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Abstract
In this paper, we introduce WaKA (Wasserstein K-nearest neighbors
Attribution), a novel attribution method that leverages principles

from the LiRA (Likelihood Ratio Attack) framework and 𝑘-nearest

neighbors classifiers (𝑘-NN). WaKA efficiently measures the con-

tribution of individual data points to the model’s loss distribution,

analyzing every possible 𝑘-NN that can be constructed using the

training set, without requiring to sample subsets of the training

set. WaKA is versatile and can be used a posteriori as a membership

inference attack (MIA) to assess privacy risks or a priori for privacy
influence measurement and data valuation. Thus, WaKA can be

seen as bridging the gap between data attribution and membership

inference attack (MIA) by providing a unified framework to distin-

guish between a data point’s value and its privacy risk. For instance,

we have shown that self-attribution values are more strongly corre-

lated with the attack success rate than the contribution of a point to

the model generalization. WaKA’s different usages were also evalu-

ated across diverse real-world datasets, demonstrating performance

very close to LiRA when used as an MIA on 𝑘-NN classifiers, but

with greater computational efficiency. Additionally, WaKA shows

greater robustness than Shapley Values for data minimization tasks

(removal or addition) on imbalanced datasets.

Keywords
Privacy, 𝐾-Nearest Neighbours, Data Attribution, Membership In-

ference Attack, Data Minimization.

1 Introduction
Data attribution methods have been developed originally to mea-

sure the contribution of individual data points in a training set

to a model’s output. These methods can serve different purposes

depending on the context. One key application is data valuation,

in which the objective is to quantify the “value” of each data point

with respect to its impact on the model’s ability to generalize. For

example, Data Shapley Value (DSV), introduced in [10] and [11], is
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grounded in the game-theoretic Shapley Value framework and is

often used for tasks such as data minimization via summarization,

in which the objective is to remove a large fraction of data points

while ensuring a high generalization performance of the model This

approach aligns well with Article 5 of the General Data Protection

Regulation (GDPR) [7], which emphasizes that personal data should

be “adequate, relevant, and limited to what is necessary” in relation

to the purposes for which they are processed.

As a motivating scenario, consider for instance an organization

that collects a dataset and then trains a machine learning model

over it, exposing its functionality via an API to monetize the access

to the predictions of the model (e.g., for classifying movie reviews

or categorizing images). Data attribution can be used by this orga-

nization from two perspectives: data valuation and privacy with

Figure 1 illustrating both viewpoints. On one hand, data valuation

can help estimate the contribution of each data point to the model,

guiding decisions on redistributing a share of the model’s value

to individuals who provided data points. This valuation, which

aligns with Shapley value, also helps the organization determine

which data points bring no value or even negative value, potentially

avoiding unnecessary costs by not acquiring these data points.

On the other hand, from the privacy perspective, the organiza-

tion might be concerned with how much information about data

points could potentially be leaked through the API, which is akin to

measuring the privacy risk of data leakage. This is closely related to

membership inference attacks (MIAs), in which an attacker aims to

determine whether a particular data point was part of the model’s

training set. While data valuation and privacy concerns are often

related, they are usually addressed through very different methods.

To solve this issue, we introduce WaKA (for 1-Wasserstein 𝑘-NN

Attribution), which provides a unified framework for addressing

both aspects using 𝑘-nearest neighbors (𝑘-NN) models.

While being simple in their design, 𝑘-NN models offer a clear

and intuitive way to perform data attribution. In particular, they are

recognized as an instance-based explainable method [18], meaning

its predictions are directly influenced by the training data without

an explicit model abstraction. However, a well-known limitation

is that they do not perform well on high-dimensional data such as

textual documents or images due to the curse of dimensionality. In

such cases, the distance between points becomes nearly identical,

making the identification of neighbors ineffective [9]. To overcome

this challenge and apply them to datasets like images and textual
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Figure 1: Illustration of data attribution in a movie review classification scenario, highlighting the dual perspectives of data
valuation (estimating data point value) and data privacy (measuring potential information leakage).

data, we first employ a neural network to learn embeddings suitable

for 𝑘-NN classification. These learned embeddings capture mean-

ingful representations of the data, making 𝑘-NN effective even in

high-dimensional settings. This approach is also commonly used

in the data valuation literature in which case it is usually referred

to as “surrogate models” [12]. Additionally, while the majority of

research on data attribution and membership inference attacks has

been centered on neural networks, 𝑘-NN-based studies are highly

relevant in practice. In particular, in industrial applications, such

as retrieval-augmented generation (RAG) pipelines, 𝑘-NN with em-

beddings is widely adopted as the use of learned representations

mitigates the high-dimensionality challenges typically associated

with nearest neighbor search. Moreover, [24] demonstrated that

interpretations of 𝑘-NN models using embeddings are comparable

to a softmax layer in neural networks, reinforcing their relevance

to modern machine learning workflows.

The term “value” in data valuation is semantically charged, as

it suggests an intrinsic worth of data points. In this context, the

term is grounded in the Shapley Value axioms, which provide a

unique way of attributing the contribution of each data point to the

model’s generalization performance. Data valuation methods such

as DSV seek to uncover the intrinsic properties of data in relation

to the category of model being used, whether it be a type of neural

network, a 𝑘-NN classifier or another machine learning model.

In contrast, membership inference [23, 27] aims at determining

whether a given data point was part of a specific model’s training

dataset. For instance, LiRA [1] is a state-of-the-art approach for

performing membership inference attacks (MIAs), which is based

on the Likelihood Ratio Test (LRT), a statistical test that compares

the likelihood of a model’s prediction for a given data point when

trained with and without this point. To realize this, LiRA requires

the training of shadow models via sampling and provides a mem-

bership score for each point in the training set, facilitating a more

detailed attribution analysis. Similarly to LiRA, WaKA assumes

that the adversary has access to the underlying data distribution,

enabling probability mass function (PMF) computation. This as-

sumption is fundamental to our framework but also to LiRA.

Related work. More recently, the intersection between data

attribution and membership privacy has garnered significant atten-

tion as evidenced by a growing body of related literature [4, 6, 25].

One key concept is “self-influence”, which has been investigated

in differentiable models to measure the extent to which a data

point influences its own prediction. This concept is particularly

relevant in MIAs, as high self-influence scores often correlate with

increased privacy risks [4]. Self-influence is computed using in-

fluence functions and measures how much the loss changes for a

data point when it is upweighted. In particular, this method has

been used for capturing how a point’s inclusion can lead to mem-

orization [15], which is in turn relates to privacy vulnerability.

Throughout the paper, we adopt a similar notion, which we refer

to as “self-attribution”, whose objective is to address the question

“To what extent my data contribute to my own outcome?”. More

precisely, it can be quantified by the marginal contribution of a

point to the model’s prediction on that same point.

Beyond self-influence, several studies have analyzed how the

model’s performance relates to privacy risk. Prior work has shown

that overfitting exacerbates MIAs [23, 27], but recent findings in-

dicate that privacy leakage can occur even in well-generalized

models [1, 20]. Additionally, per-record memorization suggests that

not all training samples contribute equally to privacy risks—some

points are more prone to memorization and thus more vulnerable to

MIAs [3, 8]. This suggests a complex relationship between the value

of a data point and its privacy risk. Recent work on Leave-One-

Out Distinguishability (LOOD) [25] provides a unified perspective

on data attribution and privacy auditing by quantifying the sta-

tistical distance between a model’s outputs with and without a

specific training point. This approach highlights the strong connec-

tion between influence, memorization and privacy leakage. While

LOOD has been shown to predict MIA success and can serve as a

privacy auditing tool, existing methods primarily focus on neural

network-based models.

Summary of contributions. Our main contributions can be

summarized as follows.

• We introduce the 1-Wasserstein 𝑘-NN Attribution (WaKA), a

novel approach that leverages the Wasserstein distance from
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Optimal Transport, which has not been previously used in

either membership inference attacks (MIAs) or data valua-

tion. Unlike LiRA, which relies on hypothesis testing, WaKA

accounts for the mass that a point moves positively or nega-

tively. WaKA serves a dual purpose by providing a principled

framework for both privacy risk assessment and data valu-

ation, functioning as a general attribution method for data

valuation while also offering privacy insights through self-

attribution. More precisely, it can be adapted into t-WaKA

to effectively perform membership inference attacks.

• In our experiments, we compare the performance of DSV

and WaKA. These experiments have been conducted on six

diverse datasets—two tabular datasets (Adult and Bank), two

textual datasets (IMDB and Yelp) and two image datasets

(CIFAR-10 and CelebA) —to demonstrate the versatility and

robustness of our method. The evaluation of these scenarios

focuses on two key aspects: utility, through two data mini-

mization tasks as well as privacy, by measuring the attack

success rate (ASR) on all training points.

• We explore the “onion effect” [2], a phenomenon observed

previously in neural networks in which removing data points

incrementally reveals deeper layers of vulnerable privacy

points in the sense that these points suffer from a higher

ASR after the removal. To investigate this effect, we have

replicated some of experiments of the original paper by elim-

inating 10% of the training set using attribution methods,

followed by a reassessment of privacy scores. More precisely,

we have analyzed the relationship between privacy influ-

ences and WaKA influences, showing that they are corre-

lated and can be used to predict, a priori, whether removing

a data point will impact the ASR on other points.

• Finally, we have also conducted experiments using t-WaKA

as an MIA on specific training points for 𝑘-NN models. t-

WaKA displays a similar performance as LiRA but uses sig-

nificantly less resources as it relies on a single reusable 𝑘-NN

model trained on the entire dataset, thus avoiding the need

for shadow models. More precisely, once this 𝑘-NN model is

trained, t-WaKAhas a computational complexity of𝑂 (log𝑁 )
for attacking a specific point, which is much faster than LiRA

for 𝑘-NN.

Outline. First in Section 2, we provide a brief overview of at-

tribution methods (Leave one Out and Data Shapeley Value) for

𝑘-NN models as well as LiRA, before introducing the details of the

Wasserstein k-NN Attribution (WaKA) method in Section 3. After-

wards, in Section 4, we conduct an extensive evaluation of WaKA

as a new attribution method and t-WaKA for assessing the success

of MIAs before finally concluding with a discussion in Section 5.

2 Background
In this section, we review the background notions necessary to the

understanding of our work, namely the main existing attribution

methods for 𝑘-NNs as well as the LiRA framework for conducting

membership inference attacks.

2.1 Attribution Methods for 𝑘-NNs
Leave-One-Out (LOO) attribution methods are commonly used

to assess the contribution of individual data points to a model’s

performance by examining the effect of removing a point from

the training set. Although they can theoretically be applied with

respect to any predictive target, they are typically computed on a

test set 𝐷test with the objective of measuring the contribution to the

generalization performance. In this context, a positive contribution

means reducing the generalization loss or increasing utility [12].

Consider a training set 𝐷 = {𝑧𝑖 }𝑁𝑖=1, in which each 𝑧𝑖 represents

a feature-label pair (𝑥𝑖 , 𝑦𝑖 ). For 𝑘-NN models, the loss function ℓ for

any data point 𝑧 is generally defined as the fraction of neighbors

that do not share the same label:

ℓ (𝑧;𝐷,𝑘) = 1 − 1

𝑘

𝑘∑︁
𝑗=1

1(𝑦𝛼 𝑗
= 𝑦), (1)

in which 𝛼 𝑗 is the index of the 𝑗-th closest neighbor to 𝑧 in the

training set 𝐷 , and 𝑦 is the true label of point 𝑧. This is referred to

as a “loss” because it measures the error introduced by the model’s

prediction, which also quantifies the model’s disagreement with

the ground truth. The utility function𝑈 (𝑧𝑡 ;𝐷) can be expressed as:

𝑈 (𝑧𝑡 ;𝐷) = 1 − ℓ (𝑧𝑡 ;𝐷) =
1

𝑘

𝑘∑︁
𝑗=1

1(𝑦𝛼 𝑗
= 𝑦𝑡 ) .

Here, we evaluate utility using 𝑧𝑡 , which we refer to as a test point,

because utility typically reflects the performance of the 𝑘-NNmodel

on data points outside the training set. This approach aligns with

the goal of assessing the model’s ability to generalize to unseen

data, ensuring that its utility is not biased by the training data.

The LOO attribution method computes the difference in utility

with respect to a test point, with and without the point 𝑧𝑖 . Formally,

the LOO attribution score for a point 𝑧𝑖 in 𝑘-NN is given by:

𝑣loo (𝑧𝑖 ) =𝑈 (𝑧𝑡 ;𝐷,𝑘) −𝑈 (𝑧𝑡 ;𝐷−𝑧𝑖 , 𝑘),

in which, 𝐷−𝑧𝑖 represents the training set excluding 𝑧𝑖 . If we want

to compute the LOO value for each 𝑧𝑖 in 𝐷 , this approach requires

evaluating 𝑁 distinct neighborhood configurations.

Data Shapley Value. The Shapley Value, a concept from co-

operative game theory, extends LOO by averaging the marginal

contribution of each point across all possible subsets of the training

set [10, 11]. The DSV is computed as the average contribution of

each point 𝑧𝑖 to the model’s utility across subsets 𝑆 ⊆ 𝐷 :

𝑣shap (𝑧𝑖 ) =
1

𝑁 !

∑︁
𝑆⊆𝐷\{𝑧𝑖 }

1(𝑁−1
|𝑆 |

)𝑈 (𝑧𝑡 ; 𝑆 ∪ {𝑧𝑖 }) −𝑈 (𝑧𝑡 ; 𝑆) .
The Shapley value satisfies four key axioms: Efficiency (i.e., the total
value is distributed among all players), Symmetry (i.e., identical
contributions are rewarded equally), Dummy (i.e., players that con-
tribute nothing receive zero value), and Linearity (i.e., the Shapley
values from two games can be combined linearly).

While this formulation provides an axiomatic and robust way

of quantifying the importance of each data point, the computa-

tional complexity of directly computing Shapley values can be as

high as 𝑂 (2𝑁 ), making it infeasible for large datasets. Nonetheless,

for 𝑘-NN classifiers, an exact formulation of the Shapley value ex-

ists, as shown by [11], which drastically reduces the complexity to
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𝑂 (𝑁 log𝑁 ). More precisely, the exact Shapley value for 𝑘-NN can

be computed as follows. For the farthest neighbor 𝑧𝛼𝑁 , the Shapley

value is:

𝑣shap (𝑧𝛼𝑁 ) =
1[𝑦𝛼𝑁 = 𝑦𝑡 ]

𝑁
.

Afterwards, for the remaining neighbors 𝑧𝛼𝑖 with 𝑖 < 𝑁 , the Shapley

value can be recursively computed as:

𝑣shap (𝑧𝛼𝑖 ) = 𝑣shap (𝑧𝛼𝑖+1 ) +
1[𝑦𝛼𝑖 = 𝑦𝑡 ] − 1[𝑦𝛼𝑖+1 = 𝑦𝑡 ]

𝑘
· min(𝑘, 𝑖)

𝑖
.

By exploiting the structure of 𝑘-NN classifiers, this exact formu-

lation avoids the need to evaluate individually all subsets, signifi-

cantly reducing the computational cost.

Note that these attribution methods are agnostic to any specific

model, unlike LiRA, which evaluates the impact of a point on a

particular trained model. In contrast, DSV implicitly considers all

possible 𝑘-NN models trained on subsets of the dataset, offering a

more comprehensive measure of point importance across model

variations.

2.2 Likelihood Ratio Attack (LiRA)
LiRA is a method for performing MIAs, which leverages a Likeli-

hood Ratio Test (LRT) to compare the likelihood of a model when

trained with and without a specific data point 𝑧𝑖 [1]. More precisely

for a given model 𝑓 , the LiRA score for 𝑧𝑖 is defined as:

Λ(𝑓 ; 𝑧𝑖 ) =
𝑃 (𝑓 | Q)
𝑃 (𝑓 | Q−𝑧𝑖 )

, (2)

in which Q and Q−𝑧𝑖 represent the distributions of models trained

on datasets that respectively include or exclude a training point 𝑧𝑖 .

By “distributions of models” we mean the set of possible models

that can be obtained through training on different subsets of data.

For instance for a neural network, this distribution refers to the

space of model weights while for 𝑘-NN classifiers, the distribution

of models corresponds to the distribution of subsets of 𝑘 data points

from the training set 𝐷 . While theoretically, the number of unique

possible combinations is

(𝑁
𝑘

)
, in practice, combinations including

the closest neighbors to a test point are more likely. We assume

that the attacker does not have access to the training set and can

only observe the final prediction or the loss of the model, similar

to the adversary model used by [1].

To compute the LiRA score with respect to the loss, the LRT

becomes a one-dimensional statistic:

Λ(ℓ ; 𝑧𝑖 ) =
𝑃 (ℓ (𝑧𝑖 ) | Q)
𝑃 (ℓ (𝑧𝑖 ) | Q𝑧−𝑖 )

. (3)

Estimating this ratio requires sampling various subsets of the

training data, which can be computationally expensive. This moti-

vated the development of our attribution method specifically de-

signed for 𝑘-NNs, named WaKA. More precisely, WaKA relies on

the same principle as LiRA, focusing on comparing the loss dis-

tributions for members and non-members of the training dataset.

However, instead of relying on a statistical test to distinguish these

distributions, WaKA measures the 1-Wasserstein distance between

them, providing a more flexible and computationally efficient ap-

proach for 𝑘-NNs.

3 Wasserstein 𝑘-NN Attribution (WaKA)
3.1 Attribution using 1-Wasserstein Distance
In our approach, we quantify the importance of each data point in

a 𝑘-NN model by measuring how the inclusion or exclusion of a

data point affects the distribution of the model’s loss relative to a

specific point 𝑧𝑡 . Here, 𝑧𝑡 represents the point at which we evaluate

the model’s loss. In the context of data valuation, 𝑧𝑡 is typically a

test point for which we aim to assess the influence of training data

points on the model’s performance. In the context of privacy, 𝑧𝑡
could be the data point 𝑧𝑖 itself, allowing us to analyze how the

inclusion or exclusion of 𝑧𝑖 affects the loss distribution relative to

𝑧𝑖 . To achieve this, we leverage the 1-Wasserstein distance [21]

between the loss distributions with and without the data point.

More formally, the 1-Wasserstein distance (also known as the Earth

Mover’s Distance) between two probability distributions 𝜇 and 𝜈

can be defined as:

𝑊1 (𝜇, 𝜈) =
∫ ∞

−∞

��𝐹𝜇 (𝑥) − 𝐹𝜈 (𝑥)�� 𝑑𝑥
in which 𝐹𝜇 and 𝐹𝜈 are respectively the cumulative distribution

functions (CDFs) of 𝜇 and 𝜈 .

Let L denote the distribution of loss values relative to 𝑧𝑡 using

𝑘-NN models trained on all possible subsets of 𝐷 , and L−𝑧𝑖 refer
to the corresponding distribution when 𝑧𝑖 is excluded from 𝐷 . Our

goal is to compute the 1-Wasserstein distance between these two

distributions to assess the impact of data point 𝑧𝑖 . Since the loss

values in a 𝑘-NN classifier are discrete and belong to the finite

set L =
{
0, 1

𝑘
, 2
𝑘
, . . . , 1

}
, the 1-Wasserstein distance can be com-

puted directly by summing the absolute difference of cumulative

distribution functions (CDFs) of the loss distributions.

We define F := {𝑘-NN trained on subsets of 𝐷} and F−𝑧𝑖 :=

{𝑘-NN trained on subsets of 𝐷 \ {𝑧𝑖 }}, the two spaces of models

that correspond to all 𝑘-NN models trained with or without the

point 𝑧𝑖 . In this setting, let Q denote the uniform distribution over

models in F , and Q−𝑧𝑖 be the uniform distribution over models in

F−𝑧𝑖 . Let ℓ : F → R denote the loss function mapping a model

𝑓 ∈ F to a real-valued loss ℓ (𝑓 ) evaluated at the point 𝑧𝑡 , i.e., ℓ (𝑓 ) =
ℓ (𝑧𝑡 ; 𝑓 ). The distributions L and L−𝑧𝑖 represent the pushforward
distributions of Q and Q−𝑧𝑖 through the loss function ℓ , denoted

with the # symbol:

L = ℓ#Q, L−𝑧𝑖 = ℓ#Q−𝑧𝑖 .

More precisely, L is the distribution of losses evaluated at 𝑧𝑡 induced

by models drawn from Q, and L−𝑧𝑖 is the distribution of losses

evaluated at 𝑧𝑡 induced by models drawn from Q−𝑧𝑖 .

Definition 1 (WaKA). We define the 1-Wasserstein 𝑘-NN attri-
bution for data point 𝑧𝑖 relative to any point 𝑧𝑡 as follows:

𝑊1 (L,L−𝑧𝑖 ) =
1

𝑘

∑︁
𝑙min≤𝑙≤𝑙max

���𝐹ℓ#Q (𝑙) − 𝐹ℓ#Q−𝑧𝑖 (𝑙)��� , (4)

in which L and L−𝑧𝑖 are the loss distributions relative to 𝑧𝑡 , restricted
to the range [𝑙min, 𝑙max]. The cumulative distribution functions (CDFs)
𝐹ℓ#Q (𝑙) and 𝐹ℓ#Q−𝑧𝑖 (𝑙) are evaluated for these restricted distributions
at the discrete loss values 𝑙 ∈ L =

{
0, 1

𝑘
, 2
𝑘
, . . . , 1

}
. Here, 𝑙min ≥ 0 and

𝑙max ≤ 1 specify the bounds of the restricted range.
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While DSV provides a unique set of values, WaKA introduces

flexibility by focusing on how probability masses are moved posi-

tively or negatively, relative to particular loss values. For instance,

when 𝑧𝑡 and 𝑧𝑖 share the same label (𝑦𝑡 = 𝑦𝑖 ), WaKA can measure

how much loss mass is moved to improve the loss distribution. Con-

versely, when 𝑧𝑡 and 𝑧𝑖 have different labels (𝑦𝑡 ≠ 𝑦𝑖 ), WaKA can

measure how much 𝑧𝑖 worsens the loss distribution. Additionally,

we can refine this analysis by incorporating the decision threshold

of the 𝑘-NN classifier. Typically, the decision threshold is set to 1/2,
but in imbalanced datasets, it can be adjusted to favor the minority

class. WaKA can identify points skewed positively or negatively

relative to the decision threshold, making it especially useful for

tasks like data removal or data addition. Figure 24 illustrates four

types of points that WaKA can identify well.

WaKA for data removal and addition. To address these data

valuation tasks, we propose two formulations of WaKA: one for

data removal (WaKArem) and one for data addition (WaKAadd). Both

formulations rely on a fixed decision threshold 𝜏 ∈ [0, 1], which
divides the domain of loss values into two regions.

For data removal, WaKArem identifies outliers that negatively

affect one class while contributing little to other classes. It also

accounts positively for points that, despite being outliers, improve

their class. The formulation is:

WaKArem (𝑧𝑖 ) = 1
(
𝑦𝛼𝑖 = 𝑦𝑡

) ∑︁
𝑙 > 1−𝜏

���𝐹 (1−ℓ )#𝑄 (
𝑙
)
− 𝐹 (1−ℓ )#𝑄−𝑧𝑖

(
𝑙
) ���

− 1
(
𝑦𝛼𝑖 ≠ 𝑦𝑡

) ∑︁
𝑙

���𝐹ℓ#𝑄 (𝑙) − 𝐹ℓ#𝑄−𝑧𝑖 (𝑙)��� .
For data addition,WaKAadd prioritizes inliers but it also penalizes

points that are not outliers but negatively affect other classes. The

formulation is:

WaKAadd (𝑧𝑖 ) = 1
(
𝑦𝛼𝑖 = 𝑦𝑡

) ∑︁
𝑙

���𝐹 (1−ℓ )#𝑄 (
𝑙
)
− 𝐹 (1−ℓ )#𝑄−𝑧𝑖

(
𝑙
) ���

− 1
(
𝑦𝛼𝑖 ≠ 𝑦𝑡

) ∑︁
𝑙 ≤ 𝜏

���𝐹ℓ#𝑄 (𝑙) − 𝐹ℓ#𝑄−𝑧𝑖 (𝑙)��� .
These formulations are straightforward applications of WaKA

tailored for data removal and data addition tasks. While other for-

mulations are possible, these provide a simple yet effective approach

to prioritizing specific points based on their contributions to the

loss distribution. In the context of data valuation, 𝑧𝑡 typically refers

to a test point; however, when 𝑧𝑡 = 𝑧𝑖 , we enter what we call

self-attribution, in which the focus shifts to understanding the con-

tribution of 𝑧𝑖 to its own loss distribution. In the following section,

we adapt WaKA for membership inference, not only by looking at

the loss distribution of 𝑧𝑖 but also by incorporating the loss of a

specific model.

3.2 Adapting WaKA for Membership Inference
In line with the “security game” framework employed in LiRA for

evaluating MIAs, the adversary’s objective is to ascertain whether

a specific point 𝑖 is part of the training dataset. This framework

involves an interaction between a challenger and an adversary.

First, the challenger samples a training dataset and trains a model

over it. Then, depending on the outcome of a private random bit,

the challenger sends either a fresh challenge point to the adversary

or a point from the training set. The adversary, having query access

to both the distribution (i.e., in the sense that it can have access

to samples for this distribution) and the trained model, must then

decide if the given point was part of the training set. This structured

game can be used to assess the adversary’s ability to correctly infer

membership in terms of his advantage compared to a random guess,

thereby evaluating the robustness of the model against such attacks.

Since we are dealing with𝑘-NNmodels, adding the point 𝑧𝑖 to the

training set can only improve the model’s performance, meaning

that the loss will decrease. As such, the distribution L−𝑧𝑖 is shifted
towards lower values when transitioning to L. However, in the

context of the security game, we are given a specific loss value

ℓ (𝑧𝑖 )∗ for the true model. As a result, models with loss greater than

ℓ (𝑧𝑖 )∗ are incentivized to indicate that 𝑧𝑖 is part of the training set,

as the distribution is shifting towards ℓ (𝑧𝑖 )∗, while models with loss

less than ℓ (𝑧𝑖 )∗ suggest the opposite, since adding 𝑧𝑖 to the training
set would further decrease the loss. Therefore, we can refine the

model spaces F and F−𝑧𝑖 into two partitions:

F + = {𝑓 ∈ F : ℓ (𝑧𝑖 ; 𝑓 ) ≥ ℓ (𝑧𝑖 )∗},
F − = {𝑓 ∈ F : ℓ (𝑧𝑖 ; 𝑓 ) < ℓ (𝑧𝑖 )∗},
F +−𝑧𝑖 = {𝑓 ∈ F−𝑧𝑖 : ℓ (𝑧𝑖 ; 𝑓 ) ≥ ℓ (𝑧𝑖 )

∗},
F −−𝑧𝑖 = {𝑓 ∈ F−𝑧𝑖 : ℓ (𝑧𝑖 ; 𝑓 ) < ℓ (𝑧𝑖 )∗}.

(5)

Definition 2 (t-WaKA). The target-WaKA attribution score for
point 𝑧𝑖 , denoted as t-WaKA(𝑧𝑖 ), is defined as:

t-WaKA(𝑧𝑖 ) =𝑊1

(
L | F +,L−𝑧𝑖 | F +−𝑧𝑖

)
−𝑊1

(
L | F −,L−𝑧𝑖 | F −−𝑧𝑖

)
.

(6)

We can use the previous formula to obtain the following simpli-

fication:

t-WaKA(𝑧𝑖 ) =
1

𝑘

∑︁
𝑙≥ℓ (𝑧𝑖 )∗

���𝐹ℓ#Q (𝑙) − 𝐹ℓ#Q−𝑧𝑖 (𝑙)���
− 1

𝑘

∑︁
𝑙<ℓ (𝑧𝑖 )∗

���𝐹ℓ#Q (𝑙) − 𝐹ℓ#Q−𝑧𝑖 (𝑙)��� . (7)

3.3 Attribution Algorithm
To compute the 1-Wasserstein distance, we assume access to approx-

imations of Probability Mass Functions (PMFs) of L and L−𝑖 , which
take the form of histograms. More precisely, for each possible loss

value 𝑙 in the set {0, 1/𝑘, . . . , 1}, we want to count the associated

number of existing 𝑘-NN models, including and excluding 𝑧𝑖 . In

the context of 𝑘-NNs, there is no need to sample many subsets of

the training set to compute these values as we can count exactly

the contribution of a point 𝑧𝑖 . A key insight is the observation that

computing the difference in PMFs due to 𝑧𝑖 is proportional to cal-

culating the marginal contribution of 𝑧𝑖 when 𝑧𝑖 is added to the

training set 𝐷 . A contribution occurs for any 𝑦𝑖 if 𝑦𝑖 ≠ 𝑦 𝑗 for all

𝑗 > 𝑖 , with the points sorted relative to the test point 𝑧𝑡 . To realize

this, we have designed Algorithm 1 to provide an efficient method

for computing the marginal contributions.

In a nutshell, the algorithm starts by ordering the training set

with respect to the test point 𝑧𝑡 before iterating through the sorted
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Figure 2: Illustrating the importance of data points in data valuation tasks. The plots highlight: (1) Bad Outlier (Top-Left):
Outlier point that negatively impact (low Shapley value) one class while offering little benefit on its own (Class 1). Important to
identify for data removal; (2) Good Outliers (Top-Right): Outlier points that, despite being in less dense region, improve their
class performance (high Shapley value). (3) Good Inliers (Bottom-Left): Inlier points contributing to loss distributions skewed
toward zero, crucial for data addition; (4) Bad Inlier (Bottom-Right): Not outlier but harm Class 2 if added to dataset.

Training Set

(1) Bad Outlier (2) Good Outliers

(3) Good Inliers (4) Bad Inlier

labels to store the cumulative positive and negative votes, CPV[j]

and CNV[j], at each index 𝑗 . Note that if 𝑧𝑡 = 𝑧𝑖 , we are in the

context of self-attribution, or in the context of an MIA with t-

WaKA. Afterwards, the algorithm loops over the training set to

find labels that differ from 𝑦𝑖 (this step could be parallelized), the

label of the point of interest, which could be precomputed in the

previous step. For each differing label with an index greater than 𝑘 ,

a pass is done over the possible loss values to compute the marginal

contribution of the point of interest 𝑧𝑖 . This process consists of two

steps: first, we count the combinations of 𝑘 nearest neighbors (of 𝑧𝑡 )

a particular loss, in which 𝑧𝑖 is included are counted. Similarly, we

count the combinations in which 𝑧 𝑗 is excluded for the same loss.

Then, this count is normalized using the term 2
𝑗
, which corresponds

to all supersets of the 𝑘 nearest neighbors. Finally, the marginal

contribution is either stored or aggregated. Once the marginal

contributions are calculated, the computation of the 1-Wasserstein

distance is straightforward using histograms of the losses (a proof

and more details are provided in Appendix C.

3.4 Computational analysis
The worst-case time complexity of the algorithm is 𝑂 (𝑁 log𝑁 +
𝑘𝑁 ). More precisely, the 𝑂 (𝑁 log𝑁 ) term comes from sorting the

𝑁 training points with respect to their distance to the test point

𝑧𝑡 . Initializing the cumulative vote functions for any 𝑗 , CPV[j] and

CNV[j], requires 𝑂 (𝑁 ). The main loop, which iterates over the

training set and processes each point’s contributions to each loss,

runs in𝑂 (𝑘 ·𝑁 ). This complexity is reduced by using an approxima-

tion leveraging the fact that contributions decrease exponentially

due to the 2
𝑗
factor and that 𝑘 becomes much smaller than 𝑗 . This

enables to focus on a fixed-size neighborhood around the target

point rather than considering all training points.

In practice in our experiments, we used a neighborhood of 100

points to compute these values. By restricting the computation to
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Algorithm 1 Counting the marginal contributions of a point of interest 𝑧𝑖 with respect to a test point 𝑧𝑡

1: Input: Sorted training set 𝐷 , point of interest 𝑖 , test point 𝑡 , number of neighbors 𝑘 .

2: Output: Contributions for all losses of point 𝑖
3: Initialize CPV[ 𝑗 ] =∑𝑗

𝑚≠𝑖
1(𝑦𝛼𝑚 (𝐷 ) = 𝑦𝑡 ) for 𝑗 = 1, . . . , 𝑁 ⊲ Cumulative positive votes up to 𝑧 𝑗 excluding 𝑧𝑖

4: Initialize CNV[ 𝑗 ] =∑𝑗

𝑚≠𝑖
1(𝑦𝛼𝑚 (𝐷 ) ≠ 𝑦𝑡 ) for 𝑗 = 1, . . . , 𝑁 ⊲ Cumulative negative votes up to 𝑧 𝑗 excluding 𝑧𝑖

5: Contributions← 0
6: for 𝑗 = 𝑖 + 1 to 𝑁 do
7: if 𝑦𝛼 𝑗 (𝐷 ) ≠ 𝑦𝛼𝑖 (𝐷 ) and 𝑗 > 𝑘 then
8: for all 𝑙 in {0, 1/𝑘, . . . , 1} do
9: NV← round(𝑙 · 𝑘 ) ⊲ Number of negative votes for loss 𝑙

10: PV← 𝑘 − NV ⊲ Number of positive votes for loss 𝑙

11: 𝛿PV,𝑖 ← 1(𝑦𝛼𝑖 (𝐷 ) = 𝑦𝑡 )
12: 𝛿NV,𝑖 ← 1(𝑦𝛼𝑖 (𝐷 ) ≠ 𝑦𝑡 )
13: 𝛿PV, 𝑗 ← 1(𝑦𝛼 𝑗 (𝐷 ) = 𝑦𝑡 )
14: 𝛿NV, 𝑗 ← 1(𝑦𝛼 𝑗 (𝐷 ) ≠ 𝑦𝑡 )
15: if CPV[ 𝑗 ] ≥ PV − 𝛿PV, 𝑗 and CNV[ 𝑗 ] ≥ NV − 𝛿NV, 𝑗 and CPV[ 𝑗 ] ≥ PV − 𝛿PV,𝑖 and CNV[ 𝑗 ] ≥ NV − 𝛿NV,𝑖 then ⊲ k-nearest neighbors

combinations should be valid

16: Count−𝑧𝑖 ←
(
CPV[ 𝑗 ]

PV−𝛿
PV, 𝑗

)
·
(

CNV[ 𝑗 ]
NV−𝛿

NV, 𝑗

)
17: Count←

(
CPV[ 𝑗 ]
PV−𝛿

PV,𝑖

)
·
(
CNV[ 𝑗 ]

NV−𝛿
NV,𝑖

)
18: Contributions[𝑙 ] ← Contributions[𝑙 ] + Count−Count−𝑧𝑖

2
𝑗

19: end if
20: end for
21: end if
22: end for
23: return Contributions

this fixed neighborhood, CPV[j] and CNV[j] can also be measured

with a constant complexity. To efficiently identify the neighborhood,

we can use an optimized data structure such as a kd-tree, which

allows for identifying the nearest neighbors in𝑂 (log𝑁 ) time. With

this approximation, only a single reusable 𝑘-NN model needs to be

trained, which reduces significantly the memory usage compared

to using multiple 𝑘-NN shadow models as done in LiRA. More

precisely, the complexity of computing marginal contributions for

any point of interest in this approximation becomes 𝑂 (log𝑁 + 𝐾),
in which 𝐾 is the fixed size of the neighborhood. This approach is

particularly efficient for large datasets. In the following experiments,

we have employed this approximation and observed a minimal

impact on the estimated value.

4 Experimental Evaluation
In this section, we present our experimental evaluation of WaKA as

a general attribution method and t-WaKA as a membership infer-

ence attack (MIA) on six widely-used public datasets (see Table 2 in

Appendix A). Our main objective with the following experiments is

to explore the dual use of WaKA: first, as a tool for understanding

the contribution of individual data points to the utility and privacy

of 𝑘-NN models and second, as an efficient approach for conducting

MIAs on specific data points.

4.1 Experimental Setting
To apply WaKA to standard image and text datasets in machine

learning, we prioritized using pre-trained neural network embed-

dings to minimize dependencies to specific datasets. For CIFAR-

10, we used a custom pre-trained embedding based on ImageNet,

extracting feature representations from its last layer to obtain a

transferable encoding. We evaluated both ImageNet embeddings

and custom embeddings trained on a reserved portion of CIFAR-

10. While the latter showed a slight performance gain, the overall

improvement was negligible. Therefore, we chose to use ImageNet

embeddings, as this avoids partitioning the training set and reduces

the risk of data leakage. For the CelebA dataset, we employed a

pre-trained Vision Transformer (ViT) embedding [5]. For the IMDB

and Yelp reviews textual datasets, we used a pre-trained version of

the Sentence-BERT (SBERT) model [22], ensuring that it did not

include the two datasets during training, thereby aligning with

our goal of reduced data dependencies. In a nutshell, SBERT is a

modification of the BERT architecture that produces sentence em-

beddings optimized for semantic similarity tasks and downstream

classification. Finally, for tabular datasets, we employed a straight-

forward encoding approach, which includes one-hot encoding for

categorical features and normalization for numerical features. Note

that the CelebA and Yelp datasets were added and only used for

data valuation experiments.

Our experiments have been designed around two key scenarios

for evaluating attribution methods. The first scenario, which we call

“test-attribution”, represents the classical data valuation setting, in

which the validation set is used to compute aggregated attribution

scores and measure their impact on utility through performance

on a separate test set. The second scenario, which we name “self-

attribution”, focuses on computing the attribution value of a point

𝑧𝑖 based on how well the model predicts the corresponding label 𝑦𝑖 .

This situation quantifies the direct contribution of each point to its

own label prediction and we conjecture that this self-attribution

is more correlated to privacy scores than utility. In a nutshell, to

compute self-attribution, we only need to use the values attributed

to each point to predict itself while for test-attribution, we must
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decide on how to aggregate the values calculated for each test

point. More precisely, for test-based attribution, the Shapley value,

denoted as DSVtest (𝑧𝑖 ), computes the average contribution of each

training point across the test set, formulated as:

DSVtest (𝑧𝑖 ) =
1

|𝐷test |
∑︁

𝑧𝑡 ∈𝐷test

𝑣shap (𝑧𝑖 ; 𝑧𝑡 ),

in which 𝑣shap (𝑧𝑖 ; 𝑧𝑡 ) is the Shapley value of training point 𝑧𝑖 with

respect to test point 𝑧𝑡 . This method benefits from Shapley’s lin-

earity axiom, which ensures that contributions from individual

data points can sum to the total utility. Note that a test point can

assign both positive and negative valuations to a training point,

depending on its effect on the model’s performance. Similarly, for

WaKArem and WaKAadd, we compute the average across the test

set by evaluating each test point 𝑧𝑡 ∈ 𝐷test.

In our experiments, we selected 𝑘 = 1 as the least privacy-

preserving parameter value, since the 𝑘-NN model’s predictions

are directly influenced by individual points. We also chose 𝑘 = 5

because it is a commonly used parameter in the literature, offering

more label anonymization through generalization, as predictions

are influenced by a larger set of neighboring points.

4.2 WaKA for Utility-driven Data Minimization
The state-of-the-art approach for utility-driven data minimization

is Data Shapley Value (DSV) [11]. In addition toWaKA and DSV, the

basic Leave-One-Out (LOO) method was also included, serving as a

benchmark due to its simplicity in utility-driven data removal and

addition tasks. In data addition, models are trained incrementally

by adding a certain percent of the dataset in descending order of

importance based on an attribution method. Conversely, in data

removal, models start with the full dataset and are retrained after

progressively removing the least valuable points. This setup allows

us to assess the impact of each method on model performance as

data is added or removed. Looking at the results (Figure 6), it is clear

that the LOO method generally underperforms as a data valuation

technique, consistent with the findings of [10].

This reinforces the limitations of LOO in effectively identifying

the most influential points for utility-driven data minimization.

In contrast, WaKArem and WaKAadd consistently match or out-

performDSV, particularly in imbalanced datasets. For instance, Yelp,

with a minority class of 0.4, and Adult, with a minority class of 0.24,

are noticeably more imbalanced compared to CIFAR and IMDB,

which are perfectly balanced through preprocessing. As shown in

Figure 6, WaKA demonstrates greater robustness in these cases. On

the Yelp dataset, we observe that while DSV’s macro F1 score is

comparable to LOO for data removal, WaKArem maintains signifi-

cantly better performance (Figure 3). Similarly, on the Adult dataset,

Figure 4 illustrates that during data addition, DSV predominantly

favors adding majority class samples, leading to performance worse

than random addition, whereas WaKAadd effectively balances the

dataset, yielding superior results.

An important aspect of WaKA’s formulation is its sensitivity

to the parameter 𝜏 , which controls the weighting of outliers and

inliers during data removal and data addition. The role of 𝜏 is to in-

troduce flexibility in how probability mass is moved within the loss

distribution, influencing whether points are prioritized based on

their effect on model utility. Specifically, when 𝜏 = 1.0 for addition

Figure 3: F1 score on the Yelp dataset for data removal.
WaKArem maintains significantly better performance com-
pared to DSV and LOO, highlighting its robustness on imbal-
anced datasets.

Figure 4: F1 score on the Adult dataset for data addition. DSV
predominantly favors adding majority class samples, leading
to performance worse than random addition. WaKAadd, by
contrast, effectively balances the dataset and achieves better
results.

and 𝜏 = 0.0 for removal, the formulations become identical. In data

addition, the goal is to emphasize inliers—points that contribute sig-

nificantly to reducing loss—while penalizing those that negatively

impact other points depending on their loss distribution. In data

removal, we focus on outliers, particularly those that increase loss,

while still accounting for outliers that provide positive contribu-

tions. Empirical evaluations (see Appendix D) indicate that 𝜏 = 0.5

leads to stable results across datasets, though higher variance is

observed in imbalanced datasets such as Bank and CelebA. This

suggests that further exploration of 𝜏 could be valuable in contexts

where dataset imbalance affects data attribution.

Finally, to further explore the impact of data valuation methods,

we examined their influence on class balance during data removal.

Figure 5 highlights that DSV tends to disproportionately remove

points from the minority class, exacerbating class imbalance. In
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contrast, WaKArem demonstrates a more balanced removal strategy,

effectively preserving class proportions. We include all results, such

as CelebA and Bank datasets, in Appendix D. These additional

experiments confirm the bias of Shapley values towards themajority

class and further underscore the robustness of WaKA in handling

imbalanced data scenarios.

Figure 5: Effect of data removal on class balance for the Yelp
dataset. WaKArem preserves class proportions, while DSV
disproportionately removes points from the minority class,
exacerbating imbalance.

4.3 WaKA for Privacy Evaluation and Auditing
Privacy scores. In our privacy evaluation, we followed a similar

approach to [2] by computing the average ASR on all training points.

In practice, this was done by simulating security games as described

previously, in which multiple random partitions of the training set

were created, and the LiRAmethod was applied to evaluate the ASR.

Once the ASR values were obtained, the attribution scores were

computed from each method and sorted to analyze their correlation

with the ASR. This allows to identify how well each attribution

method aligns with the likelihood of a successful MIA.

Both self-Shapley and self-WaKA have shown a monotonic in-

crease in self-attribution values as the ASR increases (see Figure 7),

for both values of the 𝑘-NN parameter (i.e., 𝑘 = 1 and 𝑘 = 5). How-

ever, it is important to note that the correlation between ASR and

self-attribution values does not behave uniformly across all datasets.

For instance, in the Bank dataset, the attack accuracy remains close

to 0.5 (i.e., random guessing) until about the 70-th percentile of

self-WaKA values, whereas other datasets, such as IMDB, exhibit

a more gradual increase in ASR across percentiles. This indicates

that different datasets exhibit varying levels of correlation between

ASR and self-attribution. Furthermore, test-attribution methods

showed different correlations, with notably a higher average ASR

towards extremes. This means that very low or very high attribu-

tion scores tend to correlate more strongly with higher ASR values.

More precisely, data points that are highly detrimental to utility

were found to have consistently high ASR values across all datasets.

This observation challenges the common belief that only high-value

points pose significant privacy risks as lower-value points can also

be privacy vulnerable.

Additionally, increasing the parameter value 𝑘 reduces the aver-

age ASR (Table 7 in Appendix E) while shifting higher ASR values

towards the upper percentiles of the attribution scores. We further

tested the Spearman rank correlation between ASR and attribution

scores, finding that they are highly correlated across datasets (see

Table 3 in Appendix E). This suggests that self-attribution methods,

such as in particular self-WaKA, can more reliably indicate privacy

risks in 𝑘-NN models than test attribution. This can be explained

by the fact that self-Shapley can be understood through a game-

theoretic lens, in which each data point 𝑧𝑖 is a “player” contributing

to the prediction. In this setting, a high self-Shapley value means

that 𝑧𝑖 plays a dominant role in predicting itself, indicating that

whatever the coalition, its neighbors contribute little. Similarly, a

high self-WaKA value means that removing 𝑧𝑖 significantly changes

the loss distribution of predicting itself across all possible subsets

of the training set, which aligns more closely with LiRA.

Finally, we have conducted additional experiments to determine

whether self-WaKA values could provide privacy insights for mod-

els beyond 𝑘-NN classifiers. To investigate, LiRA and trained logis-

tic regression shadow models we first looked at the logits of the

models confidence, following the approach outlined by Carlini and

co-authors. More precisely, the LiRA scores were compared with

the self-WaKA values for 𝑘 = 1 to see if there was a correlation with

the ASR. Our observations revealed that, across all datasets, the

average ASR for the logistic regression model was lower than that

of 𝑘-NN with 𝑘 = 5 (see Table 7). Although the correlation between

value percentiles and ASR was less pronounced than in the 𝑘-NN

case, a significant relationship can still be observed (see Figure 22

in Appendix E). This suggests that self-attribution on 𝑘-NN models

may offer insights into the data that can be extrapolated to other

types of models, although we leave as future works the detailed

investigation of such research avenes.

Privacy influences.The “onion effect” as explored in [2] throught
the introduction the concept of privacy influence (PrivInf) as a

method to quantify the influence that removing a specific training

example 𝑧 has on the privacy risk of a target example 𝑧′. Specifically,
it is defined as the change in the membership inference accuracy

on 𝑧′ after removing 𝑧, averaged over models trained without 𝑧:

PrivInf(Remove(𝑧) ⇒ 𝑧′) := E𝑓 ∈F,𝑆⊆𝐷 [1(𝑧′ ∈ 𝑆) | 𝑧 ∉ 𝑆]

This definition can be used to analyze how the removal of certain

training samples (e.g., inliers or outliers) affects the ASR of other

data points.

Following the same experimental setting as in [2], we started by

removing 10% of the training set with the highest self-WaKA values

before re-evaluating the ASR on the remaining points. The success

of MIAs across all data points is compared by plotting the AUC

curve on a log scale, following the authors’ recommendation (see

Figure 23 in Appendix E). As observed by Carlini and collaborators,

while the overall risk is reduced after removing certain training

points, it remains higher than the expected decrease. Similar pat-

terns were observed when removing points with the highest ASR or

self-Shapley values, whereas random removal or other attribution

methods resulted in no significant change in ASR reduction (see

Tables 4 and 5 in Appendix E). This confirms that 𝑘-NN models

exhibit similar privacy layers, for which removing vulnerable data

does not proportionally reduce the vulnerability to privacy attacks,
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Figure 6: Attribution using𝑊𝑎𝐾𝐴rem for data removal and𝑊𝑎𝐾𝐴add for data addition, compared with two test-attribution
methods: Data Shapley and Leave-One-Out (LOO). Data addition starts with an empty dataset (0%) and progressively adds points,
either randomly (black line) or in descending order of importance as ranked by an attribution method (e.g., Shapley,𝑊𝑎𝐾𝐴add,
LOO). Data removal begins with the full dataset (100%) and iteratively removes the least valuable points according to each
method. The x-axis represents the percentage of data added or removed, while the y-axis tracks the model’s accuracy on the
test set
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thus confirming the “onion effect”. The distribution of ASR was also

analyzed across all points. For CIFAR10, many points still exhibit

high ASR values close to 1.0 after removal. For the Bank, Adult and

IMDB datasets, a general shift occurs towards lower ASR values

after data removal, though some points with high ASR remain,

particularly near the upper percentiles. This highlights the varying

impact of data removal on privacy risks across datasets.

Computing privacy influence (PrivInf) is computationally ex-

pensive, as it requires removing a point 𝑧 or a subset of points

𝑍 and re-evaluating privacy scores for all other points 𝑧′ in the

training set to determine which points have the most influence

on their privacy score. Instead of directly computing PrivInf, we

investigated whether changes in the ASR of the remaining points

after removing 10% of the training set could be explained by their

self-attribution values. To achieve this, an approach to compute

point-wise influence on self-attribution values is needed. In par-

ticular for Shapley, this task is non-trivial, as exact Shapley values

are computed recursively, starting from the last sorted data point

(i.e., complexity of 𝑂 (𝑛). Efficiently re-computing Shapley values

after removing a point would require adapting the Shapley 𝑘-NN

algorithm to support faster recalculations.

For WaKA, the situation is different as the contributions of each

point to the WaKA value for a point 𝑧𝑖 are independent and can be

stored, allowing for re-computation of the self-WaKA value in𝑂 (1)
time. This provides a strong advantage for self-WaKA over self-

Shapley in terms of computational efficiency. To compute the influ-

ence of removing a subset𝑍 ⊆ 𝐷 on the self-WaKA values—denoted

asWaKAInf(Remove(𝑍 ) ⇒ 𝑧) —the contributions of each removed

point 𝑧 𝑗 ∈ 𝑍on the self-WaKA values are summed on the remaining

points. The total WaKA influence is defined as:

WaKAInf(Remove(𝑍 ) ⇒ 𝑧) =∑︁
𝑧 𝑗 ∈N(𝑧 )∩𝑍

WaKA𝑠𝑒𝑙 𝑓 (𝑧;𝐷−𝑧 𝑗 ) −WaKA𝑠𝑒𝑙 𝑓 (𝑧;𝐷), (8)

in which N(𝑧) represents the fixed neighborhood around 𝑧, and 𝑧 𝑗
corresponds to a point that was part of the subset 𝑍 removed. If no

influencing points are included, the total influence is zero.

Figure 9 shows the correlation betweenASR change andWaKAInf,

using k=1, the value of the 𝑘 parameter with the highest privacy

risks. Three distinct regimes across all datasets can be observed. In

the leftmost region, points with negative WaKAInf values corre-

spond to negative ASR changes, indicating reduced vulnerability

after removal. In the middle, in which WaKAInf values are near

zero, the ASR changes are close to 0, suggesting little impact on

privacy. Finally, in the rightmost region, higher WaKAInf values

align with positive ASR changes, indicating increased vulnerability.
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Figure 7: Correlation between ASR and self-attribution values across different datasets for 𝑘-NN values of 𝑘 = 1 and 𝑘 = 5.
Self-attribution measures the extent to which a data point contributes to its own prediction, while ASR (Attack Success Rate)
represents the likelihood of a successful membership inference attack, serving as a measure of privacy risk per point. The ASR
increases monotonically with self-attribution values in most datasets, but the behavior varies across datasets. For example, the
Bank dataset exhibits a steep increase in ASR around the 70th percentile of self-WaKA values, while other datasets, such as
IMDB, show amore gradual augmentation. Additionally, test-attribution is less correlatedwith ASR compared to self-attribution,
indicating that self-attribution is a stronger predictor of privacy risk. The darker curves represent self-attribution methods,
including self-Shapley (red) and self-WaKA (blue).

CIFAR10 Bank Adult IMDB
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Figure 8: Comparison of data points ASR histograms at 𝑘 = 1. The blue bars represent the 100% dataset scenario, while the red
bars show the 90% dataset scenario after removing the 10% of points with the highest self-WaKA values. While the overall ASR
distributions appear similar, the removal of these high-risk points significantly reduces the probability of having data points
with ASR close to 100%, indicating a mitigation of extreme privacy vulnerabilities.
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Membership inference attack through target-WaKA (t-
WaKA).We have conducted extensive experiments using target-

WaKA with multiple parameters (𝑘 = 1 to 5) across all six datasets.

The results of the attacks, specifically TPR at a low FPR, are shown in

Table 1. Additional results, including AUC curves (in log scale) and

their corresponding values, are provided in Appendix E. Inspired by

the confidence-based attacks described in [26], we introduce two

new attacks on 𝑘-NN: a "confidence" attack (Conf) and calibrated

confidence attack (Conf-calib). Both leverage the target model’s

confidence on each target point and compare it to that of a 𝑘-NN
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Figure 9: The relationship between ASR change and total self-WaKA influence (WaKAInf) for 𝑘 = 1. Three regimes can be seen:
negative WaKAInf values lead to negative ASR changes (reduced vulnerability), medium WaKAInf values show minimal ASR
change while and higher WaKAInf values correlate with positive ASR changes (increased privacy risks). ASR histograms before
and after removal for 𝑘 = 1.
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model built on a small neighborhood (i.e. 100 points). For Conf, this

is done with a single 𝑘-NN, whereas Conf-calib samples multiple 𝑘-

NNs (akin to using shadowmodels) to calibrate the confidence score

against variations in the local neighborhood. Since t-WaKA and

LiRA share the same principles of leveraging a model’s response

for membership inference, LiRA will serve as our main point of

comparison.

To compute the mean AUC and TPRs (True Positive Rates) for

all FPRs (False Positive Rates) used in ROC curves, a bootstrap ap-

proach was employed in which 48 security games are ran in parallel,

using a predefined list of seeds. In each game, the training set was

split in half, with a 𝑘-NN model trained on one half. From these two

halves, 100 points were drawn at random for evaluation. The LiRA

method was implemented with 16 shadow models and although

we have tested with an increase in the number of shadow models,

an early convergence was observed across all datasets. Training a

𝑘-NN model essentially involves storing the entire training set and

optionally building an optimized structure, such as a 𝑘𝑑-tree, to

facilitate quick neighborhood searches during inference. In our ex-

periment, we did not use any such structures but rather, we ordered

all points with respect to the target or test point.

These experiments differ from the previous privacy evaluations,

as 100 randomly sampled points from the dataset are targeted for

a specific model, repeating the process 48 times. While one might

expect that using attribution values would lead to effective attacks

on that repeated security game, we found the opposite. More pre-

cisely, all attribution methods produced an average AUC close to

0.5, indicating random performance. We believe that this can be

explained by the fact that attribution methods evaluate data points

with respect to all possible models, rather than focusing on a specific

model’s loss. In contrast, both LiRA and t-WaKA can incorporate

the loss of a particular model, making them more effective for this

type of targeted attack.

For almost all values of 𝑘 , the AUCs of LiRA, t-WaKA, and Conf-

calib are remarkably comparable. Following the recommendation

of [1] to assess the success of membership inference attacks, we

Table 1: Comparison of TPR at FPR=0.05 among LiRA,
t-WaKA, Conf, and Conf-calib for 𝐾 = 5

Dataset LiRA t-WaKA Conf Conf-calib

Adult 0.13 ± 0.17 0.13 ± 0.15 0.06 ± 0.11 0.14 ± 0.19

Bank 0.10 ± 0.16 0.10 ± 0.19 0.05 ± 0.07 0.12 ± 0.17

CelebA 0.07 ± 0.09 0.08 ± 0.12 0.06 ± 0.07 0.08 ± 0.11

CIFAR10 0.16 ± 0.24 0.15 ± 0.16 0.05 ± 0.10 0.14 ± 0.17

IMDB 0.10 ± 0.16 0.14 ± 0.18 0.06 ± 0.11 0.12 ± 0.19

Yelp 0.11 ± 0.17 0.13 ± 0.17 0.07 ± 0.09 0.10 ± 0.16

focus on TPR at a low FPR (5As the value of the parameter 𝑘 in-

creases, the success rate of the attacks decreases similarly for all

three methods. We observed that t-WaKA performs slightly worse

and sometimes a little better than LiRA, but overall, the results are

very close (see Table 1). The Conf attack performs worse than the

other methods, but Conf-calib performs just as well as LiRA and

t-WaKA, sometimes even surpassing them. Interestingly, t-WaKA

remains the strongest attack on textual datasets (IMDB and Yelp).

In some scenarios Additionally, the results confirmed that t-WaKA

shows significant correlation in rankings using the Spearman test,

indicating consistent performance across different settings (Table 6

in Appendix E). Note that as 𝑘 increase there is less and less rank

correlation with LiRA. This outcome is likely due to the same num-

ber of shadow models being used for all 𝑘 , but further investigation

is needed to confirm this.

In terms of execution time, t-WaKA demonstrates significant

efficiency compared to LiRA. We report the execution times for at-

tacking the IMDB dataset across all values of 𝑘 from 1 to 5. IMDB is

the largest dataset we experimented with, featuring s-BERT embed-

dings of size 383, in contrast to the custom CIFAR10 embeddings,

which are of size 191. For this dataset, t-WaKA completed the ex-

periment in approximately 140.07 seconds, significantly faster than

LiRA, which took 1708.83 seconds. Both methods were run on an

Apple M1 Pro (16 GB, 8 cores), utilizing all available cores through

a single Python process managed by scikit-learn. LiRA employed 16
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shadow𝑘-NNmodels using kd-trees, while t-WaKA reused the same

𝑘-NN model across all security games. For fairness that, re LiRA’s

implementation is model-agnostic and not optimized specifically

for 𝑘-NN classifiers.

To better understand the distinction between high self-attribution

points and high test-attribution points, we conducted an experi-

ment involving data minimization on synthetic data (see Figure 24

in Appendix E) using a dataset generated with the scikit-learn
library. Both test-Shapley and self-Shapley values were computed

for a 𝑘-NN model with 𝑘 = 5. Each iteration consists in removing

the top 20% of highest value points, ranked by their Shapley values.

The results highlights a clear distinction between the two types of

Shapley values. More precisely, test-Shapley values tend to concen-

trate between the decision boundary and the outer edges of the

data distribution while self-Shapley values consistently highlight

points that lie directly on the decision boundary. This underscores

the effectiveness of self-Shapley values in identifying critical points

near the decision boundary, which seem to be more vulnerable to

membership inference attacks in 𝑘-NNs.

5 Discussion and Conclusion
In this work, we have introducedWaKA, a novel attribution method

specifically designed for 𝑘-NN classifiers that also functions as a

MIA. WaKA leverages the 1-Wasserstein distance to efficiently as-

sess the contribution of individual data points to the model’s loss

distribution. Our motivation for this paper stemmed from the real-

ization that while membership inference and data attribution both

focus on point-wise contributions, they are related to very different

concepts, namely privacy and value. Indeed, membership infer-

ence aims to measure information leakage, whereas data valuation

seeks to extract intrinsic insights about data utility. Recognizing

this distinction, we have design an attribution method inspired by

membership inference principles, one that could serve multiple pur-

pose. The insights from this study emphasize the need for further

exploration of the relationship between model parameters, data

attribution and privacy.

Data Valuation. WaKA proves to be highly effective for utility-

driven data minimization by identifying both low- and high-value

points. This targeted approach allows for optimized dataset re-

finement. Our experiments further demonstrate WaKA’s robust-

ness over Data Shapley Value (DSV) in the context of imbalanced

datasets. This makes WaKA a versatile and reliable tool for data

valuation.

Self-attribution methods. Due of its relationship with MIAs,

WaKA is particularly interesting as a self-attribution method. We

also introduced the self-Shapley term as the DSV of a point with

respect to itself, a concept that has not been discussed in the litera-

ture to date. From an utilitarian point of view, self-Shapley value

could be particularly appealing to individuals who prioritize their

own utility over the collective utility captured by average DSV

calculated using a test set, especially when their main interest is

whether contributing their data directly improves their own pre-

diction rather than the model’s overall performance. For example,

in the context of a financial institution, an individual may only be

willing to provide their data if it directly improves the accuracy of

predictions that affect them personally, such as determining their

creditworthiness. Self-Shapley offers individuals a way to know if

their data would be beneficial for them only, making it a valuable

tool in cases where personal utility is prioritized over collective

fairness (i.e., favoring a greedy strategy). Self-WaKA correlates with

self-Shapley, and thus it can be used for similar purposes. How-

ever, additionally Self-WaKA also brings a more direct rationale

concerning membership privacy, due to its relation with LiRA. This

demonstrates that privacy is not always directly correlated with

value, as it largely depends on how value is defined. In the case of

𝑘-NN, we showed it is more closely tied to “self-utility” rather than

overall contribution to the model’s generalization performance.

Privacy insights and the onion effect. In our evaluation, we

confirmed the “onion effect” previously described by Carlini and

co-authors, in which removing certain data points only partially

mitigates the risk of MIAs, leaving the remaining data still vul-

nerable. WaKA, not only corroborates this phenomenon but also

provides an efficient approach to measuring privacy risk in 𝑘-NN

models. This aligns with recent work by [26], which underscores

that membership inference risk is influenced not only by individual

data points but also by their neighborhood. If 𝑘-NN is used as part

of a Machine Learning pipeline—such as combining embeddings

with 𝑘-NN for downstream tasks—WaKA can offer a way to un-

derstand membership privacy risks. We leave as future work the

exploration to whether self-WaKA values andWaKA influences can

generalize to other types of models, such as interpreting privacy

risks in the last layer of a large language model (LLM) or other deep

learning architectures.

Ethical Considerations. The development of WaKA raises

ethical concerns. Adversaries could potentially exploit WaKA to

selectively identify and target particularly vulnerable data points,

either to enhance inference attacks or to manipulate datasets to

maximize privacy leakage. However, WaKA also provides defensive

capabilities, enabling practitioners to identify and remove high-risk

data points or design privacy-aware data-selection strategies. It is

essential that attribution insights derived from methods like WaKA

be leveraged responsibly, aiming to strengthen privacy and avoid

introducing new vulnerabilities.

Protection against membership inference attack. Our ex-
periments reveal that increasing the parameter 𝑘 in 𝑘-NN models

has a significant effect on reducing the success rate of MIAs. We

believe that this issue is under-explored in the current literature

and warrants further investigation. In particular, the hybrid models

employed in our study, such as the combination of s-BERT and

𝑘-NN used on the IMDB and Yelp datasets, suggest that the param-

eter 𝑘 could be strategically use as a defense mechanism against

membership inference.

In addition, we believe that WaKA values could provide valu-

able insights for data removal task for other types of models, such

as neural networks. While our current research focuses on 𝑘-NN

classifiers, we will also investigate the extension of this approach

to neural networks as future work. In particular, testing WaKA’s

applicability to these contexts could significantly enhance the un-

derstanding of data attribution and its impact on model robustness

and privacy.
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A Datasets

Table 2: Description of the datasets used in the experiments

Dataset Type Features Training
Size

Test Size Encoding Reference

CIFAR-10 Image 32x32 images in 10

classes

25,000 5,000 Custom pre-trained [14]

Bank Tabular 17 features 36,168 9,043 One-hot and nor-

malized

[19]

Adult Tabular 14 features 32,561 16,281 One-hot and nor-

malized

[13]

IMDB Text Avg. 230-240 words per

document

25,000 5,000 SBERT pre-trained [17]

Yelp Text Avg. 150 words per re-

view

25,000 5,000 SBERT pre-trained [28]

CelebA Image 178x218 images with 40

attributes

25,000 5,000 ViT pre-trained [16]

B Notations

Symbol Description
𝑊1 (𝜇, 𝜈) 1-Wasserstein distance between two probability distributions 𝜇 and 𝜈 .

L Distribution of loss values for 𝑘-NN models trained on all possible subsets of the dataset 𝐷 .

L−𝑧𝑖 Distribution of loss values for 𝑘-NN models trained on subsets of 𝐷 excluding point 𝑧𝑖 .

L Finite set of possible discrete loss values for a 𝑘-NN classifier.

F Space of all 𝑘-NN models trained on subsets of 𝐷 .

F−𝑧𝑖 Space of all 𝑘-NN models trained on subsets of 𝐷 excluding point 𝑧𝑖 .

Q Uniform distribution over models in F trained on subsets 𝑆 such that 𝑧𝑖 ∈ 𝑆 .
Q−𝑧𝑖 Uniform distribution over models in F trained on subsets 𝑆 such that 𝑧𝑖 ∉ 𝑆 .

ℓ (𝑓 ) Loss function mapping a 𝑘-NN model 𝑓 to a real-valued loss.

ℓ#Q Pushforward distribution of Q through the loss function ℓ .

ℓ#Q−𝑧𝑖 Pushforward distribution of Q−𝑧𝑖 through the loss function ℓ .

𝐹ℓ#Q (𝑙) Cumulative distribution function (CDF) of the loss distribution L, evaluated at the loss value 𝑙 .

𝐹ℓ#Q−𝑧𝑖
(𝑙) Cumulative distribution function (CDF) of the loss distribution L−𝑧𝑖 , evaluated at the loss value

𝑙 .

F +, F − Partition of F into subsets with losses greater than or equal to, or less than target loss ℓ (𝑧𝑖 )∗,
respectively.

F +−𝑧𝑖 , F
−
−𝑧𝑖 Partition of F−𝑧𝑖 into subsets with losses greater than or equal to, or less than target loss ℓ (𝑧𝑖 )∗,

respectively.

WaKA(𝑧𝑖 ) Wasserstein 𝑘-NN Attribution (WaKA) score for point 𝑧𝑖 , measuring the 1-Wasserstein distance

between L and L−𝑧𝑖 .
t-WaKA(𝑧𝑖 ) Target-WaKA score for point 𝑧𝑖 , measuring the difference in 1-Wasserstein distances for the

partitions F + and F − .

C Algorithm 1 Details and Proof
To compute the differences between the loss distributions L and L−𝑧𝑖 , we first need to calculate the number of possible subsets 𝑆 of the

training set 𝐷 that lead to a particular loss value 𝑙 . The loss is computed using the 𝑘-nearest neighbors of a test point 𝑧𝑡 .

For each subset 𝑆 , we are interested in how the inclusion of the point 𝑧𝑖 affects the loss, which happens when 𝑧𝑖 pushes out a point 𝑧 𝑗
from the 𝑘-th position to the (𝑘 + 1)-th position, i.e. 𝛼 𝑗 (𝐷) > 𝛼𝑖 (𝐷).
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To formalize this, we define the count 𝐶−𝑧𝑖 (𝑙, 𝑧 𝑗 ) for subsets that exclude 𝑧𝑖 and yield a loss 𝑙 as:

𝐶−𝑧𝑖 (𝑙, 𝑧 𝑗 ) = #

{
𝑆 ⊆ 𝐷 | 𝑧𝑖 ∉ 𝑆, 𝛼𝑘 (𝑆) = 𝛼 𝑗 (𝐷), ℓ (𝑧𝑡 ; 𝑆, 𝑘) = 𝑙

}
· 2𝑁−1− 𝑗 .

where:

• 𝛼𝑘 (𝑆) = 𝛼 𝑗 (𝐷) means that the point 𝑧 𝑗 is both the j-th sorted point w.r.t 𝑧𝑡 and the 𝑘-th nearest neighbor in the subset 𝑆 ,

• ℓ (𝑧𝑡 ; 𝑆, 𝑘) is the loss function parameterized by the subset 𝑆 and the number of neighbors 𝑘 ,

• The factor 2
𝑁−1− 𝑗

accounts for the number of possible supersets of 𝑆 , considering the positions of other points in the training set.

Similarly, 𝐶 (𝑙, 𝑧 𝑗 ) counts the subsets where 𝑧𝑖 is included, with 𝑧 𝑗 now at (𝑘 + 1)-th position, and the loss is 𝑙 .

𝐶 (𝑙, 𝑧 𝑗 ) = #

{
𝑆 ⊆ 𝐷 | 𝑧𝑖 ∈ 𝑆, 𝛼𝑘+1 (𝑆) = 𝛼 𝑗 (𝐷), ℓ (𝑧𝑡 ; 𝑆, 𝑘) = 𝑙

}
· 2𝑁− 𝑗 ,

Note that we are considering the same subsets as before but with the inclusion of 𝑧𝑖 . The normalized contribution to the frequency of

the loss value 𝑙 , denoted as 𝛿 (𝑙, 𝑧 𝑗 ) and 𝛿−𝑧𝑖 (𝑙, 𝑧 𝑗 ), is obtained by dividing 𝐶 (𝑙, 𝑧 𝑗 ) and 𝐶−𝑧𝑖 (𝑙, 𝑧 𝑗 ) by the total number of possible subsets.

Specifically:

𝛿 (𝑙, 𝑧 𝑗 ) =
𝐶 (𝑙, 𝑧 𝑗 )
2
𝑁

, 𝛿−𝑧𝑖 (𝑙, 𝑧 𝑗 ) =
𝐶−𝑧𝑖 (𝑙, 𝑧 𝑗 )

2
𝑁−1 .

To compare the differences between the loss distributions L and L−𝑧𝑖 , we sum the differences in the normalized contributions of the loss

values in both cases: ∑︁
𝑙∈L

∑︁
𝑧 𝑗

𝛿 (𝑙, 𝑧 𝑗 ) − 𝛿−𝑧𝑖 (𝑙, 𝑧 𝑗 )

Here, L is the set of possible loss values

{
0, 1

𝑘
, 2
𝑘
, . . . , 1

}
, and the summation over 𝑧 𝑗 accounts for all points that can occupy the 𝑘-th

nearest neighbor position in the subsets.

We simplify the term inside the summation as follows:

𝐶 · 2𝑁− 𝑗
2
𝑁

−
𝐶−𝑧𝑖 · 2𝑁−1− 𝑗

2
𝑁−1 =

1

2
𝑁−1 ·

(
𝐶

2

· 2𝑁− 𝑗 −𝐶−𝑧𝑖 · 2𝑁−1− 𝑗
)

(9)

=
1

2
𝑁−1

(
𝐶 · 2𝑁−1− 𝑗 −𝐶−𝑧𝑖 · 2𝑁−1− 𝑗

)
(10)

=
2
𝑁−1− 𝑗

2
𝑁−1

(
𝐶 −𝐶−𝑧𝑖

)
(11)

=
𝐶 −𝐶−𝑧𝑖

2
𝑗

. (12)

Thus, the difference between the normalized contributions simplifies to

𝐶−𝐶−𝑧𝑖
2
𝑗 , where 𝐶 and 𝐶−𝑧𝑖 are shorthand notations for the counts

of subsets for a given loss value 𝑙 with and without 𝑧𝑖 , and a given point 𝑧 𝑗 . Notice that when 𝑧 𝑗 and 𝑧𝑖 have the same label, i.e. 𝑦 𝑗 = 𝑦𝑖 , the

𝑘-nearest neighbors are identical, thus 𝐶 −𝐶−𝑧𝑖 = 0.

By applying this simplification to the previous expression, we have:∑︁
𝑙∈L

∑︁
𝑧 𝑗

𝛿 (𝑙, 𝑧 𝑗 ) − 𝛿−𝑧𝑖 (𝑙, 𝑧 𝑗 ) =
∑︁
𝑙∈L

∑︁
𝑧 𝑗

𝑦𝑖≠𝑦 𝑗

𝐶 (𝑙, 𝑧 𝑗 ) −𝐶−𝑧𝑖 (𝑙, 𝑧 𝑗 )
2
𝑗

.

The 1-Wasserstein distance between the loss distributions L and L−𝑧𝑖 is defined as:

𝑊1 (L,L−𝑧𝑖 ) =
∑︁
𝑙∈L

���𝐹L (𝑙) − 𝐹L−𝑧𝑖 (𝑙)��� · Δ𝑙,
where 𝐹L (𝑙) and 𝐹L−𝑧𝑖 (𝑙) represent the cumulative distribution functions for L and L−𝑧𝑖 evaluated at the loss value 𝑙 , and Δ𝑙 = 1

𝑘
is the

difference between successive loss values.

We know that the cumulative distribution functions 𝐹L (𝑙) and 𝐹L−𝑧𝑖 (𝑙) can be described as the sum of their respective normalized

contributions up to the loss value 𝑙 . However, since we are ultimately interested in the differences between the normalized contributions

𝛿 (𝑙, 𝑧 𝑗 ) and 𝛿−𝑧𝑖 (𝑙, 𝑧 𝑗 ) (rather than computing the cumulative distributions explicitly), we can substitute the expression for the difference of

these terms directly into the Wasserstein distance formula.

Therefore, instead of expressing the 1-Wasserstein distance in terms of cumulative distributions, we can express it directly as the sum of

the absolute differences in the normalized contributions:
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𝑊1 (L,L−𝑧𝑖 ) =
1

𝑘

∑︁
𝑙∈L

������∑︁𝑧 𝑗 (
𝛿 (𝑙, 𝑧 𝑗 ) − 𝛿−𝑧𝑖 (𝑙, 𝑧 𝑗 )

) ������ .
Substituting the earlier expression for 𝛿 (𝑙, 𝑧 𝑗 ) − 𝛿−𝑧𝑖 (𝑙, 𝑧 𝑗 ), we get:

𝑊1 (L,L−𝑧𝑖 ) =
1

𝑘

∑︁
𝑙∈L

��������
∑︁
𝑧 𝑗

𝑦𝑖≠𝑦 𝑗

𝐶 (𝑙, 𝑧 𝑗 ) −𝐶−𝑧𝑖 (𝑙, 𝑧 𝑗 )
2
𝑗

�������� .
D Utility-driven Data Minimization Results and Analysis

Figure 10: Results for the CIFAR10 dataset across various metrics and tasks. Rows show data addition and removal tasks, while
columns display Accuracy, Macro-F1, and Label Ratio Evolution (for data removal only).
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Figure 11: Analysis of 𝜏 values for the CIFAR10 dataset computed using theWaKAadd andWaKArem formulas. 𝜏 is varied from
0.0 to 1.0 in increments of 0.2.
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Figure 12: Results for the Adult dataset across various metrics and tasks. Rows show data addition and removal tasks, while
columns display Accuracy, Macro-F1, and Label Ratio Evolution (for data removal only).
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Figure 13: Analysis of 𝜏 values for the Adult dataset computed using theWaKAadd andWaKArem formulas. 𝜏 is varied from 0.0 to
1.0 in increments of 0.2.
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Figure 14: Results for the Yelp dataset across various metrics and tasks. Rows show data addition and removal tasks, while
columns display Accuracy, Macro-F1, and Label Ratio Evolution (for data removal only).
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Figure 15: Analysis of 𝜏 values for the Yelp dataset computed using the WaKAadd and WaKArem formulas. 𝜏 is varied from 0.0 to
1.0 in increments of 0.2.
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Figure 16: Results for the IMDB dataset across various metrics and tasks. Rows show data addition and removal tasks, while
columns display Accuracy, Macro-F1, and Label Ratio Evolution (for data removal only).
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Figure 17: Analysis of 𝜏 values for the IMDB dataset computed using theWaKAadd andWaKArem formulas. 𝜏 is varied from 0.0 to
1.0 in increments of 0.2.
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Figure 18: Results for the CelebA dataset across various metrics and tasks. Rows show data addition and removal tasks, while
columns display Accuracy, Macro-F1, and Label Ratio Evolution (for data removal only).
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Figure 19: Analysis of 𝜏 values for the CelebA dataset computed using the WaKAadd and WaKArem formulas. 𝜏 is varied from 0.0
to 1.0 in increments of 0.2.
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Figure 20: Results for the Bank dataset across various metrics and tasks. Rows show data addition and removal tasks, while
columns display Accuracy, Macro-F1, and Label Ratio Evolution (for data removal only).
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Figure 21: Analysis of 𝜏 values for the Bank dataset computed using the WaKAadd and WaKArem formulas. 𝜏 is varied from 0.0 to
1.0 in increments of 0.2.
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E Privacy Evaluation and Auditing Results
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Table 3: Spearman Correlation between self-WaKA and self-Shapley for K=1 and K=5

Dataset K=1 K=5
Spearman P-Value Spearman P-Value

IMDB 0.99 0.00 0.93 0.00

CIFAR10 1.00 0.00 0.99 0.00

adult 0.99 0.00 0.98 0.00

bank 0.98 0.00 0.98 0.00

Figure 22: Correlation between self-WaKA values (𝑘 = 1) and ASR for logistic regression models. The results show a weaker
correlation compared to 𝑘-NN models but a significant relationship still exists.

CIFAR10 Bank Adult IMDB

Figure 23: Comparison of AUC curves in log-log scale for privacy scores at 𝑘 = 1. The blue line represents the 100% dataset
scenario while the red line shows the 90% dataset scenario.

CIFAR10 Bank Adult IMDB

Table 4: AUC of LiRA before and after removing 10% of the dataset, using various attribution methods.

Dataset K AUC 100% AUC accuracy (90%) AUC self-waka (90%) AUC self-shapley (90%) AUC test-waka (90%) AUC test-shapley (90%)

adult 1 0.731 0.610 0.605 0.604 0.696 0.704

adult 5 0.604 0.566 0.555 0.555 0.594 0.598

bank 1 0.810 0.527 0.525 0.525 0.597 0.608

bank 5 0.691 0.524 0.512 0.510 0.552 0.558

CIFAR10 1 0.708 0.752 0.749 0.747 0.819 0.826

CIFAR10 5 0.596 0.626 0.631 0.628 0.696 0.699

IMDB 1 0.610 0.671 0.666 0.666 0.740 0.754

IMDB 5 0.555 0.592 0.580 0.582 0.611 0.617
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Table 5: TPR at 5% FPR of LiRA before and after removing 10% of the dataset, using various attribution methods.

Dataset K TPR 100% TPR accuracy (90%) TPR self-waka (90%) TPR self-shapley (90%) TPR test-waka (90%) TPR test-shapley (90%)

adult 1 0.217 0.137 0.133 0.134 0.213 0.216

adult 5 0.080 0.076 0.069 0.072 0.074 0.082

bank 1 0.373 0.077 0.075 0.075 0.144 0.152

bank 5 0.189 0.070 0.062 0.060 0.079 0.078

CIFAR10 1 0.221 0.284 0.279 0.276 0.383 0.390

CIFAR10 5 0.081 0.123 0.125 0.123 0.197 0.199

IMDB 1 0.154 0.150 0.144 0.142 0.219 0.228

IMDB 5 0.080 0.066 0.060 0.059 0.090 0.096

Figure 24: Experiment of data minimization on the synthetic data Moons generated using the scikit-learn library for a 𝑘-NN
model with 𝑘 = 5. The darker the points, the higher the corresponding Shapley values. The results show that higher test-Shapley
values tend to concentrate between the decision boundary and the external boundaries of the data, while higher self-Shapley
values consistently identify points lying directly on the decision boundary.
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Table 6: Spearman correlation results by dataset and parameter 𝑘 .

Dataset 𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4 𝐾 = 5

IMDB 0.95 (±0.02) 0.69 (±0.08) 0.62 (±0.08) 0.64 (±0.08) 0.65 (±0.08)
CIFAR 0.97 (±0.01) 0.84 (±0.06) 0.70 (±0.12) 0.66 (±0.10) 0.65 (±0.12)
Adult 0.94 (±0.03) 0.77 (±0.08) 0.64 (±0.11) 0.59 (±0.12) 0.57 (±0.11)
Bank 0.75 (±0.07) 0.64 (±0.14) 0.56 (±0.18) 0.49 (±0.15) 0.45 (±0.15)

Table 7: Average ASR with Standard Error for 𝑘 = 1, 𝑘 = 5 and Logistic Regression (LogReg)

Dataset K=1 K=5 LogReg
Adult 0.625 ± 0.002 0.561 ± 0.001 0.512 ± 0.001

Bank 0.56 ± 0.001 0.531 ± 0.001 0.503 ± 0.0004

CIFAR 0.702 ± 0.001 0.621 ± 0.001 0.541 ± 0.001

IMDB 0.65 ± 0.002 0.573 ± 0.001 0.529 ± 0.001
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LiRA t-WaKA Conf Conf-calib

Figure 25: CIFAR10: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale) using LiRA, t-WaKA, confidence,
and calibrated confidence attacks for 𝑘 values between 1 and 5.

LiRA t-WaKA Conf Conf-calib

Figure 26: Bank: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale) using LiRA, t-WaKA, confidence, and
calibrated confidence attacks for 𝑘 values between 1 and 5.

LiRA t-WaKA Conf Conf-calib

Figure 27: Adult: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale) using LiRA, t-WaKA, confidence,
and calibrated confidence attacks for 𝑘 values between 1 and 5.
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LiRA t-WaKA Conf Conf-calib

Figure 28: IMDB: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale) using LiRA, t-WaKA, confidence,
and calibrated confidence attacks for 𝑘 values between 1 and 5.

LiRA t-WaKA Conf Conf-calib

Figure 29: Yelp: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale) using LiRA, t-WaKA, confidence, and
calibrated confidence attacks for 𝑘 values between 1 and 5.

LiRA t-WaKA Conf Conf-calib

Figure 30: Celeba: Membership Inference Attacks (MIA) AUC and ROC curves (in log-scale) using LiRA, t-WaKA, confidence,
and calibrated confidence attacks for 𝑘 values between 1 and 5.
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