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Figure 1: Users deal with various types of information in daily life that can have vastly different privacy requirements, e.g.,
personal photographs, passwords, or social media posts. Gaze3P is the first large-scale dataset that allows for the systematic
study of user-perceived privacy. We report extensive experiments demonstrating the feasibility of predicting perceived privacy
from human eye gaze. We also show how predicted privacy can be used to optimise the parameters of privacy-preserving
techniques for data analysis and learning, such as Differential Privacy (DP), to better align them with user expectations.

Abstract
Privacy is a highly subjective concept and perceived variably by dif-
ferent individuals. Previous research on quantifying user-perceived
privacy has primarily relied on questionnaires. Furthermore, apply-
ing user-perceived privacy to optimise the parameters of privacy-
preserving techniques (PPT) remains insufficiently explored. To
address these limitations, we introduce Gaze3P – the first dataset
specifically designed to facilitate systematic investigations into
user-perceived privacy. Our dataset comprises gaze data from 100
participants and 1,000 stimuli, encompassing a range of private and
safe attributes. With Gaze3P we train a machine learning model to
implicitly and dynamically predict perceived privacy from human
eye gaze. Through comprehensive experiments, we show that the
resulting models achieve high accuracy. Finally, we illustrate how
predicted privacy can be used to optimise the parameters of differ-
entially private mechanisms, thereby enhancing their alignment
with user expectations.
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1 Introduction
Privacy, particularly as it is perceived by individuals, is a complex
and deeply subjective construct that varies significantly across
contexts, cultures, and personal experiences [21, 28, 89]. Unlike
technical privacy, which can be quantified through cryptographic
guarantees or formal metrics, perceived privacy refers to an individ-
ual’s internal judgment about the sensitivity or appropriateness of
data sharing [9, 70]. Understanding and quantifying user-perceived
privacy is essential because it directly influences users’ willingness
to engage with digital systems, share information, or consent to
data sharing requests [11, 60, 89]. Therefore, accurately quantify-
ing perceived privacy helps designers create user-aligned privacy
mechanisms, improve transparency, and ultimately enhance user
satisfaction and system usability [11, 56, 61, 74].

The ability to quantify user-perceived privacy levels also has
significant potential for optimising the parameters of security pro-
tocols, such as Differential Privacy (DP) [31]. However, despite
continuing discussions, the problem of how to map users’ privacy
perception to protocol parameters remains unsolved [21, 21, 28, 28,
67, 89, 102]. A key reason for this failure is the large number of
factors that affect privacy perception, such as (i) oversight of the
situational diversity [87], (ii) neglect of within- vs. between-subject
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variations [89], (iii) effects of biases, heuristics, or impulsivity on
online user behaviour [67, 102], and, most importantly, (iv) the
scarcity of the available behavioural data that encapsulates all rele-
vant aspects. Previous work mainly relied on explicit feedback, such
as questionnaires, which has been shown to not align well with
users’ satisfaction [101, 118], especially since user judgement dy-
namically changes depending on context, behaviour, or knowledge
[55].

In this work, we explore a novel approach: The use of human
eye gaze as an implicit and dynamic source of information on user-
perceived privacy. In particular, our approach does not require a user
to explicitly provide input or make active decisions, e,g, clicking a
button or selecting a privacy setting. Naturally, the feedback derived
from gaze is responsive to changing contexts, such as different
content, tasks, or user states, i.e. as the user interacts with new
stimuli, their gaze behaviour adapts, and our approach therefore
continuously updates itself accordingly. Prior research has shown
that eye gaze contains rich information about the user, such as
identifiers [17], quasi-identifiers [113], confidential attributes (e.g.
user activities [117], attentive [40, 120] and cognitive states [15, 58],
or information about private situations [118]). Consequently, we
try to answer our main research question RQ1:

RQ1: Can human eye gaze be used as an implicit and
dynamic indicator of user-perceived privacy?

To this end, we present Gaze3P (Gaze-based Prediction of user-
Perceived Privacy) – the first large-scale dataset for studying
user-perceived privacy from the perspective of human eye gaze.
Gaze3P includes gaze data (i.e. where, when, and how a person
looks) of 100 participants viewing 1,000 natural images showing
different objects, some with private attributes (e.g. credit cards and
medical history) as shown in Fig. 2. The dataset also provides user
ratings of perceived privacy on a scale from 1 (very private) to 7
(very safe) for each image. The full dataset, including all annota-
tions, is available at [Dataset Link] (cf. [8] for the implementation).
Using our new dataset, we then explore:

RQ2: How accurately can ML models predict privacy per-
ceptions solely from gaze?

We therefore present different tasks, focusing on the automatic
prediction of users’ perceived privacy solely from gaze behaviour.
These tasks correspond to privacy-related problems or objectives
that an algorithm is trained to address using our collected data.
Once trained, the algorithm can be used to generalise its learned
solution to apply to the same class of problems for previously un-
seen individuals. Since it is not feasible to a priori determine which
features can be reliably extracted from gaze data—nor whether po-
tentially confounding factors can be effectively disentangled—we
employed machine learning algorithms to automatically identify
privacy-related patterns associated with each task. These tasks in-
clude: Stimuli-based Perceived Privacy (SPP) tasks to infer how
private a stimulus (e.g. image) is and User-based Perceived Pri-
vacy (UPP) tasks to infer information about the user (e.g. privacy

expertise or identity). Our ML models demonstrate that human eye
gaze provides accurate predictions of perceived privacy.

Hence, we explore a third research question:

RQ3: Can gaze-based predictions of perceived privacy be
integrated into privacy-preserving frameworks (such as
Differential Privacy) to optimize utility while aligning
with user expectations?

Weuse the Gaze3P predictions of user-perceived privacy to optimise
the parameters of differentially private mechanisms. Differentially
private mechanisms obfuscate sensitive data samples such that only
a limited amount of information about the private data can still
be deduced from the obfuscated output of the mechanism. The
exact amount of acceptable leakage depends on a privacy budget
parameter 𝜀 > 0, which determines the obfuscating noise added
by the mechanism. If 𝜀 is small, the privacy guarantee becomes
stronger, but usually, the output of the mechanism is less accurate,
and usability decreases. It is therefore important not to choose the
privacy budget 𝜀 too small, i.e., to only add the minimal amount of
noise that guarantees a target privacy level. The optimisation of
DP-parameters has therefore seen much attention in recent years
[11, 61, 98].

Our new dataset Gaze3P and the resulting ML model predic-
tions provide a new way to determine 𝜀, which reflects a user’s
perceived privacy. Depending on the actual use case, we propose
different mappings from perceived privacy levels to 𝜀-values. We
evaluate how each mapping affects the utility of the obfuscated
output dataset and show that our gaze-based approach outperforms
previous work.

Contributions. In summary, our work makes the following con-
tributions:
(1) We present Gaze3P – the first large-scale dataset for study-

ing user-perceived privacy using human eye gaze, providing a
dynamic and implicit user feedback.

(2) We propose several novel learning tasks focusing on predicting
user-perceived privacy from human eye gaze. These tasks cover
different aspects of privacy and also allow us to explore potential
applications and limitations of gaze-based privacy perception.

(3) We demonstrate how gaze-based predictions can be used to opti-
mise parameters of privacy-preserving techniques. Specifically,
we introduce a novel approach that maps predicted privacy
levels to DP’s privacy parameter 𝜀 and show that aligning DP
with user expectations improves the data utility in data analysis
and learning.

2 Preliminaries

Eye Tracking. Gaze data is typically collected using eye-tracking
devices that record the position and movement of a user’s eyes
relative to a visual stimulus or screen. Modern eye trackers em-
ploy infrared light to detect corneal reflection and pupil centre,
enabling accurate estimation of gaze coordinates at high temporal
resolutions. The raw gaze signal is then processed into interpretable
features such as fixations, saccades, and pupil dilation:
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• Fixations refer to time periods where the eye remains focused
on a specific location, typically lasting 100–400 ms. They are
indicative of visual attention and cognitive processing of that
region.

• Saccades are rapid eye movements between fixations used to
reposition the fovea to new visual targets, lasting 20–80ms. These
movements are ballistic, and their patterns can inform about
scanning behaviour and search strategies.

• Pupil dilation is a physiological response modulated, amongst
others, by both environmental lighting and cognitive load. In-
creased dilation was linked to heightened mental effort, emo-
tional arousal, or attentional demand.
Together, these gaze features provide a rich, temporally fine-

grained source of implicit user feedback (i.e. without requiring
direct input or explicit interaction). We refer the reader to [53, 54,
95, 100] for details about eye tracking and gaze behaviour analysis.

By transforming the continuous, high-dimensional gaze signals
into quantitative features—such as fixations, saccades, and pupil
diameters—machine learning (ML) models are provided with infor-
mative inputs that capture essential characteristics of user inter-
action or cognitive states. These features are then passed into ML
algorithms, enabling the models to learn underlying statistical pat-
terns or associations within the data. This learned structure allows
the models to perform specific tasks such as classification, regres-
sion, or clustering. Ultimately, this feature-to-model pipeline allows
ML systems to generalize from training data and make accurate,
data-driven inferences about new, unseen inputs.

Differential Privacy (DP). DP is a mathematical framework that
ensures privacy by limiting the impact of any single data point on
the output of a computation. A randomised algorithm𝑀 satisfies
𝜀-DP if, for all datasets 𝐷 and 𝐷 ′ differing by at most one element,
and for all measurable subsets 𝑆 of the output space:

Pr[𝑀 (𝐷) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[𝑀 (𝐷 ′) ∈ 𝑆], (1)

where 𝜀 ≥ 0 is the privacy budget, controlling the privacy loss. A
small 𝜀 means that 𝐷 and 𝐷 ′ are (almost) not distinguishable given
a set of outputs 𝑆 . From an adversarial perspective, an adversary
A challenged to distinguish 𝐷 and 𝐷 ′ given an output set 𝑆 will
output the dataset which is more likely, e.g. 𝐷 if Pr(𝐷 |𝑀 (𝐷) ∈ 𝑆) ≥
1
2 ≥ Pr(𝐷 |𝑀 (𝐷 ′) ∈ 𝑆). In the most extreme case of Eq. (1) we have
Pr(𝑀 (𝐷) ∈ 𝑆) = 𝑒𝜀 Pr(𝑀 (𝐷 ′) ∈ 𝑆) and hence Pr(𝐷 |𝑀 (𝐷) ∈ 𝑆) =
𝑒𝜀 Pr(𝐷 ′ |𝑀 (𝐷) ∈ 𝑆) = 𝑒𝜀 (1 − Pr(𝐷 |𝑀 (𝐷) ∈ 𝑆)) ⇒ Pr(𝐷 |𝑀 (𝐷) ∈
𝑆) = 𝑒𝜀

1+𝑒𝜀 . Thus, the (absolute) advantage of an adversary is bounded
by advA ≤ 2 𝑒𝜀

1+𝑒𝜀 − 1 = 𝑒𝜀−1
𝑒𝜀+1 (cf. Section E for more details).

3 Related Work

User Perceived Privacy. As more data is being collected, shared,
and processed, sensitive insights about the user’s personality, in-
tentions, and preferences are being leaked [63, 89]. Hence, to better
protect user privacy, prior works have investigated the psycholog-
ical mechanisms of privacy decision-making [89], self-disclosure
[28], and the related cost-benefit analysis [21]. They showed that
the user-perceived privacy dynamically changes according to the
user’s context, behaviour, and knowledge. Other works focused on
privacy-in-context (i.e. contextual integrity) [97, 123] and further

showed that user-perceived privacy is affected by culture, activities
(e.g., online shopping vs. online banking), and platforms (desktop
vs. mobile). Prior works [63, 79, 118] often used generic privacy
mechanisms that remain static throughout the interaction. These
mechanisms are typically predefined at the onset of a session (e.g.,
at the initiation of a protocol) and fail to account for the dynamic
nature and context-dependent fluctuations of the users’ privacy
judgments [55].

Eye Gaze and Privacy Perception. The results of the afore-
mentioned works usually rely on user questionnaires. However,
when using questionnaires, users often fail to follow their own
privacy preferences [93, 101, 107]. In this paper, we propose to
use human eye gaze (instead of questionnaires) to implicitly cap-
ture the dynamics of user-specific privacy perception. Eye-tracking
data is already widely used to study human behaviour and cogni-
tion [18, 35, 53, 54, 95, 100]. Prior research has demonstrated that
gaze patterns can reflect cognitive processes such as risk percep-
tion and habituation [5, 48, 49]. For instance, studies have shown
that increased risk is often associated with longer fixations and
heightened visual scanning, indicating deeper cognitive engage-
ment [52, 92, 119]. Conversely, habituation to repeated stimuli can
lead to reduced gaze variability and decreased attention, even in
the presence of sensitive information—a challenge for maintaining
consistent privacy awareness [5]. Gaze3P builds on these insights
and hypothesises that gaze can also be used as an indicator of
user-perceived privacy. The idea to use gaze to detect privacy-
sensitive situations is not completely new and has been explored in
[118], where the users’ eye movements and first-person video were
recorded using an egocentric (head-mounted) camera. However,
[118] focuses on detecting privacy-sensitive situations rather than
quantifying privacy perception. It also only features a small set of
17 participants in a free-viewing task and relies on recording and
processing the scene imagery, which might break privacy [101]. In
this paper, we instead focus on the implicit and dynamic privacy
perception feedback solely through gaze.

Other Privacy-Related Gaze Applications. Prior works at the in-
tersection of eye tracking and privacy mainly focus on (i) eye-based
authentication [78, 84], (ii) privacy considerations and guidelines
[47, 64], (iii) secure AR/VR applications [13, 25–27, 75, 84], (iv)
UI design for secure interactions [64], (v) secure gaze data sharing
[12, 25–27, 37–39], and (vii) information leakage and attacks on gaze
data [19, 38, 116, 122]. Apart from the different focus, Gaze3P, also
differs in (i) the purpose of gaze, i.e., some prior work [75, 84, 122]
uses gaze for explicit interaction (e.g., authentication [84] or gaze
rays in VR [75]) while Gaze3P uses gaze as an implicit (passive)
signal to infer perceived privacy, (ii) unlike prior work, we focus
on the cognitive aspect of gaze in privacy, beyond the gaze loca-
tion estimation [19, 122], (iii) privacy positioning, i.e. Gaze3P is
user-centric and proactive (helping users protect their own privacy
through implicit gaze behaviour) while prior works either focus on
system-enforced protection for eye tracking [25–27, 37–39, 75], user
authentication [78, 84], or demonstrating privacy vulnerabilities
[64, 116].
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Personalised Differential Privacy. In classical differential pri-
vacy (DP), the privacy parameter 𝜀 is chosen independently of the
subjective privacy perception of an individual user but instead
provides the same privacy guarantees to all users [61]. This is
despite the fact that users have varying expectations about ac-
ceptable privacy levels. As a result, a certain DP-privacy level
𝜀 might not offer enough protection for some users while over-
protecting others [42, 61]. Personalised Differential Privacy (PDP)
[2, 4, 11, 24, 34, 61, 98] is an extension of standard DP that intro-
duces flexibility by tailoring privacy protections based on individual
preferences, allowing for a more nuanced balance between privacy
and utility. Alaggan et al. [4] first introduced the theoretical concept
of PDP through linear pre-processing (a.k.a stretching) of the input
data. In their approach, the input data is scaled according to each
individual’s privacy preference before applying a differentially pri-
vate mechanism. Cummings and Durfee [23] generalised the PDP
framework to a broader class of mechanisms. They proposed a con-
structive method for implementing personalised privacy guarantees
directly within the mechanism design. However, they demonstrated
that computing an optimal personalised mechanism under these
conditions is NP-hard. Later works [22, 41] used weighted moment
estimation of each data point according to the privacy level. In these
approaches, the privacy level specified by each user was used to
assign a weight to their corresponding data contribution during the
statistical estimation process. This weighting strategy ensured that
data from users requiring stronger privacy protections (i.e., lower 𝜀
values) exert less influence on the aggregate statistics, while users
with looser privacy requirements (higher 𝜀 values) contribute more
significantly. Other works [10, 76] proposed partitioning the data
into separate groups and then assigning different privacy levels.
Jorgensen et al. [61], followed by Niu et al. [98] and Ebadi et al.
[34], relied on excluding or sub-sampling some data samples ac-
cording to their privacy levels. While all of these methods were
designed for data analysis, Boesnisch et al. designed a privacy-
preserving training mechanism for machine learning models that
integrated individual privacy levels directly into the optimisation
process [10, 11]. They adapted the gradient computation and noise
addition to reflect user-specific privacy budgets.

Similarly, we determine a suitable privacy budget 𝜀 based on be-
havioural data rather than assigning it arbitrarily or using assump-
tions. Our work is the first to do so using human gaze data. This
approach ensures that the privacy budgets more accurately reflect
users’ actual perceptions and expectations of privacy. Grounding
𝜀 in observed user behaviour not only improves the practical rele-
vance and usability of privacy-preserving systems but also helps
bridge the gap between formal privacy theory and human-centred
privacy concerns, ultimately leading to more trustworthy and adap-
tive data handling practices.

4 Gaze3P Dataset
Due to the lack of available datasets, in this section, we present
our new gaze-based dataset Gaze3P. Our large-scale data collection
is essential for deriving statistically significant insights into users’
perceptions of privacy and for empirically validating the use of gaze
as a reliable indicator of perceived privacy. By offering a standard-
ized dataset, Gaze3P aims to facilitate reproducible research and

Figure 2: Sample images from the VISPR dataset with safe (e.g.
cat, colours) and private (e.g. credit card, political opinion)
attributes

enable the development and evaluation of models that infer per-
ceived privacy dynamically and without explicit feedback through
gaze patterns.

Eye tracker. For gaze data collection, we used an Eyelink eye
tracker that provides binocular gaze data at a sampling rate of
2 kHz. As is common practice in laboratory eye tracking studies,
we used a chin rest to stabilise participants’ heads. Images were
shown on a computer screen with a resolution of 1920x1080 pixels
and a size of 545mm x 303mm. The eye-to-screen distance was
700mm. The proportion of the calibrated area was set to 0.63 x 0.88
to stay within the trackable range of the system with an HV13-13
(horizontal/vertical 13 targets) calibration type for better spatial
accuracy across the entire screen. The recorded gaze data was
then processed into fixations, saccades, and pupil information (cf.
Section 2). More details and visualisations can be found in Section A.

Stimuli. We randomly sampled a subset of images from the VISPR
dataset [101] as our stimuli since it is the only publicly-available
dataset that contains privacy-related attributes. See Fig. 2 for sam-
ple images. The dataset contains 68 attributes categorised into nine
attribute groups. The attributes were compiled according to the
guidelines for the EU Data Protection Directive (GDPR) 95/46/EC,
the US Privacy Act of 1974, and the data sharing rules in online
social networks. It further includes reliable and consistent attribute
annotations by letting multiple annotators follow detailed labelling
guidelines. We ensured a balanced distribution across the anno-
tated privacy attributes. This stratified sampling approach was
employed to maximise attribute coverage and mitigate sampling
bias, given the practical constraint on the number of stimuli each
participant could reasonably view during the experiment. Despite
this limitation, the resulting dataset remains relatively large and
representative, supporting robust analysis of visual privacy per-
ception across a diverse range of attributes. Our dataset includes
1,000 images with corresponding private and safe (i.e. non-private)
attributes. The attribute categories in VISPR [101] are:
• Personal information: e.g. age, gender, fingerprint, signature.
• Documents: e.g. credit card, passport, national ID.
• Medical: e.g. medical history, hospital tickets, physical disability.
• Employment: e.g. occupation, work occasion.
• Life: e.g. culture, religion, political opinion, sexual orientation.
• Relationship: e.g. personal, social, professional.
• Whereabouts: e.g. landmark, home address.
• Online activity: e.g. date/time of activity, username, password.
• Automobile: e.g. license plate, vehicle ownership.

Participants.We initially recruited 103 participants through uni-
versity mailing lists and notice boards. We had to exclude three
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participants due to calibration failures [71]. This resulted in a final
group of 100 participants (37 females and 63 males). Participants
were aged between 18 and 35 years, had different nationalities (25)
and different (self-reported) privacy knowledge (12 experts)1. All
participants had normal or corrected-to-normal vision. We refer to
Section A for more demographic details.

Experiment design. After arriving in the lab, participants were
first informed about the general purpose and procedures of the
study. Following [114], we explicitly asked participants to consider
the data as their own, e.g. their phone gallery. The experiment con-
sisted of four blocks with 25 participants each. Each block included
two tasks: free-viewing and a search task. In the former, partici-
pants were shown a stimulus (e.g. an image of a credit card) for five
seconds and asked to rate its privacy-sensitivity for sharing on a
scale from 1 (very private) to 7 (very safe) following [118]. Similarly,
for the search task, participants were asked to search for a specific
image (by a category, e.g. document) in a 2 x 2 image collage, and
click the mouse and rate its sensitivity once found, following [114].
The same attributes were presented in both tasks, but each task
featured different sets of images within those attributes. Each task
included three practice trials and 50 recorded trials with randomized
order of (non)private stimuli (50 %-50 % ratio). The resulting dataset
includes a set of triplets of {stimulus, gaze patterns (timestamped
coordinates), and privacy rating} for each participant in each task.
Refer to Section A for more details on the dataset structure and
data collection software.

Compliance with the privacy and ethics guidelines. The data
was collected and processed according to the standards, guide-
lines, and approval of the ethical committee of the authors’ in-
stitution, with participants’ consent, remuneration, and pseudo-
anonymisation procedures. In particular, the privacy and ethical
guidelines of the Menlo Report [29] were satisfied.

5 Gaze3P Tasks
Our Gaze3P dataset enables new analyses that shed light on how
users cognitively and behaviourally respond to privacy-relevant
stimuli. Given the difficulty in determining beforehand which fea-
tures can be meaningfully extracted from gaze data and whether
confounding variables can be effectively separated, we adopted a
machine learning-based approach to automatically uncover privacy-
related patterns corresponding to each task. This method enables
us to objectively evaluate our hypothesis: that gaze behaviour may
function as a proxy for perceived privacy.

More specifically, in this section, we explore how well our gaze-
based dataset Gaze3P is suited for two groups of learning tasks:
(i) stimuli-based perceived privacy (SPP) tasks that infer how pri-
vate a stimulus (e.g. image) is in Section 5.1 and (ii) user-based
perceived privacy (UPP) tasks that infer information about the user
(e.g. privacy expertise or identity) in Section 5.2. Each task entails
learning a distinct mapping or pattern within the gaze data, such
as predicting privacy ratings from gaze, classifying stimuli as pri-
vate or non-private, or identifying user-specific privacy preferences
based on demographic or behavioural features. For implementation,
we used a basic Scikit-learn framework with default parameter
1All experts are MSc or PhD holders of information security degrees.

settings. This provided a standardised and unbiased baseline for
model training, avoiding manual feature selection or tuning that
could skew results or introduce overfitting. It is important to note
that all models in this study are trained on annotated gaze data,
where user-specified privacy ratings serve as ground-truth labels to
facilitate supervised learning and enable robust evaluation of model
performance. The purpose of this training procedure is to allow the
model to learn association patterns for each task. During testing and
deployment, however, only the raw gaze data is provided as input to
the model—without any accompanying user-specified ratings. This
setup reflects a practical application scenario, wherein the model is
expected to generalise to previously unseen users or stimuli and
autonomously infer privacy-related judgments based solely on gaze
behaviour. This not only facilitates the development of scalable and
user-adaptive privacy-aware systems but also provides empirical
insights into the underlying mechanisms of perceived privacy.

In the following, we describe the two training tasks in detail
and evaluate the performance of our trained models w.r.t standard
baselines, namely decision tree (DT), support vector machine (SVM),
logistic regression (LR), random forest (RF), K-nearest neighbour
(KNN), and transformer (TF)models (cf. Table 1). To study individual
stimuli, we focused on the free-viewing data of our dataset.

5.1 Stimuli-based Perceived Privacy (SPP)
Quantifying perceived privacy levels helps understand how users
feel about their privacy protections. Privacy perception is mainly
influenced by the nature of the stimuli, e.g. their type (e.g. images)
and the content being shared or observed (e.g. a credit card). A
quantitative relation between the stimuli and the corresponding
privacy perception can help in designing more context-aware and
effective privacy-preserving mechanisms. We, therefore, propose
four main SPP tasks:

(1) Binary Privacy Perception. Given solely the gaze data, the
binary privacy perception task [118] aims to determine whether a
user is exposed to or interacts with potentially sensitive information.
In addition to the pioneering work of Steil et al. [118], we also want
to determine how the different setups affect the binary perception,
e.g. how the perception of a specific user (intra-user setting) varies
for different stimuli in comparison to how the perception of many
users (inter-user setting) varies.

(2) Privacy Level Perception. This task aims to map the gaze
data as inputs to a privacy level as output. The dataset includes a
ground truth of 7 different privacy levels, following Steil et al. [118],
indicated by participants for each stimulus. Note that, unlike Steil
et al. [118], we process all classes instead of combining them into
two.

(3) Contextual Privacy Perception. Integrating contextual in-
formation such as demographics or user expertise can potentially
improve predictions of user-perceived privacy levels2 Contextual in-
formation is provided as additional features to the model, capturing
the user’s age, gender, nationality, and privacy expertise.
2Other contextual information like the type of application, time of the day, and the
type of platform, has been shown to influence the user privacy perception too (cf.
Section 3). To simplify the setup, we did not include this information in our dataset;
however, our approach naturally extends to more detailed datasets.
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(4) Private Attribute Recognition. Prior works [17, 113] showed
that gaze is a good predictor of the user’s private attributes, such
as age and gender. Other works [101, 118] recognise the private
attribute directly from images as inputs to their models. Here, we
focus on predicting what private attribute the user is looking at,
given the gaze data alone. The task becomes more challenging as
semantics become more complex and diverse.

SPP applications. Before we discuss our results on tasks (1)–(4),
we want to outline how stimuli-based perceived privacy results can
be used in applications. For example, the quantified values in Tasks
1-3 (classified per attribute in Task 4, if needed) can be mapped
to the corresponding parameters in privacy-preserving protocols.
Such parameters can include 𝜀 values in DP [31, 32], model update
perturbation or gradient clipping thresholds in federated learning
[63, 88], and similar hand-picked parameters in K-anonymity [112],
L-diversity [85], T-closeness [77], privacy auctions [44, 124], syn-
thetic data generation [80], etc. Other stimuli-specific insights are
important for multiple applications, such as access control models
(to define who can access which piece of information, e.g. attribute-
based access control (ABAC) [57] which uses attributes for dynamic
access control and human-in-the-loop privacy controls (e.g. Insta-
gram’s ’Restrict’ feature [104] for controlling interactions, e-mail
spam filters that allow manual corrections [6], and marketing cam-
paigns that respect the user’s perceived privacy preferences [86]).
We refer to Section 6 for sample applications and to Section C for
further details.

SPP Baselines and Evaluation. As baselines, we ran the afore-
mentioned basic models. We evaluate the accuracy of the models
with cross-validation and test sets to ensure that the model gen-
eralises well to unseen data. Implementation details can be found
in Section B. We also perform statistical hypothesis testing on the
extracted eye-tracking features to examine whether the observed
differences across experimental conditions or participant groups are
statistically significant. These tests assess whether variations inmet-
rics such as fixation duration, saccade amplitude, or pupil dilation
are likely to reflect systematic effects rather than random noise or
individual variability. To quantify the strength of evidence against
the null hypothesis (i.e., that there is no meaningful difference be-
tween groups or conditions), we compute 𝑝-values. These values
represent the probability of observing the given data, or something
more extreme, under the assumption that the null hypothesis is
true. A 𝑝-value below a conventional threshold (typically 0.05) is
considered indicative of a statistically significant effect. Hence, we
made the following key observations in relation to SPP Tasks 1-4:

Inter- and intra-user variations. Table 1shows the accuracy of the
aforementioned models if all (meta)data is passed to the ML model.
Our results demonstrate that gaze data can quantify perceived pri-
vacy since results exceed chance levels (0.5 for Task 1 and 0.14 for
Tasks 2 and 3). We further analyse this in both person-specific and
person-independent settings. In each case, models were trained
on 80% of the data and tested on the remaining 20% with cross-
validation. In the person-specific setting, models are tested on 20%
of individual participants, accounting for personal gaze behaviours
(with only one sample at a time independent of any user history),
whereas in the person-independent approach, a generalizable model

Table 1: Accuracy of the SPP tasks Section 5.1.

Binary Privacy
Perception

Privacy Level
Perception

Contextual Privacy
Perception

Person-independent
DT 0.54 0.19 0.23
SVM 0.64 0.34 0.37
LR 0.63 0.34 0.36
RF 0.60 0.29 0.32
KNN 0.56 0.21 0.24
TF 0.52 0.34 0.37

Person-specific
DT 0.61 0.23 0.24
SVM 0.70 0.38 0.39
LR 0.75 0.40 0.40
RF 0.66 0.35 0.37
KNN 0.62 0.30 0.31
TF 0.81 0.52 0.54

Down-sampling
DT 0.48 0.15 0.16
SVM 0.57 0.30 0.33
LR 0.55 0.28 0.29
RF 0.52 0.24 0.26
KNN 0.45 0.20 0.20
TF 0.46 0.30 0.31

Gaze + Stimuli (ours)
DT 0.89 0.73 0.72
SVM 0.93 0.81 0.83
LR 0.92 0.80 0.81
RF 0.90 0.82 0.80
KNN 0.88 0.79 0.82
TF 0.97 0.87 0.90

Gaze + Stimuli (PrivacEye)
DT 0.58 - -
SVM 0.67 - -
LR 0.66 - -
RF 0.70 - -
KNN 0.58 - -
TF 0.75 - -

Gaze Saliency Maps
DT 0.45 0.17 0.21
SVM 0.52 0.30 0.31
LR 0.57 0.29 0.30
RF 0.52 0.23 0.27
KNN 0.50 0.18 0.18
TF 0.46 0.29 0.32

Residual Gaze Maps
DT 0.23 0.11 0.13
SVM 0.21 0.15 0.22
LR 0.19 0.17 0.08
RF 0.27 0.19 0.21
KNN 0.09 0.10 0.23
TF 0.31 0.18 0.19
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Figure 3: Qualitative example of the inter- and intra-person
differences: Each row corresponds to a different participant,
where red dots depict the areas that participants attended
to the most (i.e. more fixations). The user-selected privacy
levels 𝑙 are consistent for each participant but different across
participants. For example, the political opinion attribute is
private (𝑙 between 1 and 2 - the private levels) for one user
-the first row- and not private for the second (𝑙 between 4 and
6 - the safe levels). The gaze fixations are also denser on the
private regions of interest (e.g. faces and politicians) for the
private levels.

is trained across all participants and tested on 20% of each par-
ticipant’s data. Results in Table 1 and Fig. 3 indicate significant
variations in inter-user differences (person-independent, leading to
lower accuracy), whereas intra-user features exhibit greater consis-
tency (person-specific, leading to higher accuracy). This suggests
that each user possesses a distinct and individualised perception of
privacy.

Fixation-based attention allocation. In general, fixation duration in-
creases on private cues with fewer fixations on less private regions
(𝐻0: ’There is no difference in the distribution of fixation durations
across different stimuli regions’ testedwith Kruskal-Wallis H-test and
Dunn’s test with Bonferroni correction for multiple comparisons
with the different privacy levels, with 𝑝-𝑣𝑎𝑙𝑢𝑒 = 0.04 < 0.05 and
Epsilon-squared effect size for Kruskal-Wallis H-test of 0.05). This
can also be seen in Fig. 3. It further suggests that less fine-grained
tracking is sufficient (i.e. relying on fixations alone). This was fur-
ther supported by downsampling the gaze data to 30Hz (30 FPS) to
simulate commodity-level standard webcams, as shown in Table 1-
downsampling. The results, again, suggest that high-resolution
gaze data (Table 1-person-independent) may not be necessary for
effective privacy perception prediction, facilitating a more wide-
spread implementation and enhancing accessibility and usability
for a broader audience 3.

Social influence: Users’ privacy perception may be guided by social
influence (e.g. demographics), as shown in the Contextual Privacy
Perception results and Fig. 4. Our results indicate that demographics
play a significant role in shaping outcomes (i.e. increasing accuracy).

3As this study represents exploratory research, we employed a high-resolution, con-
strained experimental setup. This choice was motivated by the initial uncertainty
regarding whether a lower-resolution configuration would yield significant results
and to what extent fine-grained details in the data would be necessary to capture
relevant effects. The high-resolution setup ensured maximal data fidelity, allowing for
comprehensive observation of potentially subtle phenomena during the early stages
of research.

Figure 4: Qualitative example of social influence: By looking
at the attribute religion, participants assign private ratings to
stimuli that are more closely associated with or frequently
encountered within their social background, probably due
to their personal significance (c.f. Section 3).

Figure 5: Qualitative example of learning effect: Examples
belong to the same participants on images of two different
attributes driver license and political opinion, sampled from
the first and last 5 stimuli. When a specific attribute is pre-
sented (e.g. in the first 5 stimuli) and repeated multiple times,
it increases the participant’s familiarity with the attribute
through repeated exposure. Hence, the number of fixations,
response time, and privacy-sensitivity decrease.

This suggests that demographic factors and social background con-
tribute to identifiable patterns that machine learning models can
detect. Consequently, these factors enhance the predictive power
of the models, highlighting their relevance in understanding varia-
tions in the data.4

Long-term learning and adaptive privacy behaviour. Repeated ex-
posure to private attributes changes user behaviour over time. As
shown in Fig. 5, while gaze fixations decrease on repeated attributes
over time (i.e. desensitisation to privacy risks), the privacy ratings
increase (i.e. learning effect and growing privacy awareness), and
response time decreases.

4It is important to note that our unbalanced demographics—an inherent consequence
of the open and uncontrolled call for participation—limit our ability to make broad
or generalizable claims about specific demographic groups or extrapolating results
to a wider population. As a result, while our analysis may reveal meaningful trends,
caution is required when interpreting demographic-specific conclusions using our
dataset
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Table 2: Evaluation of the private attribute recognition task
as class-based mean average precision (C-MAP) (the av-
erage of the per-attribute average of the area under the
Precision-Recall curve on all attributes), following [101]’s
models (CaffeNet, GoogleNet, and ResNet) and more recent
SOTA models (Multimodal fusion model: GazeFormer [91],
Cross-modal transformer: ViLT [66], and self-supervised con-
trastive model: CLIP [109])

Model Feature VISPR [101]
(stimuli)

Ours
(gaze)

Ours
(gaze + stimuli)

SVM CaffeNet 41.34 29.80 58.22
SVM GoogleNet 43.77 30.07 60.43
SVM Resnet-50 44.21 32.45 62.37

E2E CaffeNet 47.56 35.98 65.85
E2E GoogleNet 47.72 34.08 67.00
E2E Resnet-50 56.13 35.32 69.13
SOTA GazeFormer 64.13 40.82 92.73
SOTA ViLT 66.18 41.59 89.47
SOTA CLIP 61.00 35.06 78.56

Figure 6: Qualitative example for visual privacy: Example
stimuli corresponding to the gaze data thatweremisclassified

Visual Privacy. For private attribute recognition, as shown in Ta-
ble 2, we compared our findings with the VISPR [101] evaluation as
well as other SOTA models. While [101] only input the stimuli, we
replicated their models and metrics on our dataset and inputted the
gaze data alone vs the gaze and stimuli. Nonetheless, we observed
that, as shown in Fig. 6 (left to right): (i) when using gaze as the
only input, the models are able to identify objects that occupy a
significant proportion of the image space while failing at identify-
ing other subordinate attributes such as age or gender; (ii) when
augmenting the stimulus with the gaze data, the models are able to
identify more fine-grained details such as wedding rings and tattoos
that the stimuli-alone version fails at (as long as the participants
paid attention to such details), (iii) in all versions, models fail at
identifying the relationship-based attributes (as also reported by
[101]) since they require some reasoning capabilities that our basic
models do not achieve.

Gaze as a supplementary input. We assess model performance with
the inclusion of stimulus data and compare it to PrivacEye [118].
Results in Table 1-gaze+stimuli show that the stimulus features
significantly improve the performance. Nonetheless, models trained
solely on gaze data still yield meaningful results. This demonstrates
that gaze behaviour alone carries informative signals related to
perceived privacy, supporting its utility in scenarios where access

to full visual content may be restricted or deliberately excluded for
data minimization and privacy-preserving purposes.

Bottom-up and top-down attention. To minimise the confounding
influence of bottom-up (saliency-driven) gaze, we attempted to con-
trol the visual composition of our stimuli by selecting the VISPR
images that mostly contain a single dominant attribute. This design
choice was intended to reduce the likelihood that gaze behaviour
would be driven by reflexive visual attention to salient features, such
as bright colours, known to automatically attract attention regard-
less of the observer’s cognitive or emotional state. Such bottom-up
attention is inherently stimulus-driven and unrelated to higher-
order constructs like perceived privacy (i.e. top-down attention).
However, this assumption may not hold in all scenarios, especially
when stimuli are real-world images. To address this, we check if
residual gaze patterns — i.e., the part of gaze behaviour not ex-
plained by bottom-up saliency — are more predictive of perceived
privacy than raw gaze data. We use a saliency prediction model
(DeepGaze [72]) to generate a saliency map for each stimulus im-
age. This represents the expected gaze distribution if attention
were purely bottom-up. Then we compute the residual gaze maps
by subtracting the (normalised) saliency map from the original
gaze map. We input both the original gaze maps as well as the
residual gaze maps to the models, as shown in Table 1. Results
are significantly lower for residual gaze maps, which may indicate
that privacy-relevant content often coincides with visually salient
regions. Additionally, the lack of variance in saliency features re-
duces the need for correction, leading to differences in performance
between the two models, since the stimuli used in the study were
relatively homogeneous in terms of saliency, mostly with one dom-
inant object.

5.2 User-based Perceived Privacy (UPP)
Even for the same stimuli, different users develop different pri-
vacy perceptions. Hence, perceived privacy is subjective and varies
substantially among participants. Understanding the user-specific
features of privacy allows researchers and policymakers to design
more effective, personalised, and user-centric privacy solutions. We,
therefore, propose three UPP-tasks:

(1) Privacy Expertise Prediction. Prior works [14, 73, 81] showed that
distinctive eye movement behaviours and gaze strategies correlate
with domain-specific expertise. This task aims to develop a model
that can distinguish between privacy experts and non-experts based
on their gaze patterns during interactions with digital content or
privacy-related tasks. The gaze data was collected from partici-
pants with varying levels of privacy expertise, potentially revealing
how different levels of knowledge influence visual attention and
decision-making in privacy-sensitive contexts. We address this task,
therefore, by training a classifier to distinguish between the two
groups based on the gaze features.

(2) User Privacy Profiling. The privacy expertise prediction task can
be further extended to capture the gaze behaviour profile, e.g. a
summary of the key gaze features that characterise each group
[101], such as differences in attention to specific elements or gaze
strategies. This is commonly used to adapt privacy preferences
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according to different cohorts [45]. Hence, the task aims to cluster
the different groups according to the gaze patterns.

(3) Privacy-aware Gaze Identification. Current gaze-based user iden-
tification methods often rely on specially designed visual stimuli
or induced artificial gaze patterns. Prior works [1, 30] have inves-
tigated the feasibility of distinguishing individuals based on their
natural gaze behaviour while freely viewing images and suggested
that viewing different images, such as a personal vacation photo,
elicits distinct emotional responses, which are reflected in gaze
patterns and are unique to each individual. We extend this idea to
privacy-aware gaze behaviour, proposing that individuals exhibit
unique gaze patterns not only in response to personal relevance
but also when assessing perceived privacy. Privacy perception is
inherently subjective, shaped by personal experiences, cultural in-
fluences, and cognitive biases. By analysing how users visually
explore and evaluate images with different privacy implications,
we need to demonstrate in this task that privacy perception itself
can serve as an implicit user identifier [33].

UPP applications. User-specific insights can, for example, be
used for privacy nudges [59] (to encourage users to make privacy-
conscious decisions according to their expertise or profiles, com-
monly used in social media platforms to prevent oversharing, e.g.
Facebook’s contextual privacy warnings [90] and Chrome browser-
based security warnings [46]), privacy labels and transparency
notices (to help users understand and control their privacy choices
according to their profiles, e.g. Apple’s App Store privacy labels
[7]), and cohort-based recommendations (for group-based person-
alization, e.g. Google’s Federated Learning of Cohorts (FLoC) [45]
for ad targeting) (C.f. Section C).

UPP Baselines and Evaluation. To predict the privacy expertise
of users and groups, we ran the same evaluation as in Section 5.1.
The results are shown in Table 3, where results exceed the chance
levels (0.5 and 0.01 accuracy for privacy expertise prediction and
privacy-aware gaze identification, respectively). We observe the
following key results:

Cognitive and Perceptual Adaptation. The difference in gaze be-
haviour between experts and non-experts arises due to cognitive
and perceptual adaptations that develop with experience and train-
ing [14, 73, 81]. Our results show that privacy experts exhibit more
focused attention on privacy-relevant information and quicker iden-
tification of potential privacy risks compared to non-experts. In
other words, privacy experts have rapid gaze shifts, suggesting au-
tomatic heuristic-based decision-making, while non-experts have
longer dwell time, indicating uncertainty and high cognitive load
in privacy assessment (𝐻0: ’The gaze duration distributions of the
two groups (experts and non-experts) are equal’ tested by a Mann-
Whitney U-test with 𝑝-𝑣𝑎𝑙𝑢𝑒 = 0.03 < 0.05 and effect size 𝑟 = 0.3),
leading to distinguishing features that ML models can identify with
high accuracy (c.f. Table 3).

Distinct Profiles. We further evaluated the participants’ profiles per
attribute and found out that, following [101], K-means clustering
yields the lowest silhouette score with 12 distinct gaze behaviour
profiles (as opposed to 30 profiles when clustering images [101]).

Table 3: Accuracy of the UPP tasks

Privacy Expertise
Prediction

Privacy-aware Gaze
Identification

DT 0.78 0.05
SVM 0.45 0.04
LR 0.46 0.02
RF 0.87 0.04
KNN 0.85 0.03

Genuine significance. Previous studies on gaze behaviour indicate
that viewing different images, such as personal photos, elicits dis-
tinct emotional responses that are reflected in gaze patterns and
are unique to each individual [1, 30]. In our experimental setup, we
tried to simulate this setup by instructing participants to conceptu-
alise the stimuli as their own phone gallery without incorporating
actual personal photos. Unfortunately, the previously observed per-
sonalised effect could not be replicated in our study and setup (cf.
Table 3). We believe that this is due to the lack of genuine emotional
attachment and/or lack of personal significance and familiarity.

6 Privacy-Preserving Applications
Our results so far showed how gaze can be used to predict the
privacy perception of an individual or a group of users. There are
many potential applications for this approach (we already hinted
at some of them). Here, we concentrate on one important task, and
study this in more detail, namely, finding good and tailored epsilon
values for DP.

6.1 Privacy-Utility-Cognition Trade-Off
To use our results from Section 5 with a DP-mechanism, we first
need to map user-perceived privacy levels 𝑙 ∈ {1, . . . , 𝐿} with a
function 𝑓 to 𝜀-values for Differential Privacy.5

Depending on the cognitive aspects behind the user-perceived
privacy preference, which we discussed already in Section 3, we
want to connect 𝑙 with different privacy loss functions 𝑔(𝑙), e.g.
such that the privacy loss depends linearly on 𝑙 as in [69, 83].

To construct a suitable mapping 𝑓 to DP-privacy levels 𝜀, re-
call from Section 2 that a privacy-budget 𝜀 ensures that an adver-
sary A can distinguish two data sets with advantage bounded
by advA (𝜀) := 𝑒𝜀−1

𝑒𝜀+1 . Hence, if we require the privacy loss (in
terms of the success of a potential adversary) to have a certain
behaviour 𝑔, we need 𝑔(𝑙) = advA (𝑓 (𝑙)). Observe that we can com-
pute 𝑓 (𝑙) = log

(
1+𝑔 (𝑙 )
1−𝑔 (𝑙 )

)
explicitly. In particular, we find a mapping

function 𝑓 for every positive loss function 𝑔 with values smaller
than 1.

Since users do not select privacy levels purely based on objec-
tive risks or technical parameters, but rather through subjective
interpretations shaped by cognitive biases (cf. Section D), we now
want to discuss the typical choices of 𝑔 in cognitive science and
how they affect the accuracy of a model obfuscated with 𝜀-DP noise
if 𝜀 = 𝑓 (𝑙).

5In our evaluation, we use 𝐿 = 7 (cf. Section 3).
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Note that for real-world applications, we can usually restrict the
privacy budget to 𝜀𝑚𝑖𝑛 ≤ 𝜀 ≤ 𝜀𝑚𝑎𝑥 where the minimum 𝜀𝑚𝑖𝑛 ≥ 0
and maximum 𝜀𝑚𝑎𝑥 < ∞ are application-specific [94]. We therefore,
use functions 𝑔 depending on 𝜀𝑚𝑖𝑛, 𝜀𝑚𝑎𝑥 .

It is important to note that users employ diverse rationales and
cognitive strategies when forming their privacy perceptions, and
these strategies are shaped by multiple interacting factors, such
as the stimuli, background knowledge, and demographics (cf. Sec-
tion 5). As a result, there is no universally correct mapping function,
as these differences reflect valid subjective interpretations rooted in
cognitive and contextual variability. Rather than assuming a single
ground truth, such mappings should be empirically learned from
user behaviour and validated through data-driven analysis. Hence,
later in this section, we illustrate this point by providing a practical
example based on our dataset.

6.1.1 Linear Mapping. A straightforward way to interpret per-
ceived privacy is a function 𝑔 linear in 𝑙 [69, 83]. Namely, we choose
for 𝑙 ∈ {1, . . . , 𝐿}:

𝑔(𝑙) = advA (𝜀𝑚𝑖𝑛) +
𝑙 − 1
𝐿 − 1

(advA (𝜀𝑚𝑎𝑥 ) − advA (𝜀𝑚𝑖𝑛))

This mapping assumes equal intervals between privacy levels.
Linear mappings are widely used in statistics, cognitive sciences,
and machine learning for their mathematical simplicity, speed,
and interoperability, and serve as good approximation functions.
Nonetheless, they may potentially lead to inaccurate interpreta-
tions [16]. This is because, although privacy levels are numerically
treated as equidistant, the psychological or cognitive perception of
the distance between those points may not be equal [65, 121]. For
example, the difference between ’very safe’ and ’safe’ may be much
smaller in the user’s mind than the difference between ’neutral’
and ’moderately private’. Similarly, the midpoint (’neutral’) may be
seen not as a numerical centre but rather as a safe choice. Hence,
we no longer have a linear relation.

6.1.2 Exponential Mapping. Alternatively, an exponential function
could be used when users interpret privacy levels as a continuum,
with thresholds separating the different privacy levels. In other
words, in such cases, small variations in the privacy parameter
may be perceived as insignificant at higher levels (e.g. ’very safe’
and ’moderately safe’), while similar changes near specific lower
thresholds elicit disproportionately larger responses (e.g.’neutral’
and ’moderately private’). These thresholds may vary due to the
user’s cognitive processes, where users with less familiarity with
privacy concepts may rely on intuitive or categorical decision-
making or cases where specific features of the images (e.g., presence
of identifiable faces or objects) might consistently evoke higher
or lower ratings. An exponential mapping addresses this pattern
and emphasises stronger privacy guarantees at lower ratings and
captures a cognitive tendency where users may undervalue small
privacy differences in higher ratings, improving utility. We get:

𝑔(𝑙) = advA (𝜀𝑚𝑖𝑛) (𝐿−𝑙 )/(𝐿−1) advA (𝜀𝑚𝑎𝑥 ) (𝑙−1)/(𝐿−1)

6.1.3 Sequential Mapping. Another alternative is a sequential map-
ping, where the choice of the privacy level is reached in steps. This
models the probability of the selected privacy level being in a par-
ticular category, given that it has surpassed the previous category.

In some cases, decision-making unfolds in steps [3, 43, 70, 96],
such as deciding whether something is private and then determin-
ing the degree of privacy, e.g. "Is the stimulus sensitive/ does it
violate a norm/should the information be shared? If yes, how pri-
vate are the stimuli?/ How severe is the violation?/ How much
information should be disclosed?". In these cases, automatic and
heuristic-driven decisions (e.g., ’private or not’) may precede more
deliberative evaluations of privacy levels [3, 43]. In other cases,
the stimuli’s complexity may drive such behaviour, e.g. images
with progressively more sensitive content may encourage stepwise
evaluation (e.g., abstract shapes → objects → faces). Therefore,
prior works [99, 106, 110] typically model this behaviour using step
functions, incorporating heuristic-based decision-making as the
primary mechanism to mitigate ambiguity aversion and prevent
cognitive overload during deliberative evaluations.

Hence, a piecewise mapping (i.e. a step function) can be used to
accommodate the different perceived privacy ranges to handle that
different tiers of privacy ratings have different baseline 𝜀 values and
slopes and allow more granularity within 𝑛 ranges. Especially when
certain ranges require higher privacy guarantees (e.g. handling
extreme outliers). E.g. a look-up table where 𝑛 = 3 (e.g. ’private’,
’neutral’, ’safe’):

𝑔(𝑙) =

advA (𝜀𝑚𝑖𝑛), if 𝑙 = 1 or 2
1
2 (advA (𝜀𝑚𝑎𝑥 ) + advA (𝜀𝑚𝑖𝑛)), if 2 < 𝑙 < 𝐿 − 1
advA (𝜀𝑚𝑎𝑥 ), if 𝑙 = 𝐿 or 𝐿 − 1

6.1.4 Sigmoid-basedMapping. Furthermore, adjacent-categorymod-
els [16] are common in statistics and item response theory. They are
usually used when thinking of a natural cognitive process is not pos-
sible and decisions may involve iterative, contextual, uncertain, or
unstructured processes. In these cases, users can make fragmented
decisions or skip steps due to limited information. In other cases,
similar stimuli with only slight changes in features (e.g., cropped
vs. full image) require users to make nuanced decisions. Commonly
in machine learning and statistics, sigmoid (logistic) functions are
used to describe the probability of selecting one option over another
under uncertainty. It naturally models probabilistic decisions that
become more deterministic as the evidence or difference between
choices increases.

This behaviour aligns well with empirical findings in psychology,
economics, and cognitive science, where decision-making often
follows a logistic-like pattern. That is, in stochastic cases, for highly
private images where the perceived privacy is greater (i.e. lower
ratings), the sigmoid function outputs a lower 𝜀 value, accentuating
privacy protection. Conversely, for images considered safe, the
function assigns a higher 𝜀, allowing less noise and thus better
utility of the data.

Hence, a sigmoid mapping function can be expressed as the
smooth continuation of

𝑔(𝑙) = advA (𝜀𝑚𝑎𝑥 ) +
advA (𝜀𝑚𝑖𝑛) − advA (𝜀𝑚𝑎𝑥 )

1 +
(
𝐿−1
𝑙−1 − 1

)−𝑘
where 𝑘 controls the steepness of the curve (higher values make the
transition sharper, e.g. 𝑘 = 1.5 represents moderate steepness). As
shown in Fig. 7, such smooth transitions ensure that 𝜀 values tran-
sition gradually instead of changing too sharply with diminishing
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Figure 7: The left figure shows the distribution of the perceived privacy levels 𝑙 ∈ {1 (very private),...,7 (very safe)} selected by
the participants per attribute. The right figure shows an example of mapping the perceived privacy level 𝑙 to the corresponding
𝜀 (𝑙) = 𝑓 (𝑙) using the different mapping functions for 𝜀𝑚𝑖𝑛 = 0.1, 𝜀𝑚𝑎𝑥 = 5 and 𝑘 = 1.5. The results are applied to the 𝑙 distribution
where, for each attribute, the mapping functions (linear, exponential, sequential, and sigmoid) are depicted from left to right.

effects at the extremes, allowing to smoothly handle uncertainty or
borderline cases without abrupt changes in behaviour.

6.2 Empirical Evaluation
We now show how our results from Section 5 could be used in com-
bination with mappings to epsilon values proposed in Section 6.1.
To illustrate the applicability of our approach, we adopt a represen-
tative example from the privacy level perception task. This example
serves to show how our method can be operationalised in practice.
Importantly, the proposed framework is not limited to this specific
task; it can be extended to other tasks by incorporating stimuli-
or user-based information, thereby enhancing its generalizability
across various privacy-sensitive applications.

We apply the state-of-the-art personalised differential privacy
(PDP) mechanisms for privacy budgets 𝜀 determined with our map-
ping functions from Section 6.1. We employ the existing PDP meth-
ods without modification to their core mechanisms. The only al-
teration involves replacing the randomly generated privacy-level
inputs (𝜀) commonly used in prior work with user-specified privacy
preferences inferred from gaze. This allows for a more realistic and
user-informed evaluation of PDP behaviour while preserving the
original algorithmic structure. For our comparison, we use differ-
ent common tasks from data analysis and machine learning tasks,
which we want to describe briefly next.

Benchmarks. Our evaluation uses the same benchmarks as Jor-
gensen et al. [61] to evaluate PDP mechanisms for search analytics,
e.g. count query for the number of documents that participants
searched for, median and minimum queries for attention allocation
(number of fixations) per stimulus. Once a 𝜀-value is determined, ei-
ther randomly by [61] or by applying our method on the user’s gaze
data, a trusted data analyst receives the data and the 𝜀 values, then
adds suitable noise to query results and publishes the aggregate sta-
tistics. In addition to these classical data analysis benchmarks, we
also evaluate PDP mechanisms for machine learning tasks, namely,
search intention prediction, using the default models and parame-
ters of [10, 11, 61] (cf. Section 3).

Results. As shown in Table 4, PDP approaches significantly im-
prove over the static DP approaches (i.e. the worst-case privacy
guarantee by uniformly applying the maximum privacy level re-
quired across all users, without adapting to individual preferences
or contexts to address the most stringent privacy demands, the
common approach in DP) and are significantly closer to the plain
approaches (i.e. without noise addition). In addition, our proposed
mapping functions yield better utility than the random benchmark
(i.e. the random 𝜀 values generated by the existing benchmarks).
To further analyse the effect of the different mapping functions,
Fig. 7 shows the resulting 𝜖 values for different image attributes.
The amount of added noise (according to the 𝜀 values) differs ac-
cording to the mapping function (i.e. more noise is introduced to
the private levels represented in red, whereas less noise is applied
to those depicted in green), hence improving utility compared to
static worst-case approaches. Our results indicate that:

• The linearmapping is particularly appealing in scenarioswhere
exact precision is not critical, and approximate representations
are sufficient for the intended application, e.g. when ratings are
equally distributed, unlike our dataset, where the number of
classes is skewed toward the private ratings. In former cases,
linear functions offer a simpler and more computationally effi-
cient mapping. However, the trade-off lies in the potential loss
of granularity or accuracy.

• The exponential mapping is mostly suitable for applications
where strong privacy is paramount and small changes in high
ratings imply steep privacy needs. This is true for clearly sensitive
attributes, i.e. attributes with an 𝑙 range ≤ 2, such as credit cards.
This could also be seen in the higher performance for weighting
algorithms in Table 4 where less private data contributes more
(given the skewed data distribution as shown in Fig. 7) with less
noise to the final learning outcome.

• The sequential mapping demonstrates superior performance
for attributeswith deliberative privacy sensitivity (2 < 𝑟𝑎𝑛𝑔𝑒 (𝑙) <
5), such as political opinions, where participants’ gaze shifts be-
tween the privacy levels before selection, suggesting an initial
classification of the attribute as private, followed by a secondary
assessment of its degree of privacy.
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Table 4: Evaluation of the PDP benchmarks. The table shows results for data analysis and machine learning tasks where (i)
plain is the non-private computation and, hence, the best utility, (ii) static is the worst-case privacy loss and the most commonly
used in standard DP protocols, (iii) random is a random distribution of 𝜖 values that are commonly used in PDP protocols, and
(iv) our four proposed mapping functions.

Plain Static Random Linear Exponential Sequential Sigmoid

Analysis Count [61] 100 76 84 87 90 86 87
Median [61] 16 12 19 14 18 19 19
Min [61] 5 8 7 7 4 7 6

Learning Linear regression [61] 0.57 0.31 0.43 0.46 0.50 0.49 0.47
Weighting [11] 0.68 0.38 0.52 0.53 0.57 0.56 0.55
Weighting [10] 0.49 0.32 0.43 0.44 0.46 0.45 0.42
Sampling [11] 0.68 0.38 0.55 0.58 0.60 0.61 0.63
Sampling [10] 0.49 0.32 0.43 0.43 0.44 0.44 0.46

• The sigmoid mapping is most effective for attributes where
participants either make arbitrary choices (can also be seen in
minimal rating time) or are uncertain (can be seen in extended
rating time), resulting in attributes with 𝑟𝑎𝑛𝑔𝑒 (𝑙) > 5, e.g., li-
cense plates that some participants did not pay attention to (i.e.,
no fixations) or fingerprints with long fixations. This could also
be seen in the better performance of the sigmoid mapping for
sampling algorithms in Table 4 where neutral samples are sam-
pled more, balancing the data distribution and the added noise,
hence improving utility.

User expectation alignment. To assess whether the predictions
and protections provided by Gaze3P align with user expectations,
we conducted a follow-up user validation study with a subset of
𝑁 = 20 participants. While our quantitative evaluations above
demonstrate the technical validity of Gaze3P (e.g., accuracy), the
user study examines the users’ subjective acceptance of Gaze3P.

For the validation study, each participant was shown the same
set of images they had rated previously during the initial dataset
collection (the search task), along with their user-specified privacy
levels. For each image, we generated a reconstructed version using
the standard reconstruction attack pipeline from MLDoctor [82] to
attack the PDP learning models, simulating an adversarial attempt
to recover visual data from differentially private representations.
These reconstructions, shown in Fig. 8, reflect what an external
observer might infer about the original image when Gaze3P’s pre-
dicted privacy levels are used in PDP. Participants were asked three
questions measuring (i) utility, (ii) privacy, and (iii) cognition: (i) if
the model’s search target prediction was correct. Responses were
binary (’yes’ or ’no’). (ii) whether the reconstructed image matched
their privacy expectations, given the privacy level they previously
selected. Responses were collected on a 5-point Likert scale, rang-
ing from ’Not at all’ to ’Perfectly aligned’, and (iii) if they prefer a
certain mapping function, given this privacy-utility tradeoff. Re-
sponses were again collected on a 5-point Likert scale per mapping
function. We repeated this procedure for each stimulus, leading
to each participant being shown 250 samples (the same 50 search
stimuli that were previously shown during data collection times
our 5 benchmark models).

Figure 8: Random samples of the reconstructed stimuli (first
row 𝑙 = 7, second row 𝑙 = 1.

Results show that the subsample shown to participants was
representative, and utility evaluation was close to the numbers
reported in Table 4 with 0.5 (i.e. 50%), 0.6, 0.5, 0.7, and 0.5 correct
predictions on average for the learning models in the same order. In
addition, with an average rating of 3.8/5, the participants’ privacy
expectations were met. Finally, overall, participants preferred the
sequential mapping in 68% of the cases. They preferred the expo-
nential mapping in 85% of the private images (rated with 𝑙 ≥ 6)
and the sequential mapping in 52% of the images rated as ’neu-
tral’, which supports our quantitative results. However, the sigmoid
mapping was only selected in 7% of the cases, showing no clear
pattern. Therefore, given the absence of a universal solution, we
recommend selecting the appropriate mapping function based on
the specific application and the characteristics of its stimuli.

7 Discussion
The introduction of Gaze3P marks a pioneering step in privacy per-
ception, advancing beyond traditional questionnaires by leveraging
implicit, dynamic signals derived from gaze behaviour, underscor-
ing that users’ visual attention can implicitly reveal privacy sensi-
tivities—offering a real-time, non-intrusive window into subjective
privacy evaluation. More concretely, our dataset showed that eye
gaze reliably reflects user perceptions across privacy-related tasks
(RQ1). Our ML approach further revealed user- and stimulus-based
insights that could be used across a variety of applications (RQ2):
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We demonstrated the predictive power of gaze for privacy percep-
tion, the behavioural and contextual influences of gaze (e.g. fixation
patterns, visual attention, demographic context, and expertise) in
shaping privacy perceptions, the potential of gaze-based inference
and enhancement of privacy-related attribute recognition and user
profiling. By modelling perceived privacy alongside formal guar-
antees, we improved data utility while (cognitively) aligning with
individual privacy expectations (RQ3). Although a single universal
mapping between perception and privacy budgets is unlikely to
exist due to inter-individual variability, we propose a set of adapt-
able mapping functions that can be selected contextually based on
application needs and behavioural insights.

7.1 Limitations
We acknowledge an age-related bias in our data, as the participant
pool was not age-controlled. Despite a publicly announced call,
recruitment likely skewed towards university students and staff
due to convenience and accessibility. We also collected supplemen-
tary standard demographics, including education level, occupation,
and field of study. However, our analysis revealed limited variabil-
ity across these dimensions, as the majority of participants were
students enrolled in STEM (Science, Technology, Engineering,Math-
ematics) disciplines, with only a few exceptions (4 participants).
Consequently, while the current dataset may not support strong
generalization across diverse demographic strata, this metadata, as
well as our data collection software, is included in [8]. We hope that
this allows others to extend analyses or augmentations in future
work, particularly with a more demographically diverse sample.

Moreover, participants were explicitly instructed to treat the im-
ages as if they were their own (e.g., from a personal phone gallery),
in line with Sattar et al. [114]. They were also informed that the
study focused on privacy, in accordance with the ethical guide-
lines and prior research practices [101, 118]. While we acknowl-
edge the limitations of this setup and the possible biases it may
induce, such constraints are typical in early-stage studies within
emerging research domains. Nonetheless, this work serves as a
foundational step, enabling future research to adopt more compre-
hensive methodologies and engage more diverse participant groups
to improve generalizability and depth of analysis.

Similarly, another limitation of the present study is the introduc-
tion of contextual bias through priming participants on the topic
of privacy. This framing was necessary to align participants with
the experimental objectives; however, it likely influenced cognitive
processing and visual attention during the tasks. As a result, our
predictions are not solely inferred from gaze behaviour in a neutral
context but rather from gaze patterns shaped by a privacy-salient
environment. This contextualization restricts the generalizability of
the findings, as gaze allocation strategies may differ when privacy
is not explicitly emphasised. Consequently, the reported predictive
performance should be interpreted as applying to privacy-aware
scenarios, not to all interaction contexts. Future research should
address this by employing between-subject designs with primed
and non-primed conditions or by modelling contextual factors ex-
plicitly, to disentangle intrinsic gaze-based indicators of privacy
perception from those induced by experimental framing.

7.2 Future Work
We showed that perceived privacy preferences can be inferred from
gaze behaviour alone. While not the main focus of the present anal-
ysis, we also observed that contextual data, such as demographics,
have the potential to enrich predictions. Future work can build
on this foundation by incorporating such auxiliary information to
enhance both accuracy and personalisation. Similarly, additional
metadata on individual user traits, such as trust propensity, risk per-
ception, and prior exposure to privacy threats, can be collected to
enable a deeper understanding of how such latent factors implicitly
influence privacy-related behaviours [36, 50, 108].

Additionally, our proposed dataset includes rich information that
we encourage the community to develop upon. This can include (i)
additional tasks, such as multi-attribute and multi-user correlation
analyses (i.e. each group of stimuli was shown to various partici-
pants, with each stimulus containing several attributes), (ii) tailored
models to capture more patterns and enhance our baseline perfor-
mance, (iii) other DP and privacy-preserving protocols (i.e. adding
noise to different privacy units, the fundamental entity whose pri-
vacy is protected, user-, label-, feature- or pixel-level DP) that would
benefit from the user (cognitive) privacy perceptions without ex-
plicit interaction, and (iv) fine-grained eye-tracking analyses to
gain a deeper understanding of gaze behaviour in privacy-sensitive
contexts. While the present study demonstrates that learned gaze
features can serve as effective predictors of perceived privacy, more
granular analyses - e.g. gaze entropy, micro-saccade dynamics, and
scanpath structure - may reveal subtle cognitive and affective pro-
cesses underlying privacy perception and could help disentangle
the interplay between bottom-up and top-down visual attention
in private settings, improving the interpretability of gaze-based
privacy models.

8 Conclusion
Given its inherently subjective nature, which varies substantially
across individuals, we presented the first large-scale dataset for
studying user-perceived privacy. The dataset encompasses a diverse
range of participants, demographic profiles, and visual stimuli. Us-
ing this novel dataset, we demonstrated that eye gaze can serve as
a rich source of information on user-perceived privacy across mul-
tiple privacy-related tasks. Gaze behaviour, by providing implicit
and dynamic feedback, offers a powerful and promising avenue for
enhancing user interaction and overall system usability. Moreover,
by modelling users’ perceived privacy and applying our findings to
PDP protocols – complementing the underlying mathematical and
technical privacy guarantees – we were able to improve data utility
while better aligning with users’ expectations of privacy. As such,
our work bridges the gap between technical and usable privacy by
aligning theoretical privacy models with user perceptions.
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Appendix 1
A Eye Tracking Data 2
Here, we present a detailed breakdown of the process of data collec- 3
tion with an eye tracker (EyeLink 1000), starting from participant 4
recruitment to creating a public dataset: 5

A.1 Participant Recruitment 6
As shown in Figure 9, we aimed to recruit a diverse set of partici- 7
pants with different demographics, e.g. age, gender, nationalities, 8
and AI/Security expertise. The call for participation was sent out 9
on different channels, e.g. online platforms, university participant 10
pools, and social media, with clear information about the study, 11
duration, and incentives (e.g., monetary compensation or credits). 12
Informed consent was obtained following ethical guidelines of the 13
author’s institution while ensuring that participants can withdraw 14
at any time. We excluded participants with specific conditions like 15
eye disorders that may affect tracking accuracy (e.g., nystagmus, 16
extremely poor vision). 17

A.2 Eye Tracker Configuration 18
We used the EyeLink-1000 eye tracker, the current state-of-the-art 19
in terms of precision and accuracy for video-based eye tracking. 20
We created an in-lab setup as shown in Figure 10. 21

21

https://doi.org/10.1016/j.neucom.2020.01.028
https://doi.org/10.1145/2750858.2807520
https://doi.org/10.1145/3314111.3319913
https://doi.org/10.1145/3658644.3690285


Proceedings on Privacy Enhancing Technologies 2026(1) Elfares et al.

Figure 10: The eye-tracker setup

A.3 Experiment Design22
A sample trial is conducted as shown in Figure 11.23

Figure 11: A sample trial flow-chart

The stimuli were gathered from the validation and test sets of24
the VISPR dataset [101]. Every block contained writing-based and25
human stimuli to avoid bias, with a distribution of private attributes26
as shown in Table 5.27

Table 5: Stimuli distribution over blocks

Block Attribute Category

1 Fingerprint, Receipts, Occu-
pation, Sexual Orientation,
Political Opinion

Personal Description, Doc-
uments, Employment, Per-
sonal Life, Personal Life

2 Signature, Tickets, Medical
Treatment, Personal Occa-
sion, Home address

Personal Information, Doc-
uments, Health, Personal
Life, Whereabouts

3 Face Complete, Credit Card,
Medical History, Email Con-
tent, Religion

Personal Description, Docu-
ments, Health, Internet, Per-
sonal Life

4 Full Name, Mail, License
Plate Complete, Personal
Relationship, Visited Loca-
tion

Personal Information, Doc-
uments, Automobile, Per-
sonal Life, Whereabouts

A.4 Data Collection 28
To accurately track participants’ gaze and record eye movement 29
data during the experiment, we first conduct a 13-point calibration 30
to ensure the eye tracker is accurately mapping gaze coordinates 31
to the screen, followed by a validation check to confirm that gaze 32
accuracy is within acceptable error limits (e.g., <0.5°). We further 33
recalibrate if drift or errors occur during the session. The stimuli 34
are then presented, and data streams are recorded. 35

Essential methodological safeguards were implemented to main- 36
tain participant engagement and ensure high data quality through- 37
out the experiment. These safeguards served to minimise bias, re- 38
duce participant fatigue, and confirm that responses reflected gen- 39
uine attention and comprehension. 40
Randomised attention checks were embedded at multiple points 41
during the study. These checks consisted of stimuli with clearly 42
identifiable attributes—some explicitly private (e.g., credit cards) 43
and others non-private (e.g., randomly generated colour patches). 44
Participants were asked to classify or respond to these items. Cor- 45
rect responses indicated attentiveness, while incorrect answers 46
were flagged for potential disengagement or misunderstanding. 47
To mitigate cognitive fatigue, structured breaks were introduced at 48
predefined intervals (i.e. between tasks), allowing participants to 49
rest and maintain focus. Participants were also allowed to stop the 50
experiment at any point, if needed. 51
To address order and learning effects, both the sequence of ex- 52
perimental tasks and the presentation order of stimuli were fully 53
randomised for each participant. This ensured that performance 54
patterns could not be attributed to predictable task progression, 55
practice effects, or fatigue tied to task order. 56
All these procedures align with established best practices in be- 57
havioural and user research [18, 53, 54, 95, 100], ensuring internal 58
validity while safeguarding the participant experience. 59

A.5 Data Processing 60
We cleaned and processed raw eye-tracking data for further analysis. 61
The raw data is extracted from the EyeLink Data Viewer as .edf 62
files, including the timestamped gaze coordinates (X, Y), fixation 63
and saccade metrics (e.g., duration, amplitude, velocity), and pupil 64
size. We then used the stimulus metadata to map gaze coordinates 65
to specific ROIs, categorised gaze events into relevant regions for 66
analysis, and merged eye-tracking data with task-specific inputs 67
(e.g., participant ratings and mouse clicks). 68

We structured the processed data into a usable dataset for analy- 69
sis by organizing data into rows and columns ( .csv format), includ- 70
ing information such as participant demographics, stimuli details, 71
and task condition. Finally, we formatted the data for statistical or 72
machine learning tools (e.g., Python) in the following structure: 73

22
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Block n

Participant1

Task1

Stimulus1

Gaze1

Rating1

...

Task2

Stimulus1

Gaze1

Rating1

...
...

Participant100
Task1 ...

Task2 ...
74

B ML Implementation Details75
Given a dataset of inputs (e.g. gaze data) annotated with labels (e.g.
user-selected privacy levels), we define the training set as:

D = {(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1
where: x𝑖 ∈ R𝑑 represents the gaze data of the 𝑖th sample (or a76
feature vector extracted from the stimuli and the gaze when both77
are inputs, as defined by each task), 𝑦𝑖 ∈ Y = {1, 2, . . . , 𝐾} is the78
corresponding label (e.g. user-provided privacy level or attribute79
name or privacy expertise, as defined by each task).80

The training phase: In a supervised learning setting like classifi-81
cation, the training phase uses labelled data—pairs of input features82
(𝑥𝑖 ) and their corresponding ground truth labels (𝑦𝑖 ). During train-83
ing, the model learns a mapping from inputs to labels by minimising84
a loss function that measures the discrepancy between predicted85
and true labels.86

The goal is to learn a function 𝑓𝜃 : R𝑑 → Y, parameterized by 𝜃 ,
that minimizes the classification loss:

L(𝜃 ) = 1
𝑁

𝑁∑︁
𝑖=1

ℓ (𝑓𝜃 (x𝑖 ), 𝑦𝑖 )

where ℓ (·, ·) is the loss function.87

The inference phase: During the inference (testing) phase, the88
model receives only input features from new, unseen samples and89
generates predicted labels based on the patterns it learned during90
training. No true labels are available during inference; predictions91
are made autonomously using the trained model parameters.92

More technically, a new unseen gaze sample x∗ ∈ R𝑑 is processed93
through the trained model to produce a predicted label:94

𝑦 = 𝑓𝜃∗ (x∗)

We then compare the predictions 𝑦𝑖 with the true labels 𝑦𝑖 only 95
to quantify the models’ performance. 96

Train-test split: We employ cross-validation to optimise gener- 97
alisation performance and prevent overfitting. In cross-validation, 98
the data is split into 𝑘 folds; the model is trained on 𝑘 − 1 folds and 99
tested on the remaining one, repeating this process 𝑘 times so that 100
each fold serves as a test set once. The final performance is averaged 101
across all folds, providing a more robust and unbiased estimate than 102
a single train-test split. Here, we used an 80-20 train-test split. 103

ML models: In our implementation, we mostly employed classi- 104
cal machine learning algorithms available within the Scikit-learn 105
framework, using their default configurations. Decision Trees were 106
implemented using ’DecisionTreeClassifier’. Support Vector Ma- 107
chines (SVMs) were used via ’SVC’ with an ’RBF kernel’. Logistic 108
Regression was applied using ’LogisticRegression’ with L2 regu- 109
larisation. For Random Forests, we utilised ’RandomForestClassi- 110
fier’, an ensemble of decision trees trained on bootstrapped sub- 111
sets of data with feature bagging. K-Nearest Neighbors (KNN) was 112
implemented using ’KNeighborsClassifier’, which assigns class la- 113
bels based on the majority vote among the k most similar train- 114
ing samples in feature space. Further information and default hy- 115
perparameters can be found in the Scikit-Learn documentation: 116
scikit-learn.org/stable/supervised_learning.html. Finally, for other 117
advanced models, we used the original implementations provided 118
by the referenced papers. 119

C Potential Real-World Applications 120
In this section, we discuss the potential SPP and UPP applications 121
in more details: 122

SPP applications. Stimuli-based perceived privacy results can be 123
used in applications such as: 124

• Setting hand-picked parameters in privacy-preserving pro- 125
tocols: Similar to our DP application in Section 6, federated 126
learning (FL) [63, 88] can also benefit from our approach. For 127
example, the model update perturbation step involves adding ran- 128
dom noise to the model updates (usually gradients or weights) 129
before sending them to the central server. This includes noise 130
scale 𝜎 and a clipping norm 𝑐 parameters. These are typically 131
hand-picked through empirical tuning or heuristics to achieve a 132
privacy-utility tradeoff. Hence, Gaze3P can be used to implicitly 133
set these parameters and personalise them to the users’ expecta- 134
tions. The same applies to K-anonymity [112], L-diversity [85], 135
T-closeness [77], to set the 𝑘 , 𝐿, and 𝑇 values. 136

• Privacy auctions: Privacy auctions [44, 124] are mechanisms 137
where users "sell" their private data or privacy loss in exchange 138
for compensation. These auctions aim to determine how much 139
privacy loss users are willing to tolerate, and at what cost, allow- 140
ing systems to personalise privacy levels across individuals based 141
on their preferences. Users specify a subjective cost or price that 142
they associate with a unit of privacy loss, typically through sur- 143
veys. Hence, Gaze3P offers a more robust and implicit feedback 144
with the need for users to understand and evaluate their data. 145

• Synthetic data generation: Synthetic data generation [80] 146
refers to the creation of artificial data that mimics the statistical 147
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properties of real user data, often used to preserve privacy while148
enabling data analysis or model training. Here, again Gaze3P can149
be used tomatch the user privacy expectations with respect to the150
data, e.g. data fidelity preferences (acceptable levels of distortion151
or allowed deviation from real data distributions).152

• Access control models:Access control models regulate who153
can access what data under which conditions. Two key types154
are: (i) Attribute-Based Access Control (ABAC) [57], which dy-155
namically grants or denies access based on user, resource, and156
environmental attributes (e.g., role, location, time). The stimuli-157
specific insights of Gaze3P, can be used to automatically infer158
these attributes (e.g. the private attribute recognition task) and159
set the corresponding privacy parameters (e.g. access) without160
explicitly defining and listing all possible roles (e.g. the privacy ex-161
pertise or the user profiling tasks). (ii) Human-in-the-loop privacy162
controls, which empower users to manage privacy interactively163
in real-time systems. In this case, Gaze3Pcan be integrated with,164
for example, Instagram’s ’Restrict’ feature [104] or e-mail spam165
filters to allow users to flag content without explicitly selecting166
buttons and going through lists.167

UPP applications. User-specific insights can also be integrated168
into several real-world applications such as:169

• Privacy nudges: Privacy nudges [59] are subtle interventions170
designed to guide users toward making more privacy-conscious171
decisions without restricting their freedom of choice. They are172
commonly used in social media platforms, e.g. Facebook’s contex-173
tual privacy warnings [90] and Chrome browser-based security174
warnings [46] These nudges typically provide a uniform tex-175
tual content—such as generic privacy explanations—to all users,176
regardless of individual differences in privacy literacy. As a re-177
sult, they risk producing mismatched comprehension: users with178
limited privacy knowledge may struggle to understand the infor-179
mation (under-comprehension), while more knowledgeable users180
may find it redundant or oversimplified (over-comprehension),181
ultimately reducing the effectiveness of the intervention. Hence,182
they can be personalised based on a user’s expertise or profile,183
implicitly via Gaze3P.184

• Privacy labels and transparency notices: Similar to privacy185
nudges, Gaze3P can be used in privacy labels and transparency186
notices, e.g. Apple’s App Store privacy labels [7], to help users187
understand and control their privacy choices according to their188
profiles to avoid mismatched comprehension.189

• Cohort-based recommendations: Cohort-based recommenda-190
tions, e.g. Google’s Federated Learning of Cohorts (FLoC) [45],191
group users into segments (or cohorts) based on shared charac-192
teristics, such as behaviour, preferences, or demographics, and193
generate recommendations tailored to each group. Instead of194
personalising for individuals, the system provides suggestions195
optimised for the typical member of a cohort, balancing per-196
sonalisation and privacy by avoiding the need for fine-grained197
individual profiling. Here, again, Gaze3P can be used to profile198
users according to their gaze behaviour such as privacy prefer-199
ences.200

D Cognitive Theories and Privacy 201
Here, we give more details about some cognitive theories that 202
further support our mapping functions. 203

The Exponential Mapping. captures a perception that escalates 204
rapidly with small increases in privacy risk or sensitivity. The re- 205
lated theories include: 206
(i) The prospect theory [20, 62] where people weigh potential losses 207
and gains and can provide a direct assessment of privacy levels 208
based on their perception of risks and benefits. Individuals may 209
perceive increasing risk with diminishing marginal tolerance—well 210
captured by an exponential curve. The exponential shape models 211
the non-linear, often risk-averse valuation of privacy losses. 212
(ii) The risk-reward trade-off theory [103] where individuals bal- 213
ance risks and rewards in a unified decision, leading to a cumulative 214
rating of privacy. This model implies that perception accumulates 215
as users weigh these aspects, with increasingly steep aversion to 216
risk—supporting an exponential model for mapping ratings to pri- 217
vacy budgets. 218
(iii) The communication privacy management (CPM) theory [105] 219
frames privacy as the control of boundary permeability based on 220
accumulated context and sensitivity. The control intensifies sharply 221
as users assess perceived violations, again suggesting an exponen- 222
tial increase in perceived privacy sensitivity. 223
(iv) The theory of planned behaviour [111] where attitudes, norms, 224
and perceived control influence a single privacy decision, often 225
resulting in a direct rating. The interaction of these variables can 226
collectively lead to a compounded privacy concern that builds up 227
non-linearly, fitting an exponential growth in privacy valuation. 228

The Sequential Mapping. corresponds to decision-making that 229
unfolds in discrete steps. The following theories underpin this logic: 230
(i) Contextual integrity [96] sequentially considers factors like ac- 231
tors, attributes, and transmission principles. For example, a user 232
might first decide if a context violates norms, then determine the 233
severity of the violation, resulting in a layered decision path con- 234
sistent with step-wise or rule-based mappings. 235
(ii) The privacy paradox [70] suggests that users might decide in 236
one step whether to share information and then, based on cognitive 237
dissonance, adjust how much information they disclose or rate its 238
privacy (i.e. a post-hoc justification). This aligns with a sequential 239
structure where decisions are refined over time. 240
(iii) The dual-process theory [3] assumes that automatic, heuristic- 241
driven decisions (e.g., ’private or not’) may precede more delibera- 242
tive evaluations of privacy levels. 243
(iv) The heuristic-systematic model [43] suggests that a heuristic 244
(i.e., quick judgment) may guide the first decision, followed by a 245
deeper systematic analysis to refine privacy preferences. 246

The Sigmoid Mapping. reflects bounded sensitivity at both ex- 247
tremes: users are easily decide on very safe or very private data, 248
but become highly sensitive in an intermediate uncertainty zone. 249
The following theories justify this mapping: 250
(i) The bounded rationality theory [115] suggests that decisions 251
are made with limited information, often leading to “good enough” 252
rather than systematically cumulative or sequential outcomes. Users 253
might skip steps or make fragmented decisions. The sigmoid cap- 254
tures this minimal sensitivity at low and high certainty, with steep 255
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reactivity in ambiguous cases.256
(ii) The uncertainty reduction theory [68] suggests that decisions257
aim to reduce uncertainty and may involve multiple rounds of in-258
formation gathering and refinement.259
(iii) The cognitive dissonance theory [51] suggests that users ad-260
just decisions retroactively to reduce dissonance. This retroac-261
tive calibration results in smooth but non-linear adjustments over262
time—reflected in the sigmoid’s gentle asymptotes and steep central263
slope.264

E Adverserial Perspective on Differential265
Privacy266

We want to briefly motivate the definition of the adversarial advan-267
tage for the differential private mechanism we use in Section 2 and268
Section 6.269

We use the following security game for a DP-mechanism𝑀 , an270
adversary A and a challenger C.271

(1) The adversary A chooses two valid adjacent inputs sets272
𝐷0, 𝐷1 for𝑀 and sends them to the challenger.273

(2) The challenger samples a bit 𝑏. It runs 𝑀 (𝐷𝑏 ) a random274
number of times and stores the outputs in a set 𝑆 .275

(3) Upon receiving 𝑆 , A outputs a bit 𝑏′.276
The adversary wins the security game if 𝑏′ = 𝑏. The advantage of277
A is defined as advA := 2𝑝 − 1, where 𝑝 is the maximal probability278
that A wins for any 𝑆 . Note that the adversary in this game is279
exceptionally strong since it only needs to win the game for one280
specific output set 𝑆 (no matter how unlikely 𝑆 itself is). The setup281
is nevertheless relevant, since in real-world use cases, unlikely282
outputs might nevertheless occur, and even then, the privacy of the283
input data should be preserved.284

In a slight abuse of notation, we also denote by advA themaximal285
advantage achieved by a ppt. adversary A. We want to determine286
an upper bound on the advantage. Given the limited information287
available the most successful adversary A outputs 𝑏′ = 0 if Pr(𝑏 =288
0|𝑆) := Pr(𝐷0 |𝑀 (𝐷0) ∈ 𝑆) ≥ Pr(𝐷1 |𝑀 (𝐷1) ∈ 𝑆) =: Pr(𝑏 = 1|𝑆) and289
𝑏′ = 1 otherwise. Let w.l.o.g. Pr(𝑏 = 0|𝑆) ≥ Pr(𝑏 = 1|𝑆). Hence,290
this adversary has an advantage advA = 2 Pr(𝑏 = 0|𝑆) − 1. If the291
mechanism satisfies 𝜀-differential privacy, Eq. (1) implies Pr(𝑆 |𝑏 =292
0) ≤ 𝑒𝜀 Pr(𝑆 |𝑏 = 1). But Pr(𝑆 |𝑏 = 𝑖) = Pr(𝑆,𝑏=𝑖 )

Pr(𝑏=𝑖 ) = 2 Pr(𝑆, 𝑏 = 𝑖) =293
2 Pr(𝑆) Pr(𝑏 = 𝑖 |𝑆) for 𝑖 = 0, 1. Thus Pr(𝑆 |𝑏 = 0) ≤ 𝑒𝜀 Pr(𝑆 |𝑏 =294
1) ⇒ Pr(𝑏 = 0|𝑆) ≤ 𝑒𝜀 Pr(𝑏 = 1|𝑆) = 𝑒𝜀 (1−Pr(𝑏 = 0|𝑆)) ⇒ Pr(𝑏 =295
0|𝑆) ≤ 𝑒𝜀

1+𝑒𝜀 . We conclude that advA = 2 Pr(0|𝑆) − 1 ≤ 𝑒𝜀

1+𝑒𝜀 − 1 =296
𝑒𝜀−1
1+𝑒𝜀 .297
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