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Abstract

Voice assistants have become ubiquitous, yet they remain vulnera-
ble to network traffic fingerprinting attacks that can expose sensi-
tive user information. Existing defenses either impose high over-
heads or fail against advanced attacks. This paper addresses these
issues by introducing and evaluating PriVA-C, a fingerprinting de-
fense mechanism tailored specifically for voice assistants. Unlike
prior approaches that treat voice assistant traffic as generic web
traffic, we analyze its unique characteristics to design a more effec-
tive defense. Our approach prioritizes limiting information leakage
rather than targeting specific attack vectors, achieving a significant
reduction in attacker accuracy from 89% to 13%. We also propose a
more practically deployable version of our defense, which protects
only traffic directed to the primary voice assistant domain, reducing
attacker accuracy to 19%. We implement a functional prototype
using the Alexa SDK, conduct user testing, and assess its perfor-
mance using real network traffic. Our results demonstrate that our
proposed defense effectively mitigates fingerprinting attacks while
maintaining low overhead and preserving the user experience.
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1 Introduction

Voice assistants have become increasingly popular as an alternative
mode of interaction [44]. Recent trends and projections indicate
an increasing presence of voice assistant-enabled smart speakers
in homes, along with growing trends in voice-based searches [26].
The convenience of asking for information through your voice
rather than typing a search query makes the search faster and more
convenient for users for multiple common tasks such as asking
general questions, getting weather updates, playing music, etc. With
Alexa’s recent upgrade to incorporate Large Language Model (LLM)
capabilities for native and developer use, this trend is expected to
continue growing [6].

Recent studies have highlighted various privacy concerns on
voice assistant platforms, including unauthorized invocations [19],
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issues with unwanted data collection by third-party skills [31, 49],
and unintended ad profiling [27]. Another significant privacy threat
arises from the analysis of encrypted network traffic to identify pat-
terns in user commands issued to voice assistants [29, 10, 35, 3, 23,
30]. By detecting these patterns, attackers can infer sensitive user
activities, revealing personal details such as daily routines, interests,
and preferences. Previous studies have demonstrated the effective-
ness of these attacks across various platforms and command types,
highlighting the privacy risks to end users.

While prior research has presented a few proof-of-concept coun-
termeasures to defeat such fingerprinting attack [59, 23], we find
these techniques to be ineffective against more sophisticated attacks.
Other works [20, 12] have proposed platform-agnostic countermea-
sures that operate at the network communication level, but these
solutions are often too generic and introduce significant usabil-
ity issues. This limits their effectiveness in achieving meaningful
reductions in attack performance while remaining practical for real-
world deployment. Additionally, some of these countermeasures
require modifications to the network or routing layers, making
them impractical to implement across millions of already deployed
devices in the wild.

In this work, we seek to answer the following research questions.
RQ1: Are current countermeasures for voice command and website
fingerprinting effective in preventing voice command fingerprinting
attacks with reasonable overheads? This allows us to understand any
inefficiencies, limitations, and unrealistic assumptions that existing
works have. RQ2: Based on insights from analyzing voice assistant
traffic, how can we design a more privacy-preserving and efficient
countermeasure that effectively balances privacy protection with util-
ity and system overhead? We introduce "PriVA-C" (pronounced
privacy) as a practical and effective defense against voice command
fingerprinting. Finally, RQ3: How can we practically implement
our proposed defense against voice command fingerprinting? Most
proposed countermeasures require anonymous routing to protect
all voice assistant traffic and in typical home networks, without a
VPN, this assumption fails. We propose and evaluate a version of
PriVA-C only applied to traffic to only one endpoint which removes
the need for proxies or VPNs to make deployment more realistic.
To the best of our knowledge, we are the first to develop a working
prototype of this countermeasure on the Alexa SDK and to conduct
both system performance analysis and usability testing with users.

Our approach draws inspiration from prior research on traffic
analysis defenses, particularly in the context of website and web-
page fingerprinting [33, 28]. It capitalizes on the unique patterns
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in how voice assistant devices communicate with networks in re-
sponse to user commands. By selectively obscuring specific traffic
characteristics during different phases of voice assistant commu-
nication , our method anonymizes both the user’s command and
the server’s response while reducing the overhead of simplistic
constant-rate defense approaches. Specifically, we build on fixed-
rate defenses by adapting them across different phases, dynamically
adjusting traffic rate characteristics to optimize overhead. Addition-
ally, we leverage data-driven analysis to select optimal transmission
rates, minimizing both delay and communication overhead. Our
design also incorporates protection for traffic directed to the pri-
mary voice assistant domain, enhancing the overall deployability of
the solution. We parameterize our defense to allow users a balance
between overhead and privacy. Through a user study, we show that
this defense is practical for real-world deployment and does not
degrade the user experience. Our key research contributions are:

e We conducted a comprehensive evaluation of existing defenses
for voice assistant and website fingerprinting, highlighting their
strengths and limitations in mitigating voice command finger-
printing attacks.

e We designed and implemented, PriVA-C, a voice assistant fin-
gerprinting defense, inspired by existing countermeasures. We
identified optimal configurations tailored to the unique charac-
teristics of voice assistants, enabling PriVA-C to maintain strong
performance while adapting multiple fingerprinting attack vec-
tors and voice assistant platforms.

o We integrated our defense into the Alexa SDK and analyzed real-
world data to rigorously quantify our defense’s effectiveness,
offering valuable insights into the challenges and opportunities
in this domain.

e We also conduct a user study with our defense integrated into

Alexa SDK to assess its impact on user experience and system

performance.

To foster further research and innovation, we open-source our

code and dataset!, allowing researchers and developers to repli-

cate our results, extend our work, and contribute to the advance-
ment of voice assistant privacy.

2 Background
2.1 Network Traffic-Based Fingerprinting

Network fingerprinting involves identifying unique characteristics
in network traffic or device behavior to distinguish one entity from
another. The core concept is that each target—whether a device,
software, or app—has distinct characteristics, use cases, and require-
ments, leading to unique communication patterns. By analyzing
encrypted traffic, these patterns can be classified and attributed to
specific devices, often through machine learning techniques. This
approach is applied across various domains [7, 37, 17, 57], each with
its own methodologies and implications. Network fingerprinting
can serve as both a privacy attack—such as identifying the operating
system of a device [42]—and a defense mechanism, like detecting
rogue devices on a network [1]. Website fingerprinting, IoT fin-
gerprinting, and voice assistant fingerprinting are sub-domains of
network fingerprinting.

!https://github.com/dilawer11/PriVA-C
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Website Fingerprinting. Website fingerprinting involves iden-
tifying visited websites by analyzing traffic patterns, such as data
volume, packet timing, and sequences [14, 24, 54, 47]. Over time,
this technique has become increasingly sophisticated, even capable
of identifying webpages accessed simultaneously on the Tor net-
work. Despite Tor’s encryption, anonymous routing, and privacy
features, website fingerprinting can still compromise user privacy
by revealing browsing habits. Researchers have developed counter-
measures to mitigate such attacks, emphasizing the delicate balance
between security and privacy [36].

IoT Fingerprinting. IoT fingerprinting identifies devices based on
their unique communication patterns, including packet frequency,
size, and protocols. Researchers have applied this technique for
various purposes, such as inventory management, anomaly detec-
tion, and privacy attacks, particularly by identifying devices within
home networks [8, 45, 50]. Studies have examined how fingerprints
evolve over time and how factors such as geo-location affect IoT
device identification [2]. These attacks can even reveal specific ac-
tivities performed on IoT devices, such as motion detection, raising
further privacy concerns [8]. Additionally, other unique identifiers
can be used to pinpoint specific devices or systems [51, 15].

Voice Command Fingerprinting. Voice command fingerprint-
ing is a subset of IoT fingerprinting that focuses specifically on
identifying voice assistant devices and their activities or commands.
This technique can recognize specific commands, such as asking a
voice assistant to play music or inquire about the weather. Privacy
attacks using this method can target multiple platforms, including
Amazon Alexa, Google Assistant, and Siri [59, 3]. While previous
research [59, 23] has proposed methods to secure this traffic, we
will evaluate these existing solutions, highlight their limitations,
and suggest improvements to better protect user privacy.

Each type of fingerprinting underlines the dual-edged nature
of network analysis, offering benefits while posing privacy and
security challenges. Understanding these aspects is crucial for de-
veloping robust defense mechanisms against potential threats.

2.2 Threat Model

In a voice command fingerprinting attack, the threat model con-
siders the bidirectional network traffic between a voice assistant
device and the internet endpoints it communicates with to provide
functionality. The device is assumed to be deployed in a typical
home network that offers standard encrypted internet connectivity
but lacks additional protections against traffic monitoring (e.g., a
VPN). The user interacts with the assistant by issuing voice com-
mands, while an on-path adversary passively observes the resulting
traffic. Such an adversary could be non-local, for instance, an ISP.
Due to NAT, non-local adversaries cannot directly attribute an
observed network flow to its originating device within the home
network. Consequently, traffic from multiple active devices may
become intermingled, introducing noise into the target device’s
flows and potentially degrading feature extraction. To address this
challenge, Ahmed et al. [3] proposed a flow filtering technique
that isolates the traffic of voice assistant devices from that of other
devices, demonstrating that attacks can still achieve high accuracy
even in noisy conditions. An alternative threat model involves a
local adversary with direct access to the home network. Such an
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adversary—e.g., a roommate—can easily associate traffic with its
originating device and is therefore considered more powerful than
a non-local adversary. There may also be a disparity in capabilities
between an ISP, which could possess significantly greater compu-
tational and financial resources, and a roommate, whose resources
may be limited. Nevertheless, such an attack can be carried out with
modest means, such as a consumer-grade laptop. In either setup,
the attacker can monitor metadata—such as packet sizes, timing,
and frequency—for encrypted traffic, and may also access the con-
tents of unencrypted traffic, such as DNS queries. By leveraging the
knowledge of any deployed countermeasures and configurations,
the attacker can build a fingerprint database or train models to
infer user commands, i.e., the attacker can adapt strategies based
on the deployed countermeasures. The attacker through this attack
can infer user behavior and commands without decrypting the
communication, thereby compromising privacy.

3 Related Works

While research on network traffic analysis and privacy preservation
is extensive, this section focuses on the most relevant areas: IoT
fingerprinting, voice command fingerprinting, and website finger-
printing, which form a foundation for understanding and addressing
the unique challenges of voice command fingerprinting defenses.

3.1 Fingerprinting Attacks

There is extensive research on fingerprinting devices and applica-
tions through traffic analysis [14, 24, 54, 55, 47, 1, 52, 17, 57, 37].
Among these, the most relevant to our work are studies focused on
IoT fingerprinting and voice command fingerprinting.

IoT Fingerprinting. IoT fingerprinting focuses on identifying de-
vices based on their network traffic and has been widely explored
in prior research. This body of work demonstrates the feasibility of
extracting meaningful information from network patterns. Tech-
niques range from applying machine learning and deep learning
to network metadata [8, 32, 50, 56], to analyzing specific elements
such as DNS queries [45]. Additionally, researchers have investi-
gated the factors that enable fingerprinting under diverse network
conditions [2, 15].

Voice Command Fingerprinting. Voice command fingerprinting
poses a direct threat to user privacy. Initial work by Kennedy et
al. [29] demonstrated the feasibility of this attack on Alexa. Subse-
quent research has sought to improve accuracy [35], extend anal-
ysis to open-world scenarios [59], incorporate multiple voice as-
sistants [3], and explore the impact of location-based factors [30].
Researchers have also shown the effectiveness of such an attack in
the presence of a Home VPN [23]. These studies collectively demon-
strate the increasing sophistication and real-world applicability of
voice command fingerprinting attacks.

3.2 Fingerprinting Defenses

Although defenses against voice command fingerprinting are still
in their early stages, the broader domain of network traffic analy-
sis countermeasures — especially within website fingerprinting —
provides valuable insights. These defense strategies generally fall
into several key categories:
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Fixed-Rate Transmission: Early defenses such as BuFLO [13],
Tamaraw [12], and CS-BuFLO [11] sought to counter fingerprint-
ing attacks by enforcing fixed transmission rates. Although these
approaches proved effective in reducing attack success, they intro-
duced substantial overhead, making them impractical for real-world
use. To improve efficiency, DynaFlow [33] introduced a more adap-
tive strategy by dynamically adjusting transmission rates based on
traffic conditions.

Anonymity Sets: Defenses like Glove [41] and Supersequence [60]
group sensitive websites into anonymity sets, aiming to make traf-
fic within each set indistinguishable. Walkie-Talkie [61] was built
upon this concept. However, these methods often run into various
problems during implementation [47, 36], which can be unrealistic
for resource-constrained IoT devices.

Padding-Based Approaches: Techniques like WTF-PAD [28] and
BiMorphing [39] introduce padding to obfuscate traffic patterns.
However, recent research suggests these methods often suffer from
high overhead or limited effectiveness [54].

Adversarial Examples: Methods like Mockingbird [46] and BANP
[40] generate specific traffic patterns to disrupt machine learning-
based attacks. However, their effectiveness is often limited to spe-
cific attack methods [36].

Traffic Splitting: This approach splits traffic across multiple paths
e.g., Tor circuits [18] or ISPs [25]. While conceptually effective, it
often requires infrastructure not readily available in typical home
network settings.

Voice-platform Specific: Research on concrete defenses against
voice command fingerprinting is still limited. Wang et al. [59] pro-
posed a padding-based method, inspired by WTF-PAD, to defend
against their own deep learning-based fingerprinting attack. An-
other recent effort, VoiceDefense [23], also addresses the challenge
of protecting against voice command fingerprinting by padding
and fake traffic injection.

3.3 Distinction with Prior Work

We significantly differ from previous efforts of voice command fin-
gerprinting defenses by Wang et al. [59] and Guo et al. [23]. Wang et
al. extended Adaptive Padding, similar to WTF-PAD, and introduced
delays via differential privacy. However, this approach suffers from
substantial time overheads and proves ineffective against more so-
phisticated attacks that leverage packet timing information. Guo et
al’s method, which employs random reshaping of outgoing traffic
and the addition of invalid incoming requests, is also vulnerable to
timing-based attacks, as it fails to mitigate the information leakage
from packet timing as we show in Section 4.

In contrast, our research focuses on fundamentally limiting dis-
tinctive traffic patterns, rather than targeting a specific attack strat-
egy. While this general-purpose approach may introduce higher
overhead, prior research [36, 12] and our own findings in Section 4
demonstrate that it offers stronger and more resilient privacy protec-
tion. Inspired by constant-rate defenses [20, 12], we have optimized
these techniques specifically for voice assistants, achieving a more
efficient and robust solution. Furthermore, we are the first to not
only present a functional defense prototype but also to conduct
usability testing and evaluation using real network traffic. This
practical, empirical approach, coupled with our rigorous evaluation
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Execution and
Collection System

Figure 1: The lab deployed a setup to collect data, where
the control system plays audio request commands through
speakers. These commands are picked up by a microphone
connected to a Raspberry Pi running the AVS SDK. Network
traffic is captured at the router that provides internet con-
nectivity to the Raspberry Pi.

against multiple publicly available attacks, demonstrates the broad
applicability and effectiveness of our defense, setting it apart from
the theoretical or proof-of-concept nature of prior voice command
fingerprinting defense studies.

4 Evaluating Existing Defenses

In this section, we describe the experimental setups and methodolo-
gies used to evaluate the effectiveness and limitations of existing
defenses against voice command fingerprinting (RQ1).

4.1 Collection Setup & Datasets

Amazon Alexa is the most widely used voice assistant in terms of
market share [21] and existing literature on voice command fin-
gerprinting [29, 10, 59, 3, 23, 30] has primarily focused on Alexa.
Amazon Alexa provides an open-source SDK [4] to integrate the
voice assistant functionality into third-party devices. For the afore-
mentioned reasons we primarily focus on Amazon Alexa through-
out the remainder of this paper since we use the Alexa SDK to
implement, test, and deploy our defense in Section 5. However, we
do evaluate existing approaches and our defense on the second
and third most popular voice assistant platforms, Google and Siri,
respectively [21], to demonstrate adaptability. However, for these
two platforms, we relied on data collected in prior work [3], as
neither Google nor Siri provides an open-source SDK that would
allow us to modify their existing communication patterns.

In line with previous work [36, 54, 59, 23], we simulate the ap-
plication of countermeasures on network traffic to evaluate their
performance and any overhead they may introduce to transmission.
We utilize the simulation code provided by the authors where avail-
able, following the instructions in their papers as closely as possible.
Our dataset encompasses a diverse set of command types—simple
queries, streaming requests, and third-party skill invocations—each
generating distinct network traces. Such diversity is essential for
building a benchmark dataset capable of evaluating countermea-
sure performance across varied scenarios, as different command
types may exhibit unique traffic characteristics [3]. The resulting
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benchmark dataset consists of 100 voice commands, each repeated
100 times, yielding a total of 10,000 samples. To ensure that the
Alexa SDK consistently responded with the correct output, we man-
ually validated one complete round of data collection (i.e., for all
100 different voice commands) and reused the same set of invoca-
tion audio files for the remaining 99 rounds. To collect the dataset,
we developed an automated data collection pipeline based on the
methodologies used in prior works [59, 3], ensuring consistency
with prior research. The data collection setup is visually shown in
Figure 1. It consists of the following items:

e Amazon Alexa SDK [4] running on a Raspberry Pi 4 (4 GB) with
a UMA-8 USB Microphone Array as the voice assistant device.

e The voice assistant device is connected via Wi-Fi to an OpenWRT
Linksys router, with network traffic captured and stored on an
Ubuntu Desktop for increased storage capacity.

e A speaker, controlled by a Python script, automatically converts
the text command to audio using a Text-to-Speech model and
plays it, thereby activating the voice assistant.

For Google Assistant and Siri, we use the open-source datasets
provided by Ahmed et al. [3]. Each dataset contains 5,000 samples,
comprising 100 recordings of 50 distinct simple voice commands,
collected using a setup similar to that employed for the Alexa SDK.

4.2 Baseline Attack Models

We use two recent open-sourced voice command fingerprinting
attacks from the latest literature [59, 3] to establish a baseline for
attack performance on unprotected, raw network traffic from voice
assistants.

DeepVC [59]. DeepVC, proposed by Wang et al., is a voice com-
mand fingerprinting attack that utilizes various Deep Learning
models, such as CNN and LSTM. The model architecture is inspired
by website fingerprinting attacks, like Deep Fingerprinting [54].
The attack focuses on packet size and direction features, where
each sample consists of the size and direction of the first n packets
in the packet trace. For our evaluation, we experimented with both
the default parameters recommended in their study and a range
of hyperparameter tuning configurations, ultimately selecting the
optimized settings that yielded the best performance. Although the
datasets we evaluate differ from those used in their work, we were
able to replicate their attack’s performance on their datasets within
an average 2% negative margin in performance metrics.

Spying [3]. Ahmed et al. introduced a novel voice command fin-
gerprinting attack that utilizes multiple handcrafted features and
automated machine learning pipelines to train the models. Each
sample in their feature set is a summary of various metadata distri-
butions and counts within a variable — size window. In Ahmed et
al’s [3] work they use AutoGluon Tabular [9] and Random Forest as
the classifiers. AutoGluon trains a diverse ensemble of models and
typically outperforms Random Forest by at most 5%. In our replica-
tion using Random Forest, attack accuracy for Google Assistant and
Siri remained within 1% of results from AutoGluon, given identical
datasets and feature parameters. For Alexa, AutoGluon achieved 4%
higher accuracy. Despite this, we use Random Forest with default
settings in our evaluations, as it enables efficient comparison across
thousands of parameter combinations during grid search for all
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Table 1: Fingerprinting performance across three different
platforms. The results show high attack accuracy in all cases
for Spying attack [3] while performance for DeepVC [59] is
higher for Google Assistant compared to other platforms.

Platform ‘ Attack ‘ Accuracy ‘ Precision ‘ Recall

Alexa Spying 88.40% 85.83% | 86.02%
DeepVC 54.03% 59.40% | 54.84%

Google | Spying 88.40% 88.49% | 88.29%
Assistant | DeepVC 81.30% 86.04% | 81.17%
Siri Spying 85.90% 85.78% | 86.20%
DeepVC 64.90% 69.46% | 65.16%

defenses. However, we evaluated the performance of AutoGluon
against the final defense (with optimized parameters) proposed by
Ahmed et al. [3], and compared it with our Random Forest model
to demonstrate that the defense remains effective regardless of the
classifier employed by the attack. The corresponding results are
reported in Tables 13 and 14 in Appendix A.

We partition the benchmark dataset using a standard 80:20
train/test split. For baseline performance evaluation, we use the
raw network metadata without applying any defenses or modifi-
cations, reflecting typical voice assistant communication patterns.
This setup aligns with the methodology adopted in prior attack
studies. The results are presented in Table 1. Ahmed et al. [3] outper-
form Wang et al. [59] in fingerprinting undefended traffic, achieving
an accuracy of 88% compared to 54%. We also test the respective
models on Google Assistant and Siri. We achieve similar results
with high undefended accuracy for both platforms showcasing the
need for an effective countermeasure against such attacks.

4.3 Evaluation Setup

We test multiple traffic analysis countermeasures designed for both
website fingerprinting and voice command fingerprinting. Each
countermeasure is typically parameterized to accommodate various
types of network traffic and operational scenarios. In our evalua-
tion, we analyze each countermeasure across different parameter
settings, at least as expansive as suggested by the original work.

It is crucial to highlight that the majority of website fingerprint-
ing attacks and defenses have been studied within the context of
the Tor network. The Tor network inherently provides anonymous
tunneled routing and has the ability to transmit data in fixed-size
chunks, known as cells. Consequently, many of these defenses are
tailored to this environment and, in addition to not obfuscating
destination addresses, assume each packet (cell) is padded to a fixed
size. For our evaluations, we adapt these defenses, where applicable,
to a fixed-packet size configuration as to not create a disadvantage
for such defenses.

To assess the impact of countermeasures, we utilize bandwidth
overhead and delay alongside standard classification performance
metrics, including Accuracy, Precision, and Recall. Bandwidth over-
head refers to the additional amount of data transmitted due to
the countermeasure, including any padding or dummy traffic. The
bandwidth overhead is calculated using the following percentage
increase formula:

Véinal — Vinitial

Vinitial

B/Woverhead = %X 100 (1)
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where Vinitial represents the original traffic volume, whereas Vgpal
represents the total volume after applying the countermeasure.

Delay is a measure of time overhead, which is defined as the
difference between the time that a packet was originally supposed to
be sent (in undefended traffic) compared to the time it was actually
sent after the defense was applied.

1 n
Delay = — > (Tactendea = Tyiain) &)

i=1

where n represents the total number of packets in the trace. If a
packet is split into multiple parts and these parts arrive at different
times, Tyefended is the time when the last part arrives (T4, refers
to the original timestamp of the packet). The delay metric excludes
processing or transmission delays, as they are assumed to remain
consistent and cancel out.

Given that our threat model assumes a fully informed adversary
with complete knowledge of the deployed countermeasure and its
parameters, we adopt a conservative evaluation approach. Specif-
ically, we assume a worst-case scenario in which the adversary
acts last and is able to train their models on traffic that has already
been processed by the defense mechanism. Accordingly, in all our
evaluations, we apply the countermeasure to both the training and
test subsets of the benchmark dataset, thereby ensuring that the
adversary operates under maximally favorable conditions.

4.4 Voice Command Fingerprinting Defenses

DeepVC-CM [59] proposed a proof-of-concept defense against
their own voice command fingerprinting attack, DeepVC. The de-
fense works by generating dummy packets based on the adaptive
padding principle, sampling from a distribution of intervals and
sizes of real packets. A Laplacian noise function dictates the size
of both real and dummy packets as well as any delays to be in-
corporated. We use the open-sourced implementation provided to
evaluate this defense. We found that differential privacy noise func-
tion occasionally causes unrealistically significant packet delays,
due to highly varied packet sizes from different domains.

Our evaluation of DeepVC-CM [59] on Alexa (Table 2) shows
that its most robust configuration reduces attacker accuracy to
approximately 37%, but at the cost of a 131% bandwidth overhead.
In the lowest bandwidth setting, accuracy increase to 42%. We
note that we get abnormally high delays, thousands of seconds,
due to a combination of large packet sizes observed in streaming
commands, Laplacian noise design, and how DeepVC’s simulation
code applies the delays [59, 58]. Reducing delay by adjusting the
Laplacian noise function is possible, however, would likely weaken
its ability to conceal timing features. These results indicate that,
although the defense effectively obfuscates traffic, its high latency
limits real-world viability. However, for Google Assistant and Siri,
we do not observe similarly large delays. This is likely due to the
absence of large packet sizes in their datasets, which consist solely
of simple commands (i.e., no streaming commands), resulting in
comparatively lower delays on these platforms relative to Alexa.
Nonetheless, when compared to other defenses, the delays remain
significantly higher, indicating the need to re-evaluate and adapt
the noise function to accommodate multiple scenarios rather than
being tailored to a single dataset or attack.
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Table 2: Attack performance after applying existing coun-
termeasures on all traffic from the voice assistant using the
benchmark dataset.

Countermeasure Details ‘ Performance ‘ Overheads

Name ‘ Setting ‘ Attack ‘ Accuracy | Precision | Recall ‘ B/W ‘ Delay(s)
Spying 37.42% 36.22% | 37.41% | 131% 6323

Strongest
DeepVC-CM DeepVC 0.95% 0.44% | 1.00% | 411% 1061
[59] Spying 41.62% 4093% | 41.35% | 94% 8956

Low B/W
oW BWH peepve 2.20% 1.99% | 209% | 94% 8956
Spying 77.09% 77.16% | 77.26% | 66% 0

) St t
VoiceDefense ronges DeepVC 4.00% 6.08% | 4.74% 12% 0
[23] Spying 82.59% 82.83% | 82.70% | 12% 0

Low B/W
oW BWH peepve 4.00% 6.08% | 474% | 12% 0
Stromzest | SPYINE 9.80% 11.99% | 9.97% | 1003% 0.45
BuFLO 8¢St | Deepve 2.05% 0.57% | 239% | 645% 0.76
[20] Low B | SPYing 37.02% 36.04% | 36.78% | 196% 178
DeepVC 24.36% 26.11% | 24.67% | 196% 178
Stromzest | SPYINE 16.41% 10.07% | 16.88% | 330% 0.81
Tamaraw 8| Deepve 13.56% 9.47% | 14.17% | 220% 178
[12] Low B/w | SPYinG 2356% 1781% | 24.22% | 145% 253
DeepVC 19.21% 10.41% | 19.90% | 145% 2.53
Stromzest | SPYINE 11.66% 163% | 12.26% | 196% 411
DynaFlow 8| Deepve 0.65% 001% | 1.00% | 196% 411
[33] Spying 11.66% 163% | 12.26% | 196% a1
LowB/W | eV 0.65% 0.01% | 1.00% | 196% 411
Spying 69.83% 69.87% | 69.92% | 84% 0

St t
WTE-PAD | "7 | peepve 0.70% 0.16% | 0.69% | 84% 0
[28] Spying 78.74% 7937% | 7901% | 9% 0
Low B/W | yeepve 1.40% 130% | 1.38% 9% 0

VoiceDefense [23] is a proof-of-concept defense developed to mit-
igate voice command fingerprinting attacks. This approach intro-
duces "random reshaping” of outgoing traffic and proposes blending
incoming traffic with "invalid requests". However, the specifics of
these invalid requests are not detailed, and the available implemen-
tation from the open-source repository does not include the code
for invalid requests, with only the random reshaping component
provided. Based on the paper’s description, we interpret "invalid
requests" as instances where the voice assistant is activated with-
out any follow-up command, causing it to listen for a limited time
without issuing a response. We use this assumption to simulate and
evaluate the proposed defense in our study.

Our evaluation of VoiceDefense [23] on Alexa (as shown in Table
2) shows that even in its strongest configuration, it only reduces
attack accuracy to 77%, with a bandwidth overhead of 66% and
no delays. The lowest bandwidth configuration performs slightly
worse, with an accuracy of 83% and a bandwidth overhead of 12%.
These results indicate that while the approach is lightweight, it
does not provide strong privacy guarantees against fingerprinting
attacks. Similar ineffectiveness as a defense is also observed when
evaluated in Google Assistant and Siri (as highlighted in Table 3)
with the lowest accuracy in Google Assistant of 68%.

4.5 Website Fingerprinting Defenses

BuFLO [20]. Dyer et al. [20] argue that efficient countermeasures
inherently leak information and are therefore ineffective. To address
this, they propose a bi-directional constant-rate padding scheme,
known as BuFLO, as an intentionally inefficient yet robust defense
against website fingerprinting. BuFLO transmits traffic at a constant
rate (e.g., every 20 ms) using fixed-size packets (e.g., 500 bytes) for
at least a specified minimum duration which causes BuFLO to incur
significant bandwidth overhead but guarantee strong performance.
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Our evaluation shows that BuFLO, in its strongest configuration,
reduces attack accuracy for Alexa to 10% (Table 2), but at the cost
of sending 1003% more data. A lower bandwidth configuration of
645% overhead reduces the attacker accuracy to 37%. On Google
Assistant and Siri a reduced attacker accuracy of about 2% (as shown
in Table 3) is observed in both cases with similarly high overheads.
These results underscore the trade-off between effectiveness and
resource consumption, rendering BuFLO impractical for real-world
deployment.

Tamaraw [12]. Tamaraw, proposed by Cai et al., improves upon
BuFLO by introducing direction-specific transmission rates, ac-
knowledging that web traffic typically involves more incoming
than outgoing data [12]. Additionally, Tamaraw replaces BuFLO’s
minimum time parameter with a padding parameter to determine
the defense’s end condition. Instead of stopping immediately after
the actual transmission ends, Tamaraw continues to send dummy
packets until the total duration aligns with a multiple of the padding
parameters. This obscures the precise end time of the transmission,
further mitigating information leakage to an adversary.

Our results show that Tamaraw’s strongest configuration re-
duces attack accuracy to 16%, with a bandwidth overhead of 330%
and a moderate delay of 1.13 seconds. In its lowest bandwidth
setting, accuracy rises to 24%, while overhead decreases to 145%.
Analysis across platforms (as shown in Table 3) shows better results
on Google Assistant and Siri with an accuracy of 4% and 9% respec-
tively with similar overheads. These results suggest that Tamaraw
offers a more practical balance between effectiveness and efficiency
compared to BuFLO.

DynaFlow [33]. Lu et al. propose DynaFlow, an adjustable constant-
rate defense similar to Tamaraw [12]. DynaFlow periodically modi-
fies the transmission rate based on prior inter-packet delays and

sends packets in fixed patterns at direction-specific rates to reflect

differences in incoming and outgoing traffic. While its design aims

to reduce overhead through adaptive rate adjustments, the parame-
ters provided are tailored for website fingerprinting and may not

directly translate to voice command fingerprinting due to differ-
ing traffic characteristics. We evaluate DynaFlow using both the

parameters suggested in the original work and additional settings

tailored to voice command traffic.

Our evaluation shows that DynaFlow’s strongest and lowest-
bandwidth configuration was the same in our parameter sweep,
reducing attacker accuracy to 12% with an overhead of 196% at
a mean latency of 4.11 seconds. These results indicate that while
DynaFlow offers lower overhead than BuFLO, it still introduces sig-
nificant latency due to its design tailored to website fingerprinting
traces [33]. DynaFlow’s performance worsens for Siri compared to
other platforms (as shown in Table 3).

WTF-PAD [28]. Juarez et al. propose a probabilistic link-padding
defense, extending the concept of Adaptive Padding [53]. This de-
fense introduces dummy packets during periods of low network
traffic to disrupt the characteristic patterns used by machine learn-
ing models for fingerprinting. WTF-PAD leverages the natural
fluctuations in traffic streams, alternating between bursts of pack-
ets and quiet intervals. While it proved effective against earlier
website fingerprinting attacks relying solely on packet sizes and
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Table 3: Evaluating different countermeasures on Google Assistant and Siri. Results show a high overhead and/or low privacy

performance of existing countermeasures.

Countermeasure Details Google Assistant Siri
Performance ‘ Overheads Performance ‘ Overheads
Name ‘ Setting | Attack | Accuracy | Precision | Recall ‘ B/W ‘ Delay(s) ‘ Accuracy | Precision | Recall ‘ B/W ‘ Delay(s)
Strongest Spying 26.60% 24.82% | 26.18% 144% 8.09 33.63% 31.11% | 33.20% 556% 0.52
DeepVC-CM DeepVC 2.30% 0.05% 2.00% 106% 4.99 2.00% 0.04% 2.00% 556% 0.52
[59] Low B/W Spying 31.60% 28.61% | 31.47% 106% 4.99 44.24% 44.54% | 43.65% 53% 11.44
DeepVC 2.30% 0.05% 2.00% 106% 4.99 25.33% 32.38% | 25.82% 53% 11.44
Strongest Spying 67.70% 66.73% | 67.22% 73% 0.0 76.58% 76.42% | 75.97% 498% 0.0
VoiceDefense DeepVC 57.50% 70.90% | 57.90% 69% 0.0 1.70% 0.43% 2.08% 429% 0.0
[23] Low B/W Spying 79.40% 79.26% | 79.29% 22% 0.0 81.38% 81.36% | 80.85% 105% 0.0
DeepVC 72.80% 79.82% | 72.97% 22% 0.0 62.96% 71.80% | 63.76% 105% 0.0
Strongest Spying 1.60% 0.28% 1.68% | 1063% 0.12 1.70% 0.61% 1.83% | 1169% 0.02
BuFLO DeepVC 1.60% 0.06% 1.84% 785% 0.21 1.70% 0.03% 2.00% 503% 0.04
[20] Low B/W Spying 10.90% 10.68% | 11.04% 400% 0.46 44.74% 44.13% | 44.37% 411% 0.04
DeepVC 3.90% 3.03% 4.10% 400% 0.46 2.00% 0.04% 2.00% 411% 0.04
Strongest Spying 4.10% 0.57% 4.79% 322% 0.72 8.91% 2.00% | 11.52% 344% 0.06
Tamaraw DeepVC 1.40% 0.06% 2.18% 898% 0.12 1.60% 0.03% 2.00% 493% 0.04
[12] Low B/W Spying 7.30% 3.28% 7.96% 302% 0.72 20.62% 13.60% | 22.87% 321% 0.06
DeepVC 8.00% 3.55% 7.72% 302% 0.72 2.00% 0.04% 2.00% 321% 0.06
Strongest Spying 4.30% 1.44% 5.06% | 1492% 0.41 21.82% 16.53% | 24.26% 328% 0.44
DynaFlow DeepVC 1.10% 0.02% 2.00% | 1466% 0.8 2.00% 0.04% 2.00% 439% 0.07
[33] Low B/W Spying 6.60% 3.09% 7.84% 347% 3.74 21.82% 16.53% | 24.26% 328% 0.44
DeepVC 1.60% 0.03% 2.00% 347% 3.74 5.71% 2.33% 5.71% 328% 0.44
Strongest Spying 66.10% 65.84% | 66.06% 89% 0.0 72.97% 72.81% | 72.26% 136% 0.0
WTF-PAD DeepVC 1.80% 0.04% 2.00% 64% 0.0 25.83% 32.85% | 25.97% 136% 0.0
[28] Low B/W Spying 79.90% 80.29% | 80.15% 9% 0.0 76.88% 77.52% | 76.43% 14% 0.0
DeepVC 25.70% 35.24% | 26.73% 9% 0.0 39.84% 50.14% | 40.52% 14% 0.0
directions, more advanced attacks incorporating timing informa- 5 PriVA-C

tion have bypassed WTF-PAD, as it does not conceal the original
timing of packets [47].

Our evaluation (Table 2) shows that WTF-PAD’s strongest con-
figuration reduces the accuracy to 70%, with a modest bandwidth
overhead of 84% and no added delay. The lowest bandwidth setting
causes an accuracy jump to 79% while reducing bandwidth usage
to 9%. We observe similar trends on Google Assistant and Siri (as
highlighted in Table 3). These results indicate that while WTF-PAD
is lightweight, it does not provide strong privacy protection against
fingerprinting attacks.

Other defenses. Researchers have proposed various countermea-
sures to prevent website fingerprinting on Tor, with traffic-splitting
defenses [25] being a promising low-overhead, high-performance
solution in specific threat models. However, in most home net-
works, it is unrealistic to assume the presence of multiple ISPs for
voice assistant devices. Additionally, countermeasures that rely on
adversarial examples to defeat specific attack vectors are ineffective
against other attack models [36, 20], and as such, we do not con-
sider them in this work. Other defenses are either challenging to
implement for voice assistants [61] or require large databases [39],
which are not feasible for low-powered IoT devices.

Takeaway. Existing voice command fingerprinting defenses are
largely ineffective against diverse attack types. While website traffic
fingerprinting techniques—such as constant rate defenses—show
promise, they are not optimized for the unique characteristics of
voice application traffic.

32

In this section, we present the design and evaluation of multiple
setups of PriVA-C to address RQ2 & RQ3. As highlighted by pre-
vious works and our analysis of defenses discussed in Section 4,
constant-rate defenses are most effective at obscuring network pat-
terns and provide robust privacy against various traffic analysis
attacks. However, they tend to incur higher overhead compared to
other defenses, making optimization of these defenses crucial. We
identify several key areas for potential improvement.

5.1 Traffic Pattern Analysis & Defense Design

To develop a defense mechanism that ensures privacy while mini-
mizing overhead, it is crucial to first understand the traffic patterns
of voice assistant interactions. This understanding helps identify
the information that needs to be concealed from potential adver-
saries, while also identifying opportunities to reduce overhead. To
achieve this, we conducted an in-depth analysis of the traffic pat-
terns associated with 100 different voice assistant commands from
our benchmark dataset. Our analysis uncovers several key insights:

Incoming vs. Outgoing. To assess the sensitivity of each traffic
direction to fingerprinting, we divided the dataset into two parts.
The first dataset contains only outgoing traffic, while the second
includes only incoming traffic. We then extracted features from each
dataset and trained the model. The results in Table 4 reveal that an
adversary can fingerprint voice commands with approximately 79%
accuracy using only outgoing traffic and 78% accuracy with only
incoming traffic. This highlights the importance of securing traffic
in both directions to achieve substantial privacy protection for the
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Table 4: Fingerprinting performance using only incoming
or outgoing traffic in Alexa. This shows the importance of
defended bidirectional traffic.

Direction ‘ Attack ‘ Accuracy ‘ Precision ‘ Recall

Outgoing ‘ Spying ‘ 78.89% 78.83% | 79.02%
DeepVC 38.82% 40.93% | 39.20%
Incoming ‘ Spying ‘ 77.99% 77.68% | 78.00%
DeepVC 46.15% 52.14% | 47.74%

user. Modifications to outgoing traffic must be implemented on
the “client-side” (before an adversary can observe outgoing traffic),
while changes to incoming traffic should be made on the server
side. The “server-side” refers to any service or point beyond which
the adversary cannot intercept the traffic. This may include VPN
services, reverse proxies, or even the endpoint itself.

Contacted Endpoints. Figure 7 in Appendix A demonstrates that
approximately 65% of the commands in our benchmark dataset in-
teract with a single domain, the Alexa Voice Service (AVS) Endpoint.
For most of the remaining commands, the endpoints contacted
are enough information to uniquely identify them; for instance,
the command to play CNBC news connects to a subdomain of
cnbc. com. In such cases, a tunneled proxy would be necessary to
prevent information leakage from endpoints, requiring the voice
assistant platform to route all traffic through itself, or the user to
use a tunneled proxy. This tunneled setup can be complex to set
up for an average user and/or increase the costs of operation for
the platform owner. In our design, we consider two deployment
scenarios. First, in which all the traffic is tunneled and protected,
and another in which only traffic to the AVS domain is protected.
We expect the former to be more privacy-preserving, however, the
latter is more realistically deployable by the platform owner.

Outgoing Phase. Once the wake word is detected, the voice assis-
tant begins streaming encrypted user audio from the microphone
to the Amazon Alexa AVS Endpoint [5, 3]. This phase of commu-
nication is represented by the blue bars in Figure 2. The duration
of this phase reflects how long it takes for the user to complete
the command or for the Alexa Voice Service to interpret the user’s
intent. Except for the duration, this phase is similar for all com-
mand types. While the outgoing phase alone does not provide
enough information to infer the user’s voice commands — since
factors like user age, speaking speed, and accent can affect the audio
stream [59] — we propose a design that extends the duration of the
outgoing phase. This extension can be achieved either by adding
dummy packets at the same rate as the original traffic or by keeping
the audio stream active. In our design, all outgoing traffic phases
last for at least out_min_len seconds. Any outgoing phase longer
than this is padded until the next interval, where the interval is
defined by outgoing_interval. For instance, if out_min_len = 5 and
outgoing_interval = 2, an outgoing phase lasting 2 seconds will be
padded to appear as 5 seconds to a network observer, while an
outgoing phase of 6 seconds will be padded to 7 seconds.

Incoming Phase. Immediately, after the initial outgoing phase we
observe a more incoming heavy traffic phase. This aligns with voice
assistants’ response to the user. This incoming phase exhibits a high
degree of similarity for different instances of the same command
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Figure 2: Network traffic for different commands. Positive
sizes refers to outgoing traffic and negative sizes refers to
incoming traffic (from the client’s perspective). The network
traffic has been adjusted to show a maximum of 1500 bytes
for presentation.
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Figure 3: PriVA-C operates by independently padding each
phase of communication. Both the outgoing and incoming
phase are padded to the next interval to obscure their dura-
tion and potential revealing traffic patterns. Depending on
the configuration, incoming and outgoing phases may over-
lap—resulting in lower latency but higher traffic volume—or
remain non-overlapping, which reduces traffic volume at the
cost of increased delay.

but varies across different command and command types. The start
timing of this incoming phase can leak information about the true
duration of the outgoing phase. One way to avoid this is to post-
pone the start of this phase, however, this increases the response
latency and could negatively impact the user experience. Alterna-
tively, the incoming phase can “appear” to start earlier by inserting
dummy traffic before the incoming phase begins. We add a delay,
controlled by parameter in_delay after which the incoming phase
begins from the start of the outgoing phase. Increasing the value of
this parameter reduces the bandwidth overhead but increases the
latency and vice versa. Alternatively in_delay can be set to null to
make the incoming phase start after the “padded” outgoing phase
ends. The incoming phase terminates after a fixed duration defined
by parameter initial_max_len.
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Table 5: Different configurable parameters of PriVA-C with corresponding units.

Ahmed et al.

Parameter

Description (unit)

| Haven | Forge | Delta | Strong

out_fast rate
out_slow_rate
out_ext_rate
in_fast rate
in_slow_rate
in_ext_rate
out fast size
out_slow_size
out_ext_size
in_fast_size
in_slow_size
in_ext_size
out_min_len
in_delay
initial max_len
out_interval
ext_interval

The rate of outgoing packets when outgoing phase is active during initial transmission (pkts/s)
The rate of outgoing packets when outgoing phase is inactive during initial transmission (pkts/s)
The rate of outgoing packets during the extended transmission (pkts/s)

The rate of incoming packets when incoming phase is active during initial transmission (pkts/s)
The rate of incoming packets when incoming phase is inactive during initial transmission (pkts/s)
The rate of incoming packets during the extended transmission (pkts/s)

The fixed size of outgoing packets when outgoing phase is active (bytes)

The fixed size of outgoing packets when outgoing phase is inactive (bytes)

The fixed size of outgoing packets during the extended transmission (bytes)

The fixed size of incoming packets when outgoing phase is active (bytes)

The fixed size of incoming packets when outgoing phase is inactive (bytes)

The fixed size of incoming packets during the extended transmission (bytes)

The minimum length of the outgoing active phase (s)

The delay of incoming from the start of outgoing. ‘null‘ implies start after outgoing ends (s)

The maximum length of the initial transmission (s)

The intervals at multiple of which outgoing phase ends (s)

The intervals at multiple which extended transmission ends (s)

50 50 50 50
4 4 4 4
50 50 50 50
50 50 50 50
4 4 4 4
50 50 50 50
577 577 577 577
250 250 250 250
500 600 600 600
750 1000 1000 1000
250 250 250 250
600 750 750 750
5 8 8 8
null 2 4 2
8 10 15 15

2 2 2 2

1 2 2 2

Longer and Varied Interactions. The behavior of skills varies sig-
nificantly depending on their type. Interactive skills, such as trivia
games, may require repeated user interactions, while other skills
function more like a simple command, providing a brief response.
Additionally, some skills communicate with multiple domains to
generate responses (e.g., skills created using VoiceApps, a popular
voice app creation platform). This introduces an added layer of
complexity when it comes to ensuring robust privacy protections.
To allow for this variability, we employ a constant rate bidirec-
tional padded stream as the third phase of our communication. In
this setup, real data is sent when available, and dummy data is
added when no real data is present. The constant-rate padding ends
when the voice assistant completes the command (e.g., drops all
underlying connections and enters an ‘idle’ state). Upon this trigger,
padding continues until the next ext_interval parameter. This phase
of communication is functionally similar to existing constant-rate
defenses [20, 12, 11].

Figure 3 provides an overview of PriVA-C in action, demon-
strated using two simple commands. The diagram shows how each
outgoing phase of communication is padded to the next interval
to hide patterns such as the length of the outgoing phase. The sub-
sequent incoming phase is also padded and extended to the next
interval to hide any unique sensitive patterns for that particular
command. In addition to the aforementioned parameters, we use
the rate and size to set the rate of transfer for each state. The full
list of parameters along with description can be found in Table 5.

5.2 Evaluation

Similar to our evaluation of existing works in Section 4, we perform
a parameter sweep to identify the strongest and lowest-bandwidth
variant of PriVA-C, evaluating 1,256 unique combinations. Each
platform exhibited distinct traffic characteristics; for example, Alexa
generated outgoing packets of approximately 577 bytes every 20
milliseconds. By analyzing these traffic patterns, we fixed certain
parameters for each platform (e.g., outgoing phase traffic rate and
packet size). For the remaining parameters, given the exponential
number of possible combinations, we first determined approximate
operational ranges (e.g., the outgoing phase typically lasts between
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3-5 seconds, we varied it from 1 second to 10 seconds in 1-second in-
crements) by assessing their privacy-utility tradeoffs—varying each
parameter individually while keeping others fixed. These trade-
offs were quantified using attack accuracy (Spying attack [3]) and
overhead (bandwidth = delay) for each configuration, as shown in
Figure 4. The identified ranges were then used in a constrained grid
search to determine the final parameter configuration that maxi-
mizes the overall privacy-utility tradeoff. We repeat this evaluation
for two defense setups: one where the defense is applied only to the
primary AVS domain, and another where it is applied to all traffic
generated by the voice assistant (see Figure 5).

The analysis reveals that certain parameters—such as traffic
rates and packet sizes—tend to increase overhead without offering
substantial privacy gains. Intuitively, simply increasing data trans-
mission does not significantly enhance privacy, while reducing it
beyond a certain threshold can delay all traffic. This delay may
cause shorter voice commands to extend beyond the initial defense
window, making them more identifiable to an attacker. At the same
time, these parameters must support real-time communication be-
tween the voice assistant and its endpoints. To balance privacy and
usability, we maintain a traffic rate that matches or slightly exceeds
the baseline (undefended) rate, thereby avoiding severe bottlenecks.

We identify a second group of parameters—such as out_min_len
and ext_interval—that tend to improve privacy without signifi-
cantly increasing overhead. Increasing these parameters reduces
the number of distinguishable values observable by an attacker,
thereby enhancing privacy. Additionally, we observe that parame-
ters like in_delay and initial_max_len increase overhead but also
contribute to stronger privacy protection. To explore these trade-
offs, we evaluate two defense variants. The first, Delta, uses a
larger value for in_delay to reduce overhead and a larger value
for initial_max_len to boost privacy. The second, Forge, adopts a
smaller value for initial_max_len to reduce overhead and a smaller
value for in_delay to enhance privacy. The specific parameter set-
tings for these two variants, along with the strongest variant, named
Strong, and the lowest bandwidth variant, named Haven, are de-
tailed in Table 5.
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Figure 4: Tradeoff between overheads and attack accuracy when different parameter values are varied.
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Figure 5: Two different countermeasure setups. (a) shows a setup where all communication between the voice assistant and all
internet servers is protected. (b) shows a setup where only the communication between the voice assistant and the primary
AVS endpoint is protected using the countermeasure. While setup (a) is expected to be more secure as endpoint information
is hidden, it requires the use of a tunneled routed proxy (e.g., VPN or routing all traffic through AVS) which could increase
deployment costs for either the user or platform. Setup (b) secures only traffic from the AVS domain and is expected to be
slightly less secure but more readily deployable.

Table 6: Results of PriVA-C variants applied to the benchmark Table 7: Results of PriVA-C variants applied to the bench-
dataset protecting "all traffic” from the voice assistant. The mark dataset protecting "only traffic to the AVS domain". The
results show strong performance with lower overheads. results show strong performance with lower overheads.
Setup ‘ Performance ‘ Overheads Setup ‘ Performance ‘ Overheads
Type ‘ Attack ‘ Accuracy ‘ Precision ‘ Recall ‘ B/W ‘ Delay(s) Type ‘ Attack ‘ Accuracy ‘ Precision ‘ Recall ‘ B/W ‘ Delay(s)
swongest | Ve | ran | oota | roos | 0%| 32 swongest | SRR | st | ivae | toge | | 07
Low B/W | Spying 22.22% 16.91% | 22.50% 125% 3.92 Low B/W | Spying 29.88% 26.43% | 29.61% 54% 1.40
(Haven) | DeepVC 18.52% 11.31% | 18.46% (Haven) | DeepVC 24.37% 20.34% | 24.59%
velts | pitie | taoe|  oote | roos || % velta | DG | ronen|  miame | msse| M| 078
rorse | poepvc | oo | oors | aoos | | 3 rorge | v | inetn | 1oen | ess| | 0
The results for the setup that considers all traffic (Table 6) demon- reducing fingerprinting accuracy to 20% in its strongest configura-
strate that our defense outperforms existing approaches against tion. For Google Assistant, the attack accuracy drops even further
voice command fingerprinting and achieves comparable effective- to 9%. In both cases, PriVA-C delivers strong privacy protection
ness to constant-rate website fingerprinting defenses, while signif- while significantly lowering overhead compared to existing meth-
icantly reducing overhead. Additionally, the results for the setup ods (see Table 3). These results highlight PriVA-C’s effectiveness
that defends only traffic to the AVS domain (Table 7) highlight the and adaptability across multiple voice assistant platforms.
practicality of our approach in realistic scenarios—where only voice Overall, the results indicate that our approach offers a promising
assistant platform providers would need to adjust their communi- solution for enhancing user privacy. However, the true impact of
cation patterns to enhance user privacy. the countermeasure—both in terms of privacy and usability—cannot
To demonstrate the generalizability of our approach, we evaluate be fully assessed through simulations alone. For instance, a higher
PriVA-C on both Google Assistant and Siri platforms. As shown overall transmission delay might not affect usability if the con-
in Table 8, PriVA-C achieves similar performance to Alexa on Siri, tent involves large audio files (e.g., a 60-minute podcast), where

later chunks can be delayed without interrupting playback due to
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Table 8: Results of PriVA-C applied to Google Assistant and Siri protecting "all traffic” from the voice assistants. The results
show strong performance with lower overheads compared to existing defenses.

Setu Google Assistant Siri
P Performance { Overheads Performance { Overheads
Type ‘ Attack ‘ Accuracy | Precision ‘ Recall ‘ B/W ‘ Delay(s) ‘ Accuracy | Precision | Recall ‘ B/W ‘ Delay(s)
Strongest Spying 9.22% 4.67% 9.22% | 170% 0.35 19.83% 10.46% | 19.81% | 186% 0.12
& DeepVC 1.20% 0.02% 1.85% | 148% 1.36 1.50% 0.03% 2.00% | 178% 0.15
Low B/W Spying 9.40% 5.25% 9.40% | 126% 0.82 22.78% 15.52% | 22.80% | 138% 0.14
DeepVC 2.10% 0.04% 2.00% | 126% 0.82 2.00% 0.06% 2.00% | 138% 0.14

Table 9: Results of countermeasure evaluation on real traffic
from Alexa prototype modded with PriVA-C. The results
show similar performance to simulations.

Setup ‘ Accuracy ‘ Precision ‘ Recall
AVS Domain 25.63% 26.04% | 24.84%
All Traffic 17.48% 17.78% | 17.00%

pre-loading by the platform. Conversely, even small delays could
negatively affect user experience if they cause a noticeable lag in
responding to user commands. Parameters like in_delay play a crit-
ical role in this balance. To validate these assumptions, we develop
a real-world prototype (in Section 5.3) and conduct a user study
across key defense variants (in Section 5.4).

5.3 Real-World Prototyping

Existing research has highlighted that some defense proposals per-
form well in simulations but face challenges when deployed on real
networks [47, 36]. To evaluate the effectiveness of our proposed
defense in a real-world setting, we implemented it on the Alexa
platform using the Alexa SDK. The SDK requires deployment on a
physical device to enable the installation of MITM proxy certificates
and modification of traffic. Since comparable SDKs are not available
for Google and Siri, we did not develop prototypes for those plat-
forms. Our implementation is deployed on a Raspberry Pi 4 (4 GB)
running the Amazon Alexa SDK [4], to emulate a voice assistant
device. Our defense is implemented in Python using a proxy archi-
tecture, extending the mitmproxy framework [16]. We developed
two proxies: a client-side proxy running on the same Raspberry
Pi as the client Alexa SDK, and a server-side proxy deployed on a
separate Ubuntu server in a different network.

5.4 User Study

We conduct an interactive user study to assess how delays intro-
duced by the proposed countermeasure affect usability.

5.4.1 Recruitment. We recruited 25 participants from the univer-
sity campus, all over 18 and residing in the U.S. Recruitment was
conducted via flyers, university Discord channels, and departmental
emails. Eligibility required prior experience with voice assistants,
either as standalone devices or integrated into other devices (e.g.,
mobile phones). Participants provided informed consent, agreed
to attend the study in person, and scheduled a timeslot. Of the
29 initial sign-ups, two participants were unable to find a suitable
timeslot, and two did not attend. Participant demographics are
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summarized in Table 11 in Appendix A. The final sample (N =
25) was predominantly Asian (76%), with smaller representation
from Caucasian (12%), Black or African American (8%), and His-
panic/Latinx (4%) participants. Most participants were aged 25-34
(72%), with the remainder aged 18-24 (28%). Gender distribution
was skewed toward men (64%) compared to women (36%). The
sample was highly educated, with 52% holding a bachelor’s degree,
44% a master’s degree, and 4% a doctorate. While our sample is
biased toward younger adults and the Asian population, it included
diverse languages and accents, supporting the representativeness
and validity of our findings for evaluating PriVA-C.

5.4.2  Study design. To assess the impact of our defense on user
experience, we presented participants with four protocol variants.
Three variants implemented our countermeasure with different
parameter settings (as detailed in Section 5.2) protecting the traffic
to AVS domain, while the fourth was unmodified (Alexa’s default),
serving as a baseline. The baseline was labeled Crest, and the
defense variants were named Haven, Delta, and Forge (as named
in Section 5.2). Participants were unaware of each variant’s specific
properties and interacted with them in randomized order. Non-
sequential pseudonyms were used to prevent users from inferring
any delay patterns. Participants were told only that they would test
different network protocols affecting device communication. Each
participant interacted with all four variants in turn, issuing a fixed
set of three predefined commands—“What time is it?”, “What is the
weather outside?”, and “Play Jeopardy”. We opted for using three
commands per variant to balance time and participant fatigue with
reliable results. The three commands selected also have different
response lengths in increasing order. Additionally, maintaining the
same commands across variants also allows participants to compare
variants directly. After each interaction, they rated their experience
on a 5-point Likert scale with the statement: “I did not perceive
any delay in this interaction” This allowed us to quantify perceived
delay across all variants.

After interacting with all four variants in randomized order, par-
ticipants were informed about how these protocols aim to enhance
user privacy. They were then asked which variants they would
or would not use, along with their reasoning in free-text form. To
assess their privacy awareness, participants completed a 7-point
TUIPC questionnaire [34]. The study lasted approximately 20-30
minutes per participant, with each receiving a $10 Amazon e-gift
card. The study was reviewed and approved by our university’s
IRB office.
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Table 10: Dunn’s test post-hoc analysis. Only significant pairs
after Bonferroni correction are presented. “*p < 0.01

Variant 1 Variant2 p-value

0.0016™
0.0031**

Haven
Haven

Crest
Forge

5.4.3 Results. We now compare the ratings across different vari-
ants and assess whether the differences are statistically significant.

Ratings. To summarize the variant ratings, we assigned numerical
scores from 1 to 5 based on participants’ responses on a 5-point Lik-
ert scale, with 5 representing the highest rating. Forge and Crest
received the highest average rating of 4.24, followed by Delta with
3.88, and Haven with 2.84. These results suggest that participants
perceived Forge—the variant with our defense implemented—as
the fastest, on par with the default Alexa protocol (Crest). This
indicates that our defense did not introduce noticeable delays, pre-
serving usability. In contrast, participants detected delays in Delta
and Haven, resulting in lower ratings for those variants.

Statistical Analysis. We conducted statistical analysis to deter-
mine whether any variants were significantly more or less preferred
by participants. Given the ordinal nature of the 5-point Likert scale
ratings, we used the Kruskal-Wallis test, which is appropriate for
nonparametric data [22]. Upon finding a statistically significant
result, we performed post-hoc analysis using Dunn’s test with Bon-
ferroni correction [48]. A p-value below 0.05 was considered sig-
nificant. The Kruskal-Wallis test revealed a statistically significant
difference among the variants (H = 17.0, p = 0.0007). Post-hoc analy-
sis showed that Haven was rated significantly lower than Crest and
Forge, while no significant differences were found between Forge,
and Delta. This indicates that Haven — the lowest-bandwidth vari-
ant — was consistently perceived as slower, while Forge was rated
similarly to Alexa’s default (Crest) and Delta, confirming that
Forge introduced no noticeable lag. The corrected p-values for
significant comparisons are presented in Table 10.

Unacceptable Variant. When optionally asked which variants
they would not use, a significant number of participants (12) indi-
cated they would use all variants. Four participants found Haven
unacceptable, three considered Crest (the control variant) unac-
ceptable, and only one participant found Delta unacceptable. No
participant found Forge unacceptable. Participants were also asked
to provide their rationale. One who chose "Would use all" stated —

"I would choose any options given delay wasn’t that much.” (P8)

Other opinions include participants who did not like particular
variants such as:

"Haven and Crest seemed particularly slow, and I want voice

assistants to be as fast as possible with minimal delay. Any sort

of perceivable delay makes the process of asking questions less

conversational and more cumbersome.” (P17)

Another participant stated that they would not use Haven and
identified the artificial delay and stated:

"Haven - it has a clear 5 second lag" (P18)

Another participant also singled out Haven, stating

"The response is slow when compared to other variants" (P20)

Overall, most participants identified the variants with clear ar-
tificial delays, but a significant number did not find any variant
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unusable. While some variants, like Haven, were less preferred,
other variants were considered acceptable options.

Variant Comparison. Participants responded to the open question
about what they think about different variants compared to each
other. Participants shared their thoughts about different variants in
comparison.

"I perceived more delay inHaven as compared to the other variants.

Delta had some delay but it was still a usable system. Forge and

Crest didn’t have any delay. Forge responses felt instant but the

difference between Forge and Crest was minimal." (P2)

One participant noted that while some variants were slower
than others, the delay was not disruptive. They also compared
these variants to another voice assistant they own:

“Crest and Forge were the fastest, Delta and Haven were slower.

I'wouldn’t say any of them were slower to the point of disruption.

My Google assistant takes longer than any of these.” (P3)

One participant specifically mentioned that, despite noticing
slight delays in some variants, they would still accept them if they
offered better data privacy.

"Forge, and Crest were fast. Delta was little slower than the

first two but not noticeable. Haven was little slow but if it provides
me with data privacy I wouldn’t mind it giving slow response”

(P13)

IUIPC Score. We presented participants with a 7-point IUIPC
questionnaire to assess their perceptions of fairness and privacy
across three categories: 1) Control, 2) Awareness, and 3) Collection.
The full text of the questions and their average scores are shown
in Table 12 in Appendix A. Overall, the IUIPC scores were 6.35 for
Control, 6.49 for Awareness, and 5.72 for Collection. These results
indicate that participants highly value control over their data, being
informed about data handling, and are concerned about excessive
data collection, thus, resembling a privacy-conscious mindset.

Takeaway. PriVA-C significantly reduces attacker accuracy while
maintaining low overhead. Through a prototype implementation
that applies PriVA-C only to the AVS domain, we demonstrate that
the defense can be deployed without any noticeable impact on
usability. Because our approach requires changes only at the appli-
cation software level, it enhances deployability—enabling privacy
improvements on millions of existing devices through a software
update, without the need for modifications to the network stack.

6 Discussion

While previous works have provided privacy guardrails for voice
assistants, our approach introduces a strictly improved privacy-
preserving defense mechanism that strikes a practical balance be-
tween privacy and user experience. Our padding-to-interval ap-
proach offers excellent scalability as the number of voice com-
mands and command groups expands. The increasing complexity
introduced by a larger command set further confounds attackers,
enhancing the overall effectiveness of our defense.

Furthermore, advancements in technology may allow some com-
putational tasks—such as speech-to-text processing—to be offloaded
to the device itself, thanks to increasingly powerful on-device ma-
chine learning models. While this shift could reduce network over-
head, it is unlikely to significantly improve user privacy, as devices
will still need to contact network endpoints to retrieve real-time
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information such as weather, traffic, or news. Moreover, the rise
of LLM-powered services [43] may drive more computation back
to network servers, as these models remain challenging to run on
power-constrained IoT devices.

Recommendations for Deployment. Deploying countermea-
sures across all network traffic via a proxy, or routing all traf-
fic through voice assistant platform servers, theoretically maxi-
mizes endpoint information obfuscation. While adopting this setup
is more privacy-preserving, if platform owners route all traffic
through their servers, it could increase costs for services [38]. Users
of voice assistants can route all their traffic through a VPN proxy
and apply this countermeasure even if the platform owners opt
not to adopt privacy-enhancing technologies; however, while adept
users might be successful in deploying it, an average user might
not have the technical prowess to achieve this.

For the aforementioned reasons, we recommend our AVS-only
defense, as it provides a slightly less secure, yet significantly more
deployable, countermeasure scenario with low overheads and ac-
ceptable usability as shown in Section 5.4. This targeted strategy
addresses the most critical vulnerabilities without necessitating net-
work reconfiguration, which is a significant advantage over meth-
ods that require extensive infrastructure changes. We acknowledge
that even with 60-70% bandwidth overhead, it might hinder the
adoption cost of operations for platform owners. However, either
of these approaches can be provided as a ’premium’ privacy feature
using a subscription-tier model, as Alexa recently announced with
its ’Alexa+’, which offers some privacy features [43].

Comparing Alexa SDK vs. Physical Device Traffic. For Alexa,
our analysis focuses on traffic generated by the Alexa SDK, which is
made available to third-party developers to integrate Alexa function-
ality into their products. All Alexa enabled devices utilize Amazon
Voice Service (AVS), a cloud-based platform that processes user re-
quests [5]. While the traffic exhibits similar structural patterns and
phases we conducted a comparative traffic analysis to examine dif-
ferences between traffic generated by the SDK and by the Amazon
Echo device. Figure 6 (a) in Appendix A illustrates domain-level in-
coming and outgoing traffic differences across selected commands.
The Echo device contacts more domains, on average, than the SDK
when fulfilling a request. Nevertheless, the overall traffic volume
across most commands remains similar between the two platforms
(see Figures 6 (b) and Figures 6 (c)). Observed discrepancies are
largely attributable to time-sensitive commands, consistent with
prior findings by Wang et al. [59], which highlight that such com-
mands evolve over time and may reflect platform-wide changes
rather than intrinsic differences between SDK and device traffic.
The primary AVS domain also varies between SDK and Echo, a
phenomenon also documented in other Alexa-enabled devices such
as smartphones [3]. For example, the command "set a timer for 2
minutes” contacts the domain avs-alexa-4-na.amazon. com and
unagi-na.amazon.com on the Echo device. The same commands
contacts avs-alexa-12-na.amazon. comon the mobile phone Alexa
app and alexa.na.gateway.devices.a2z.com on the SDK. De-
spite these variations, traffic from the Echo device remains similarly
fingerprintable to that generated by the SDK. In our evaluation of 50
commands, fingerprinting accuracy reached 83.54% for SDK traffic
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and 79.70% for Echo device traffic. Importantly, our proposed sys-
tem, PriVA-C, effectively mitigates these risks, reducing fingerprint-
ing accuracy to 10.13% and 8.38%, respectively, for SDK and Echo
traffic. In summary, although command traffic may change over
time due to evolving responses or platform updates, such changes
do not necessitate fundamental alterations in countermeasure de-
sign. Instead, they highlight the importance of minor parameter
tuning to maintain performance and balance system overhead.

Limitations and Future Work. While our research advances
defenses against voice command fingerprinting attacks, several lim-
itations remain. Firstly, the optimization of our defense mechanism,
particularly for platforms like Google Assistant and Siri, presents
an area for further development. Moreover, dynamically adjusting
parameters based on user speech patterns, such as speed and accent,
could enhance personalization while reducing overheads. Second,
exploring anonymity set techniques, like Super-sequences[60, 41],
could strengthen privacy, but they require large databases, which
was a practical limitation in our study. Future research should inte-
grate these methods while balancing performance and overhead.
Lastly, a few observed corner cases in specific voice assistant third-
party skills like waiting for a complete large audio file to load before
starting playback might make a fixed rate defense difficult to op-
timize, since to avoid delays large overheads would be required.
However, such cases can be resolved by the platform owner by
enforcing playback as each chunk arrives. Despite these limitations,
our work lays the groundwork for future research to improve the
privacy of voice-controlled systems.

7 Conclusion

In conclusion, this research tackled the critical issue of voice com-
mand fingerprinting attacks by thoroughly evaluating existing de-
fense mechanisms. We demonstrated the inadequacy of current
voice assistant defenses and explored the applicability of website
fingerprinting defenses, revealing their potential yet highlighting
inefficiencies in the voice command context.

To address this gap, we introduced a defense mechanism specif-
ically optimized for voice assistants, achieving a strong balance
between overheads, privacy, and real-world deployability. We im-
plemented and deployed our solution within an Alexa SDK in a
controlled lab environment and conducted a user study to assess
the impact on user experience. Our findings emphasize the vulner-
ability of voice assistants to fingerprinting attacks and the need
for specialized defenses. This research proves that an effective and
usable defense is possible, underscoring the importance of ongoing
research to safeguard the privacy of voice-controlled systems in
the future.
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Table 11: Demographics of participants.

Demographic Value Count Percentage
25-34 18 72%
Age Group 18-24 7 28%
Man 16 64%

Gend

ender Woman 9 36%
Bachelor’s degree 13 52%
Education Master’s degree 11 44%,
Doctorate degree 1 4%
Race Asian 19 76%
Caucasian 3 12%
Black or African American 2 8%
Hispanic, Latinx, or Spanish origin 1 4%

Table 12: IUIPC scores across three dimensions: Control,
Awareness, and Collection.

Dimension Question Summary Mean Score Section Mean
Q1: Right to control information 6.35

Control Q2: Control central to privacy 6.39 6.35
Q3: Loss of control invades privacy 6.30
Q4: Data disclosure practices 6.78

Awareness  Q5: Clear privacy policies 6.87 6.49
Q6: Importance of knowledge about data use 5.83
Q7: Discomfort with sharing info 5.43

Collection Q8: Hesitation to pr.m‘/ide.info . 5.74 572
Q9: Concern over giving info to many companies 6.0
Q10: Concern over excessive data collection 5.7

Table 13: Results of using different end classification models
for ‘Spying’ attack with PriVA-C protecting "all traffic" from
the voice assistant. The results show similar performance
with very slight improvement for AutoGluon

Variant ‘ Model Accuracy ‘ Precision ‘ Recall
Strongest Random Forest 12.51% 7.54% | 12.91%
AutoGluon 12.61% 7.53% | 13.00%

Low B/W | Random Forest 22.22% 16.91% | 22.50%
(Haven) | AutoGluon 22.92% 16.57% | 22.81%
Delta Random Forest 12.51% 7.54% | 12.91%
AutoGluon 12.61% 7.53% | 13.00%

Forge Random Forest 12.96% 7.32% | 13.47%
AutoGluon 13.08% 8.17% | 13.54%

Table 14: Results of using different end classification models
for ‘Spying’ attack with PriVA-C protecting “only traffic to
primary AVS domain”. The results show similar performance
with very slight improvement for AutoGluon

Variant ‘ Model ‘ Accuracy ‘ Precision ‘ Recall
Strongest Random Forest 19.42% 19.38% | 19.54%
AutoGluon 19.77% 20.26% | 19.88%

Low B/W | Random Forest 29.88% 26.43% | 29.61%
(Haven) | AutoGluon 30.22% 26.99% | 30.02%
Delta Random Forest 19.76% 20.05% | 19.54%

AutoGluon 21.10% 20.85% | 20.43%

Forge Random Forest 19.52% 19.29% | 19.69%

AutoGluon 20.77% 20.49% | 20.39%
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Figure 6: Comparison of traffic from Alexa SDK and Amazon Echo device. (a) shows that traffic from Amazon Echo on average

contacts more domains compared to traffic from SDK. (b) shows traffic volume in outgoing and incoming directions from SDK

and Amazon Echo to all domains. For most commands traffic patters are similar whereas for remaining we see some variance

in traffic. (c) shows traffic volume to primary domain only.
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Figure 7: 65% of commands contact only one AVS Endpoint.
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