2022/10/05/a-look-at-the-different-types-of-data-brokers
http://www.navizon.com/
https://neoma.ai/thinking/blog/13/iot-and-crowd-management.html
https://neoma.ai/thinking/blog/13/iot-and-crowd-management.html
https://github.com/RadiusNetworks/proximitykit-android
https://github.com/RadiusNetworks/proximitykit-android
https://thehackernews.com/2014/01/spying-agencies-tracking-your-location_31.html
https://thehackernews.com/2014/01/spying-agencies-tracking-your-location_31.html
https://nvd.nist.gov/vuln/detail/CVE-2020-0454
https://github.com/facundoolano/google-play-scraper
https://github.com/facundoolano/google-play-scraper
https://support.google.com/googleplay/android-developer/answer/9857753
https://support.google.com/googleplay/android-developer/answer/9857753

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

[99] Google Play. 2024. User Data Policy for Android Developers.
https://support.google.com/googleplay/android-developer/answer/10144311?
sjid=18338717510598425318-EU.

[100] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel,
and Giovanni Vigna. 2014. Execute this! analyzing unsafe and malicious dy-
namic code loading in android applications.. In Proceedings of the Network and
Distributed System Security Symposium (NDSS).

[101] Sajjad Pourali, Nayanamana Samarasinghe, and Mohammad Mannan. 2022. Hid-
den in plain sight: exploring encrypted channels in android apps. In Conference
on Computer and Communications Security (CCS).

[102] Joseph Priest and Daryl Johnson. 2015. Covert Channel over Apple iBeacon. In
Proceedings on Security and Management (SAM).

[103] Exodus Privacy. 2024. Homepage. https://exodus-privacy.eu.org/en/.
[104] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth

Sundaresan, Mark Allman, Christian Kreibich, Phillipa Gill, et al. 2018. Apps,
trackers, privacy, and regulators: A global study of the mobile tracking ecosys-
tem. In Proceedings of the Network and Distributed System Security Symposium
(NDSS).

[105] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo
Vallina-Rodriguez, and Serge Egelman. 2019. 50 ways to leak your data: An
exploration of apps’ circumvention of the android permissions system. In Pro-
ceedings of the USENIX Security Symposium.

[106] Joel Reardon, Nathan Good, Robert Richter, Narseo Vallina-Rodriguez, Serge
Egel-man, and Quentin Palfrey. 2020. Jpush away your privacy: A case study of
Jiguang’s Android SDK. (2020).

[107] Irwin Reyes, Primal Wijesekera, Joel Reardon, Amit Elazari Bar On, Abbas
Razaghpanah, Narseo Vallina-Rodriguez, Serge Egelman, et al. 2018. “Won’t
somebody think of the children?” examining COPPA compliance at scale. In
Proceedings on Privacy Enhancing Technologies (PoPETs).

[108] Ian Rose and Matt Welsh. 2010. Mapping the urban wireless landscape with
Argos. In Proceedings of the ACM conference on embedded networked sensor
systems.

[109] Bayerischer Rundfunk. 2024. Ausspioniert mit Standortdaten. https://interaktiv.
br.de/ausspioniert-mit-standortdaten/en/.

[110] Erik Rye and Dave Levin. 2024. Surveilling the Masses with Wi-Fi-Based Posi-
tioning Systems. In IEEE Symposium on Security and Privacy (SP).

[111] Piotr Sapiezynski, Radu Gatej, Alan Mislove, and Sune Lehmann. 2015. Op-
portunities and challenges in crowdsourced wardriving. In Proceedings of the
Internet Measurement Conference (IMC).

[112] Narmeen Shafqat, Nicole Gerzon, Maggie Van Nortwick, Victor Sun, Alan Mis-
love, and Aanjhan Ranganathan. 2023. Track You: A Deep Dive into Safety Alerts
for Apple AirTags. In Proceedings on Privacy Enhancing Technologies (PoPETs).

[113] Singlespot. 2024. Singlespot - Pricing, Reviews, Data & APIs. https://datarade.
ai/data-providers/singlespot/profile.

[114] Skyhook. 2024. Skyhook Wi-Fi Location. https://www.skyhook.com/wifi-
location-solutions.

[115] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. 2016. What Mobile Ads
Know About Mobile Users.. In Proceedings of the Network and Distributed System
Security Symposium (NDSS).

[116] Statista. 2024. Mobile Android Version Market Share Worldwide 2018-
2024. https://www.statista.com/statistics/921152/mobile-android-version-
share-worldwide/.

[117] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. 2012.
Investigating user privacy in android ad libraries. InWorkshop on Mobile Security
Technologies (MoST).

[118] Swrve. 2024. Swrve Geo SDK Integration Guide. https://docs.swrve.com/
developer-documentation/integration/swrve-geo-sdk/.

[119] Byron Tau. 2023. FBI Once Bought Mobile-Phone Data for Warrantless Tracking.
Other Agencies Still Do. https://www.wsj.com/articles/fbi-once-bought-mobile-
phone-data-for-warrantless-tracking-other-agencies-still-do-ad65ebe9.

[120] Marcos Tileria and Jorge Blasco. 2022. Watch over your tv: a security and
privacy analysis of the android tv ecosystem. In Proceedings on Privacy Enhancing
Technologies.

[121] Narseo Vallina-Rodriguez, Jon Crowcroft, Alessandro Finamore, Yan Grunen-
berger, and Konstantina Papagiannaki. 2013. When assistance becomes depen-
dence: characterizing the costs and inefficiencies of A-GPS. In ACM SIGMOBILE
Mobile Computing and Communications Review.

[122] Mathy Vanhoef, Célestin Matte, Mathieu Cunche, Leonardo S Cardoso, and
Frank Piessens. 2016. Why MAC address randomization is not enough: An
analysis of Wi-Fi network discovery mechanisms. In Proceedings of the Asia
conference on computer and communications security (ASIA CCS).

[123] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-Rodriguez, Yao Guo, Li
Li, Juan Tapiador, Jingcun Cao, and Guoai Xu. 2018. Beyond Google Play: A
Large-Scale Comparative Study of Chinese Android AppMarkets. In Proceedings
of the Internet Measurement Conference (IMC).

[124] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan, Luyi Xing, Xiaojing Liao,
JinWei Dong, Nicolas Serrano, Haoran Lu, XiaoFeng Wang, et al. 2021. Under-
standing malicious cross-library data harvesting on android. In Proceedings of
the USENIX Security Symposium.

[125] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. 2018. Amandroid: A
precise and general inter-component data flow analysis framework for security
vetting of android apps. In ACM Transactions on Privacy and Security (TOPS).

[126] Mira Weller, Jiska Classen, Fabian Ullrich, Denis Waßmann, and Erik Tews. 2020.
Lost and found: stopping bluetooth finders from leaking private information. In
Proceedings on Security and Privacy in Wireless and Mobile Networks (WiSec).

[127] WiGLE. 2024. WiGLE All the Networks. Found by Everyone. https://wigle.net.
[128] WIRED. 2024. Anyone Can Buy Data Tracking US Soldiers and Spies to Nuclear

Vaults and Brothels in Germany. https://www.wired.com/story/phone-data-us-
soldiers-spies-nuclear-germany/.

[129] Wired. 2024. Jeffrey Epstein Island Visitors Data Broker Leak. https://www.
wired.com/story/jeffrey-epstein-island-visitors-data-broker-leak/.

[130] Arol Wright. 2021. Android 12 no longer needs your location to scan nearby
Bluetooth devices. https://www.xda-developers.com/android-12-location-scan-
nearby-bluetooth-devices/.

[131] Senator Ron Wyden. 2024. Wyden Reveals Phone Data Used to Target Abortion
Misinformation at Visitors to Hundreds of Reproductive Health Clinics.
https://www.wyden.senate.gov/news/press-releases/wyden-reveals-phone-
data-used-to-target-abortion-misinformation-at-visitors-to-hundreds-of-
reproductive-health-clinics.

[132] Yue Xiao, Chaoqi Zhang, Yue Qin, Fares Fahad S Alharbi, Luyi Xing, and Xiaojing
Liao. 2024. Measuring Compliance Implications of Third-party Libraries Privacy
Label Disclosure Guidelines. In Conference on Computer and Communications
Security (CCS).

[133] Tingfeng Yu, James Henderson, Alwen Tiu, and Thomas Haines. 2024. Secu-
rity and Privacy Analysis of Samsung’s {Crowd-Sourced} Bluetooth Location
Tracking System. In Proceedings of the USENIX Security Symposium.

[134] Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. 2019. LibID: reli-
able identification of obfuscated third-party Android libraries. In Proceedings of
the SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).

[135] Fanghua Zhao, Linan Gao, Yang Zhang, Zeyu Wang, Bo Wang, and Shanqing
Guo. 2018. You are where you app: An assessment on location privacy of social
applications. In 2018 IEEE 29th International Symposium on Software Reliability
Engineering (ISSRE).

[136] Kaifa Zhao, Xian Zhan, Le Yu, Shiyao Zhou, Hao Zhou, Xiapu Luo, HaoyuWang,
and Yepang Liu. 2023. Demystifying Privacy Policy of Third-Party Libraries
in Mobile Apps. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE).

[137] Qingchuan Zhao, Chaoshun Zuo, Giancarlo Pellegrino, and Li Zhiqiang. 2019.
Geo-locating Drivers: A Study of Sensitive Data Leakage in Ride-Hailing Ser-
vices. Proceedings of the Network and Distributed System Security Symposium
(NDSS).

[138] Shuang Zhao, Xiapu Luo, Bo Bai, XiaoboMa,Wei Zou, Xinliang Qiu, andManHo
Au. 2016. I know where you all are! exploiting mobile social apps for large-scale
location privacy probing. In Information Security and Privacy: 21st Australasian
Conference, ACISP 2016, Melbourne, VIC, Australia, July 4-6, 2016, Proceedings,
Part I 21.

Appendix

376

https://support.google.com/googleplay/android-developer/answer/10144311?sjid=18338717510598425318-EU
https://support.google.com/googleplay/android-developer/answer/10144311?sjid=18338717510598425318-EU
https://exodus-privacy.eu.org/en/
https://interaktiv.br.de/ausspioniert-mit-standortdaten/en/
https://interaktiv.br.de/ausspioniert-mit-standortdaten/en/
https://datarade.ai/data-providers/singlespot/profile
https://datarade.ai/data-providers/singlespot/profile
https://www.skyhook.com/wifi-location-solutions
https://www.skyhook.com/wifi-location-solutions
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://www.statista.com/statistics/921152/mobile-android-version-share-worldwide/
https://docs.swrve.com/developer-documentation/integration/swrve-geo-sdk/
https://docs.swrve.com/developer-documentation/integration/swrve-geo-sdk/
https://www.wsj.com/articles/fbi-once-bought-mobile-phone-data-for-warrantless-tracking-other-agencies-still-do-ad65ebe9
https://www.wsj.com/articles/fbi-once-bought-mobile-phone-data-for-warrantless-tracking-other-agencies-still-do-ad65ebe9
https://wigle.net
https://www.wired.com/story/phone-data-us-soldiers-spies-nuclear-germany/
https://www.wired.com/story/phone-data-us-soldiers-spies-nuclear-germany/
https://www.wired.com/story/jeffrey-epstein-island-visitors-data-broker-leak/
https://www.wired.com/story/jeffrey-epstein-island-visitors-data-broker-leak/
https://www.xda-developers.com/android-12-location-scan-nearby-bluetooth-devices/
https://www.xda-developers.com/android-12-location-scan-nearby-bluetooth-devices/
https://www.wyden.senate.gov/news/press-releases/wyden-reveals-phone-data-used-to-target-abortion-misinformation-at-visitors-to-hundreds-of-reproductive-health-clinics
https://www.wyden.senate.gov/news/press-releases/wyden-reveals-phone-data-used-to-target-abortion-misinformation-at-visitors-to-hundreds-of-reproductive-health-clinics
https://www.wyden.senate.gov/news/press-releases/wyden-reveals-phone-data-used-to-target-abortion-misinformation-at-visitors-to-hundreds-of-reproductive-health-clinics

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

Figure 6: Upset plot of all the identifiers collected by the
SDKs.

Table 6: All 52 SDKs in our dataset and their purposes.

SDK Name # Apps Purpose Type

A
na

ly
ti
cs

Lo
ca
ti
on

A
dv

er
ti
si
ng

Pr
ofi

li
ng

AltBeacon 4,022 ✓ ✓
Adobe Experience Platform 1,328 ✓
Kochava 1,117 ✓ ✓ ✓
Salesforce Marketing Cloud 1,080 ✓ ✓ ✓
Estimote 510 ✓ ✓
LeanPlum 456 ✓ ✓ ✓
Gimbal 396 ✓ ✓ ✓
Radius Networks 369 ✓ ✓
mParticle 367 ✓
Ad4Screen 198 ✓
Kontakt 194 ✓
CueAudio 190 ✓ ✓
Swrve 153 ✓ ✓ ✓
Reveal Mobile 109 ✓ ✓
Exponea 99 ✓
Radar 93 ✓ ✓
IndoorAtlas 92 ✓ ✓
SignalFrame 89 ✓
Bazaarvoice 88 ✓ ✓
Huq Sourcekit 81 ✓ ✓
Yinzcam Sobek 80 ✓ ✓ ✓
BlueKai (acquired by Oracle) 73 ✓
Cuebiq 73 ✓ ✓
Rover SDK 50 ✓ ✓ ✓
Coulus Coelib 47 ✓
Colocator 40 ✓ ✓
X-Mode 38 ✓ ✓
Zendrive 34 ✓ ✓ ✓
Dynamic Yield 27 ✓
Pilgrim by Foursquare 25 ✓
Sense360 24 ✓ ✓
Locuslabs 23 ✓ ✓
InMarket 23 ✓ ✓
Singlespot 18 ✓
Roximity 17 ✓
Zapr 17 ✓ ✓ ✓
Swirl 16 ✓ ✓
Bluecats 14 ✓
Areametrics 8 ✓
OpenLocate 8 ✓
Point Inside 7 ✓ ✓
PredicIO 6 ✓ ✓ ✓
MOCA 5 ✓ ✓ ✓
BeaconsInSpace (Fysical) 5 ✓
Unacast Pure 5 ✓
Woosmap SDK 5 ✓ ✓
Sensoro 4 ✓ ✓
Signal360 4 ✓
Placer 4 ✓ ✓ ✓
Proximi.io 3 ✓ ✓
Tamoco 3 ✓ ✓
pulseid 1 ✓ ✓

377

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

Table 7: Description of PII types considered in this study. Abbreviations used: Pers - Persistent; Reset - Resettable.

Identifier Pers Reset Definitions
IMEI x Unique hardware ID for the mobile device. Available only on Android 9 or below
WiFi MAC x Unique hardware ID for the WiFi interface.
HWID x Unique hardware ID assigned by the manufacturer.
GSF ID x Unique ID tied to the Google account on the device.
Boot ID x Unique identifier representing the device’s boot session; resets only after a factory reset.
Email x User’s email address.
Device Fingerprint Non-unique Collection of attributes (e.g., OS version, browser) identifying the device..
Android ID x App-specific ID that resets with a factory reset.
AAID x Advertising ID provided by Google for specialized for advertising. Can be reset through device settings.
Firebase ID x App-specific ID tied to a specific app instance. It resets when the app is uninstalled or its data is cleared.
Bluetooth Device Name x User-defined, resettable, and non-unique name for Bluetooth discovery.
Bluetooth iBeacon MAC x Unique hardware address for BLE proximity detection.
iBeacon UUID x Unique ID for iBeacon devices in proximity-based services.
Router MAC x Unique mac address for the connected WiFi router.
Router Scan MAC x Persistent hardware address for nearby routers detected in WiFi scans,
Router Scan SSID x Names of nearby routers detected in WiFi scans,
Router SSID x Name of the currently connected router.
Coarse Geolocation x Co-ordinates of approximate device location derived from network data.
Fine Geolocation x Co-ordinates of precise GPS-based location of the device.

Table 8: Example of Beacon SDK code and network signatures.

SDK Name Package Names Domains / Endpoints
AltBeacon org.altbeacon.beacon., com.altbeacon.beacon., org.altbeacon.bluetooth. data.altbeacon.org
Radius Networks com.radiusnetworks. proximitykit.radiusnetworks.com
Estimote com.estimote. *.estimote.com
Gimbal com.gimbal.android. analytics*.gimbal.com, api.gimbal.com, sdk-info.gimbal.com
Kontakt com.kontakt.sdk.android. kontakt.io
Reveal Mobile com.stepleaderdigital.reveal. *.revealmobile.com rvl.wral.com
SignalFrame com.wirelessregistry.observersdk. *.wirelessregistry.com
IndoorAtlas com.indooratlas.android.sdk. ipsws.indooratlas.com
Rover SDK io.rover. *.rover.io

Table 9: Beacon SDK search keywords and attribution signals.

Technology Search Keywords Attribution Signals

BLE

"beacon SDK", "proximity SDK",
"BLE SDK", "Bluetooth tracking SDK",
"BLE advertising SDK", "Bluetooth beacon SDK",
"RSSI scanning SDK"

Presence of BLE scanning APIs,
class names associated with BLE scanning,
declared BLE-related permissions in AndroidManifest.xml,
references to hardcoded UUIDs for beacon identification,
extraction of RSSI values for signal strength analysis

WiFi
"WiFi beacon SDK", "proximity SDK",
"WiFi tracking SDK", "WiFi positioning SDK",
"WiFi scanning SDK"

Presence of WiFi scanning APIs,
class names related to WiFi scanning,
declared WiFi-related permissions in AndroidManifest.xml,
analysis of hardcoded SSIDs, references to known WiFi telemetry endpoints

Location
"geofencing SDK", "proximity SDK",
"location tracking SDK", "indoor positioning SDK",
"RTLS SDK", "asset tracking SDK"

Presence of location-related APIs,
class names associated with location services,
declared location-related permissions in AndroidManifest.xml,
embedded geofencing configuration files, hardcoded location-based UUIDs

378

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

Table 10: Android framework APIs (Java) that enable wireless beacon scanning.

Technology Permissions APIs

BLE
BLUETOOTH_SCAN
BLUETOOTH_CONNECT
ACCESS_FINE_LOCATION

android.bluetooth.BluetoothAdapter/startLeScan
android.bluetooth.BluetoothLeScanner/startScan
android.bluetooth.BluetoothDevice/connectGatt
android.bluetooth.BluetoothGatt/discoverServices
android.bluetooth.BluetoothLeAdvertiser/startAdvertising

WiFi

CHANGE_WIFI_STATE
ACCESS_WIFI_STATE
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION

android.net.wifi.WifiManager/getScanResults
android.net.wifi.WifiManager/startScan
android.net.wifi.WifiManager/getConnectionInfo
android.net.wifi.WifiManager/setWifiEnabled
android.net.wifi.WifiManager/reconnect

Location
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION
FOREGROUND_SERVICE

android.location.LocationManager/getLastKnownLocation
android.location.LocationManager/requestLocationUpdates
android.telephony.TelephonyManager/getAllCellInfo
android.telephony.TelephonyManager/getCellLocation
android.location.LocationManager/addProximityAlert

Table 11: Market share of the top-15 SDKs per top-10 app category.

SDK Name # Apps Lifestyle Shopping Sports Business Travel & Local Finance News & Magazines Education Entertainment Weather
AltBeacon 4024 18% (721) 6% (240) 3% (137) 12% (498) 8% (338) 3% (133) 1% (59) 8% (302) 3% (114) 1% (32)
Adobe Experience Platform 1328 3% (45) 7% (89) 9% (120) 4% (47) 5% (65) 13% (179) 16% (212) 1% (13) 7% (97) 18% (245)
Kochava 1118 3% (34) 3% (36) 7% (73) 2% (20) 2% (18) 5% (60) 2% (25) 4% (42) 7% (75) 0% (2)
Salesforce Marketing Cloud 1080 9% (98) 23% (244) 3% (33) 10% (103) 8% (83) 18% (197) 2% (24) 1% (12) 2% (24) 0% (0)
Estimote 510 34% (174) 3% (14) 1% (6) 12% (60) 13% (65) 1% (6) 0% (2) 13% (64) 3% (14) 0% (0)
LeanPlum 456 3% (15) 7% (33) 1% (6) 2% (10) 14% (63) 5% (21) 1% (3) 14% (66) 2% (8) 0% (2)
Gimbal 396 10% (40) 6% (23) 42% (167) 1% (5) 1% (5) 20% (80) 3% (10) 5% (21) 6% (24) 0% (0)
Radius Networks 369 44% (162) 6% (23) 2% (9) 6% (21) 4% (13) 1% (3) 1% (3) 3% (12) 2% (7) 0% (1)
mParticle 367 3% (11) 6% (21) 6% (21) 3% (11) 16% (59) 8% (30) 14% (53) 1% (4) 9% (32) 0% (0)
Ad4Screen 198 5% (10) 19% (38) 3% (5) 2% (3) 7% (14) 12% (23) 29% (58) 1% (2) 2% (3) 0% (0)
Kontakt 195 9% (17) 15% (30) 7% (13) 21% (40) 7% (13) 2% (4) 2% (3) 4% (7) 5% (9) 1% (1)
CueAudio 190 0% (0) 0% (0) 98% (187) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 1% (2) 0% (0)
Swrve 153 2% (3) 8% (13) 3% (4) 0% (0) 7% (11) 5% (8) 1% (2) 2% (3) 5% (7) 1% (1)
Reveal Mobile 109 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 13% (14) 0% (0) 1% (1) 86% (94)
Exponea 99 4% (4) 38% (38) 0% (0) 2% (2) 10% (10) 15% (15) 0% (0) 3% (3) 4% (4) 0% (0)
Total apps per category 12% (1385) 9% (999) 8% (935) 8% (903) 7% (847) 7% (795) 5% (600) 5% (562) 4% (473) 4% (420)

379

Proceedings on Privacy Enhancing Technologies 2025(3) Girish et al.

Table 12: Data collected by Vizbee.

Package Name In
st
al
ls

A
A
ID

R
ou

te
r
M
A
C

R
ou

te
r
SS

ID

A
nd

ro
id

ID

C
oa

rs
e
G
eo

lo
ca
ti
on

com.gotv.nflgamecenter.us.lite 120.1M x x x x x
com.cnn.mobile.android.phone 50M x x x x
com.handmark.sportcaster 18.6M x x x x
com.turner.tnt.android.networkapp 7.6M x x x x
com.nfl.fantasy.core.android 7.4M x x x x x
com.neulion.android.tablet.nfl.wnfln 3.9M x x x x x
com.turner.trutv 1.7M x x x x
com.fox.weather 959.7K x x x x x
com.gannett.local.library.news.kare 198.8K x x x x x
com.raycom.wtol 194.1K x x x x x
com.gannett.local.library.news.wxia 151.0K x x x x x
com.gannett.local.library.news.kxtv 54.7K x x x x x

Table 13: SDKs that present rationale behind dangerous
permission requested using shouldShowRequestPermission-
Rationale().

SDK % Ctx C. Loc F. Loc B. Loc

Estimote 75% ✓
InMarket 52% ✓
Radar 42% ✓ ✓
Singlespot 55% ✓
Salesforce Marketing Cloud 54% ✓

Abbreviations Used: SDK - Software Development Kit, % Ctx - % of apps that Show
Context, C. Loc - Access Coarse Location, F. Loc - Access Fine Location, B. Loc - Access
Background Location.

POST /track/json HTTP /1.1^M

User -Agent: Dalvik /2.1.0 (Linux; U; Android 12;

AOSP on sargo Build/SP2A .220505.008)^M

Content -Type: application/json; charset=UTF -8^M

Host: control.kochava.com^M

Content -Length: 1729^M

^M

"action ":" install"," kochava_app_id ":" kobiubiuclub

-3b00"," kochava_device_id ":"

KA31101723813375tdacae51f18644fed9ef9b8467b07d2be

"," sdk_protocol ":"14" ," sdk_version ":"

AndroidTracker 3.11.0" ," nt_id ":"bc770 -1-

acccf2f1 -33da -4dbc -80bf -6 a5981859f3f ","data

":{" screen_brightness ":0.2902 ,"

device_orientation ":" portrait","volume ":0.32 ,"

aaid": "X7dD24S2 -CcD4 -4Cfv -hhgg -bbbb7yk245f6"

,"device ":" AOSP on sargo -Android","disp_h

":2220 ," disp_w ":1080 ," package ":"com.biubiuclub

.biubiuclubchat "," installed_date ":1723813319 ,"

app_name ":" BiubiuClub "," app_version ":"291" ,"

app_short_string ":"2.9.1" ," os_version ":"

Android

"network_conn_type ":"wifi","ssid":, "routerssid:

ABC -WIFI", "bbsid": "routermac : XX:XX:XX:XX:

XX:XX", "network_metered ":false ,"nvp":0,"

carrier_name ":""," usertime ":1723813375 ," uptime

":0.945 ," state_active ":true ,"

app_limit_tracking ":false ," platform ":" android

"}," sdk_id ":"c946 -s88450 -"," send_date

":"2024 -08 -16 T13 :02:56.954Z"

Figure 7: TheKochava SDK in com.biubiuclub.biubiuclubchat
collects AAID and router MAC address and transmits them
to control.kochava.com

380

com.biubiuclub.biubiuclubchat

Your Signal, Their Data Proceedings on Privacy Enhancing Technologies 2025(3)

POST /events/v3 HTTP /1.1

x-dynatrace: MT_3_4_2021016446_1 -0_36d6e79e -

"records ": [

{

"app_session_id ": "474 c6944 -823d-4da3 -b154

-001 b272a6f59",

"event_type ": "bulk_localization_event",

"localizations ": [

{

"ad_tracking_enabled ": "true",

"Ad_id": "ccccccc -cccc -cccc -cccc -

ba1bccccc0a",

"app_package_name ": "br.com.bancobmg.

bancodigital.atletico",

"app_state ": "FOREGROUND",

"fingerprint ": {

"elapsed_ts ": "1589677460" ,

"environment_scan ": {

"environment_state ": "outdoor",

"timestamp ": "1723858094723"

},

"gps_fix ": {

"altitude ": "721.5999755859375" ,

"bearing ": "227.02573" ,

"bearing_acc ": "45",

"gps_acc ": "12.75" ,

"lat": "30.3368394" ,

"lng": " -2.7705837" ,

"provider ": "fused",

"speed": "2.1049643" ,

"speed_acc ": "1.5",

"vertical_acc ": "1.5948421"

},

"gps_ts ": "1723858073227" ,

"mock_location ": "false",

"precise_location ": "true"

},

"wifi_scan ": {

"ap_measures ": [

{

"ap_ts": "1723858075286" ,

"auth": "false",

"bssid": "XX:XX:XX:XX:XX:XX",

"channel_width ": "20 _mhz",

"con": "false",

"frequency ": "2462" ,

"level": "-60",

"ssid": "ABC -WIFII",

"venue_name ": "",

"wifi_rtt_responder ": "false"

},

Figure 8: The Incognia SDK in br.com.bancobmg.bancodigital.
atletico collects AAID, GPS coordinates, and WiFi scan data
and transmits them to service2.us.incognia.com.

381

br.com.bancobmg.bancodigital.atletico
br.com.bancobmg.bancodigital.atletico

	Abstract
	1 Introduction
	2 Background
	2.1 BLE Beacons
	2.2 WiFi Beacons
	2.3 Permission Overview

	3 Threat Model
	4 Methodology
	4.1 Dataset
	4.2 Detecting Beacon SDKs
	4.3 Static Analysis
	4.4 Dynamic Analysis
	4.5 Limitations

	5 Beacon SDK Landscape
	5.1 SDK Purposes and Prevalence
	5.2 Cross-Library Analysis

	6 Privacy Analysis
	6.1 Permission Analysis
	6.2 Beacon Data Collection
	6.3 ID Bridging
	6.4 Permission Usage Rationale

	7 Discussion
	8 Related work
	9 Conclusions
	Acknowledgments
	References

