
Low-Cost Privacy-Preserving Decentralized Learning
Sayan Biswas
EPFL, Switzerland

Davide Frey
Univ Rennes, Inria, CNRS, IRISA,

France

Romaric Gaudel
Univ Rennes, Inria, CNRS, IRISA,

France

Anne-Marie Kermarrec
EPFL, Switzerland

Dimitri Lerévérend∗
Univ Rennes, Inria, CNRS, IRISA,

France

Rafael Pires
EPFL, Switzerland

Rishi Sharma
EPFL, Switzerland

François Taïani
Univ Rennes, Inria, CNRS, IRISA,

France

Abstract
Decentralized learning (DL) is an emerging paradigm of collabo-
rative machine learning that enables nodes in a network to train
models collectively without sharing their raw data or relying on a
central server. This paper introduces Zip-DL, a privacy-aware DL
algorithm that leverages correlated noise to achieve robust privacy
against local adversaries while ensuring efficient convergence at
low communication costs. By progressively neutralizing the noise
added during distributed averaging, Zip-DL combines strong pri-
vacy guarantees with high model accuracy. Its design requires only
one communication round per gradient descent iteration, signifi-
cantly reducing communication overhead compared to competitors.
We establish theoretical bounds on both convergence speed and pri-
vacy guarantees. Moreover, extensive experiments demonstrating
Zip-DL’s practical applicability make it outperform state-of-the-art
methods in the accuracy vs. vulnerability trade-off. Specifically,
Zip-DL (i) reduces membership-inference attack success rates by
up to 35% compared to baseline DL, (ii) decreases attack efficacy
by up to 13% compared to competitors offering similar utility, and
(iii) achieves up to 59% higher accuracy to completely nullify a ba-
sic attack scenario, compared to a state-of-the-art privacy-preserv-
ing approach under the same threat model. These results position
Zip-DL as a practical and efficient solution for privacy-preserving
decentralized learning in real-world applications.

Keywords
decentralized learning, differential privacy, correlated noises

1 Introduction
Decentralized learning (DL) allows a collection of devices to train a
global model collaborativelywithout sharing raw training data. This
approach has drawn increasing attention from both academia [3]
and industry, showcasing its potential across various sectors, includ-
ing healthcare [28, 39] and autonomous vehicles [8]. In DL, each

∗Corresponding author: first.last@inria.fr

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2025(3), 451–474

© 2025 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2025-0108

device (henceforth node) (i) trains a local model using its own data;
(ii) exchanges thismodel with those of its neighbors according to the
underlying communication topology; and (iii) averages its current
local model with the models received from neighbors. This iterative
process repeats until convergence is reached [27, 34]. Although
training data never leaves participating nodes in DL, the models
that nodes exchange still leak information. Exploiting these leaks,
an honest-but-curious attacker can mount privacy attacks against
participants to reveal sensitive attributes of their data. For instance,
an attacker canmount aMembership-Inference Attack (MIA) [7, 37]
that can reveal whether a particular sample belongs to the training
set of a node.

Differential Privacy (DP) [12] is a widely-used measure of formal
privacy guarantees that has been applied to the design of privacy-
preserving DL [35]. DP strategically adds noise to data so that the
inclusion or exclusion of a data point becomes much harder to
detect. However, DP typically assumes a worst-case threat model in
which an attacker can access all messages transiting on the network.
As a result, although it provides robust privacy guarantees, DP tends
to require high noise levels that disrupt the learning process and
severely impair the system’s utility.

Following existing literature [9, 14], we assume a representative
threat model in which local honest-but-curious attackers can only
observe the messages they receive. An attack is furthermore con-
sidered successful only if the obtained information can be linked
to its contributing participant. This model covers a wide range
of scenarios in which network communication is protected. Still,
nodes participating in the distributed learning process can exploit
their partial knowledge of the system to breach the privacy of other
participants. To specifically address this threat model, Muffliato [9]
introduces Pairwise Network Differential Privacy (PNDP). In contrast
to DP that captures a global privacy measure, PNDP tracks privacy
loss at a finer level, between pairs of nodes. As a result, PNDP
lends itself to lower noise levels, faster convergence, and better
accuracy. Unfortunately, its use so far requires multiple rounds of
averaging [9], leading to high network costs.

This paper explores the use of correlated noise to achieve PNDP
without significant network costs. Correlated noise—a natural evo-
lution of noise-based privacy methods—protects individual node in-
puts while minimizing the impact on model accuracy. Although sys-
tems using correlated noise show promising convergence [14], their

451

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2025-0108

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

Table 1: Position of our work compared to previous approaches.

Approach Masking (RSS-NB) RSS-LB Muffliato Zip-DL
[14] [14] [9] (ours)

Formal privacy guarantees ✓ ✗ ✓ ✓

No P2P coordination ✗ ✓ ✓ ✓

One averaging round ✓ ✓ ✗ ✓

Communication cost Moderate Low High Low
Impact on Convergence Rate None High High Low

privacy implications remain underexplored. Several approaches us-
ing correlated noise have been formulated [2, 19, 35], but most of
them either rely on a trusted aggregator to cancel out the noises [19,
35] or on pairwise coordination between nodes, which comes at a
cost either in communication or in utility [2].

We introduce Zip-DL (Zero-summing Interference for Privacy-

preserving Decentralized Learning), a privacy-preserving algorithm
that leverages correlated noise in a single communication round
while offering formal privacy guarantees. To the best of our knowl-
edge, Zip-DL (see Table 1) is the only approach (i) with formal guar-
antees that (ii) requires no prior pairwise coordination between
nodes, and (iii) only requires a single averaging round per gradient
step. In addition to Zip-DL, we make the following contributions:

• We prove that our approach converges while relying on a
single communication round per gradient step. This powerful
property results from the fact that the sum of the noise added
to the communication round is zero. Moreover, our analysis
shows that the impact of the noise on the convergence rate
is negligible compared to state-of-the-art methods.
• We provide a formal privacy guarantee of our approach in
terms of Pairwise Network Differential Privacy (PNDP).
• We conduct an extensive evaluation study comparing Zip-
DL with both a state-of-the-art baseline and standard DL
under threshold-based membership inference attacks (MIA)
on both the CIFAR-10 and MovieLens datasets. Our results
show that Zip-DL provides the best trade-off between ac-
curacy and privacy while maintaining low communication
overhead. In particular, Zip-DL reduces the success rate of
MIA by up to 26 percentage points while only entailing a
loss of 11 percentage points in test accuracy against base-
line DL. Zip-DL also improves test accuracy by up to 59%
w.r.t. to the state-of-the-art privacy-preserving baseline of
Muffliato when configured to completely nullify a baseline
threshold-based attack scenario.

The paper is organized as follows: Section 2 provides the neces-
sary background and threat model. Section 3 presents the design of
Zip-DL and its core properties. Sections 4 and 5 present the theo-
retical guarantees of our privacy-preserving algorithm, in terms of
convergence rate and privacy respectively. We present the results
of our experimental study in Section 6 before surveying related
work in Section 7 and concluding in Section 8.

2 Preliminaries
We start by describing the background and threat model considered
in our work. Sections 2.1 and 2.2 introduce respectively general
notations and the gossip-based averaging algorithm used by most
DL algorithms. Section 2.3 describes some privacy attacks on DL
and some existing countermeasures. Finally, Section 2.4 describes
our threat model.

2.1 Decentralized learning
We consider a set of 𝑛 nodesV = [[1,𝑛]], each owning a model of
𝑑 parameters, whose aim is to solve a DL problem without sharing
raw training data. While each node, 𝑎 ∈ V , stores a local data
distribution D𝑎 , the goal is to determine the model parameters
𝑥∗ ∈ R𝑑 that optimize the learning problem over the local datasets
of all participating nodes. This is done by minimizing an average
loss function:

argmin
𝑥 ∈R𝑑

𝑓 (𝑥) = 1

𝑛

𝑛∑︁
𝑎=1

E𝜉∼D𝑎

[
𝐹𝑎 (𝑥 ; 𝜉)

]
︸ ︷︷ ︸

𝑓𝑎 (𝑥)

, (1)

where 𝑓𝑎 (𝑥) represents the local objective function associated with
node 𝑎, and 𝐹𝑎 (𝑥 ; 𝜉) quantifies the prediction loss associated with
the model parameters, 𝑥 , for the sample, 𝜉 , potentially encompass-
ing non-convex characteristics.

To solve Equation (1), we proceed in 𝑇 successive iterations,
with each node, 𝑎, keeping its own local model, 𝑥 (𝑡)𝑎 , for each
iteration, 𝑡 ∈ [[0,𝑇]]. The goal is to make the averaged model,
𝑥 (𝑡) := 1

𝑛

∑𝑛
𝑎=1 𝑥

(𝑡)
𝑎 , converge to 𝑥∗.

The learning process involves collaborative interactions between
nodes, which are connected by an underlying communication topol-
ogy. At each iteration 𝑡 , each node first trains its model on its local
data and then aims to average it with the models of other nodes.
During the averaging step, each node restricts its communication
to its neighbors in the communication topology using gossip aver-
aging (Section 2.2). Yet, sharing only model parameters may still
leak sensitive information, thus hurting privacy.

2.2 Gossip averaging
Many DL algorithms rely on gossip averaging to estimate and share
the average model 𝑥 (𝑡) := 1

𝑛

∑𝑛
𝑎=1 𝑥

(𝑡)
𝑎 at each iteration 𝑡 [10, 25].

A gossip-averaging operation can consist of multiple successive
rounds. In each averaging round, 𝑠 , the nodes communicate accord-
ing to a gossip matrix,𝑊 (𝑡 ,𝑠) , in the following manner. Each node,

452

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

𝑎, sends a message,𝑚 (𝑡 ,𝑠)
𝑎→𝑣 ∈ R𝑑 , containing the model parameters

to each neighbor, 𝑣 . Upon receiving it, node 𝑣 weighs the received
model using𝑊 (𝑡 ,𝑠)

𝑎,𝑣 to perform averaging. In the simplest setting,
𝑚
(𝑡 ,𝑠)
𝑎→𝑣 corresponds to the current local estimate of 𝑥 (𝑡) , this estimate

is updated to
∑

𝑣∈V𝑊
(𝑡 ,𝑠)
𝑎,𝑣 𝑚

(𝑡 ,𝑠)
𝑣→𝑎 , and it converges to 𝑥 (𝑡) as 𝑠 tends

to infinity. We make the following assumption on𝑊 (𝑡 ,𝑠) :

Assumption 2.1. All gossip matrices are symmetric, ⊺𝑊 (𝑡 ,𝑠) =

𝑊 (𝑡 ,𝑠)
and stochastic, ∀𝑎 ∈ V ,

∑
𝑣∈V𝑊

(𝑡 ,𝑠)
𝑎,𝑣 = 1.

While the symmetry assumption is not always necessary [10, 25],
it is a common assumption for complexity proofs that enables
tighter bounds [9, 23]. In our case, it enables convergence and
privacy analysis.

We also denote by Γ (𝑡 ,𝑠)
𝑎 the set of neighbors to which node 𝑎

sends its model, and by 𝑑 (𝑡 ,𝑠)
𝑎 the corresponding degree of 𝑎. For-

mally, we have Γ (𝑡 ,𝑠)
𝑎 := {𝑣 ∈ V | 𝑊 (𝑡 ,𝑠)

𝑣,𝑎 ≠ 0}. Note that, due to
Assumption 2.1 the networks are symmetric: 𝑣 ∈ Γ (𝑡 ,𝑠)

𝑎 ⇐⇒ 𝑎 ∈
Γ (𝑡 ,𝑠)
𝑣 . Moreover, we consider Γ (𝑡 ,𝑠)

𝑎 to be a closed neighborhood un-
less otherwise specified, i.e. 𝑎 ∈ Γ (𝑡 ,𝑠)

𝑎 . A node may thus send virtual
messages to itself. This property will be pivotal to our approach
and is common for efficient averaging schemes [41].

Finally, several averaging approaches add a mask [5] or noise [9]
to the messages to protect the privacy of the nodes’ data. In this
paper, we focus on noise-based approaches as they require less
coordination between nodes and are more resilient to collusion
between attackers.

Remark 2.2. In DL, the averaging step does not need to reach

exactly the same model at each node. Therefore, the rounds can be

stopped before full convergence. In Zip-DL, even one round is sufficient

(𝑠 = 1). Thus, in the rest of the paper, we will omit 𝑠 in equations

related to the averaging process.

2.3 Privacy in Decentralized Learning
Privacy attacks. Numerous privacy attacks target Machine-

Learning systems [7, 15, 37, 42, 47]. Most of these focus on attacking
individual models or gradients, leaving attacks that exploit multiple
models, such as those shared in DL, relatively underexplored. While
some studies address this gap [31, 37], they often rely on strong
assumptions about the attacker’s capabilities or incur significant
computational costs, especially in decentralized scenarios. To ad-
dress these limitations, we adopt in this work two levels of MIA
to analyze our approach: a threshold-based attack [7, 37], and a
classifier-based MIA [45], which offers a computationally efficient
and practical approach to evaluating privacy vulnerabilities in de-
centralized learning. Given some input sample 𝑥 , MIAs aims to
decide whether 𝑥 belongs to a node’s training set or not. Intuitively,
if an attacker can accurately infer this information, it may be able
to reconstruct part of a node’s training dataset. In the following, we
consider an attacker co-located with one of the participating nodes
(the attacking node) that observes the models it receives in order
to perform an MIA targeting the training set of some other distant
node (the victim node). (See Section 2.4 just below for more detail.)

Differential Privacy. Introduced in databases, Differential Pri-
vacy (DP) provides a widely used framework for protecting models

from such attacks [9, 12, 13, 30, 37]. In a decentralized scenario, DP
can be instantiated in different ways. The most well-studied vari-
ants are local differential privacy (LDP) [22] and central differential

privacy. The former assumes a local model without the existence
of any trusted entity (e.g., a server) to curate the noise that, in
turn, provides LDP guarantees. However, this approach is usually
detrimental for the utility. The latter only provides guarantees on
a final, averaged model and relies on a trusted central server for
adding the noise. It has been shown that the optimal tradeoff in
both cases differs by a factor of 𝑛, the number of nodes [11]. To
bridge this gap, relaxations of the strict scenario of LDP have been
proposed [2, 9]. These relaxations include PNDP [9], which we
consider in this work and detail in Section 5.

2.4 Threat model
We aim to protect the privacy of users data against honest-but-
curious participating nodes during training. This scenario is in line
with related work [4, 9, 15] in the domain of privacy-preserving
DL, where the attacker can observe information about a victim
node during training but does not deviate from the algorithm. We
consider the attacker to be a node (or a set of nodes) participating in
the training algorithm, but this can be extended to the case where
an attacker is eavesdropping on a node’s communication. The at-
tacker’s goal is to infer about the victim’s data, which we quantify
in terms of PNDP (see Section 5 for a formal definition). This notion
of privacy in the context of DL is driven by the observation that
privacy loss is not equal between all nodes in a distributed algo-
rithm: close neighbors in the communication topology will receive
more information from a node than nodes that are further away.

With PNDP in mind, our approach perturbs the models ex-
changed between nodes during training to prevent some honest-but-
curious attacker from inferring precise information on a victim’s
node training distribution. In this setting, the attacker (which is
co-located with one of the nodes) only has a partial view of the
messages exchanged within the network, and its attacking power
depends on its distance from the victim node within the communica-
tion graph. This is captured formally in Definition 5.2 in Section 5.1.
In this setting, the attacker may never be in a position to recon-
struct the final average model with precision, as its own local model
might be biased by its position in the graph, non independent-and-
identically-distributed (non-IID) data, and noise injected during
the training process. The limited information that nodes can ac-
cess in this setup and the key influence of their position on the
(local) model they obtain is sufficient for most applications as the
resulting local models remain valuable, even if they differ from
node to node. Note, however, that if the goal of the DL algorithm
is to produce a unified global model to use by some downstream
application, one may apply central-DP or local-DP to global model
before release to obtain DP guarantees also for this downstream
application. Such a threat model is widespread in the literature that
focuses on privacy-preserving DL such as [4, 9].

To empirically evaluate the performance of Zip-DL compared
to its baselines, we conduct experiments with two paradigms of
MIA that consider an attacker with different levels of knowledge
of the victim’s training set. The goal is to use a victim’s message
to infer whether a particular training sample was used to train the

453

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

Algorithm 1 Zip-DL-averaging for a node 𝑎 at time 𝑡 .
Input: local model 𝑥𝑎 , stepsize 𝛾 , privacy parameter 𝜍𝑎 .
Output: Localized model average with correlated noise.

1: Get the gossip weights𝑊 (𝑡)
𝑎 , 𝑑

(𝑡)
𝑎 ← |Γ (𝑡)𝑎 |

2: Draw 𝑌
(𝑡)
𝑎→𝑣 ∼ N(0,𝛾2𝜍2

𝑎) for 𝑣 ∈ Γ
(𝑡)
𝑎

3: 𝑍 (𝑡)𝑎→𝑣 = 𝑌
(𝑡)
𝑎→𝑣 − 1

𝑑
(𝑡)
𝑎 𝑊

(𝑡)
𝑎,𝑣

∑
𝑗∈Γ (𝑡)𝑎

𝑊
(𝑡)
𝑎,𝑗 𝑌

(𝑡)
𝑎→𝑗

4: for all 𝑣 ∈ Γ (𝑡)𝑎 do
5: Send 𝑥 (𝑡)𝑎 + 𝑍 (𝑡)𝑎→𝑣 to 𝑣
6: Receive 𝑥 (𝑡)𝑣 + 𝑍 (𝑡)𝑣→𝑎 from 𝑣

7: end for
8: return

∑
𝑣∈Γ (𝑡)𝑎

𝑊
(𝑡)
𝑎,𝑣 (𝑥 (𝑡)𝑣 + 𝑍 (𝑡)𝑣→𝑎)

victim’s model in order to demonstrate how the formal privacy
guarantees provided by Zip-DL complement with the empirically
mounted MIA to capture the essence of real-world applications of
our approach. More details are given in Section 6.1.

3 Zip-DL: Locally-Correlated Noise
3.1 Zip-DL in a nutshell
Gossip averaging typically requires multiple averaging rounds to
provide a good estimate of the average of nodes’ individual in-
puts [20]. Unfortunately, since averaging is required at each learn-
ing iteration, these rounds add up to a substantial network cost.

We drastically reduce this overhead by performing a single aver-
aging round per learning iteration. Without noise, the cumulative
effect of one-round averaging between each gradient-descent step
is enough to ensure convergence [10, 25, 44].

Zip-DL adds noise to this process to provide PNDP guarantees.
As one-round averaging is limited to a node’s neighbors, the residual
noise in partially averaged models remains high, which may disrupt
learning and affect utility. We mitigate this effect by correlating

the injected noise such that it sums to zero over each node’s closed
neighborhood. The correlation is local and eschews any coordination
between neighbors.

In the following, we first detail the one-round localized averaging
that lies at the core of Zip-DL (Algorithm 1), before moving on to
the resulting decentralized SGD learning algorithm (Algorithm 2).
We then state some fundamental properties of Zip-DL’s global
average model in Section 3.3.

3.2 Detailed description of Zip-DL
Zip-DL’s model-averaging procedure is described in Algorithm 1. It
relies on a stochastic communication topology [10] captured by the
gossip matrix𝑊 (𝑡) , where 𝑡 denotes the current learning iteration
(Section 2.2). Node 𝑎 first determines its neighborhood Γ (𝑡)𝑎 and
the weights𝑊 (𝑡)

𝑎 that its neighbors apply. Then, to protect its local
data, a node 𝑎 adds noise 𝑍 (𝑡)𝑎→𝑣 to its model 𝑥 (𝑡)𝑎 before sending
it to each of its neighbors, 𝑣 ∈ Γ (𝑡)𝑎 . By construction, the added
noise sums to zero (Lines 2-3 of Algorithm 1) so as not to affect the
computation of the global average. A node adapts how it protects
its data by picking its own privacy parameter 𝜍𝑎 , which itself drives
the variance 𝛾2𝜍2

𝑎 of the injected noises.

Algorithm 2 Zip-DL for a node 𝑎.

Input 𝑥 (0)𝑎 the initial model, 𝑇 the number of iterations.
1: for 𝑡 = 0 to 𝑇 − 1 do
2: Draw 𝜉

(𝑡)
𝑎 ∼ D𝑎 , compute 𝑔 (𝑡)𝑎 := ∇𝐹𝑎 (𝑥 (𝑡)𝑎 , 𝜉 (𝑡)𝑎)

3: 𝑥
(𝑡+1/2)
𝑎 = 𝑥

(𝑡)
𝑎 − 𝛾𝑔 (𝑡)𝑎

4: 𝑥
(𝑡+1)
𝑎 = Zip-DL-averaging(𝑥 (𝑡+1/2)

𝑎 ,𝛾 , 𝜍𝑎)
5: end for

To generate zero-summing noises in Algorithm 1, a node 𝑎 first
generates an initial noise 𝑌

(𝑡)
𝑎→𝑣 (Line 2) for each of its neighbors 𝑣 .

Those noises are then correlated to create pairwise noises 𝑍 (𝑡)𝑎→𝑣 (Line
3) that will directly be added to the model sent to each neighbor.
Those pairwise noises are the ones observed by an attacker.

In contrast to [14], Algorithm 1 uses a closed neighborhood that
includes the local node 𝑎 (i.e., 𝑎 ∈ Γ𝑎). Hence, even if 𝑎 is surrounded
by attackers after an eclipse attack [38],𝑎’s model remains protected
to some extent as the noises of the models sent to Γ𝑎 \ {𝑎} do not
cancel out.

Zip-DL’s main algorithm (Algorithm 2) is a DL algorithm. At
each iteration 𝑡 , each node 𝑎 first performs a local gradient step
on its local model 𝑥 (𝑡)𝑎 to produce an intermediate model 𝑥 (𝑡+1/2)

𝑎

(Lines 2-3). The local model for the next iteration, 𝑥 (𝑡+1)
𝑎 , is then

obtained by applying Zip-DL’s averaging procedure (Algorithm 1)
to this model 𝑥 (𝑡+1/2)

𝑎 .

3.3 Zip-DL’s core properties
The following results pave theway for the formal analysis of Zip-DL
in Section 4. If there is no influence of the time factor, we remove
the (𝑡) superindex to alleviate the notation (e.g. when a lemma
holds for all 𝑡 ∈ [[0,𝑇]]). Proofs that are not provided in this section
can be found in Appendix C.

First, we state a property that summarizes the effect of the noise
generated by a node on the network:

Lemma 3.1. Noise cancellation on the global model. For every
node 𝑎 ∈ V = [[1,𝑛]], it holds that

𝑛∑︁
𝑣=1

𝑊𝑎,𝑣𝑍𝑎→𝑣 = 0 =
𝑛∑︁
𝑣=1

𝑊𝑣,𝑎𝑍𝑎→𝑣 .

This lemma states that a node does not add noise to the overall
network, and leads to the following crucial corollary.

Corollary 3.2. Impact on the global average model. For every
epoch 𝑡 ∈ [[0,𝑇]], we have:

𝑥 (𝑡+1) = 𝑥 (𝑡+1/2) .

While simple, this corollary is pivotal in our convergence analy-
sis of 𝑥 (𝑡) . Without this property, the bound on the expectation of𝑥 (𝑡+1) − 𝑥∗

2 suffers from an extra term because of the noise.
Finally, Lemma 3.3 describes the behavior of the pairwise noise

generated by Zip-DL: it follows a Gaussian distribution, which is
standard for deriving formal privacy guarantees.

Lemma 3.3. Noise characterization for Algorithm 1. Consider that
for node 𝑎, for all 𝑣 ∈ Γ (𝑡)𝑎 , 𝑌

(𝑡)
𝑎→𝑣 ∼ N

(
0,𝛾2𝜍2

𝑎

)
, for a fixed topology

454

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

𝑊 (𝑡)
. Then, using the definition of Algorithm 1, we have:

∀𝑎, 𝑣 ∈ [[1,𝑛]],𝑍 (𝑡)𝑎→𝑣 ∼ N
(
0, (𝜎 (𝑡)𝑎→𝑣)2

)
with

(𝜎 (𝑡)𝑎→𝑣)2 = ©«
(𝑑𝑎 − 1)2

𝑑2
𝑎

+

∑
𝑗∈Γ (𝑡)𝑎 ,𝑗≠𝑣 (𝑊

(𝑡)
𝑎,𝑗)2

(𝑑𝑎𝑊 (𝑡)
𝑎,𝑣)2

ª®¬
𝛾2𝜍2

𝑎 .

Note that Lemma 3.3 entails that the variance of the noise added
to sent messages is strongly linked to the communication topology.
This means that the chosen communication topology influences
the privacy of our system, which further motivates our use of
PNDP Section 5.1.

Remark 3.4. When considering an 𝑘-regular topology or even a

topology where only the incoming degree is fixed at 𝑘 for all the nodes

with a uniform weight distribution [10], then for a node 𝑎, we have

(𝜎 (𝑡)𝑎→𝑣)2 = 𝑘−1
𝑘 𝛾2𝜍2

𝑎 . If we fix the same privacy parameter 𝜍𝑎 for all

nodes, the noises generated by individual nodes all follow the same

distribution.

4 Convergence of Zip-DL
We now analyze the convergence rate of Zip-DL. The proof of
the results stated in this section follows a similar structure to that
of [23]. Detailed versions of proofs related to this section can be
found in Appendix D.

Section 4.1 describes the assumptions we used for the conver-
gence proof. Then, Section 4.2 details our bound in the setting
described.

4.1 Assumptions
To ensure convergence, we define some assumptions that are com-
mon in the literature and that mostly follow those of [23]. First, we
make assumptions about the smoothness and convexity of the loss
functions:

Assumption 4.1. (L-smoothness). The functions 𝐹𝑖 : R𝑑 ×Ω → R
are differentiable for each 𝑖 ∈ V and 𝜉 ∈ supp(D𝑖), and there exists
a constant 𝐿 ≥ 0 such that for each 𝑥 ,𝑥 ′ ∈ R𝑑

and 𝜉 ∈ supp(D𝑖):∇𝐹𝑖 (𝑥 ′, 𝜉) − ∇𝐹𝑖 (𝑥 , 𝜉)
 ≤ 𝐿

𝑥 − 𝑥 ′ . (2)

Assumption 4.2. (𝜇-convexity) Each function 𝑓𝑖 is 𝜇-convex for a

constant 𝜇 ≥ 0. For all 𝑥 ,𝑥 ′ ∈ R𝑑
:

𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑥 ′) +
𝜇

2
𝑥 − 𝑥 ′2

2 ≤
〈
∇𝑓𝑖 (𝑥), 𝑥 − 𝑥 ′

〉
.

We also assume the noise caused by stochastic gradient descent
(SGD) is bounded. This is particularly important since we consider
a possible non-IID data distribution:

Assumption 4.3. (Bounded noise at the optimum) Consider 𝑥∗
such that 𝑥∗ := argmin 𝑓 (𝑥) and define

𝜗2
𝑖 :=

∇𝑓𝑖 (𝑥∗)2 , 𝜗2 := 1
𝑛

𝑛∑︁
𝑖=1

𝜗2
𝑖 . (3)

In addition, define

𝜔2
𝑖 := E𝜉

𝑖

[∇𝐹𝑖 (𝑥∗, 𝜉𝑖) − ∇𝑓𝑖 (𝑥∗)2
2

]
(4)

and �̄�2 := 1
𝑛

∑𝑛
𝑖=1 𝜔

2
𝑖 . Then 𝜗

2
and �̄�2

are bounded.

Intuitively, 𝜗2 measures the noise level and �̄�2 the diversity of
the locally sampled functions 𝑓𝑖 . It is important to note that �̄�2 is
strongly linked to the data distribution. In particular, it will tend to
be larger in a non-IID setting.

Finally, we state the assumption on the mixing matrix:

Assumption 4.4. (Expected consensus rate) There exists 𝑝 ∈
[0, 1] such that for all matrices𝑋 ∈ R𝑑×𝑛

and all iteration 𝑡 ∈ [[0,𝑇]],
if we define �̄� := 1

𝑛𝑋1𝑛×𝑛 where 1𝑛×𝑛 ∈ R𝑛×𝑛
is the matrix composed

of ones, we have

E𝑊 (𝑡)

[𝑊 (𝑡)𝑋 − �̄�
2

𝐹

]
≤ (1 − 𝑝)

𝑋 − �̄� 2
𝐹

.

This assumption is standard in the decentralized consensus liter-
ature, with 𝑝 a value linked to the spectrum of E

[⊺
𝑊 (𝑡)𝑊 (𝑡)] [6].

4.2 Convergence rates of Zip-DL
We now state the formal convergence of Zip-DL in the strongly
convex case:

Theorem 4.5. Convergence rate of Zip-DL. For any number of

iterations 𝑇 , there exists a constant stepsize 𝛾 s.t. for Algorithm 2,

1
2𝑊𝑇

∑𝑇
𝑡=0 𝑤𝑡 (E

[
𝑓 (𝑥 (𝑡))

]
− 𝑓 ∗) + 𝜇

2 𝑟𝑇+1 is bounded by:

O
(
�̄�2

𝑛𝜇𝑇
+ 𝐿𝐴′

𝜇2𝑇 2 +
𝑟0𝐿

𝑝
exp

[
− 𝜇𝑝 (𝑇 + 1)

192
√

3𝐿

])
,

where 𝐴′ = 16−4𝑝
2(16−7𝑝) (�̄�

2 + 18
𝑝 𝜗

2) + 𝑑
𝑛

16−4𝑝
16−7𝑝

∑𝑛
𝑎,𝑣=1 𝑑𝑎

(𝑑𝑣−1)2
𝑑𝑣

𝜍2
𝑣 , 𝑓
∗ =

𝑓 (𝑥∗), 𝑟𝑡 = E
[𝑥 (𝑡) − 𝑥∗2]

,𝑤𝑡 = (1 − 𝜇
2𝛾)
−(𝑡+1)

and𝑊𝑇 = 1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 .

Or, if we prefer a formulation to reach a desired accuracy:

Corollary 4.6. Setting all the constants to be the same as in

Theorem 4.5, for any target accuracy 𝜌 > 0, there exists a constant
stepsize 𝛾 such that Algorithm 2 reaches the target accuracy after at

most

3𝜅�̄�2

𝑛𝜇𝜌
+

√︄
3𝜅𝐿𝐴′
𝜌𝜇2 +

192
√

3𝐿
𝜇𝑝

ln
[

3𝜅𝑟0𝐿

𝜌𝑝

]

training iterations, where 𝜅 is the constant that arises when upper

bound O
(
�̄�2
𝑛𝜇𝑇 +

𝐿𝐴′
𝜇2𝑇 2 + 𝑟0𝐿

𝑝 exp
[
− 𝜇𝑝 (𝑇+1)

192
√

3𝐿

])
is expanded out.

This bound is similar to the one of [23]. The first and last terms
are the same, except for the constants in the logarithm, which do
not influence overall convergence since the logarithmic term is the
slowest to grow. The second term however contains the additional
complexity of our approach, in particular in the definition of 𝐴′.

Our additional term is of the form
√︂

3𝜅𝐿𝑑 (16−4𝑝)
2𝑛 (16−7𝑝)𝜇2𝜌

∑𝑛
𝑎,𝑣=1 𝑑𝑎

(𝑑𝑣−1)2
𝑑𝑣

𝜍2
𝑣 .

This term is weighted by 𝜌−
1
2 and is not the one that grows fastest

as 𝜌 goes to 0, proving the limited impact of our approach on con-
vergence. We observe that this term contains a weighted average
of the noise propagated by every node, showing the intuitive be-
havior of slowing down convergence if the noise 𝜍2

𝑎 becomes too
big. Interestingly, this term grows as the network size or density
grows. Indeed, the higher the degree, the more the noise injected
at each iteration, and the larger the network, the longer it takes for
the noise to propagate and cancel out.

455

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

We can also compare this bound to a recent noisy approach [2],
even if their privacy setting is different from ours. While they
do not consider a strongly-convex scenario like us and assume a
weaker assumption that is implied by a strongly-convex property,
we observe that the noise variance appears on their leading term,
in O(1

𝑇). The analysis we performed here on an algorithm without
noise cancellation would also have yielded similar results. On the
other hand, our approach delegates the impact of the noise to the
second leading term, yielding faster convergence rates.

Similarly, the bound presented in [9] is also affected in its leading
term by the factor 𝜎2/𝑇 , where 𝜎 denotes the DP noise constant, as
established in Theorem 10 of [9]. Consequently, the same conclusion
drawn in the previous paragraph can be applied in this context.

Relaxation of assumptions. Following [23], we conjecture that
our proof can be generalized to the convex and the non-convex sce-
narios, thus weakening Assumption 4.2. In particular, the difficulty
of adapting to a non-convex scenario mostly lies in the gradient de-
scent analysis, which is only marginally modified by our approach.
We chose to keep to the strongly convex scenario because our direct
baseline also made such an assumption [9].

Likewise, we conjecture it is possible to loosen Assumption 4.4
by adopting the same approach as in [23]. However, we chose to
stick to a more standard assumption, as it was not the main focus
of this work.

Node dropout. The formal analysis of convergence of Zip-DL re-
lies on the noises canceling out on average (Lemma 3.1). In practice,
nodes in DL may have intermittent availability, i.e., they may join
or leave the network at any time. As a result, the injected noise
in Zip-DL may not always sum to zero. However, the inherent
stochasticity of the training process and the robustness of gradient-
based optimization mitigate the impact of node dropouts in Zip-DL.
We experimentally demonstrate the resilience of Zip-DL to node
dropouts in Section A.5 and discuss the possible adaptation of our
convergence proof to such scenarios.

Sketch of proof. (Theorem 4.5). We mostly follow the proof
of [23]. The main challenge lies in adapting the set of lemmas to
our noisy approach. The mini-batch variance (Proposition D.3) is
unchanged, as it only relies on hypotheses on the loss function,
which are identical to ours. The descent lemma (Lemma D.4) is
where Corollary 3.2 comes into play, since canceling noises have
no impact on the averaged model. Without noise cancellation, an
additional term would have been added here, which would have
propagated to the leading term of the convergence rate in 1

𝑇 .
Finally, the recursion for consensus distance (Lemma 4.7) is

modified because of the noise addition, which becomes an extra
term. In addition to this extra term, our main recursion is slightly
altered, with an additional factor to the recursive term. While this
additional factor prevents solving the main recursion directly, a
manipulation leads to a term that can be solved, yielding the desired
result. □

This proof relies on three main lemmas detailed in Appendix D.
Two of them remained unchanged using Zip-DL’s properties. For
the sake of completeness, we state the adapted lemma that presents

an additional last term compared to state-of-the-art DL [23]. This
term arises from noises shifting local models from the true average.

Lemma 4.7. (Recursion for consensus distance) Under Assump-

tions 4.1 to 4.4, if stepsizes 𝛾 ≤ 𝑝

96
√

3𝐿 , then for any 𝛽 > 0:

Ξ𝑡 ≤ (1 + 𝛽)
(
1 − 7𝑝

16

)
Ξ𝑡−1 + 𝛾2 (1 + 𝛽)

(
�̄�2 + 18

𝑝
𝜗2

)

+ (1 + 𝛽) 36𝐿
𝑝

(
𝑓 (𝑥 (𝑡−1)) − 𝑓 (𝑥∗)

)

+ 𝛾2 (1 + 𝛽−1)𝑑
𝑛

𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(
(𝑑𝑣 − 1)2

𝑑𝑣
𝜍2
𝑣

)
,

where Ξ𝑡 = 1
𝑛

∑𝑛
𝑖=1 E𝑡

[𝑥 (𝑡)𝑖 − 𝑥 (𝑡)
2

]
is the consensus distance

5 Pairwise Network Differential Privacy
We now formalize the privacy guarantees of Zip-DL in terms of
pairwise-network differential privacy (PNDP), a graph-based vari-
ant of DP introduced in the work by Cyffers et al. [9] to capture
the unique threats to privacy introduced by the DL framework.
This section establishes the formal PNDP guarantees that Zip-DL
provides and dissects further its analytical properties.

More concretely, we first present the additional assumption and
privacy definition used in the analysis (Section 5.1), before defining
an equivalent formulation of our algorithm (Section 5.2). Section 5.3
will then exploit this formulation to express the evolution of the
system, which is pivotal to our privacy analysis of Zip-DL presented
in Section 5.4. We finally consider the simpler case (Algorithm 1 in
Section 5.5), and link our results to those of [9].

5.1 Assumptions & definitions
When discussing PNDP, we use the same notations and definitions
as [9]. Specifically, with D = (D𝑎)𝑎∈V denoting a set of datasets
across all the nodes, we call a pair of (entire) datasets D and D′
adjacent, denoted by D ∼𝑎 D′, if there is some node and only one
node 𝑎 ∈ V for which D𝑎 and D′𝑎 differ. Considering two adjacent

datasets is the first building block to express differential privacy
properties.

We analyze how Zip-DL guarantees PNDP for an input dataset
D (a given initial data distribution between the nodes). To this
purpose, we require two additional assumptions, in addition to
those highlighted in Section 4.1. First, we need the distance between
the models trained on two adjacent datasets to be bounded, which
aligns with Assumption 1 in [9].

Assumption 5.1. There exists some constant Δ > 0 such that for

any adjacent datasets D ∼𝑎 D′, we have

sup
𝑥 ∈R𝑑

sup
𝜉 , ¤𝜉 ∈D×D′

∇𝐹 (𝑥 , 𝜉) − ∇𝐹 (𝑥 , ¤𝜉)
2 ≤ Δ2. (5)

This is a standard assumption when considering differentially
private algorithms: we use a bound on the original perturbation
and observe how this perturbation can be scaled by the algorithm.
This assumption is typically enforced through gradient clipping [1].
Due to space constraints, an analysis of its impact on Zip-DL is
deferred to Section A.3.

456

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

For a pair of adjacent datasets, Muffliato [9] introduces the notion
of privacy view on two such datasets:

Definition 5.2. [9] The privacy view of a node 𝑣 after 𝑇 steps for
a dataset D is:

O𝑣 (A (𝑇) (D)) = {𝑚 (𝑡)𝑤→𝑣 | 𝑡 ∈ [[1,𝑇]], 𝑣 ∈ Γ (𝑡)𝑤 } ∪ {𝑥𝑣},

with A (𝑇) a state-sharing algorithm iterated 𝑇 times such as Algo-
rithm 1 or Algorithm 2, and A (𝑇) (D) the set of all messages sent
by neighboring nodes on the network during the execution of the
algorithm.

The privacy view represents a projection from the set of all the
messages in an executionA (𝑇) to the set of messages that 𝑣 receives
during the algorithm’s execution.

When considering this privacy view O𝑣 (A (𝑇) (D)), we consider
the scenario where node 𝑣 would be an honest-but-curious attacker
and tries to infer information from its observations — the privacy
view. This view is then used to define PNDP [9], by leveraging the
definition of Rényi-DP [30].

Definition 5.3. (Pairwise Network Differential Privacy) For 𝑔 :
V2 → R+ and 𝛼 > 1, a mechanism A (𝑇) satisfies (𝛼 ,𝑔)-Pairwise
Network Differential Privacy (PNDP) if, for all pairs of distinct nodes
𝑎, 𝑣 ∈ V and adjacent datasets D ∼𝑎 D′, we have

𝐷𝛼

(
O𝑣 (A (𝑇) (D))∥O𝑣 (A (𝑇) (D′))

)
≤ 𝑔 (𝑇) (𝑎, 𝑣),

where 𝐷𝛼 (𝑃 ∥𝑄) is the Rényi divergence [16] between probability
distributions 𝑃 and 𝑄 :

𝐷𝛼 (𝑋 ∥𝑌) =
1

𝛼 − 1 ln
∫
(𝜇𝑋 (𝑧)
𝜇𝑌 (𝑧)

)
𝛼

𝜇𝑌 (𝑧)𝑑𝑧,

with 𝜇𝑋 and 𝜇𝑌 the densities of 𝑋 and 𝑌 .

Therefore, 𝑔 (𝑇) (𝑎, 𝑣) quantifies the privacy leaked from 𝑎 to 𝑣 ,
and our goal is to constrain it to a minimal value. This decentralized
approach harnesses communication topology, in contrast to DP or
Renyi-DP, thus fully exploiting the specificity of a decentralized
context.

The choice of this privacy guarantee is further motivated by
the synergy between Rényi-DP and Gaussian noise [30], as the
following lemma underlines:

Lemma 5.4. [16] Suppose that 𝑋 ∼ N(𝜇𝑋 , Σ) and 𝑌 ∼ N(𝜇𝑌 , Σ).
Then for all 𝛼 > 1, we have:

𝐷𝛼 (𝑋 ∥𝑌) =
𝛼

2
⊺ (𝜇𝑋 − 𝜇𝑌)Σ−1 (𝜇𝑋 − 𝜇𝑌). (6)

This lemma is the key motivation to our use of Gaussian noises
in our approach: we require an additivity property to generate
cancelling noises, as well as differential privacy properties. Thus,
Gaussian noise is a natural candidate, as it fits both criterions.

Rényi-divergence usually provides important properties when
considering privacy concerns. Most notably, the composition theo-

rem and the preservation by post-processing [30]. Of those two, the
former allows for an easy way to derive the privacy guarantee of the
composition of differentially private algorithms. When considering
a process with multiple rounds, this makes it practical to compose
privacy guarantees between rounds and significantly alleviates the
analysis.

Remark 5.5. Since we consider a projection of the set of all mes-

sages A (𝑇) (D) on the view of the attacker, we cannot naively apply

composition theorems on O𝑣 (A (𝑡) (D)) to this approach directly.

That is because here, the composition would rely on external infor-

mation, that was not in the view of the attacker. To circumvent this,

the original paper [9] considers a full averaging algorithm, meaning

composition can be performed by using the (common) final state of

the averaging algorithm.

However, we want a more usual view of DL, where we alternate
between one round of averaging and one round of gradient descent.
To avoid using composition, wemust be able to analyze the behavior
of the noise through the gradient. To this end, we consider the
following assumption:

Assumption 5.6. For all 𝑖 ∈ V , for all data sample 𝜉𝑖 and model

𝑥 , if we consider a noise 𝑍 ∼ N(0, Σ), then we have:

∇𝐹𝑖 (𝑥 + 𝑍 , 𝜉𝑖) ∼ N (∇𝐹𝑖 (𝑥 , 𝜉𝑖),𝐿Σ).
In essence, Assumption 5.6 implies that the gradient of a model

perturbed with Gaussian noise stays close to the unnoised (origi-
nal) gradient while following a Gaussian distribution around this
unnoised gradient. The range of the standard deviation is bounded
by the smoothness constant 𝐿 (Assumption 4.1), which comes from
the remark that

∇𝐹𝑖 (𝑥 + 𝑍 , 𝜉𝑖) − ∇𝐹𝑖 (𝑥 , 𝜉𝑖)
2 ≤ 𝐿 ∥𝑍 ∥2. This as-

sumption will allow us to simplify privacy expressions without
resorting to a composition theorem. Most notably, Lemma 5.8 links
an execution of Zip-DL to an execution of decentralized learning
without any noise. This link will be pivotal to the privacy proof.
We further evaluate Assumption 5.6 in Section A.6.

5.2 Equivalent system formulation
Gossip matrices (Section 2.2) are a natural tool to analyze how
information propagates in a communication graph over several
communication rounds. Unfortunately, they cannot be directly ap-
plied to Algorithm 2, as they assume that each node sends the same
information to all its neighbors in a given round. This assumption
does not hold for Algorithm 2, where the noise 𝑍𝑎→𝑣 added by each
node 𝑎 to its model during the Zip-DL-averaging step (line 5 of
Algorithm 1) is different for each of 𝑎’s neighbors.

We overcome this difficulty by considering an equivalent virtual
communication graph of 𝑛2 nodes that emulate the behavior of the
𝑛 nodes executing Algorithm 2. In this construction, each original
node 𝑎 ∈ V is replaced by 𝑛 virtual nodes 𝑎1, ..,𝑎𝑛 ∈ V̂ connected
in a clique. Each virtual node 𝑎𝑣 is then connected to 𝑣𝑎 in the
virtual communication graph if 𝑎 is connected to 𝑣 .

This emulated network makes it possible to track the privacy
loss incurred by our algorithm, whose behavior can be interpreted
as a sequence of linear matrix operations on the states of the virtual
nodes. Because each virtual node replicates the state of its real node,
the system’s state is encoded in a matrix of dimension 𝑛2 ×𝑑 , while
message exchanges and state updates are captured by matrices of
size 𝑛2 × 𝑛2 (since the virtual communication topology contains 𝑛2

nodes).
In the remainder of this section, we present in more detail the

entities we use to analyze the privacy loss of Algorithm 2 using
virtualization. Virtual entities are decorated with the symbolˆ : if
𝐴 describes an object in the original system, then 𝐴 represents its

457

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

counterpart in the virtual topology. We note V̂ = [[1,𝑛2]] the set
of virtual nodes, where the real node 𝑖 is represented by the virtual
nodes ranging from 𝑛(𝑖 − 1) + 1 to 𝑛𝑖 . 𝑋 (𝑡) represents the stacking
of virtual models at time 𝑡 , i.e.,

𝑋 (𝑡) =
⊺ (⊺

𝑥
(𝑡)
1 , . . . ,

⊺
𝑥
(𝑡)
1 ,

⊺
𝑥
(𝑡)
2 , . . . ,

⊺
𝑥
(𝑡)
𝑛

)
,

in which the local model 𝑥 (𝑡)𝑎 ∈ R𝑑 is duplicated 𝑛 times across
all the virtual nodes associated with node 𝑎. 𝑋 (𝑡) ∈ R𝑛2×𝑑 in the
general case, and so do the noises generated by all the nodes. For
simplicity when defining those noises, we focus in the following
on the case 𝑑 = 1 to introduce the notations, but the approach
generalizes seamlessly to higher dimensions.

The noises generated in Algorithm 1 are captured by two random
vectors 𝑌 (𝑡) and 𝑍 (𝑡) of dimension 𝑛2, defined component-wise by

𝑌
(𝑡)
𝑛 (𝑖−1)+𝑗 := 𝑌

(𝑡)
𝑖→𝑗 , ∀𝑖 , 𝑗 ∈ V ,

𝑍
(𝑡)
𝑛 (𝑖−1)+𝑗 := 𝑍

(𝑡)
𝑖→𝑗 , ∀𝑖 , 𝑗 ∈ V .

Due to the definition in Algorithm 1, 𝑍 (𝑡) results from a linear
combination of 𝑌 (𝑡) :

𝑍 (𝑡) =𝐶 (𝑡)𝑌 (𝑡) , (7)

where,𝐶 (𝑡) is the block-diagonal matrix filled with 0 values, except
in the following positions when 𝑎, 𝑣 , 𝑗 range overV:

𝐶
(𝑡)
𝑛 (𝑎−1)+𝑣,𝑛 (𝑎−1)+𝑗 :=

𝑑𝑎−1
𝑑𝑎

if 𝑗 = 𝑣 ∧ 𝑣 ∈ Γ (𝑡)𝑎 ,

−
𝑊
(𝑡)
𝑎,𝑗

𝑑𝑎𝑊
(𝑡)
𝑎,𝑣

if 𝑗 ≠ 𝑣 ∧ 𝑣 ∈ Γ (𝑡)𝑎 ,

0 Otherwise.

The covariance matrix of 𝑌 is the diagonal matrix in which each
node’s variance (𝜍2

𝑎) is repeated 𝑛 times.
The covariance matrix of 𝑍 is Σ(𝑡)

𝑍
=𝐶 (𝑡)Σ

𝑌

⊺
𝐶 (𝑡) due to Equa-

tion (7).
From a given gossip matrix𝑊 (𝑡) , we construct �̂� (𝑡) as the com-

munication matrix where each virtual node only communicates
with one fixed node. We also introduce �̂� , which mixes information
between the virtual nodes afterward.

�̂�
(𝑡)
𝑖 ,𝑗 :=

{
𝑊
(𝑡)
𝑖 ,𝑗 , if 𝑖 = 𝑛(𝑖 − 1) + 𝑗 , 𝑗 = 𝑛(𝑗 − 1) + 𝑖 ,

0, Otherwise.

�̂� :=
©
«

1𝑛 0𝑛 0𝑛 . . . 0𝑛
0𝑛 1𝑛 0𝑛 . . . 0𝑛
.

0𝑛 0𝑛 0𝑛 . . . 1𝑛

ª®®®¬
∈ R𝑛2×𝑛2 , (8)

where 1𝑛 = [1]𝑖 ,𝑗∈[1..𝑛] and 0𝑛 = [0]𝑖 ,𝑗∈[1..𝑛] represent the matrices
of dimension 𝑛 × 𝑛 full of ones or zeros, respectively. �̂� creates a
fully connected communication network between the virtual nodes
of a given real node. In doing so it captures how each local node
averages the individual models it receives through �̂� (𝑡) .

Using this matrix, we obtain the following virtual gossip round:

𝑋 (𝑡+1) = �̂��̂�
(𝑡) (𝑋 (𝑡+1/2) + 𝑍 (𝑡)). (9)

The following lemma ensures that the update rule stays the
same as Algorithm 1 of Algorithm 1, proving we have constructed
something equivalent to the non-virtual update rule:

Lemma 5.7. Consider 𝑖 ∈ V and 𝑡 ∈ N. Then we have:

∀𝑘 ∈ V ,𝑋 (𝑡)
𝑛𝑖+𝑘 = 𝑋

(𝑡)
𝑖 .

5.3 Accounting for noises over time
In order to track how privacy losses propagate from one SGD round
to the next without using a composition theorem (see Remark 5.5),
we further consider 𝑇 successive rounds of Algorithm 2. These 𝑇
rounds incur the generation of 𝑇𝑛2 individual noise values at Line
2 of Algorithm 1. We track the correlation between these noises
and the model parameters to which they are applied in the virtual
system through covariance matrices of size 𝑡𝑛2, for 𝑡 ∈ [[1,𝑇]].

To track those 𝑛2 × 𝑡 noises, we consider matrices that aggregate
data through time for notation purposes. Those matrices will be
denoted by a˜notation. Similarly to before, we consider �̃� (𝑡) ∈ R𝑡𝑛2

a matrix stacking all the noises generated on the network.
Even if the noises at time 𝑡 + 1 are independent from the noises

at time 𝑡 , meaning the covariance matrix will be block-diagonal, we
reach a simpler expression with time matrices. Formally, we have:

Σ
�̃� (𝑡)

:=
©
«

Σ
𝑌

0𝑛2 . . . 0𝑛2

0𝑛2 Σ
𝑌

. . . 0𝑛2

.

0𝑛2 0𝑛2 . . . Σ
𝑌

ª®®®®
¬
∈ R𝑡𝑛2×𝑡𝑛2 , (10)

where Σ
𝑌
∈ R𝑛×𝑛 corresponds to the covariance matrix of the

uncorrelated noises. This is a diagonal matrix. In the special case
where all nodes have the same privacy parameter 𝜍 , then we have
Σ�̃� (𝑡) = 𝜍2𝐼𝑡𝑛2×𝑡𝑛2 .

Using this and the decomposition 𝑍 (𝑡) =𝐶 (𝑡)𝑌 (𝑡) (Equation (7)),
where 𝑌 (𝑡) ∼ N(0, Σ𝑌), we also create a decomposition 𝑍 (𝑡) =
𝐶 (𝑡)�̃� (𝑡) , where 𝐶 (𝑡) a block diagonal matrix of all the 𝐶 (𝑡) .

For ease of notation, when considering matrices that aggregate
through time, we will consider a constant communication matrix
𝑊 (𝑡) =𝑊 . Our notations could be generalized at the expense of
matrix product notations. For the temporal gossip matrix, we define
the following:

�̃� (𝑇) := ©«
(1 − 𝛾𝐿)𝑇

. . . ,
(1 − 𝛾𝐿)

ª®
¬
(
(�̂��̂�)𝑇 , . . . , �̂��̂�

)
. (11)

In particular, we have �̃� (𝑇) ∈ R𝑛2×𝑇𝑛2 . This matrix will appear
in Theorem 5.9 and can be used to compute the propagation of the
noise through the system after 𝑇 steps.

This notation finally allows us to leverage Assumption 5.6. Using
the equivalent formulation defined in Section 5.2, we now progress
toward the privacy analysis. First, we derive the distribution of the
model vectors:

Lemma 5.8. Using Assumption 5.6, consider 𝜒 (𝑇) a virtual execu-
tion without any noise, and every other source of randomness is the

same. Then, we have:

𝑋 (𝑇) ∼ N
(
𝜒 (𝑇) ,𝐿�̂� (𝑇)

𝐶 (𝑡)Σ�̃� (𝑡)
⊺
(�̂� (𝑇)

𝐶 (𝑡))
)

.

This lemma draws a parallel between an execution of Algorithm 2
and an unnoised execution and is at the core of our privacy analysis.
Lemma 5.8 offers a structure to bound the Rényi divergence between

458

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

𝑋 (𝑇) on two executions on adjacent datasets. Its proof is deferred
to Appendix B.

5.4 Zip-DL privacy analysis
We now focus on analyzing the formal privacy guarantees of Algo-
rithm 2.

Theorem 5.9 (Privacy of Zip-DL). 𝑇 iterations of Zip-DL (Algo-

rithm 2) satisfies

(
𝛼 , 𝜖 (𝑇) (𝑎, 𝑣)

)
-PNDP, where 𝜖 (𝑇) (𝑎, 𝑣) is bounded

for any two nodes 𝑎, 𝑣 ∈ V by:

2𝛼𝛾2Δ2

𝐿 + 4𝛾2𝐿2

𝑇−1∑︁
𝑡=0

∑︁
𝑣∈�̂�

�̂�∈ Γ̂ (𝑡)
�̂�

(2 + 4𝛾2𝐿)𝑡 − 1((
�̃� 𝐶

) (𝑡)
Σ̃�̃� (𝑡)

⊺ (
�̃� 𝐶

)
(𝑡)

)
�̃�,�̃�

,

where Σ̃�̃� (𝑡) is a diagonal matrix representing the noise variances of

all noises generated by the algorithm up to time 𝑇 , 𝐶 (𝑡) is a block-

diagonal matrix representing the correlation factor at each iteration

𝑡 , and �̃� (𝑡)
is the accumulation of all the powers of the gossip matrix

defined in Section 5.2.

In essence, a node’s privacy loss increases over time, and the
influence of the privacy mechanism is denoted by the denominator:
this term accounts for all the noises received by the virtual node �̂� .
On the other hand, the numerator accounts for how models drift
away from each other.

If we consider that all nodes have the same privacy parameter
𝜍 , then the denominator becomes akin to the norm of (�̃� �̃�) (𝑡)�̂� ,
which is similar to [9].

This result is a double sum over time and the attacker’s neighbors,
since in our notation Γ̂

(𝑡)
𝑣 is a set containing at most one value that

translates whether𝑤 is in Γ (𝑡)𝑣 or not.

Remark 5.10. This result naturally extends to colluding nodes if
we consider𝑉 =

⋃
𝑣∈𝑉 {𝑛(𝑣−1)+𝑘 | 𝑘 ∈ V} to be the set of colluding

nodes. We can thus have a similar bound of 𝜖 (𝑇) (𝑎,𝑉), for 𝑉 ⊂ V a

set of colluding nodes.

Even if the matrices considered here are of large dimensions, this
bound can be computed in practice since their underlying matrices
are sparse: either they are diagonal by block, or some have only
one element by line. For instance, both �̃� and Σ̃�̃� (𝑡) are diagonal by
block since the noises generated at each iteration are independent.

Remark 5.11. In practice, Assumption 5.6 may not always hold

accurately. To capture the ripple effect of this inaccuracy and bound the

privacy loss in this scenario, one may define an error term stemming

from Assumption 5.6, using Corollary 4 of [30], and add the following

term to Theorem 5.9:

𝐷∞
(
𝑋 (𝑇) ∥N

(
𝜒 (𝑇) ,𝐿�̂� (𝑇)

𝐶 (𝑡)Σ�̃� (𝑡)
⊺
(�̂� (𝑇)

𝐶 (𝑡))
))

5.5 Zip-DL-avg privacy analysis
We also focus on the privacy of Algorithm 1 as a pure averaging
algorithm. This removes gradient from the proof of Theorem 5.9,
and thus Assumption 5.6 is not needed. By following the same proof
with a simpler update rule, we can derive a more tractable term,

Theorem 5.12. 𝑇 iterations of Algorithm 1 satisfy (𝛼 , 𝜖 (𝑇) (𝑎, 𝑣))-
PNDP, where 𝜖 (𝑇) (𝑎, 𝑣) is bounded for any two nodes 𝑎, 𝑣 ∈ V by:

𝛼Δ2

2

𝑇−1∑︁
𝑡=0

∑︁
𝑣∈�̂�

∑︁
�̂�∈ Γ̂ (𝑡)

�̂�

(
(�̂��̂�)𝑇

)
�̂�,𝑎(

(�̃�𝐶) (𝑡)Σ�̃�
⊺ (�̃�𝐶) (𝑡)

)
�̃�,�̃�

,

where

�̃� (𝑇) :=
(
(�̂��̂�)𝑇 , . . . , �̂��̂�

)
.

Remark 5.13. This theorem generalizes the result of [9] by intro-

ducing the correlation matrix between all the generated noises 𝐶 (𝑡) .
Applied to the algorithm presented in [9], the correlation matrix 𝐶 (𝑡)

in the above expression would instead be the identity matrix. Addi-

tionally, the numerator is also the same as the one of the original

work, as we have

(
(�̂��̂�)𝑇

)
�̂�,𝑎

= (𝑊)𝑇𝑤,𝑎 where 𝑤 ,𝑎 are the nodes

associated to the virtual nodes �̂� ,𝑎.

6 Evaluation
We evaluate Zip-DL on two practical learning tasks, image clas-
sification (on CIFAR-10) and movie recommendation (on Movie-
Lens). We compare Zip-DL’s performance1 to that of two baselines:
decentralized parallel stochastic gradient descent (D-PSGD) [26],
and Muffliato [9], a privacy-preserving DL algorithm. The com-
parison focuses on two aspects: (i) the tradeoff between privacy
(measured as the ROC-AUC of two membership inference attacks)
and model utility (top-1 test accuracy on CIFAR-10, and test loss on
MovieLens), and (ii) the cost of such privacy in terms of communica-
tion overhead. For the sake of completeness, we also consider True
Positive Rate (TPR) at low False Positive Rate (FPR) rates for one
of these attacks, in line with existing literature [7]. Those results
are reported in Section 6.4.

6.1 Experimental setup
Communication graph. Throughout the evaluation, we use 100

nodes connected in a 6-regular communication graph. We assume
all nodes are online and available at all times unless stated otherwise.
The experiments with node dropouts are presented in Section A.5.

Baselines. We compare Zip-DLwith two baselines: D-PSGD [26],
a decentralized stochastic gradient descent algorithm without pri-
vacy guarantees (labeled No noise in the figures), and Muffliato, a
state-of-the art privacy-preserving DL algorithm. To cover different
communication settings, we consider two scenarios: (i) using 1 av-
eraging round per training iteration, as in typical D-PSGD, and (ii)

using 10 averaging rounds per training iteration, as recommended
for Muffliato when applied to our network topology (Theorem 5
in [9]). In practice, using 10 averaging rounds ensures each node
obtains an almost global average model.

First Learning Task — CIFAR-10. We evaluate Zip-DL and the two
baselines on the image classification task of CIFAR-10 [24] using
a Group Normalization (GN)-ResNet18 [18]. We opted for GN lay-
ers [40] over the traditional Batch Normalization layers due to their
superior compatibility with differential privacy mechanisms, espe-
cially in decentralized scenarios [32, 43]. The training set comprises
1All code used in this section can be found at https://github.com/dimiarbre/ZIP-DL

459

https://github.com/dimiarbre/ZIP-DL

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

50 000 data samples and the test set 10 000 data samples, spread
uniformly between the nodes. The neural network has 11 189 312
trainable parameters. For utility, we consider the top-1 test accuracy
for CIFAR-10.

Second Learning Task — MovieLens. We consider a recommenda-
tion task on the MovieLens dataset [17]. We use movielens-small

2,
a dataset of 100 836 ratings from 610 users on 9742 movies, where
each user has rated at least 20 movies. Given MovieLens is naturally
partitioned between users, we allocate users to a given node. We
use a matrix factorization model with the SGD optimizer. While it is
similar to a classification task, it provides three new aspects in our
experimental evaluation: (i) the underlying model is linear, (ii) the
data is naturally non-IID, (iii) the model outputs numerical rating
estimates (between 1 and 5). Because model outputs are numerical,
we use the RMSE on predicted ratings (which corresponds to the
task’s test loss) as the utility metric for MovieLens.

Noise levels. Both Zip-DL and Muffliato use noise levels of the
form 𝑘𝜎 , with 𝑘 ∈ {20, 21, . . . , 28} and 𝜎 such that 128𝜎 = 0.225.
This range of values covers a broad set of behaviors for both Zip-
DL and Muffliato on both tasks (CIFAR-10 and Movielens). Some
additional, intermediary values of 𝑘 are also used for relevant plots.
More precisely, we directly use 𝑘𝜎 as the standard deviation of
noise in Muffliato, while we derive a uniform privacy parameter
𝜍𝑎 from 𝑘𝜎 for Zip-DL using the formula in Remark 3.4. Doing so
ensures that the standard deviation of pairwise noises 𝜎 (𝑡)𝑎→𝑣 is 𝑘𝜎
in both approaches.

Privacy attacks. Weevaluate the privacy of the algorithms against
an honest-but-curious attacker described in Section 2.4 using two
membership inference attacks (MIA).We apply (i) a threshold-based
attack [7, 37], and (ii) a more advanced classifier-based attack de-
scribed in [45] and inspired by [33]. Both attacks seek to determine
whether a victim node used a specific data point to train its local
machine learning (ML) model. Taking an example as input, both
attacks base their decisions on the example’s loss computed by
the node’s local model, under the assumption that lower losses are
indicative of training examples. The effectiveness of these attacks
is evaluated using the Area Under the Curve (AUC) of the TPR
plotted as a function of the FPR. (This curve is known as Receiver
operating characteristic or ROC, hence the shorthand ROC-AUC.)

The threshold attack reaches its decision by comparing the ex-
ample’s loss obtained from the victim’s final model to some fixed
threshold. While simple, this approach establishes a baseline for
privacy vulnerability: if such an attack proves successful, it implies
that more sophisticated methods are likely to succeed as well [7].

While the threshold attack uses a single model, the classifier
attack records multiple models shared by a single victim at different
time stamps during the training process. For a given data example,
the attacker considers the time series of the loss of this example on
those models. The aim of the classifier is then to classify this time
series as either a member or non-member of the victim node’s local
dataset. More precisely, the attack uses a Fully Connected Network
(FCN) binary classifier with 2 hidden layers and uses the losses of
26 models obtained at fixed intervals during the victim’s training
process (including its first and final model). The binary classifier is
2https://files.grouplens.org/datasets/movielens/ml-latest-small-README.html

50 52 54

0

20

40

60

80

128𝜎

32𝜎

+59%

M
ax
im

um
te
st
ac
cu
ra
cy

[%]

Threshold attack

50 60 70

0

20

40

60

80

Classifier attack

No noise Muffliato Zip-DL (ours)

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

50 55 60

0

20

40

60

80

better

Attack ROC-AUC
[
%
]50 60 70

0

20

40

60

80
16𝜎

-26%
-11%

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

(a) 10 averaging steps

(b) 1 averaging step

Figure 1: Maximum accuracy reached as a function of both
attacks results on CIFAR-10. Color intensity represents a
higher noise level. In all cases, the tradeoff is better for Zip-
DL.

trained on 70% of the victim’s node local dataset (positive training
examples) and 70% of the test data (negative training examples).
Examples are re-weighted so that both classes have the same weight
in the training. The attack is then evaluated on the remaining
examples (local and test) not used for training. Because it requires a
training phase with sufficient data, this attack assumes the attacker
possesses considerable knowledge about the victim’s dataset and is
therefore much more aggressive than the threshold attack.

Utility-privacy trade-off and communication cost. In addition to
each algorithm’s privacy, we measure the best utility across models
during training, computed on each task’s test dataset (using top-
1 accuracy for CIFAR-10, and RMSE on MovieLens MovieLens).
We further measure the overall communication cost of the entire
training process (measured in Teribytes). The utility and privacy
measures are averaged over all nodes.

6.2 Zip-DL privacy-utility tradeoff
Figures 1 and 2 show the privacy-utility trade-off of Muffliato (blue
curve) and Zip-DL (red curve) for multiple noise levels (represented
by the filling color of the data points). The privacy-utility trade-off
of D-PSGD (“No noise”, i.e. no privacy protection) is shown for
reference as a purple cross in a circle. Figure 1 charts the results
obtained on CIFAR-10, while Figure 2 plots those obtained with
MovieLens.

CIFAR-10 Results. In Figure 1, the average test accuracy across
nodes is shown vertically (higher is better) and the attack’s success
(ROC-AUC) horizontally, with lower (and better) values on the left.
A 50% ROC-AUC indicates the attack has been neutralized, as in this

460

https://files.grouplens.org/datasets/movielens/ml-latest-small-README.html

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

52 54 56 58 60

1

2

3

be
tte
r

Attack ROC-AUC
[
%
]

M
in
im

um
te
st
lo
ss

Threshold attack

60 70 80 90

1

2

3

-12%

Classifier attack

No noise Muffliato 10-step Zip-DL (ours, 1-step)

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

Figure 2: Minimum test loss as a function of attack results for
varying noise levels onMovieLens. Color intensity represents
a higher noise level. Zip-DL consistently shows better utility
for equivalent attacker advantage.

case the attacker performs similarly to a random binary classifier.
Better results are in the top-left corner (higher utility for a lower
attack success). Figure 1 presents the results obtained for the two
attacks in two communication settings: using 10 averaging steps
(top row), and using 1 averaging step (bottom row). Results using
the (basic) threshold attack are shown on the left, while those with
the (stronger) classifier attack are on the right.

The charts show Zip-DL either matches or outperformsMuffliato
in all four combinations. Zip-DL’s advantage is notable at higher
levels of protection when the ROC-AUC measure approaches 50%,
where Zip-DL provides a better protection for the same utility, or
a better utility for the same protection. This is particularly visible
for 10 steps averaging (top row), where Zip-DL is able to neutralize
the attack with close to no drop in accuracy. For instance, under
the Threshold Attack, Zip-DL achieves a mean ROC AUC of 50.07%
for an accuracy of 75.56%, a drop of only 0.25% percentage point
against No Noise (75.81%). Zip-DL yields similar results under the
Classifier Attack (50.42% ROC-AUC for the same test accuracy).
This represents a substantial improvement over Muffliato which
collapses at higher noise levels. For instance, under the Threshold
Attack, Muffliato reaches a ROC-AUC of 50.13% at an accuracy of
only 15.95%, representing a drop of 59.86% against Zip-DL (shown
as a vertical cyan arrow on the figure.)

MovieLens. In contrast to Figure 1, Figure 2 captures model utility
through average RMSE across nodes (test loss, vertical axis), where
lower values are better. Figure 1 shows the results of the two attacks
(Threshold Attack, left, and Classifier Attack, right) with different
communication set-ups for the two competitors. While Muffliato
uses 10 averaging steps (following the guidelines of [9]), Zip-DL
only uses one. This allows Muffliato to converge to an almost exact
average model across all 100 nodes between each learning iteration,
while forcing Zip-DL to rely on imperfect averages limited to a
node’s immediate neighborhood. In spite of this disadvantage, Zip-
DL clearly outperforms Muffliato on this task. Under the Threshold
Attack, Zip-DL reaches a ROC-AUC of 52.84% for a test loss of 1.32
(second point from the left), a loss increase of only 0.21 against No
Noise (ROC-AUC 60.20% for a test loss of 1.11), while Muffliato’s
ROC-AUC never gets below 56.535%, with a loss that diverges
rapidly as noise increases. On the more powerful Classifier Attack,

128643216842
0

20

40

60

80

Noise level (×σ, where σ is the lowest noise)

Te
st
ac
cu
ra
cy

m
ea
n

[%]

CIFAR-10 1-step

Muffliato Zip-DL (ours) No noise reference

128643216842
0

20

40

60

80
Cifar 10-steps

be
tt
er

Figure 3: Best average test accuracy at different noise levels
on CIFAR-10. Zip-DL is able to consistently reach higher
accuracies, even for much higher noise levels.

both Zip-DL and Muffliato grant a lesser protection. In spite of this,
Zip-DL’s protection advantage over its competitor is even higher,
yielding a ROC-AUC of 63.87% at a loss of 1.32%, an improvement
of close to 12% ROC-AUC points over the protection granted by
Muffliato for a close to identical loss (ROC-AUC of 74.90% for a
loss of 1.42, shown as an horizontal cyan arrow on the figure). For
completeness, a figure detailing all averaging steps, as outlined
in Figure 1, can be found in Appendix A.

Comparison. Comparing the results obtained on the two tasks,
we observe clearly distinct behaviors:
• CIFAR-10: We observe in Figure 1 that even small perturba-
tions can significantly reduce the attack efficiency. However,
a higher noise level simply reduces the model’s utility.
• MovieLens: By contrast, low noise levels have minimal influ-
ence on attack performance. But higher noise levels succeed
in consistently dampening the attack’s efficiency.

We conjecture that these different behaviors result from the fact
that MovieLens considers a metric space in which the values of loss
have a direct meaning for the attacker, while loss values are not
directly significant in CIFAR-10. This is also the reason why we
consider test accuracy on CIFAR-10 and the test loss on MovieLens.
Regardless of these considerations, however, our results show that
Zip-DL outperforms Muffliato in both cases.

Impact of the noise level. Figure 3 compares the best accuracy
reached by Zip-DL and Muffliato for various noise levels on CIFAR-
10. In contrast to Muffliato, the accuracy of Zip-DL is less sensitive
to noise in the region of high test accuracy, i.e., Zip-DL with a
noise level of 8𝜎 achieves similar test accuracy to Muffliato with a
much lower noise level of 2𝜎 . Furthermore, this remains true even
when comparing Zip-DL with Muffliato 10-steps (even though Muf-
fliato has a 10× communication cost). Interestingly, Zip-DL with
10 averaging steps does not experience any decrease in accuracy
for all the noise levels we evaluated, since the noise cancellation
can happen without proceeding through gradient descent. In con-
clusion, Zip-DL demonstrates better convergence when compared
to Muffliato for similar privacy vulnerabilities, without requiring
additional averaging steps.

461

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

0 1 2
0

20

40

60

80

Learning iteration×103

Te
st
ac
cu
ra
cy

[%]

8𝜎

0 1 2
0

20

40

60

80

Learning iteration×103

Te
st
ac
cu
ra
cy

[%]

32𝜎

No noise Zip-DL (ours, 1-step)
Muffliato 1-step Muffliato 10-steps

Figure 4: Muffliato test accuracy with different numbers of
averaging rounds for a noise level of 8𝜎 (left) and 32𝜎 (right),
compared to Zip-DL (1-round). Even for high noise levels
(32𝜎), Muffliato 10-steps marginally improves the perfor-
mances over Muffliato 1-step, and Zip-DLmanages to beat
both with only one averaging round.

6.3 Communication overhead
While basic DL and Zip-DL limit themselves to a single averaging
round per gradient descent step, Muffliato is designed to perform
several of them to ensure the convergence of the averaging process.
The exact number of communication steps required depends both
on the variance of the models and datasets at the nodes and on the
spectral analysis of the communication graph [9].

In our experimental scenario and with the same distribution
assumptions as in Muffliato’s original paper [9], we find that Muf-
fliato’s performs best with at least 10 averaging steps.

Figure 4 shows the evolution of the test accuracy w.r.t. the num-
ber of iterations for basic DL, Muffliato (with 1 and 10 averaging
rounds), and Zip-DL (with 1 averaging round) for two different
noise levels. For both settings, we observe that Muffliato-10 is as
accurate or more accurate than Muffliato-1. As evidenced by Fig-
ure 4, these additional averaging rounds have a heavier impact on
the behavior of the test loss for higher noise levels, such as 32𝜎 ,
but do not necessarily have much of an impact from a convergence
point of view for lower noise levels, such as 8𝜎 .

Our baseline [9] also considers Chebyshev polynomials for faster
convergence. However, this only partially reduces the required
averaging rounds and does not affect the results of Section 6.2 that
only considers privacy and utility properties.

The addition of noise in both Zip-DL and Muffliato does not
affect only the final utility of the models. In some cases, this noise
increases the number of learning iterations required for accuracy to
converge, as the learning process must compensate for this noise,
yielding more training time and communication overhead while
also potentially exposing more information. We focus on this com-
munication overhead and measure it using the total number of
bytes transferred to reach 50% top-1 accuracy for both Zip-DL and
Muffliato. Figure 5 shows the communication overhead in TiB for
increasing noise levels on the CIFAR-10 dataset. Being sensitive to
the noise level, Muffliato does not even converge to an accuracy of
50% for noise levels beyond 16𝜎 . Zip-DL, therefore provides better
privacy guarantees while limiting the communication overhead.

σ 2σ 4σ 8σ 16σ
0

10

20

30

Noise level (σ is the lowest noise value)

C
om

m
un

ic
at
io
n

[Ti
B]

Cifar - 1-step

Muffliato Zip-DL (ours)
Does not reach 50% accuracy No noise reference

σ 2σ 4σ 8σ 16σ
0

100

200

300

Cifar - 10-steps

be
tt
er

Figure 5: Communication cost to reach 50% accuracy for
CIFAR-10. Muffliato fails to reach this target for higher noise
levels.

8σ 16σ 32σ 64σ 128σ
0

0.1

0.2

Noise level (σ is the lowest noise value)

C
om

m
un

ic
at
io
n

[Ti
B]

MovieLens - 1-step

Muffliato Zip-DL (ours)
Does not reach target No noise reference

8σ 16σ 32σ 64σ 128σ
0

1

2

MovieLens - 10-steps

Figure 6: Communication cost to reach 1.25× the best test loss
of unnoised DL for MovieLens. Muffliato fails to reach this
target for higher noise levels.

Finally, we also observe in Figure 5 that performing 10 averaging
steps has a significant overhead when considering sizeable models,
especially in combination with small local datasets that require
frequent communication rounds between gradient descents. Here,
running with 10 averaging steps yields an order of magnitude more
communication cost to reach similar accuracy.

All those observations are reflected in Figure 6, which represents
a comparable plot for the MovieLens dataset. Unlike the previous
experiments, we focus here on the communication cost required to
achieve a given target test loss rather than a target test accuracy,
due to the nature of the MovieLens task. The target test loss is
determined by adding 25% to the best unnoised test loss.

6.4 Other evaluation metrics
For completeness, we report in Figure 7 the privacy/utility tradeoff
of Zip-DL and Muffliato using the attacker’s TPR at a low FPR on
the MovieLens dataset. Intuitively, this represents the attacker’s
ability to identify valid training examples (TPR) when seeking to
make close to no error (low FPR). We consider FPR values of both
0.1% and 1%, following [7]. For a FPR of 0.1%, the attack can be
thwarted efficiently (down to a TPR of about 2.5%) with close to

462

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

0 5 10 15

1

2

3
be
tte
r

Attack TPR
[
%
]

M
in
im

um
te
st
lo
ss

0.1% FPR

0 20 40 60

1

2

3

1% FPR

No noise Muffliato 10-step Zip-DL (ours, 1-step)

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

Figure 7: TPR at low FPR for the MovieLens dataset.

no impact on the test loss with both approaches, rendering a fined-
grained comparison difficult. But for a FPR of 1%, Zip-DL provides
a better tradeoff between test-loss and attack success, delivering
better predictions for low TPR values (TPR < 10%, bottom-left
corner of the right-handed subfigure).

To further motivate our choice of attacks, we tried implementing
a more recent MIA [7], but obtained almost worse results than
random guesses in our DL scenarios. We conjecture this is due
to both the non-IID nature of the data distribution in DL and the
fact that DL usually considers small local training datasets. We
believe these render this attack (and most shadow training attacks)
impractical, and we view this as a promising avenue for future
works.

7 Related work
Correlated noises. Correlated noises are a natural choice when

seeking to reduce the utility cost of privacy. However, most of the
literature focuses on correlation across nodes [2, 19, 35]. In order
to apply such correlation, participating nodes need to rely either
on a trusted aggregator, so that the noise can cancel out [19, 35], or
on an agreement between nodes [2, 35]. We argue that the former
is not always achievable, nor desirable, and the latter comes at a
cost in terms of communication or utility [2].

A recent approach also leveraging correlated noises, DECOR [2],
assumes that the channels between nodes may get compromised,
and considers an adversary with access to every message trans-
mitted on the network. Under this strong threat model, DECOR
leverages shared secrets and introduces a novel privacy criterion,
secret-based local differential privacy (SecLDP), which is orthog-
onal to PNDP considered in this paper. In particular, SecLDP is
conditioned on the number of pairwise secrets compromised by
the attacker. To counter such a strong adversary, DECOR injects
a combination of independent and correlated noises that require
pairwise coordination between nodes. This strategy is overkill in
the presence of honest-but-curious adversaries and comes at a cost
in terms of convergence and accuracy, a drawback Zip-DL does not
exhibit (see Section 4.2).

Other methods to achieve privacy. Other variants of corre-
lated noise, such as secret sharing [36] can be used in the context
of DL [29]. While additive secret sharing does not necessarily in-
volve coordination among nodes or a trusted aggregator, it requires

multiple averaging rounds to reconstruct the shared average. Thus,
additional operations, such as gradient descent, cannot be mixed
together with the communication process, leading to prohibitive
communication costs. Zip-DL, on the other hand is able to mix
together communication and gradient computation (see Table 1).

Other cryptographic approaches include secure multiparty com-

putation [21] and secure aggregation [5]. In these techniques, nodes
agree on masks that conceal local models during the averaging
process. Despite providing exact solutions to model averaging, they
impose a significant drawback by requiring nodes to coordinate in
order to set up and remove the masking. In large and dynamic dis-
tributed systems, this requirement may prove infeasible, especially
in real-world scenarios involving mobile devices. For this reason,
we designed our approach to avoid such coordination.

Combining with other privacy mechanisms. Because our
approach requires no additional communication between nodes, it
can also be used in combinationwith other approaches. For instance,
uncorrelated noises could also be added to our approach. This would
allow to have an intermediary approach, with possibly stronger
privacy protection. Combining correlated and uncorrelated noises
was proved to be possible [2] for other privacy definitions, the
main difference with our approach being how the correlation is
performed. Importantly, our approach does not necessitate any sort
of coordination, making it friendly to combine with other works.
However, this work focuses on fully correlated noises and their
impact, and the study of such combinations is left for future work.

8 Conclusion
DL makes a step towards privacy in collaborative learning by pre-
venting raw data sharing. However, models shared between nodes
still leak private information.We introduce Zip-DL, which enhances
privacy in DL by injecting correlated noise into shared models. Zip-
DL does not introduce additional messages or require any sort of
coordination across nodes, hence having minimal impact on com-
munication cost while keeping convergence rates on par with the
state-of-the-art. In particular, the noise introduced by Zip-DL has a
provably lower impact on the convergence rate of the system than
other similar approaches. Zip-DL can thus be used as a basic pri-
vacy addition even in high-performance regimes where traditional
privacy-preserving mechanisms may be unusable because of utility
degradation. We prove formal privacy guarantees for Zip-DL in
terms of PNDP, bounding the privacy leakage of a node. Experi-
mental results confirm Zip-DL’s superior privacy-accuracy tradeoff
under two paradigms of membership inference attacks with differ-
ent levels of underlying strengths of the adversary’s knowledge.
Zip-DL performs particularly well on attacks that do not require
crossing information across iterations, which are the most stud-
ied practical attack scenarios. Future work will explore broader
scenarios beyond the initial assumptions of symmetric gossip ma-
trices and behavior of a noisy gradient, aiming to extend Zip-DL’s
applicability and robustness guarantees.

463

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

Acknowledgments
Co-authors affiliated to EPFL have been funded by the Swiss Na-
tional Science Foundation, under the project ‘FRIDAY: Frugal, Privacy-
Aware and Practical Decentralized Learning’, SNSF proposal No.
10.001.796.

Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

This work was performed using HPC resources from GENCI-
IDRIS (Grant 2024-AD011015352)

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security (CCS ’16). Association for Computing Machinery, New York, NY, USA,
308–318. https://doi.org/10.1145/2976749.2978318

[2] Youssef Allouah, Anastasia Koloskova, Aymane El Firdoussi, Martin Jaggi, and
Rachid Guerraoui. 2024. The Privacy Power of Correlated Noise in Decentralized
Learning. https://doi.org/10.48550/arXiv.2405.01031 arXiv:2405.01031 [cs, math,
stat]

[3] Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez
Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Grego-
rio Martínez Pérez, and Alberto Huertas Celdrán. 2022. Decentralized federated
learning: Fundamentals, state-of-the-art, frameworks, trends, and challenges.
(2022). https://arxiv.org/abs/2211.08413

[4] Sayan Biswas, Mathieu Even, Anne-Marie Kermarrec, Laurent Massoulié, Rafael
Pires, Rishi Sharma, and Martijn de Vos. 2025. Noiseless Privacy-Preserving
Decentralized Learning. Proceedings on Privacy Enhancing Technologies 2025, 1
(Jan. 2025), 824–844. https://doi.org/10.56553/popets-2025-0043

[5] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191. https://doi.org/10.1145/3133956.3133982

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. 2006. Randomized Gossip Algo-
rithms. IEEE Transactions on Information Theory 52, 6 (June 2006), 2508–2530.
https://doi.org/10.1109/TIT.2006.874516

[7] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and
Florian Tramèr. 2022. Membership Inference Attacks From First Principles. In
2022 IEEE Symposium on Security and Privacy (SP). 1897–1914. https://doi.org/
10.1109/SP46214.2022.9833649

[8] Jin-Hua Chen, Min-Rong Chen, Guo-Qiang Zeng, and Jia-Si Weng. 2021. BDFL:
A byzantine-fault-tolerance decentralized federated learning method for au-
tonomous vehicle. IEEE Transactions on Vehicular Technology 70, 9 (2021), 8639–
8652. https://doi.org/10.1109/TVT.2021.3102121

[9] Edwige Cyffers, Mathieu Even, Aurélien Bellet, and Laurent Massoulié. 2022.
Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization
and Averaging. In Advances in Neural Information Processing Systems.

[10] Martijn De Vos, Sadegh Farhadkhani, Rachid Guerraoui, Anne-marie Kermarrec,
Rafael Pires, and Rishi Sharma. 2023. Epidemic Learning: Boosting Decentralized
Learning with Randomized Communication. Advances in Neural Information

Processing Systems 36 (Dec. 2023), 36132–36164.
[11] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. 2018. Minimax

Optimal Procedures for Locally Private Estimation. J. Amer. Statist. Assoc. 113,
521 (Jan. 2018), 182–201. https://doi.org/10.1080/01621459.2017.1389735

[12] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography.
Springer Berlin Heidelberg, Berlin, Germany, 265–284. https://doi.org/10.1007/
11681878_14

[13] Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. 2017. Ex-
posed! A Survey of Attacks on Private Data. Annual Review of Statistics and Its

Application 4, 1 (March 2017), 61–84. https://doi.org/10.1146/annurev-statistics-
060116-054123

[14] Shripad Gade and Nitin H. Vaidya. 2018. Private Optimization on Networks. In
2018 Annual American Control Conference (ACC). IEEE, Milwaukee,WI, 1402–1409.
https://doi.org/10.23919/ACC.2018.8430960

[15] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020.
Inverting Gradients - How Easy Is It to Break Privacy in Federated Learning?. In
Advances in Neural Information Processing Systems, Vol. 33. Curran Associates,
Inc., 16937–16947.

[16] M. Gil, F. Alajaji, and T. Linder. 2013. Rényi Divergence Measures for Commonly
Used Univariate Continuous Distributions. Information Sciences 249 (Nov. 2013),
124–131. https://doi.org/10.1016/j.ins.2013.06.018

[17] F. Maxwell Harper and Joseph A. Konstan. 2016. TheMovieLens Datasets: History
and Context. ACM Transactions on Interactive Intelligent Systems 5, 4 (Jan. 2016),
1–19. https://doi.org/10.1145/2827872

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 770–778.
[19] Hafiz Imtiaz, Jafar Mohammadi, Rogers Silva, Bradley Baker, Sergey M. Plis,

Anand D. Sarwate, and Vince D. Calhoun. 2021. A Correlated Noise-Assisted
Decentralized Differentially Private Estimation Protocol, and Its Application
to fMRI Source Separation. IEEE Transactions on Signal Processing 69 (2021),
6355–6370. https://doi.org/10.1109/TSP.2021.3126546

[20] Márk Jelasity, Alberto Montresor, and Özalp Babaoglu. 2005. Gossip-based ag-
gregation in large dynamic networks. ACM Trans. Comput. Syst. 23, 3 (2005),
219–252. https://doi.org/10.1145/1082469.1082470

[21] Renuga Kanagavelu, Qingsong Wei, Zengxiang Li, Haibin Zhang, Juniarto Sam-
sudin, Yechao Yang, Rick Siow Mong Goh, and Shangguang Wang. 2022. CE-Fed:
Communication efficient multi-party computation enabled federated learning.
Array 15 (2022), 100207. https://doi.org/10.1016/j.array.2022.100207

[22] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhod-
nikova, and Adam Smith. 2011. What Can We Learn Privately? SIAM J. Comput.

40, 3 (Jan. 2011), 793–826. https://doi.org/10.1137/090756090
[23] Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian

Stich. 2020. A Unified Theory of Decentralized SGD with Changing Topology
and Local Updates. In Proceedings of the 37th International Conference on Machine

Learning (Proceedings of Machine Learning Research, Vol. 119). PMLR, 5381–5393.
[24] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset.

55, 5 (2014). https://www.cs.toronto.edu/~kriz/cifar.html
[25] Batiste Le Bars, Aurélien Bellet, Marc Tommasi, Erick Lavoie, and Anne-Marie

Kermarrec. 2023. Refined Convergence and Topology Learning for Decentralized
SGDwith Heterogeneous Data. In Proceedings of The 26th International Conference
on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,

Vol. 206). PMLR, 1672–1702.
[26] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.

2017. Can Decentralized Algorithms Outperform Centralized Algorithms? A
Case Study for Decentralized Parallel Stochastic Gradient Descent. In NIPS.

[27] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous Decen-
tralized Parallel Stochastic Gradient Descent. In Proceedings of the 35th Interna-

tional Conference on Machine Learning (Proceedings of Machine Learning Research,

Vol. 80). PMLR, 3043–3052.
[28] Songtao Lu, Yawen Zhang, and Yunlong Wang. 2020. Decentralized federated

learning for electronic health records. In 2020 54th Annual Conference on Infor-

mation Sciences and Systems (CISS). IEEE, 1–5. https://doi.org/10.1109/CISS48834.
2020.1570617414

[29] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In AISTATS.

[30] IlyaMironov. 2017. Renyi Differential Privacy. In 2017 IEEE 30th Computer Security

Foundations Symposium (CSF). 263–275. https://doi.org/10.1109/CSF.2017.11
arXiv:1702.07476 [cs]

[31] Abdellah El Mrini, Edwige Cyffers, and Aurélien Bellet. 2024. Privacy At-
tacks in Decentralized Learning. https://doi.org/10.48550/arXiv.2402.10001
arXiv:2402.10001 [cs]

[32] Reza Nasirigerdeh, Javad Torkzadehmahani, Daniel Rueckert, and Georgios
Kaissis. 2023. Kernel Normalized Convolutional Networks for Privacy-Preserving
Machine Learning. In 2023 IEEE Conference on Secure and Trustworthy Machine

Learning (SaTML). 107–118. https://doi.org/10.1109/SaTML54575.2023.00016
[33] Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive Pri-

vacy Analysis of Deep Learning: Passive and Active White-box Inference At-
tacks against Centralized and Federated Learning. In 2019 IEEE Symposium

on Security and Privacy (SP). 739–753. https://doi.org/10.1109/SP.2019.00065
arXiv:1812.00910 [cs, stat]

[34] Róbert Ormándi, István Hegedüs, and Márk Jelasity. 2013. Gossip Learning
with Linear Models on Fully Distributed Data. Concurrency and Computation:

Practice and Experience 25, 4 (Feb. 2013), 556–571. https://doi.org/10.1002/cpe.
2858 arXiv:1109.1396 [cs]

[35] César Sabater, Aurélien Bellet, and Jan Ramon. 2022. An Accurate, Scalable
and Verifiable Protocol for Federated Differentially Private Averaging. Machine

Learning 111, 11 (Nov. 2022), 4249–4293. https://doi.org/10.1007/s10994-022-
06267-9

[36] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (Nov. 1979),
612–613. https://doi.org/10.1145/359168.359176

[37] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership Inference Attacks Against Machine Learning Models. In 2017 IEEE Sym-

posium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE
Computer Society, 3–18. https://doi.org/10.1109/SP.2017.41

464

https://www.grid5000.fr
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.48550/arXiv.2405.01031
https://arxiv.org/abs/2405.01031
https://arxiv.org/abs/2211.08413
https://doi.org/10.56553/popets-2025-0043
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/SP46214.2022.9833649
https://doi.org/10.1109/SP46214.2022.9833649
https://doi.org/10.1109/TVT.2021.3102121
https://doi.org/10.1080/01621459.2017.1389735
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1146/annurev-statistics-060116-054123
https://doi.org/10.1146/annurev-statistics-060116-054123
https://doi.org/10.23919/ACC.2018.8430960
https://doi.org/10.1016/j.ins.2013.06.018
https://doi.org/10.1145/2827872
https://doi.org/10.1109/TSP.2021.3126546
https://doi.org/10.1145/1082469.1082470
https://doi.org/10.1016/j.array.2022.100207
https://doi.org/10.1137/090756090
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1109/CISS48834.2020.1570617414
https://doi.org/10.1109/CISS48834.2020.1570617414
https://doi.org/10.1109/CSF.2017.11
https://arxiv.org/abs/1702.07476
https://doi.org/10.48550/arXiv.2402.10001
https://arxiv.org/abs/2402.10001
https://doi.org/10.1109/SaTML54575.2023.00016
https://doi.org/10.1109/SP.2019.00065
https://arxiv.org/abs/1812.00910
https://doi.org/10.1002/cpe.2858
https://doi.org/10.1002/cpe.2858
https://arxiv.org/abs/1109.1396
https://doi.org/10.1007/s10994-022-06267-9
https://doi.org/10.1007/s10994-022-06267-9
https://doi.org/10.1145/359168.359176
https://doi.org/10.1109/SP.2017.41

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

[38] Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wallach. 2006. Eclipse
Attacks on Overlay Networks: Threats and Defenses. In Proceedings IEEE INFO-

COM 2006. 25TH IEEE International Conference on Computer Communications.
IEEE, Barcelona, Spain, 1–12. https://doi.org/10.1109/INFOCOM.2006.231

[39] Youliang Tian, Shuai Wang, Jinbo Xiong, Renwan Bi, Zhou Zhou, and Md Za-
kirul Alam Bhuiyan. 2023. Robust and privacy-preserving decentralized deep fed-
erated learning training: Focusing on digital healthcare applications. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (2023). https://doi.
org/10.1109/TCBB.2023.3243932

[40] Yuxin Wu and Kaiming He. 2018. Group Normalization. In Computer Vision –

ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018,

Proceedings, Part XIII. Springer-Verlag, Berlin, Heidelberg, 3–19. https://doi.org/
10.1007/978-3-030-01261-8_1

[41] Lin Xiao, Stephen Boyd, and Sanjay Lall. 2006. Distributed Average Consensus
with Time-Varying Metropolis Weights. Automatica (2006), 1–4.

[42] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan Kautz, and Pavlo
Molchanov. 2021. See through Gradients: Image Batch Recovery via GradIn-
version. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR). IEEE, Nashville, TN, USA, 16332–16341. https://doi.org/10.1109/
CVPR46437.2021.01607

[43] Da Yu, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. 2021. Do Not Let Pri-
vacy Overbill Utility: Gradient Embedding Perturbation for Private Learning.
arXiv:2102.12677 [cs]

[44] Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. 2020. Fully Decen-
tralized Joint Learning of Personalized Models and Collaboration Graphs. In
AISTATS (Proceedings of Machine Learning Research, Vol. 108). PMLR, 864–874.

[45] Oualid Zari, Chuan Xu, and Giovanni Neglia. 2021. Efficient Passive Membership
Inference Attack in Federated Learning. NeurIPS PriML 2021 - workshop Pri-

vacy in Machine Learning (Oct. 2021). https://doi.org/10.48550/arXiv.2111.00430
arXiv:2111.00430

[46] Xinwei Zhang, Xiangyi Chen, Mingyi Hong, Steven Wu, and Jinfeng Yi. 2022.
Understanding Clipping for Federated Learning: Convergence and Client-Level
Differential Privacy. In Proceedings of the 39th International Conference onMachine

Learning. PMLR, 26048–26067.
[47] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep Leakage from Gradients.

In Advances in Neural Information Processing Systems (NeurIPS), H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc.

A Additional experiments details
A.1 CIFAR-10: Zip-DL 1—step vs Muffliato

10—steps

50 55 60

20

40

60

80

better

Attack ROC-AUC
[
%
]

M
ax
im

um
te
st
ac
cu
ra
cy

[%] Threshold attack

50 60 70

20

40

60

80

Classifier attack

No noise 1-step No noise 10-step

Muffliato 10-step Zip-DL (ours, 1-step)

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

Figure 8: The privacy-utility tradeoff of Zip-DL compared
to Muffliato 10-steps, on the CIFAR-10 dataset. Even though
Zip-DL reach a similar tradeoff to Muffliato 10-steps, Zip-DL
requires fewer communications.

As was done in Section 6.2 for MovieLens, we also directly com-
pare Zip-DL to Muffliato with 10 averaging steps on CIFAR-10
in Figure 8. Looking at threshold attack, Zip-DL offers a better
tradeoff. On the other hand, the tradeoffs of both approaches are

very similar for the classifier attack. But closing this gap that is
present in Figure 1 comes at the cost of 10 averaging steps, thus
inducing a significant communication overhead. Thus, Zip-DL can
achieve similar privacy properties compared to Muffliato 10-steps
but reduces the communication overhead by a factor of 10.

A.2 MovieLens: Zip-DL 1—step vs Muffliato
10—steps

52 54 56 58 60

1

2

3

M
in
im

um
te
st
lo
ss

Threshold attack

60 70 80 90

1

2

3

Classifier attack

No noise Muffliato Zip-DL (ours)

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

55 60

1

1.5

2

better

Attack ROC-AUC
[
%
]60 70 80 90

1

1.5

2

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

(a) 10 averaging steps

(b) 1 averaging step

Figure 9: The privacy-utility tradeoff of Zip-DL compared to
Muffliato on MovieLens, for multiple averaging steps.

We also display the full tradeoffs for MovieLens in Figure 9,
mimicking what was done for CIFAR-10 in Figure 1. We observe
a similar tendency: our approach systematically offers a better
tradeoff. Moreover, the tradeoff offered by Muffliato 1–steps is
significantly worse compared to Muffliato 10–steps. This further
motivates our choice for Figure 2 to directly compare Zip-DL with
1 averaging step versus Muffliato with 10 averaging steps.

A.3 Clipping
In practice, Assumption 5.1 can be enforced through gradient clip-
ping, a standard approach in DP-SGD [1, 2]. However, gradient
clipping introduces additional constraints on theoretical conver-
gence, and in some scenarios, it may even prevent convergence
entirely [46].

To assess the impact of clipping on the convergence guarantees
of Zip-DL, we evaluate its effect on convergence in Figure 10. Our
experiments focus on the MovieLens dataset with two clipping
parameters: Δ = 1 and Δ = 0.5.

Figure 10 shows that the convergence of Zip-DL is onlymarginally
affected by the clipping parameter, even when the noise variance
approaches the gradient bound. This illustrates that Assumption 5.1
can be effectively enforced in practice through gradient clipping
without significantly compromising convergence.

465

https://doi.org/10.1109/INFOCOM.2006.231
https://doi.org/10.1109/TCBB.2023.3243932
https://doi.org/10.1109/TCBB.2023.3243932
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1007/978-3-030-01261-8_1
https://doi.org/10.1109/CVPR46437.2021.01607
https://doi.org/10.1109/CVPR46437.2021.01607
https://arxiv.org/abs/2102.12677
https://doi.org/10.48550/arXiv.2111.00430
https://arxiv.org/abs/2111.00430

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

Table 2: List of the main symbols used in this work.

Symbol Usage
V Set of all the nodes that participate in the training.
𝑛 Number of nodes inV .

𝑎,𝑢, 𝑣 Nodes inV .
Γ (𝑡 ,𝑠)
𝑎 Neighbors of node 𝑎 at averaging round 𝑠 , after learning iteration 𝑡 .
𝑑
(𝑡 ,𝑠)
𝑎 Degree of node 𝑎 at averaging round 𝑠 , after learning iteration 𝑡 .
𝑑𝑎 Maximum degree of node 𝑎, over learning iterations and averaging rounds.

𝑊 (𝑡 ,𝑠) Gossip matrix at averaging round 𝑠 , after learning iteration 𝑡 .
𝑝 Mixing parameter of the gossip matrices (Assumption 2.1).

𝑥
(𝑡)
𝑎 Model of node 𝑎 at learning iteration 𝑡 .
𝑥 (𝑡) Average model at learning iteration 𝑡 .

𝑥
(𝑡+1/2)
𝑎 Model of node 𝑎 at learning iteration 𝑡 after the gradient step.
𝑥 (𝑡+1/2) Average model at learning iteration 𝑡 after the gradient step.
𝑥∗ Optimal model.
𝑓 ∗ Minimum of the global loss function.
D𝑎 Data distribution of node 𝑎.
𝜉
(𝑡)
𝑎 Data sample drawn from D𝑎 .
𝐹𝑎 Loss function of node 𝑎.
𝑓𝑎 Sampled (or expected) loss of node 𝑎 (Equation (1)).
𝑓 Globally sampled loss (Equation (1)).
𝜇 Convexity constant (Assumption 4.1).
𝐿 Smoothness constant (Assumption 4.1).
𝜗2
𝑖 Noise level at the optimum (Assumption 4.3).

𝜔2
𝑖 Diversity of the data distribution at the optimum (Assumption 4.3).
𝛾 Stepsize of the gradient descent.

𝑌
(𝑡)
𝑎→𝑣 Intermediate noise generated by node 𝑎 destined to 𝑣 at learning iteration 𝑡 .

𝑍
(𝑡)
𝑎→𝑣 Zip-DL-averaging noise from node 𝑎 to node 𝑣 at learning iteration 𝑡 .
𝜍2
𝑎 Variance of 𝑌 (𝑡)𝑎→𝑣 .

(𝜎 (𝑡)𝑎→𝑣)2 Variance of 𝑍 (𝑡)𝑎→𝑣 .
Δ Adjacent datasets bound (Assumption 5.1).

𝑔 (𝑇) (𝑎, 𝑣) Privacy bound from node 𝑎 to node 𝑣 at timestamp T (Definition 5.3).
𝑋 (𝑡) Virtual models vector at time 𝑡 .
𝜒 (𝑡) Unnoised virtual execution (with the same graphs and batches, but no noise) at time 𝑡 .
�̂� (Virtual) Mixing matrix (Equation (8))
⊺𝐴 Transpose of some matrix 𝐴.

0 0.5

1

1.5

2

2.5

3

Noise variance

M
in
im

um
te
st
lo
ss

No clipping ∆ = 1
∆ = 0.5

Figure 10: Best test loss of Zip-DL for different clipping pa-
rameters, on the MovieLens dataset.

A.4 Experiments with varying number of nodes
For completeness, we also explore varying the number of nodes
partaking in DL, which was fixed to 100 in the main paper. We vary
this count to respectively 32 and 64 nodes in Figure 11.

We observe the tradeoffs keep the same tendency as the ones
of Figure 2. Moreover, the order of magnitude of this tradeoff is
consistent, even if the number of nodes and the degree of the graph
was changed.

A.5 Node dropout
Since Zip-DL relies on correlated noise sent in different directions
through the network, it is interesting to evaluate how node dropout
impacts Zip-DL’s performances. Such a scenario is not computa-
tionally expensive: since each node behaves independently, a node
dropout does not introduce any need for restarting a round. This is

466

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

50 60 70

1.5

2
be
tte
r

M
in
im

um
te
st
lo
ss

Threshold attack

60 70 80 90

1.5

2

Classifier attack

No noise Muffliato 10-step Zip-DL (ours, 1-step)

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

50 55 60 65

1

1.5

2
be
tte
r

Attack ROC-AUC
[
%
]

M
in
im

um
te
st
lo
ss

60 70 80 90

1

1.5

2

0

2

4

6

8

N
oi
se

le
ve
l(
lo
g
sc
al
e)

(a) 32 nodes (𝑑 = 3)

(b) 64 nodes (𝑑 = 4)

Figure 11: Varying number of nodes for the MovieLens
dataset.

0 10% 25% 50% 75%
0

0.5

1

1.5

2

Dropout rate

Te
st
lo
ss

No noise Zip-DL, 64σ
Zip-DL, 128σ

be
tt
er

Figure 12: Test loss for a fixed communication budget with
varying dropout rates for the MovieLens dataset.

one of the benefits of our approach compared to secret sharing since
we add noise and not masks. However, node dropout will naturally
impact any DL approach. In our case, it may change Lemma 3.1,
since the propagated noise will not be exactly zero. We evaluate in
this section how node dropout affects Zip-DL.

We call node dropout when a node skips a communication round.
Such a node does not compute any gradient and does not receive
or send any message. However, it may come back online later in
the training. To do so, we simulate four levels of dropout: 10%, 25%,
50% and 75%. We also add a dropout correlation of 10%, making the
dropped out nodes more likely to remain dropped out.

Figure 12 reports the result, by considering the test loss for two
noise levels and those for dropout rates. We observe that dropout
makes higher noise level deteriorate more in test loss. However,
even for high levels of dropout and noise, the degradation remains
marginal as long as the dropout rate is below 25%.

−1 0 1
0

50

100

150

Parameter value (×10−6)

Fr
eq
ue
nc
y

(a) Partially trained model
Parameter distribution

−6.5 −6 −5.5
0

50

100

150

Parameter value (×10−5)

−5 0 5
0

50

100

150

Parameter value (×10−7)
−3.6 −3.4 −3.2

0

50

100

150

Parameter value (×10−5)

Theoretical Gaussian

(b) Fully trained model

Best parameter Worst parameter

Figure 13: Distribution of the noisy gradient for two parame-
ters on the MovieLens dataset, with low noise level 𝜎

This decrease in utility for high levels of dropout is to be expected,
as this is outside the considerations of our theoretical convergence
guarantee. In particular, node dropout makes Lemma 3.1 not hold,
which was pivotal in our proof. However, we conjecture that our
convergence proof could be adapted to capture node dropouts,
at the cost of a term in the form of 𝜎2/𝑇 . This would mean our
convergence mostly matches the existing literature [2, 9] in terms
of noise impact. However, how the dropout rate will affect the
noise term in 1/𝑇 remains a future work, as our approach is initially
designed for networks with a low amount of dropout to leverage
the noise cancellation.

A.6 Empirical evaluation of Assumption 5.6
We empirically examine some simple scenarios to provide motiva-
tion for and, in turn, justify Assumption 5.6.

To achieve this, we utilize a centralized MovieLens task with
the same parameters as those described in Section 6.1. We consider
two cases: a fully trained model (after 100 iterations) and a partially
trained model (after 10 iterations). For each case, we examine two
data samples of size 1000 each. In the first sample, we compute
the true gradient and subsequently generate a noisy gradient by
perturbing this true gradient. In the second sample, we first add
noise to the model parameters and then compute the gradient. We
evaluate the differences between the two normalized distributions
by calculating the Kolmogorov-Smirnov test statistic for all param-
eters, given that the exact Lipschitz constant 𝐿 is unknown.

For clarity, we present two histograms illustrating the distribu-
tion in the scenario where we first add noise and then compute
the gradient: one for the best-case and the other for the worst-case
Kolmogorov-Smirnov test outcomes. To optimize computational

467

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

−1 0 1
0

50

100

150

Parameter value (×10−4)

Fr
eq
ue
nc
y

(a) Partially trained model
Parameter distribution

−5 0 5 10
0

50

100

150

Parameter value (×10−4)

−1 0 1
0

50

100

150

Parameter value (×10−4)
−5 0 5 10

0

50

100

150

Parameter value (×10−4)

Theoretical Gaussian

(b) Fully trained model

Best parameter Worst parameter

Figure 14: Distribution of the noisy gradient for two parame-
ters on the MovieLens dataset, with high noise level 128𝜎

efficiency, we randomly select 10, 000 parameters for calculating
the aforementioned metrics.

Figure 13 shows the results for a low noise level (𝜎), while Fig-
ure 14 illustrates the outcomes for a higher noise level (128𝜎). More
specifically, Figures 13 and 14, subplots (a), presents the case with
a partially trained model, whereas Figures 13 and 14, subplots (b),
represents gradients computed on a noise around the fully trained
model. Across all scenarios, a consistent trend is observed for all pa-
rameters, indicating that the parameters generally follow a normal
distribution.

A.7 Additional attacks details
In this section, we provide further details to the MIA workflow for
both the threshold and the classifier attack. We also specify what
information the attacker has access to.

Attacker observations during training. During training, an at-
tacker stores models received from its neighbors at different itera-
tions, while denoting whose model is being saved. It is important
to note those are noisy models. For CIFAR-10, the attacker stores
one every 100 iterations, whereas it is one every 50 iteration for
MovieLens.

Threshold attack. The attacker computes the losses generated
by the model on both the victim’s local training set and the global
test set. The attacker evaluates the ROC-AUC for each saved model.
This yields an attack result for each logged model, meaning we can
also observe tendencies across iterations.

Classifier attack. After training, the attacker groups all the mod-
els received that were sent by a target victim node 𝑣 . For a given
data point 𝑥 , the attacker computes the loss of 𝑥 through all logged
models of 𝑣 . This creates a time series of losses for this data point 𝑥 .
We can label those time series considering whether 𝑥 ∈ D𝑣 or not.

The attacker then trains a classifier to discriminate between time
series, using a train-test split between both the testing set and the
victim’s local training set. 70% of the local training dataset and the
testing set are used to train the classifier, and the remaining 30%
of both sets are used for evaluation. Reweighting is performed to
account for the unbalance in the class distributions.

B Privacy proof
In this section, we provide the necessary steps to prove Theorem 5.9.
Most necessary assumptions are detailed in Sections 4.1 and 5.1, but
Section B.1 details common technical assumptions in the field, or
express intermediary results necessary for the main result. Then,
Section B.2 proves the main privacy theorem. Finally, Section B.3
contains details about Section 5.5.

B.1 Assumptions and lemmas
We start by proving the equivalent system matrix formulation.

Lemma 5.7. Consider 𝑖 ∈ V and 𝑡 ∈ N. Then we have:

∀𝑘 ∈ V ,𝑋 (𝑡)
𝑛𝑖+𝑘 = 𝑋

(𝑡)
𝑖 .

Proof. (Lemma 5.7) We proceed by induction over 𝑡 ∈ N, us-
ing (9) and unrolling the matrix multiplication. The initialization is
done by definition. Now, assume that 𝑋 (𝑡)

𝑛𝑖+𝑘 = 𝑋
(𝑡)
𝑖 for all 𝑘 .

First, we observe that we have 𝑋 (𝑡+1/2)
𝑛𝑖+𝑘 = 𝑋

(𝑡+1/2)
𝑖 by definition.

Second, we have, using (9):

𝑋
(𝑡+1)
𝑛𝑖+𝑘 =

(
�̂��̂�

(𝑡) (𝑋 (𝑡+1/2) + 𝑍 (𝑡))
)
𝑛𝑖+𝑘

=
𝑛2∑︁
𝑗=0

�̂�𝑛𝑖+𝑘 ,𝑗

(
�̂�
(𝑡) (𝑋 (𝑡+1/2) + 𝑍 (𝑡))

)
𝑗

We can remove indexes in the virtual domain by exploiting the
following properties of the matrices:

• �̂�𝑛 (𝑖−1)+𝑘 ,𝑗 ≠ 0 ⇐⇒ 𝑗 ∈ [[𝑛(𝑖 − 1) + 1,𝑛𝑖]] and
�̂�𝑛 (𝑖−1)+𝑘 ,𝑗 = 1 in this case in such case, which simplifies
the sum by removing �̂� .
• �̂� (𝑡)

𝑗+𝑛 (𝑖−1) ,�̂� ≠ 0 ⇐⇒ 𝑢 = 𝑛(𝑗 − 1) + 𝑖 , in which case
�̂�
(𝑡)
𝑗+𝑛 (𝑖−1) ,�̂� = 𝑊

(𝑡)
𝑖 ,𝑗 , which simplifies the sum further, by

removing indexes and rewriting in terms of𝑊 (𝑡) .
468

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

Thus, we get:

𝑋
(𝑡+1)
𝑛𝑖+𝑘 =

𝑛𝑖∑︁
𝑗=𝑛 (𝑖−1)+1

(
�̂�
(𝑡) (𝑋 (𝑡+1/2) + 𝑍 (𝑡))

)
𝑗

=
𝑛∑︁
𝑗=1

(
�̂�
(𝑡) (𝑋 (𝑡+1/2) + 𝑍 (𝑡))

)
𝑛 (𝑖−1)+𝑗

=
𝑛∑︁
𝑗=1

𝑛2∑︁
�̂�=0

�̂�
(𝑡)
𝑛 (𝑖−1)+𝑗 ,𝑢

(
𝑋 (𝑡+1/2) + 𝑍 (𝑡)

)
�̂�

=
𝑛∑︁
𝑗=1

𝑊
(𝑡)
𝑖 ,𝑗

(
𝑋 (𝑡+1/2) + 𝑍 (𝑡)

)
𝑛 (𝑗−1)+𝑖

=
𝑛∑︁
𝑗=1

𝑊
(𝑡)
𝑖 ,𝑗

(
𝑋
(𝑡+1/2)
𝑗 + 𝑍 (𝑡)𝑗→𝑖

)

Where we used the induction hypothesis. Now, we use the observa-
tion that 𝑋 (𝑡+1/2)

𝑛𝑖+𝑘 = 𝑋
(𝑡+1/2)
𝑖 to conclude our induction:

𝑋
(𝑡+1)
𝑛𝑖+𝑘 =

𝑛∑︁
𝑗=1

𝑊
(𝑡)
𝑖 ,𝑗

(
𝑋
(𝑡+1/2)
𝑗 + 𝑍 (𝑡)𝑗→𝑖

)

=𝑋 (𝑡+1)
𝑖 . □

Lemma 5.8. Using Assumption 5.6, consider 𝜒 (𝑇) a virtual execu-
tion without any noise, and every other source of randomness is the

same. Then, we have:

𝑋 (𝑇) ∼ N
(
𝜒 (𝑇) ,𝐿�̂� (𝑇)

𝐶 (𝑡)Σ�̃� (𝑡)
⊺
(�̂� (𝑇)

𝐶 (𝑡))
)

.

Here, Σ(𝑡)𝑍 represents correlated noises that will cancel out, for 𝑡
big enough we have (�̂��̂�)𝑡Σ𝑍

⊺ (�̂��̂�)𝑡 = 0. Thus, once 𝑇 is big
enough, the variance Σ(𝑡)𝑍 will become constant.

Proof. (Lemma 5.8) We proceed by induction on 𝑇 for the ex-
pected value, and note Σ𝑇 =

∑𝑇
𝑡=1 (1 − 𝛾𝐿)𝑡 (�̂��̂�)𝑡Σ(𝑡)𝑍

⊺ (�̂��̂�)𝑡 .
We have the following two update rules:

𝑋 (𝑇+1) = �̂��̂�
(𝑇) (

𝑋 (𝑇) − 𝛾∇𝐹 (𝑋 (𝑇) , 𝜉 (𝑇)) + 𝑍 (𝑡)
)

𝜒 (𝑇+1) = �̂��̂�
(𝑇) (

𝜒 (𝑇) − 𝛾∇𝐹 (𝜒 (𝑇) , 𝜉 (𝑇))
)

.

First, we can show by another induction that this is a linear
combination of Gaussian random variables.

Then, let us look at the expected value for 𝑋 (𝑇+1) : if we assume
that the expected value of 𝑋 (𝑇) is 𝜒 (𝑇) , Assumption 5.6 guarantees
that the expected value of 𝑋 (𝑇+1) is 𝜒 (𝑇+1) .

Finally, using Assumption 5.6, we have:

𝑋 (𝑇+1) ∼ N
(
𝜒 (𝑇+1) ,𝐿Σ𝑇+1

)
With the following update rule:

𝐿Σ𝑇+1 = (1 − 𝛾𝐿)�̂��̂�
(𝑇) (𝐿Σ𝑇)

⊺
(�̂��̂�

(𝑇))

+ 𝐿(�̂��̂�
(𝑇))Σ𝑍

⊺
(�̂��̂�

(𝑇)).

This yields the following:

𝐿Σ𝑇 =𝐿
𝑇∑︁
𝑡=1
(1 − 𝛾𝐿)𝑡 (�̂��̂�)𝑡Σ(𝑡)𝑍

⊺ (�̂��̂�)𝑡

=𝐿�̃� (𝑇)Σ(𝑡)𝑍

⊺
�̃� (𝑇) . □

To prove PNDP, we will need a bound between two adjacent
inputs is derived using the following lemma:

Lemma B.1. Consider two unnoised executions. Then,𝜒 (𝑡) − ¤̂𝜒 (𝑡)2

∞
≤ 4𝛾2Δ2

1 + 4𝛾2𝐿
((2 + 4𝛾2𝐿)𝑡 − 1).

This lemma bounds the maximal difference between local models
of two adjacent unnoised executions. One limitation of this lemma
is that it bounds over a maximum. This is because a gradient term
must be isolated from the recursive term in the proof. To show this,
Section 5.5 focuses on the case where only averaging is performed,
and no gradient descent. In this scenario, the equivalent of the
above lemma is tighter, and we derive a generalization of previous
results to our case of correlated noises.

Proof. (Lemma B.1) We know that
�̂��̂�

∞ = 1.𝜒 (𝑡) − ¤̂𝜒 (𝑡)2

∞
≤

�̂��̂�
(𝑡) (

𝜒 (𝑡−1/2) − ¤̂𝜒 (𝑡−1/2))2

∞

≤2
𝜒 (𝑡−1) − ¤̂𝜒 (𝑡−1)

2

∞
+ 2𝛾2𝐶 (𝑡)1 ,

With 𝐶 (𝑡)1 :=
∇𝐹 (𝜒 (𝑡−1) , 𝜉 (𝑡−1)) − ∇𝐹 (¤̂𝜒 (𝑡−1) , ¤𝜉 (𝑡−1))

2

∞
.

We focus on the left term, and notice that:

𝐶
(𝑡)
1 ≤ 2

∇𝐹 (𝜒 (𝑡−1) , 𝜉 (𝑡−1)) − ∇𝐹 (𝜒 (𝑡−1) , ¤𝜉 (𝑡−1))
2

∞

+ 2
∇𝐹 (𝜒 (𝑡−1) , ¤𝜉 (𝑡−1)) − ∇𝐹 (¤̂𝜒 (𝑡−1) , ¤𝜉 (𝑡−1))

2

∞
(5),(2)
≤ 2Δ2 + 2𝐿

𝜒 (𝑡−1) − ¤̂𝜒 (𝑡−1)
2

∞

Thus, we get:𝜒 (𝑡) − ¤̂𝜒 (𝑡)2

∞
≤(2 + 4𝛾2𝐿)

𝜒 (𝑡−1) − ¤̂𝜒 (𝑡−1)
2

∞
+ 4𝛾2Δ2

Unrolling the recursion, we obtain:

𝜒 (𝑡) − ¤̂𝜒 (𝑡)2

∞
≤ 4𝛾2Δ2

1 + 4𝛾2𝐿
((2 + 4𝛾2𝐿)𝑡 − 1). □

B.2 Proof of the main theorem
In this section, we remind and provide a full proof of Theorem 5.9.

Theorem 5.9 (Privacy of Zip-DL). 𝑇 iterations of Zip-DL (Algo-

rithm 2) satisfies

(
𝛼 , 𝜖 (𝑇) (𝑎, 𝑣)

)
-PNDP, where 𝜖 (𝑇) (𝑎, 𝑣) is bounded

for any two nodes 𝑎, 𝑣 ∈ V by:

2𝛼𝛾2Δ2

𝐿 + 4𝛾2𝐿2

𝑇−1∑︁
𝑡=0

∑︁
𝑣∈�̂�

�̂�∈ Γ̂ (𝑡)
�̂�

(2 + 4𝛾2𝐿)𝑡 − 1((
�̃� 𝐶

) (𝑡)
Σ̃�̃� (𝑡)

⊺ (
�̃� 𝐶

)
(𝑡)

)
�̃�,�̃�

,

469

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

where Σ̃�̃� (𝑡) is a diagonal matrix representing the noise variances of

all noises generated by the algorithm up to time 𝑇 , 𝐶 (𝑡) is a block-

diagonal matrix representing the correlation factor at each iteration

𝑡 , and �̃� (𝑡)
is the accumulation of all the powers of the gossip matrix

defined in Section 5.2.

Proof. We want to bound the privacy loss that emerges from
the view of nodes 𝑉 . To this end, we will use the matrix notations
defined in Section 5.2, with a virtual network.

For simplicity of notation, we assume that the communication
matrix is fixed through time. The proof generalizes to arbitrary
communication matrix at time 𝑡 at the expense of product notations.
We obtain the following update rule for a given averaging round 𝑡 :

𝑋 (𝑡+1) = �̂��̂�

(
𝑋 (𝑡) − 𝛾∇𝐹 (𝑋 (𝑡) , 𝜉 (𝑡)) + 𝑍 (𝑡)

)
(12)

We now want to focus on two distinct executions on datasets
𝜉 (𝑡) ∼𝑢 ¤𝜉 (𝑡) . The dot notation will correspond to the execution of
the algorithm on an adjacent dataset.

If we now consider some set of nodes𝑉 ⊆ V , we denote𝑉 ⊆ V̂
the set of corresponding virtual nodes. We name 𝑃𝑇𝑉 the privacy
loss:

𝑃
(𝑇)
𝑉 := 𝐷𝛼

(
O�̂� (A

(𝑇) (D))∥O�̂� (A
(𝑇) (¤D))

)
.

We want to bound:

𝑃
(𝑇)
𝑉 = 𝐷𝛼

(
O�̂� (A

(𝑇) (D))∥O�̂� (A
(𝑇) (¤D))

)

≤
𝑇−1∑︁
𝑡=0

∑︁
𝑣∈�̂�

∑︁
�̂�∈ Γ̂ (𝑡)

�̂�

𝐷𝛼

(
𝑋
(𝑡)
�̂� ∥ ¤̂𝑋

(𝑡)
�̂�

)
(13)

Our main focus is thus to bound 𝐷𝛼

(
𝑋
(𝑡)
�̂� ∥ ¤̂𝑋

(𝑡)
�̂�

)
. To this end,

we want to apply Lemma 5.8 to both 𝑋
(𝑡)
�̂� and ¤̂𝑋

(𝑡)
�̂� . One key re-

mark is that both their distributions are centered on slightly altered
trajectories, corresponding to the two adjacent datasets. Thus, we
apply Lemma 5.8, and obtain:

𝑋
(𝑡)
�̂� ∼ N(𝜒 (𝑡)�̂� ,𝐿(Σ𝑇)�̂�,�̂�), ¤̂𝑋

(𝑡)
�̂� ∼ N(¤̂𝜒

(𝑡)
�̂� ,𝐿(Σ𝑇)�̂�,�̂�),

with Σ𝑇 =
∑𝑇

𝑡=1 (1 − 𝛾𝐿)𝑡 (�̂��̂�)𝑡Σ𝑍
⊺ (�̂��̂�)𝑡 .

One last thing we may want to do is factorize the noise expres-
sion: We now consider the matrix of all the noises 𝑍 (𝑇) ∈ R𝑇𝑛2 ,
where 𝑍 [𝑡𝑛2 + �̂�] := 𝑍

(𝑡)
�̂� for 0 ≤ �̂� < 𝑛2. We can express the term

by considering the temporal matrix notations of Section 5.2. This
leads to:

Σ𝑇 = �̃� (𝑇)�̃�Σ�̃�
⊺ (�̃� (𝑇)�̃�) (14)

Considering (11),(14) along with Lemma 5.4, we obtain:

𝐷𝛼

(
𝑋
(𝑡)
�̂� ∥ ¤̂𝑋

(𝑡)
�̂�

)
≤ 𝛼

2𝐿

𝜒 (𝑡)�̂� − ¤̂𝜒
(𝑡)
�̂�

2

(
�̃� (𝑡)�̃�Σ�̃�

⊺ (�̃� (𝑡)�̃�)
)
�̃�,�̃�

Finally, we need to bound the difference between the two un-
noised executions

𝜒 (𝑡)�̂� − ¤̂𝜒
(𝑡)
�̂�

2
using Lemma B.1.

Putting it all together in (13), we can bound:

𝑃
(𝑇)
𝑉 ≤ 2𝛼𝛾2Δ2

𝐿 + 4𝛾2𝐿2

𝑇−1∑︁
𝑡=0

∑︁
𝑣∈�̂�

∑︁
�̂�∈ Γ̂ (𝑡)

�̂�

(2 + 4𝛾2𝐿)𝑡 − 1(
�̃� (𝑡)�̃�Σ�̃�

⊺ (�̃� (𝑡)�̃�)
)
�̃�,�̃�

. (15)

□

B.3 Proof of the averaging algorithm
We prove Section 5.5.

Theorem 5.12. 𝑇 iterations of Algorithm 1 satisfy (𝛼 , 𝜖 (𝑇) (𝑎, 𝑣))-
PNDP, where 𝜖 (𝑇) (𝑎, 𝑣) is bounded for any two nodes 𝑎, 𝑣 ∈ V by:

𝛼Δ2

2

𝑇−1∑︁
𝑡=0

∑︁
𝑣∈�̂�

∑︁
�̂�∈ Γ̂ (𝑡)

�̂�

(
(�̂��̂�)𝑇

)
�̂�,𝑎(

(�̃�𝐶) (𝑡)Σ�̃�
⊺ (�̃�𝐶) (𝑡)

)
�̃�,�̃�

,

where

�̃� (𝑇) :=
(
(�̂��̂�)𝑇 , . . . , �̂��̂�

)
.

Sketch of proof. (Theorem 5.12)We can follow the same proof
concept for the averaging algorithm presented in Algorithm 1. In
this case, the notion of adjacent dataset is slightly different, as
it concerns the original data itself 𝑋 (0) . We will obtain a simpler
update rule:

𝑋 (𝑇+1) = �̂��̂�
(𝑇) (

𝑋 (𝑇) + 𝑍 (𝑇)
)

.

Unrolling the model updates, and following a similar reasoning,
we obtain that:

𝑋 (𝑇+1) ∼ N((�̂��̂�)𝑇𝑋 (0) ,�̃�𝑇 �̃�Σ𝑌
⊺ (�̃�𝑇 �̃�))

where �̃� (𝑇) :=
(
(�̂��̂�)𝑇 , . . . , �̂��̂�

)
∈ R𝑛2×𝑇𝑛2

Then, using the same decomposition and Lemma 5.4, we observe
the sensitivity is:

(
(�̂��̂�)𝑇

(
𝑋 (0) − ¤̂𝑋

(0)
))

�̂�

2
≤

(
(�̂��̂�)𝑇

)
�̂�,�̂�

Δ2,

with Δ the bound on two adjacent datasets, since 𝑋 (0) and ¤̂𝑋
(0)

are only different in component 𝑢. We can derive the desired result
from this. □

C Proofs of Zip-DL main properties
This section contains proofs to Section 3.

Lemma 3.1. Noise cancellation on the global model. For every
node 𝑎 ∈ V = [[1,𝑛]], it holds that

𝑛∑︁
𝑣=1

𝑊𝑎,𝑣𝑍𝑎→𝑣 = 0 =
𝑛∑︁
𝑣=1

𝑊𝑣,𝑎𝑍𝑎→𝑣 .

470

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

Proof. Using the notation in Algorithm 1, and since the matrix
is symmetric, we have for a fixed node 𝑎:∑︁

𝑣∈Γ𝑎

𝑊𝑎,𝑣𝑍𝑎→𝑣 =
∑︁
𝑣∈Γ𝑎

𝑊𝑎,𝑣 [𝑌𝑎→𝑣 −
1

𝑑𝑎𝑊𝑎,𝑣

∑︁
𝑗∈Γ𝑎

𝑊𝑎,𝑗𝑌𝑎→𝑗]

=
∑︁
𝑣∈Γ𝑎

𝑊𝑎,𝑣𝑌𝑎→𝑣 −
∑︁
𝑣∈Γ𝑎

1
𝑑𝑎
(
∑︁
𝑗∈Γ𝑎

𝑊𝑎,𝑗𝑌𝑎→𝑗)

=
∑︁
𝑣∈Γ𝑎

𝑊𝑎,𝑣𝑌𝑎→𝑣 −
∑︁
𝑗∈Γ𝑎

𝑊𝑎,𝑗𝑌𝑎→𝑗

= 0.

□

Corollary 3.2. Impact on the global average model. For every
epoch 𝑡 ∈ [[0,𝑇]], we have:

𝑥 (𝑡+1) = 𝑥 (𝑡+1/2) .

Proof.

𝑥 (𝑡+1) =
1
𝑛

𝑛∑︁
𝑎=1

𝑥
(𝑡+1)
𝑎 =

1
𝑛

𝑛∑︁
𝑎=1

∑︁
𝑣∈Γ𝑎

𝑊
(𝑡)
𝑎,𝑣 (𝑥 (𝑡+

1/2)
𝑣 + 𝑍 (𝑡)𝑣→𝑎)

=
1
𝑛

𝑛∑︁
𝑎=1

∑︁
𝑣∈Γ𝑎

𝑊
(𝑡)
𝑎,𝑣 𝑥

(𝑡+1/2)
𝑣 + 1

𝑛

𝑛∑︁
𝑎=1

∑︁
𝑣∈Γ𝑎

𝑊
(𝑡)
𝑎,𝑣 𝑍

(𝑡)
𝑣→𝑎 (16)

For the first term:
1
𝑛

𝑛∑︁
𝑎=1

∑︁
𝑣∈Γ𝑎

𝑊
(𝑡)
𝑎,𝑣 𝑥

(𝑡+1/2)
𝑣 =

1
𝑛

𝑛∑︁
𝑎=1

𝑊
(𝑡)
𝑎 𝑥 (𝑡+1/2)

=
1
𝑛

⊺1𝑥 (𝑡+1/2)

= 𝑥 (𝑡+1/2)

Where we used the properties of the mixing matrix.
Focusing on the second term in (16), we obtain:

1
𝑛

𝑛∑︁
𝑎=1

∑︁
𝑣∈Γ𝑎

𝑊
(𝑡)
𝑎,𝑣 𝑍

(𝑡)
𝑣→𝑎 =

1
𝑛

𝑛∑︁
𝑎=1

𝑛∑︁
𝑣=1

𝑊
(𝑡)
𝑎,𝑣 𝑍

(𝑡)
𝑣→𝑎

=
1
𝑛

𝑛∑︁
𝑣=1

𝑛∑︁
𝑎=1

𝑊
(𝑡)
𝑎,𝑣 𝑍

(𝑡)
𝑣→𝑎

= 0.

Plugging this into (16) yields the desired result:

𝑥 (𝑡+1) =
1
𝑛

𝑛∑︁
𝑎=1

𝑥
(𝑡+1)
𝑎 = 𝑥 (𝑡+1/2)

□

Lemma 3.3. Noise characterization for Algorithm 1. Consider that
for node 𝑎, for all 𝑣 ∈ Γ (𝑡)𝑎 , 𝑌

(𝑡)
𝑎→𝑣 ∼ N

(
0,𝛾2𝜍2

𝑎

)
, for a fixed topology

𝑊 (𝑡)
. Then, using the definition of Algorithm 1, we have:

∀𝑎, 𝑣 ∈ [[1,𝑛]],𝑍 (𝑡)𝑎→𝑣 ∼ N
(
0, (𝜎 (𝑡)𝑎→𝑣)2

)
with

(𝜎 (𝑡)𝑎→𝑣)2 =
©
«
(𝑑𝑎 − 1)2

𝑑2
𝑎

+

∑
𝑗∈Γ (𝑡)𝑎 ,𝑗≠𝑣 (𝑊

(𝑡)
𝑎,𝑗)2

(𝑑𝑎𝑊 (𝑡)
𝑎,𝑣)2

ª®
¬
𝛾2𝜍2

𝑎 .

Proof. First, looking at the definition of 𝑍𝑎→𝑣 , we obtain that:

𝑍𝑎→𝑣 = 𝑌𝑎→𝑣 −
1

𝑑𝑎𝑊𝑎,𝑣

∑︁
𝑗∈Γ𝑎

𝑊𝑎,𝑗𝑌𝑎→𝑗

=
𝑑𝑎 − 1
𝑑𝑎

𝑌𝑎→𝑣 −
1

𝑑𝑎𝑊𝑎,𝑣

∑︁
𝑗∈Γ𝑎
𝑗≠𝑣

𝑊𝑎,𝑗𝑌𝑎→𝑗 (17)

Thus, 𝑍𝑎→𝑣 is a linear combination of independent Gaussian noises.
This means that 𝑍𝑎→𝑣 also follows a Gaussian distribution. Since
the mean of all 𝑌𝑎→𝑣 is 0, so is the mean of 𝑍𝑎→𝑣 .

To obtain the desired result, we only need to look at the variance.
Using (17), we obtain:

V(𝑍𝑎→𝑣) = V(𝑑𝑎 − 1
𝑑𝑎

𝑌𝑎→𝑣 −
1

𝑑𝑎𝑊𝑎,𝑣

∑︁
𝑗∈Γ𝑎
𝑗≠𝑣

𝑊𝑎,𝑗𝑌𝑎→𝑗)

= (𝑑𝑎 − 1
𝑑𝑎
)2 V(𝑌𝑎→𝑣) + (

1
𝑑𝑎𝑊𝑎,𝑣

)2 V
©«
∑︁
𝑗∈Γ𝑎
𝑗≠𝑣

𝑊𝑎,𝑗𝑌𝑎→𝑗

ª®®®¬
= (𝑑𝑎 − 1

𝑑𝑎
)2𝛾2𝜍2

𝑎 + (
1

𝑑𝑎𝑊𝑎,𝑣
)2

∑︁
𝑗∈Γ𝑎
𝑗≠𝑣

(𝑊𝑎,𝑗)2𝛾2𝜍2
𝑎

=
©
«
(𝑑𝑎 − 1)2

𝑑2
𝑎

+

∑
𝑗∈Γ𝑎
𝑗≠𝑣
(𝑊𝑎,𝑗)2

(𝑑𝑎𝑊𝑎,𝑣)2
ª®®¬
𝛾2𝜍2

𝑎

□

D Convergence rate of Zip-DL
D.1 Useful inequalities

Lemma D.1. For any set of 𝑛 vectors (𝑎𝑖)𝑛𝑖=1,𝑎𝑖 ∈ R𝑑
:

𝑛∑︁
𝑖=1

𝑎𝑖

2

≤ 𝑛
𝑛∑︁
𝑖=1
∥𝑎𝑖 ∥2

Lemma D.2. For any vectors a, b ∈ R𝑑
, for any 𝛽 > 0, we have:

∥a + b∥2 ≤ (1 + 𝛽) ∥a∥2 + (1 + 𝛽−1) ∥b∥

D.2 Convergence rate results
Theorem 4.5. Convergence rate of Zip-DL. For any number of

iterations 𝑇 , there exists a constant stepsize 𝛾 s.t. for Algorithm 2,

1
2𝑊𝑇

∑𝑇
𝑡=0 𝑤𝑡 (E

[
𝑓 (𝑥 (𝑡))

]
− 𝑓 ∗) + 𝜇

2 𝑟𝑇+1 is bounded by:

O
(
�̄�2

𝑛𝜇𝑇
+ 𝐿𝐴′

𝜇2𝑇 2 +
𝑟0𝐿

𝑝
exp

[
− 𝜇𝑝 (𝑇 + 1)

192
√

3𝐿

])
,

where 𝐴′ = 16−4𝑝
2(16−7𝑝) (�̄�

2 + 18
𝑝 𝜗

2) + 𝑑
𝑛

16−4𝑝
16−7𝑝

∑𝑛
𝑎,𝑣=1 𝑑𝑎

(𝑑𝑣−1)2
𝑑𝑣

𝜍2
𝑣 , 𝑓
∗ =

𝑓 (𝑥∗), 𝑟𝑡 = E
[𝑥 (𝑡) − 𝑥∗2]

,𝑤𝑡 = (1 − 𝜇
2𝛾)
−(𝑡+1)

and𝑊𝑇 = 1
𝑇

∑𝑇
𝑡=1 𝑤𝑡 .

Proof. (Theorem 4.5) We used a similar situation to [23] with
𝜏 = 1 and a fixed communication matrix sampling distribution. The
proof follows the same structure as in their paper. Our algorithm
only induces some changes in some of the intermediary lemmas
that need to be adapted to obtain the main result.

471

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

To this end, we restate Proposition D.3 and Lemmas D.4 and 4.7
in our setting. We can then solve the main equation in the following
manner:
• We bound the distance of the averaged model to the opti-
mum Lemma D.4. It is the case 𝑟𝑡 = E

[𝑥 (𝑡) − 𝑥∗2] , 𝑒𝑡 =

𝑓 (𝑥 (𝑡)) − 𝑓 (𝑥∗),𝑎 = 𝜇
2 ,𝑏 = 1, 𝑐 = �̄�2

𝑛 and 𝐵 = 3𝐿
• We also bound the consensus distancewith a recursive bound
using Lemma 4.7. The next step is to determine the precise
constants to continue the proof.

The equation of the consensus distance (Lemma 4.7) is of the
following form:

Ξ𝑡 ≤(1 + 𝛽) (1 −
7𝑝
16)Ξ𝑡−1 + (1 + 𝛽)𝐷𝛾2𝑒𝑡−1

+
(
(1 + 𝛽)𝐴 + (1 + 𝛽−1)𝑑

𝑛

𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(𝑑𝑣 − 1)2

𝑑𝑣
𝜍2
𝑣

)
𝛾2

with 𝑒𝑡 = 𝑓 (𝑥 (𝑡)) − 𝑓 (𝑥∗), 𝐷 = 36𝐿
𝑝 and 𝐴 = �̄�2 + 18

𝑝 𝜗
2

Because of the 1+𝛽 factor, we cannot directly apply the recursion-
solving Lemma to our scenario (Lemma 12 in [23]). We can however
modify our current equation to match the beginning of their proof
of this Lemma. This is mostly possible because we are in the case
𝜏 = 1, meaning that we require a slightly stronger property on the
matrices’ distribution.

We can now rewrite the previous equation by setting 𝛽 = 3𝑝
16−7𝑝

(rq: we only require 𝛽 > 0, which is satisfied since 0 ≤ 𝑝 ≤ 1),

(1 + 𝛽) =16 − 7𝑝 + 3𝑝
16 − 7𝑝 =

16 − 4𝑝
16 − 7𝑝

and

(1 + 𝛽) (1 − 7𝑝
16) =

16 − 4𝑝
16 − 7𝑝

16 − 7𝑝
16 =

16 − 4𝑝
16 = 1 − 𝑝

4
Putting these inside the main equation, and setting

𝐴′ =

(
(1 + 𝛽)𝐴 + (1 + 𝛽−1)𝑑

𝑛

𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(𝑑𝑣 − 1)2
𝑑𝑣

𝜍2
𝑣

)
𝛾

𝐷 ′ =
1
2 (1 + 𝛽)𝐷 =

16 − 4𝑝
2(16 − 7𝑝)

36𝐿
𝑝

we obtain:

Ξ𝑡 ≤ (1 −
𝑝

4)Ξ𝑡−1 + 2𝐷 ′𝛾2𝑒𝑡−1 + 2𝐴′𝛾2

This is exactly the term obtained in [23]’s Lemma 12 after unrolling
the different terms, which is only needed when 𝜏 > 1. Thus, in our
case, we can fall back to their proof using this approach. We just
need to ensure Lemma 12’s hypothesis are verified:
• 0 < 𝑝 ≤ 1
• 𝜏 = 1 ≥ 1
• 𝐴′,𝐷 ′ ≥ 0
• {𝛾2}𝑡≤0 is a 8

𝑝 -slow decreasing sequence since it is a constant.
• {𝑤𝑡 := (1 − 𝑎𝛾)−(𝑡+1) } is a 16

𝑝 -slow increasing sequence of
weights.

Thus, we can have the same reasoning as the proof of Lemma 12
in [23], and obtain the lemma’s result with the following equation:

𝐵

𝑇∑︁
𝑡=0

𝑤𝑡Ξ𝑡 ≤
𝑏

2

𝑇∑︁
𝑡=0

𝑤𝑡𝑒𝑡 + 64𝐴′𝐵𝛾2
𝑇∑︁
𝑡=0

𝑤𝑡 (18)

for some constant E and stepsize 𝛾 ≤ 1
16

√︃
𝑝𝑏
𝐷′𝐵

From this point on, we can follow the exact ending of the proof,
the only difference are our new constants𝐴′ and𝐷 ′. We thus obtain:

1
2𝑊𝑇

𝑇∑︁
𝑡=0

𝑏𝑤𝑡𝑒𝑡 ≤
1

𝑊𝑇

𝑇∑︁
𝑡=0

(
(1 − 𝑎𝛾)𝑤𝑡

𝛾
𝑟𝑡 −

𝑤𝑡

𝛾
𝑟𝑡+1

)

+ 𝑐

𝑊𝑇

𝑇∑︁
𝑡=0

𝑤𝑡𝛾 +
64𝐵𝐴′
𝑊𝑇

𝑇∑︁
𝑡=0

𝑤𝑡𝛾
2

(with𝑊𝑇 =
∑𝑇

𝑡=0 𝑤𝑡).
Finally, we use Lemma 13 of [23] to obtain the final result, since

we verify the following hypothesis: 𝑎,𝑏 > 0, 𝑐 ,𝐴′,𝐵 ≥ 0
Thus, we obtain that for a well-chosen 𝛾 :

1
2𝑊𝑇

𝑇∑︁
𝑡=0

𝑏𝑒𝑡𝑤𝑡 + 𝑎𝑟𝑇+1 ≤ O
(
𝑟0𝑑exp

[
−𝑎(𝑇 + 1)

𝑑

]
+ 𝑐

𝑎𝑇
+ 𝐵𝐴′

𝑎2𝑇 2

)
.

Plugging in the values yields the result for Theorem 4.5.
□

From the previous result, we also prove the convergence rate to
an arbitrary 𝜌 accuracy:

Corollary 4.6. Setting all the constants to be the same as in

Theorem 4.5, for any target accuracy 𝜌 > 0, there exists a constant
stepsize 𝛾 such that Algorithm 2 reaches the target accuracy after at

most

3𝜅�̄�2

𝑛𝜇𝜌
+

√︄
3𝜅𝐿𝐴′
𝜌𝜇2 +

192
√

3𝐿
𝜇𝑝

ln
[

3𝜅𝑟0𝐿

𝜌𝑝

]

training iterations, where 𝜅 is the constant that arises when upper

bound O
(
�̄�2
𝑛𝜇𝑇 +

𝐿𝐴′
𝜇2𝑇 2 + 𝑟0𝐿

𝑝 exp
[
− 𝜇𝑝 (𝑇+1)

192
√

3𝐿

])
is expanded out.

Proof. For Algorithm 2 to reach the target accuracy 𝜌 , we need
to have:

1
2𝑊𝑇

𝑇∑︁
𝑡=0

𝑤𝑡

(
E

[
𝑓 (𝑥 (𝑡))

]
− 𝑓 ∗

)
+ 𝜇

2 𝑟𝑇+1 ≤ 𝜌 (19)

However, from Theorem 4.5, we know that

1
2𝑊𝑇

𝑇∑︁
𝑡=0

𝑤𝑡

(
E

[
𝑓 (𝑥 (𝑡))

]
− 𝑓 ∗

)
+ 𝜇

2 𝑟𝑇+1

≤ 𝜅
(
𝑟0𝐿

𝑝
exp

[
− 𝜇𝑝 (𝑇 + 1)

192
√

3𝐿

]
+ �̄�2

𝑛𝜇𝑇
+ 𝐿𝐴′

𝜇2𝑇 2

)
for some constant 𝜅 > 0.

Thus, in order to satisfy (19), it suffices to simultaneously have:

𝜅
𝑟0𝐿

𝑝
exp

[
− 𝜇𝑝 (𝑇 + 1)

192
√

3𝐿

]
≤ 𝜌

3

⇐⇒ exp
[
𝜇𝑝 (𝑇 + 1)
192
√

3𝐿

]
≥ 3𝜅𝑟0𝐿

𝜌𝑝

⇐⇒ 𝑇 ≥ 192
√

3𝐿
𝜇𝑝

ln
[

3𝜅𝑟0𝐿

𝜌𝑝

]
− 1, (20)

472

Low-Cost Privacy-Preserving Decentralized Learning Proceedings on Privacy Enhancing Technologies 2025(3)

𝜅
�̄�2

𝑛𝜇𝑇
≤ 𝜌

3 ⇐⇒ 𝑇 ≥ 3𝜅�̄�2

𝑛𝜇𝜌
, (21)

and

𝜅
𝐿𝐴′

𝜇2𝑇 2 ≤
𝜌

3 ⇐⇒ 𝑇 ≥
√︄

3𝜅𝐿𝐴′
𝜌𝜇2 . (22)

Therefore, in order to simultaneously satisfy the inequalities in
(20),(21), and (22), it suffices to have

𝑇 ≥ 192
√

3𝐿
𝜇𝑝

ln
[

3𝜅𝑟0𝐿

𝜌𝑝

]
− 1 + 3𝜅�̄�2

𝑛𝜇𝜌
+

√︄
𝜅𝐿𝐴′

3𝜇2

=⇒ 𝑇 >
192
√

3𝐿
𝜇𝑝

ln
[

3𝜅𝑟0𝐿

𝜌𝑝

]
+ 3𝜅�̄�2

𝑛𝜇𝜌
+

√︄
3𝜅𝐿𝐴′
𝜌𝜇2 □

D.3 Intermediary lemmas proofs
We state and prove the necessary lemmas for the convergence proof
of Section D.2.

Proposition D.3. Mini-batch variance (Proposition 5 in [23])

Assume that 𝐹𝑖 is 𝐿-smooth (Assumption 4.1) with bounded noise at

the optimum (Assumption 4.3). Then, for any 𝑖 ∈ [[1,𝑛]], we have:

E𝜉1 ,...,𝜉𝑛

[1
𝑛

𝑛∑︁
𝑖=1
(∇𝑓 (𝑥𝑖) − ∇𝐹𝑖 (𝑥𝑖 , 𝜉𝑖))

2]

≤ 3𝐿2

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑥 2 + 6𝐿(𝑓 (𝑥) − 𝑓 (𝑥∗)) + 3�̄�2.

Proof. (Proposition D.3) Nothing changes in this proof com-
pared to the original work, since only the gradient and the loss
functions are needed, and averaging rounds are not considered. □

Lemma D.4. Descent lemma for convex cases. (Lemma 8 of [23])

Under Assumptions 4.1 to 4.4, with stepsize 𝛾 ≤ 1
12𝐿 we have:

E
𝜉
(𝑡)
1 ,...,𝜉 (𝑡)𝑛

[𝑥 (𝑡+1) − 𝑥∗
2

]
≤(1 − 𝛾𝜇

2)
𝑥 (𝑡) − 𝑥∗2

+ 𝛾2�̄�2

𝑛

− 𝛾 (𝑓 (𝑥 (𝑡)) − 𝑓 (𝑥∗))

+ 𝛾 3𝐿
𝑛

𝑛∑︁
𝑖=1

𝑥 (𝑡) − 𝑥 (𝑡)𝑖

2
.

Proof. (Lemma D.4) Because of Zip-DL’s properties (in partic-
ular Corollary 3.2), this property holds almost immediately from
Lemma 8 of [23]. Using Corollary 3.2, we have:𝑥 (𝑡+1) − 𝑥∗

2
=
𝑥 (𝑡+1/2) − 𝑥∗

2

=

𝑥 (𝑡) − 𝛾

𝑛

𝑛∑︁
𝑖=1
∇𝐹𝑖 (𝑥 (𝑡)𝑖 , 𝜉 (𝑡)𝑖) − 𝑥

∗

2

This corresponds to the first line of Lemma 8, so following the proof
will yield the same result. More generally, this property would
not hold as it stands for a method that only cancels the noise in
expectation: because we consider a norm here, this will lead to an

additional term equal to the variance of the residual noise on the
network, e.g. the variance of the sum of all the noises. If the noises
are not correlated, this is an estimator of the original distribution,
yielding an additional term. In our case, this term is exactly zero.

□

Lemma 4.7. (Recursion for consensus distance) Under Assump-

tions 4.1 to 4.4, if stepsizes 𝛾 ≤ 𝑝

96
√

3𝐿 , then for any 𝛽 > 0:

Ξ𝑡 ≤ (1 + 𝛽)
(
1 − 7𝑝

16

)
Ξ𝑡−1 + 𝛾2 (1 + 𝛽)

(
�̄�2 + 18

𝑝
𝜗2

)

+ (1 + 𝛽) 36𝐿
𝑝

(
𝑓 (𝑥 (𝑡−1)) − 𝑓 (𝑥∗)

)

+ 𝛾2 (1 + 𝛽−1)𝑑
𝑛

𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(
(𝑑𝑣 − 1)2

𝑑𝑣
𝜍2
𝑣

)
,

where Ξ𝑡 = 1
𝑛

∑𝑛
𝑖=1 E𝑡

[𝑥 (𝑡)𝑖 − 𝑥 (𝑡)
2

]
is the consensus distance

This lemma has an additional last term compared to state-of-the-
art DL [23]. It stems from the presence of noise, that shifts local
models away from the true average.

Proof. (Lemma 4.7)

𝑛Ξ𝑡 =
𝑛∑︁
𝑖=1

E𝑡

[𝑥 (𝑡)𝑖 − 𝑥
(𝑡)

2
]

=
𝑛∑︁
𝑖=1

E𝑡

[(𝑥 (𝑡)𝑖 − 𝑥
(𝑡−1)) − (𝑥 (𝑡) − 𝑥 (𝑡−1))

2
]

≤
𝑛∑︁
𝑖=1

E𝑡

[(𝑥 (𝑡)𝑖 − 𝑥
(𝑡−1))

2
]

Where we used that
∑𝑛

𝑖=1 ∥𝑎𝑖 − 𝑎∥2 ≤
∑𝑛

𝑖=1 ∥𝑎𝑖 ∥2. Unrolling the
model update:

𝑥
(𝑡)
𝑖 =

∑︁
𝑣∈Γ (𝑡−1)

𝑖

𝑊
(𝑡−1)
𝑖 ,𝑣 (𝑥 (𝑡−1/2)

𝑣 + 𝑍 (𝑡−1)
𝑣→𝑖)

=
∑︁

𝑣∈Γ (𝑡−1)
𝑖

𝑊
(𝑡−1)
𝑖 ,𝑣 ((𝑥 (𝑡−1)

𝑣 − 𝛾∇𝐹𝑣 (𝑥 (𝑡−1)
𝑣 , 𝜉 (𝑡−1)

𝑣)) + 𝑍 (𝑡−1)
𝑣→𝑖)

=
∑︁

𝑣∈Γ (𝑡−1)
𝑖

(𝑊 (𝑡−1)
𝑖 ,𝑣 (𝑥 (𝑡−1)

𝑣)) +
∑︁

𝑣∈Γ (𝑡−1)
𝑖

(𝑊 (𝑡−1)
𝑖 ,𝑣 𝑍

(𝑡−1)
𝑣→𝑖)

−
∑︁

𝑣∈Γ (𝑡−1)
𝑖

(𝑊 (𝑡−1)
𝑖 ,𝑣 𝛾∇𝐹𝑣 (𝑥 (𝑡−1)

𝑣 , 𝜉 (𝑡−1)
𝑣))

473

Proceedings on Privacy Enhancing Technologies 2025(3) Biswas et al.

This yields, after expanding the recursion and using Lemma D.2,
for any 𝛽 > 0:

𝑛Ξ𝑡 ≤(1 + 𝛽)
𝑛∑︁
𝑖=1

E𝑡

∑︁

𝑣∈Γ (𝑡−1)
𝑖

𝑇3

2︸ ︷︷ ︸

:=𝑇1

+ (1 + 𝛽−1)
𝑛∑︁
𝑖=1

E𝑡

∑︁

𝑣∈Γ (𝑡−1)
𝑖

(𝑊 (𝑡−1)
𝑖 ,𝑣 𝑍

(𝑡−1)
𝑣→𝑖)

2︸ ︷︷ ︸

:=𝑇2

where we have

𝑇3 :=𝑊
(𝑡−1)
𝑖 ,𝑣

(
𝑥
(𝑡−1)
𝑣 − 𝛾∇𝐹𝑣 (𝑥 (𝑡−1)

𝑣 , 𝜉 (𝑡−1)
𝑣)

)
− 𝑥 (𝑡−1)

Looking at the second term, and using Lemma D.1:

𝑇2 ≤
𝑛∑︁
𝑖=1

𝑑𝑖

∑︁
𝑣∈Γ (𝑡−1)

𝑖

E𝑡

[𝑊 (𝑡−1)
𝑖 ,𝑣 𝑍

(𝑡−1)
𝑣→𝑖

2
]

≤
𝑛∑︁
𝑖=1

𝑑𝑖

∑︁
𝑣∈Γ (𝑡−1)

𝑖

E𝑡

[
(𝑊 (𝑡−1)

𝑖 ,𝑣)2
𝑍 (𝑡−1)

𝑣→𝑖

2
]

≤
𝑛∑︁
𝑖=1

𝑑𝑖

∑︁
𝑣∈Γ (𝑡−1)

𝑖

E
𝑡 ,𝑖∈Γ (𝑡−1)

𝑣

[
(𝑊 (𝑡−1)

𝑖 ,𝑣)2
𝑍 (𝑡−1)

𝑣→𝑖

2
]

≤
𝑛∑︁
𝑖=1

𝑑𝑖

∑︁
𝑣∈Γ (𝑡−1)

𝑖

E
𝑡 ,𝑖∈Γ (𝑡−1)

𝑣

[
(𝑊 (𝑡−1)

𝑖 ,𝑣)2E𝑊 (𝑡−1)

[𝑍 (𝑡−1)
𝑣→𝑖

2
]]

Using Lemma 3.3 for a fixed gossip matrix, and leveraging𝑊 (𝑡)
𝑖 ,𝑣 =

𝑊
(𝑡)
𝑣,𝑖 since we assume symmetric matrices, we obtain:

𝑇2 ≤
𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

E
𝑡 ,𝑖∈Γ (𝑡−1)

𝑣

[
(𝑊 (𝑡−1)

𝑣,𝑖)2𝑑 (𝜎 (𝑡−1)
𝑣→𝑖)

2
]

≤𝑑𝛾2
𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(
(𝑑𝑣 − 1)2

𝑑2
𝑣

+ 𝑑𝑣 − 1
𝑑2
𝑣

)
𝜍2
𝑣

≤𝑑𝛾2
𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(
(𝑑𝑣 − 1)2

𝑑𝑣

)
𝜍2
𝑣

Where we used that (𝑊𝑖 ,𝑣)2 ≤ 1 for all 𝑖 , 𝑣 ∈ V .
For 𝑇1, we obtain that:

𝑇1 =E𝑡

[𝑊 (𝑡−1)
(
𝑥 (𝑡−1) − 𝛾∇𝐹 (𝑥 (𝑡−1) , 𝜉 (𝑡−1))

)
− 𝑥 (𝑡−1)

2

𝐹

]

This is the exact notation from [23], in the proof of the correspond-
ing Lemma (Lemma 9), with the notation 𝜏 = 1 (our matrix notation
are transposed to theirs). By following the same steps, we obtain:

𝑇1 ≤𝑛(1 −
𝑝

2)Ξ𝑡−1 + 𝑛
𝑝

16Ξ𝑡−1 + 𝑛(�̄�2 + 18
𝑝
𝜗2)𝛾2

+𝑛 36𝐿
𝑝

𝛾2 (𝑓 (𝑥 (𝑡−1)) − 𝑓 (𝑥∗))

Plugging 𝑇1 and 𝑇2 back into the original term, we obtain:

Ξ𝑡 ≤(1 + 𝛽)
(
(1 − 7𝑝

16)Ξ𝑡−1 +
36𝐿
𝑝

𝛾2 (𝑓 (𝑥 (𝑡−1)) − 𝑓 (𝑥∗))
)

+ (1 + 𝛽)
(
(�̄�2 + 18

𝑝
𝜗2)𝛾2

)

+ (1 + 𝛽−1)𝑑𝛾
2

𝑛

𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(
(𝑑𝑣 − 1)2

𝑑𝑣

)
𝜍2
𝑣

≤(1 + 𝛽) (1 − 7𝑝
16)Ξ𝑡−1 + (1 + 𝛽)

36𝐿
𝑝

𝛾2 (𝑓 (𝑥 (𝑡−1)) − 𝑓 (𝑥∗))

+ 𝛾2 (1 + 𝛽) (�̄�2 + 18
𝑝
𝜗2)

+ 𝛾2

(
(1 + 𝛽−1)𝑑

𝑛

𝑛∑︁
𝑖=1

𝑑𝑖

𝑛∑︁
𝑣=1

(
(𝑑𝑣 − 1)2

𝑑𝑣
𝜍2
𝑣

))

For any 𝛽 > 0, which is the desired result. □

474

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Decentralized learning
	2.2 Gossip averaging
	2.3 Privacy in Decentralized Learning
	2.4 Threat model

	3 Zip-DL: Locally-Correlated Noise
	3.1 Zip-DL in a nutshell
	3.2 Detailed description of Zip-DL
	3.3 Zip-DL's core properties

	4 Convergence of Zip-DL
	4.1 Assumptions
	4.2 Convergence rates of Zip-DL

	5 Pairwise Network Differential Privacy
	5.1 Assumptions & definitions
	5.2 Equivalent system formulation
	5.3 Accounting for noises over time
	5.4 Zip-DL privacy analysis
	5.5 Zip-DL-avg privacy analysis

	6 Evaluation
	6.1 Experimental setup
	6.2 Zip-DL privacy-utility tradeoff
	6.3 Communication overhead
	6.4 Other evaluation metrics

	7 Related work
	8 Conclusion
	Acknowledgments
	References
	A Additional experiments details
	A.1 CIFAR-10: Zip-DL 1—step vs Muffliato 10—steps
	A.2 MovieLens: Zip-DL 1—step vs Muffliato 10—steps
	A.3 Clipping
	A.4 Experiments with varying number of nodes
	A.5 Node dropout
	A.6 Empirical evaluation of ass:gradient gaussian perturbation
	A.7 Additional attacks details

	B Privacy proof
	B.1 Assumptions and lemmas
	B.2 Proof of the main theorem
	B.3 Proof of the averaging algorithm

	C Proofs of Zip-DL main properties
	D Convergence rate of Zip-DL
	D.1 Useful inequalities
	D.2 Convergence rate results
	D.3 Intermediary lemmas proofs

