
PriVA-C: Defending Voice Assistants from Fingerprinting Attacks
Dilawer Ahmed

North Carolina State University

Raleigh, NC, USA

dahmed2@ncsu.edu

Aafaq Sabir

North Carolina State University

Raleigh, NC, USA

asabir2@ncsu.edu

Ahsan Zafar

North Carolina State University

Raleigh, NC, USA

azafar2@ncsu.edu

Anupam Das

North Carolina State University

Raleigh, North Carolina

anupam.das@ncsu.edu

Abstract
Voice assistants have become ubiquitous, yet they remain vulnera-

ble to network traffic fingerprinting attacks that can expose sensi-

tive user information. Existing defenses either impose high over-

heads or fail against advanced attacks. This paper addresses these

issues by introducing and evaluating PriVA-C, a fingerprinting de-

fense mechanism tailored specifically for voice assistants. Unlike

prior approaches that treat voice assistant traffic as generic web

traffic, we analyze its unique characteristics to design a more effec-

tive defense. Our approach prioritizes limiting information leakage

rather than targeting specific attack vectors, achieving a significant

reduction in attacker accuracy from 89% to 13%. We also propose a

more practically deployable version of our defense, which protects

only traffic directed to the primary voice assistant domain, reducing

attacker accuracy to 19%. We implement a functional prototype

using the Alexa SDK, conduct user testing, and assess its perfor-

mance using real network traffic. Our results demonstrate that our

proposed defense effectively mitigates fingerprinting attacks while

maintaining low overhead and preserving the user experience.

Keywords
Traffic Analysis; Privacy; Fingerprinting, Voice Assistants

1 Introduction
Voice assistants have become increasingly popular as an alternative

mode of interaction [44]. Recent trends and projections indicate

an increasing presence of voice assistant-enabled smart speakers

in homes, along with growing trends in voice-based searches [26].

The convenience of asking for information through your voice

rather than typing a search query makes the search faster and more

convenient for users for multiple common tasks such as asking

general questions, gettingweather updates, playingmusic, etc.With

Alexa’s recent upgrade to incorporate Large Language Model (LLM)

capabilities for native and developer use, this trend is expected to

continue growing [6].

Recent studies have highlighted various privacy concerns on

voice assistant platforms, including unauthorized invocations [19],

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2026(1), 26–42
© 2026 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2026-0003

issues with unwanted data collection by third-party skills [31, 49],

and unintended ad profiling [27]. Another significant privacy threat

arises from the analysis of encrypted network traffic to identify pat-

terns in user commands issued to voice assistants [29, 10, 35, 3, 23,

30]. By detecting these patterns, attackers can infer sensitive user

activities, revealing personal details such as daily routines, interests,

and preferences. Previous studies have demonstrated the effective-

ness of these attacks across various platforms and command types,

highlighting the privacy risks to end users.

While prior research has presented a few proof-of-concept coun-

termeasures to defeat such fingerprinting attack [59, 23], we find

these techniques to be ineffective against more sophisticated attacks.

Other works [20, 12] have proposed platform-agnostic countermea-

sures that operate at the network communication level, but these

solutions are often too generic and introduce significant usabil-

ity issues. This limits their effectiveness in achieving meaningful

reductions in attack performance while remaining practical for real-

world deployment. Additionally, some of these countermeasures

require modifications to the network or routing layers, making

them impractical to implement across millions of already deployed

devices in the wild.

In this work, we seek to answer the following research questions.

RQ1: Are current countermeasures for voice command and website
fingerprinting effective in preventing voice command fingerprinting
attacks with reasonable overheads? This allows us to understand any
inefficiencies, limitations, and unrealistic assumptions that existing

works have. RQ2: Based on insights from analyzing voice assistant
traffic, how can we design a more privacy-preserving and efficient
countermeasure that effectively balances privacy protection with util-
ity and system overhead? We introduce "PriVA-C" (pronounced

privacy) as a practical and effective defense against voice command

fingerprinting. Finally, RQ3: How can we practically implement
our proposed defense against voice command fingerprinting? Most

proposed countermeasures require anonymous routing to protect

all voice assistant traffic and in typical home networks, without a

VPN, this assumption fails. We propose and evaluate a version of

PriVA-C only applied to traffic to only one endpoint which removes

the need for proxies or VPNs to make deployment more realistic.

To the best of our knowledge, we are the first to develop a working

prototype of this countermeasure on the Alexa SDK and to conduct

both system performance analysis and usability testing with users.

Our approach draws inspiration from prior research on traffic

analysis defenses, particularly in the context of website and web-

page fingerprinting [33, 28]. It capitalizes on the unique patterns

26

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2026-0003

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

in how voice assistant devices communicate with networks in re-

sponse to user commands. By selectively obscuring specific traffic

characteristics during different phases of voice assistant commu-

nication , our method anonymizes both the user’s command and

the server’s response while reducing the overhead of simplistic

constant-rate defense approaches. Specifically, we build on fixed-

rate defenses by adapting them across different phases, dynamically

adjusting traffic rate characteristics to optimize overhead. Addition-

ally, we leverage data-driven analysis to select optimal transmission

rates, minimizing both delay and communication overhead. Our

design also incorporates protection for traffic directed to the pri-

mary voice assistant domain, enhancing the overall deployability of

the solution. We parameterize our defense to allow users a balance

between overhead and privacy. Through a user study, we show that

this defense is practical for real-world deployment and does not

degrade the user experience. Our key research contributions are:

• We conducted a comprehensive evaluation of existing defenses

for voice assistant and website fingerprinting, highlighting their

strengths and limitations in mitigating voice command finger-

printing attacks.

• We designed and implemented, PriVA-C, a voice assistant fin-

gerprinting defense, inspired by existing countermeasures. We

identified optimal configurations tailored to the unique charac-

teristics of voice assistants, enabling PriVA-C to maintain strong

performance while adapting multiple fingerprinting attack vec-

tors and voice assistant platforms.

• We integrated our defense into the Alexa SDK and analyzed real-

world data to rigorously quantify our defense’s effectiveness,

offering valuable insights into the challenges and opportunities

in this domain.

• We also conduct a user study with our defense integrated into

Alexa SDK to assess its impact on user experience and system

performance.

• To foster further research and innovation, we open-source our

code and dataset
1
, allowing researchers and developers to repli-

cate our results, extend our work, and contribute to the advance-

ment of voice assistant privacy.

2 Background
2.1 Network Traffic-Based Fingerprinting
Network fingerprinting involves identifying unique characteristics

in network traffic or device behavior to distinguish one entity from

another. The core concept is that each target—whether a device,

software, or app—has distinct characteristics, use cases, and require-

ments, leading to unique communication patterns. By analyzing

encrypted traffic, these patterns can be classified and attributed to

specific devices, often through machine learning techniques. This

approach is applied across various domains [7, 37, 17, 57], each with

its own methodologies and implications. Network fingerprinting

can serve as both a privacy attack—such as identifying the operating

system of a device [42]—and a defense mechanism, like detecting

rogue devices on a network [1]. Website fingerprinting, IoT fin-

gerprinting, and voice assistant fingerprinting are sub-domains of

network fingerprinting.

1
https://github.com/dilawer11/PriVA-C

Website Fingerprinting. Website fingerprinting involves iden-

tifying visited websites by analyzing traffic patterns, such as data

volume, packet timing, and sequences [14, 24, 54, 47]. Over time,

this technique has become increasingly sophisticated, even capable

of identifying webpages accessed simultaneously on the Tor net-

work. Despite Tor’s encryption, anonymous routing, and privacy

features, website fingerprinting can still compromise user privacy

by revealing browsing habits. Researchers have developed counter-

measures to mitigate such attacks, emphasizing the delicate balance

between security and privacy [36].

IoT Fingerprinting. IoT fingerprinting identifies devices based on

their unique communication patterns, including packet frequency,

size, and protocols. Researchers have applied this technique for

various purposes, such as inventory management, anomaly detec-

tion, and privacy attacks, particularly by identifying devices within

home networks [8, 45, 50]. Studies have examined how fingerprints

evolve over time and how factors such as geo-location affect IoT

device identification [2]. These attacks can even reveal specific ac-

tivities performed on IoT devices, such as motion detection, raising

further privacy concerns [8]. Additionally, other unique identifiers

can be used to pinpoint specific devices or systems [51, 15].

Voice Command Fingerprinting. Voice command fingerprint-

ing is a subset of IoT fingerprinting that focuses specifically on

identifying voice assistant devices and their activities or commands.

This technique can recognize specific commands, such as asking a

voice assistant to play music or inquire about the weather. Privacy
attacks using this method can target multiple platforms, including

Amazon Alexa, Google Assistant, and Siri [59, 3]. While previous

research [59, 23] has proposed methods to secure this traffic, we

will evaluate these existing solutions, highlight their limitations,

and suggest improvements to better protect user privacy.

Each type of fingerprinting underlines the dual-edged nature

of network analysis, offering benefits while posing privacy and

security challenges. Understanding these aspects is crucial for de-

veloping robust defense mechanisms against potential threats.

2.2 Threat Model
In a voice command fingerprinting attack, the threat model con-

siders the bidirectional network traffic between a voice assistant

device and the internet endpoints it communicates with to provide

functionality. The device is assumed to be deployed in a typical

home network that offers standard encrypted internet connectivity

but lacks additional protections against traffic monitoring (e.g., a

VPN). The user interacts with the assistant by issuing voice com-

mands, while an on-path adversary passively observes the resulting

traffic. Such an adversary could be non-local, for instance, an ISP.

Due to NAT, non-local adversaries cannot directly attribute an

observed network flow to its originating device within the home

network. Consequently, traffic from multiple active devices may

become intermingled, introducing noise into the target device’s

flows and potentially degrading feature extraction. To address this

challenge, Ahmed et al. [3] proposed a flow filtering technique

that isolates the traffic of voice assistant devices from that of other

devices, demonstrating that attacks can still achieve high accuracy

even in noisy conditions. An alternative threat model involves a

local adversary with direct access to the home network. Such an

27

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

adversary—e.g., a roommate—can easily associate traffic with its

originating device and is therefore considered more powerful than

a non-local adversary. There may also be a disparity in capabilities

between an ISP, which could possess significantly greater compu-

tational and financial resources, and a roommate, whose resources

may be limited. Nevertheless, such an attack can be carried out with

modest means, such as a consumer-grade laptop. In either setup,

the attacker can monitor metadata—such as packet sizes, timing,

and frequency—for encrypted traffic, and may also access the con-

tents of unencrypted traffic, such as DNS queries. By leveraging the

knowledge of any deployed countermeasures and configurations,

the attacker can build a fingerprint database or train models to

infer user commands, i.e., the attacker can adapt strategies based

on the deployed countermeasures. The attacker through this attack

can infer user behavior and commands without decrypting the

communication, thereby compromising privacy.

3 Related Works
While research on network traffic analysis and privacy preservation

is extensive, this section focuses on the most relevant areas: IoT

fingerprinting, voice command fingerprinting, and website finger-

printing, which form a foundation for understanding and addressing

the unique challenges of voice command fingerprinting defenses.

3.1 Fingerprinting Attacks
There is extensive research on fingerprinting devices and applica-

tions through traffic analysis [14, 24, 54, 55, 47, 1, 52, 17, 57, 37].

Among these, the most relevant to our work are studies focused on

IoT fingerprinting and voice command fingerprinting.

IoT Fingerprinting. IoT fingerprinting focuses on identifying de-

vices based on their network traffic and has been widely explored

in prior research. This body of work demonstrates the feasibility of

extracting meaningful information from network patterns. Tech-

niques range from applying machine learning and deep learning

to network metadata [8, 32, 50, 56], to analyzing specific elements

such as DNS queries [45]. Additionally, researchers have investi-

gated the factors that enable fingerprinting under diverse network

conditions [2, 15].

Voice Command Fingerprinting. Voice command fingerprinting

poses a direct threat to user privacy. Initial work by Kennedy et

al. [29] demonstrated the feasibility of this attack on Alexa. Subse-

quent research has sought to improve accuracy [35], extend anal-

ysis to open-world scenarios [59], incorporate multiple voice as-

sistants [3], and explore the impact of location-based factors [30].

Researchers have also shown the effectiveness of such an attack in

the presence of a Home VPN [23]. These studies collectively demon-

strate the increasing sophistication and real-world applicability of

voice command fingerprinting attacks.

3.2 Fingerprinting Defenses
Although defenses against voice command fingerprinting are still

in their early stages, the broader domain of network traffic analy-

sis countermeasures — especially within website fingerprinting —

provides valuable insights. These defense strategies generally fall

into several key categories:

Fixed-Rate Transmission: Early defenses such as BuFLO [13],

Tamaraw [12], and CS-BuFLO [11] sought to counter fingerprint-

ing attacks by enforcing fixed transmission rates. Although these

approaches proved effective in reducing attack success, they intro-

duced substantial overhead, making them impractical for real-world

use. To improve efficiency, DynaFlow [33] introduced a more adap-

tive strategy by dynamically adjusting transmission rates based on

traffic conditions.

Anonymity Sets: Defenses like Glove [41] and Supersequence [60]

group sensitive websites into anonymity sets, aiming to make traf-

fic within each set indistinguishable. Walkie-Talkie [61] was built

upon this concept. However, these methods often run into various

problems during implementation [47, 36], which can be unrealistic

for resource-constrained IoT devices.

Padding-Based Approaches: Techniques like WTF-PAD [28] and

BiMorphing [39] introduce padding to obfuscate traffic patterns.

However, recent research suggests these methods often suffer from

high overhead or limited effectiveness [54].

Adversarial Examples: Methods like Mockingbird [46] and BANP

[40] generate specific traffic patterns to disrupt machine learning-

based attacks. However, their effectiveness is often limited to spe-

cific attack methods [36].

Traffic Splitting: This approach splits traffic across multiple paths

e.g., Tor circuits [18] or ISPs [25]. While conceptually effective, it

often requires infrastructure not readily available in typical home

network settings.

Voice-platform Specific: Research on concrete defenses against

voice command fingerprinting is still limited. Wang et al. [59] pro-

posed a padding-based method, inspired by WTF-PAD, to defend

against their own deep learning-based fingerprinting attack. An-

other recent effort, VoiceDefense [23], also addresses the challenge

of protecting against voice command fingerprinting by padding

and fake traffic injection.

3.3 Distinction with Prior Work
We significantly differ from previous efforts of voice command fin-

gerprinting defenses byWang et al. [59] and Guo et al. [23]. Wang et

al. extended Adaptive Padding, similar toWTF-PAD, and introduced

delays via differential privacy. However, this approach suffers from

substantial time overheads and proves ineffective against more so-

phisticated attacks that leverage packet timing information. Guo et

al.’s method, which employs random reshaping of outgoing traffic

and the addition of invalid incoming requests, is also vulnerable to

timing-based attacks, as it fails to mitigate the information leakage

from packet timing as we show in Section 4.

In contrast, our research focuses on fundamentally limiting dis-

tinctive traffic patterns, rather than targeting a specific attack strat-

egy. While this general-purpose approach may introduce higher

overhead, prior research [36, 12] and our own findings in Section 4

demonstrate that it offers stronger andmore resilient privacy protec-

tion. Inspired by constant-rate defenses [20, 12], we have optimized

these techniques specifically for voice assistants, achieving a more

efficient and robust solution. Furthermore, we are the first to not

only present a functional defense prototype but also to conduct

usability testing and evaluation using real network traffic. This

practical, empirical approach, coupled with our rigorous evaluation

28

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

Figure 1: The lab deployed a setup to collect data, where
the control system plays audio request commands through
speakers. These commands are picked up by a microphone
connected to a Raspberry Pi running the AVS SDK. Network
traffic is captured at the router that provides internet con-
nectivity to the Raspberry Pi.

against multiple publicly available attacks, demonstrates the broad

applicability and effectiveness of our defense, setting it apart from

the theoretical or proof-of-concept nature of prior voice command

fingerprinting defense studies.

4 Evaluating Existing Defenses
In this section, we describe the experimental setups and methodolo-

gies used to evaluate the effectiveness and limitations of existing

defenses against voice command fingerprinting (RQ1).

4.1 Collection Setup & Datasets
Amazon Alexa is the most widely used voice assistant in terms of

market share [21] and existing literature on voice command fin-

gerprinting [29, 10, 59, 3, 23, 30] has primarily focused on Alexa.

Amazon Alexa provides an open-source SDK [4] to integrate the

voice assistant functionality into third-party devices. For the afore-

mentioned reasons we primarily focus on Amazon Alexa through-

out the remainder of this paper since we use the Alexa SDK to

implement, test, and deploy our defense in Section 5. However, we

do evaluate existing approaches and our defense on the second

and third most popular voice assistant platforms, Google and Siri,

respectively [21], to demonstrate adaptability. However, for these

two platforms, we relied on data collected in prior work [3], as

neither Google nor Siri provides an open-source SDK that would

allow us to modify their existing communication patterns.

In line with previous work [36, 54, 59, 23], we simulate the ap-

plication of countermeasures on network traffic to evaluate their

performance and any overhead they may introduce to transmission.

We utilize the simulation code provided by the authors where avail-

able, following the instructions in their papers as closely as possible.

Our dataset encompasses a diverse set of command types—simple

queries, streaming requests, and third-party skill invocations—each

generating distinct network traces. Such diversity is essential for

building a benchmark dataset capable of evaluating countermea-

sure performance across varied scenarios, as different command

types may exhibit unique traffic characteristics [3]. The resulting

benchmark dataset consists of 100 voice commands, each repeated

100 times, yielding a total of 10,000 samples. To ensure that the

Alexa SDK consistently responded with the correct output, we man-

ually validated one complete round of data collection (i.e., for all

100 different voice commands) and reused the same set of invoca-

tion audio files for the remaining 99 rounds. To collect the dataset,

we developed an automated data collection pipeline based on the

methodologies used in prior works [59, 3], ensuring consistency

with prior research. The data collection setup is visually shown in

Figure 1. It consists of the following items:

• Amazon Alexa SDK [4] running on a Raspberry Pi 4 (4 GB) with

a UMA-8 USB Microphone Array as the voice assistant device.

• The voice assistant device is connected viaWi-Fi to an OpenWRT

Linksys router, with network traffic captured and stored on an

Ubuntu Desktop for increased storage capacity.

• A speaker, controlled by a Python script, automatically converts

the text command to audio using a Text-to-Speech model and

plays it, thereby activating the voice assistant.

For Google Assistant and Siri, we use the open-source datasets

provided by Ahmed et al. [3]. Each dataset contains 5,000 samples,

comprising 100 recordings of 50 distinct simple voice commands,

collected using a setup similar to that employed for the Alexa SDK.

4.2 Baseline Attack Models
We use two recent open-sourced voice command fingerprinting

attacks from the latest literature [59, 3] to establish a baseline for

attack performance on unprotected, raw network traffic from voice

assistants.

DeepVC [59]. DeepVC, proposed by Wang et al., is a voice com-

mand fingerprinting attack that utilizes various Deep Learning

models, such as CNN and LSTM. The model architecture is inspired

by website fingerprinting attacks, like Deep Fingerprinting [54].

The attack focuses on packet size and direction features, where

each sample consists of the size and direction of the first n packets

in the packet trace. For our evaluation, we experimented with both

the default parameters recommended in their study and a range

of hyperparameter tuning configurations, ultimately selecting the

optimized settings that yielded the best performance. Although the

datasets we evaluate differ from those used in their work, we were

able to replicate their attack’s performance on their datasets within

an average 2% negative margin in performance metrics.

Spying [3]. Ahmed et al. introduced a novel voice command fin-

gerprinting attack that utilizes multiple handcrafted features and

automated machine learning pipelines to train the models. Each

sample in their feature set is a summary of various metadata distri-

butions and counts within a variable — size window. In Ahmed et

al.’s [3] work they use AutoGluon Tabular [9] and Random Forest as

the classifiers. AutoGluon trains a diverse ensemble of models and

typically outperforms Random Forest by at most 5%. In our replica-

tion using Random Forest, attack accuracy for Google Assistant and

Siri remained within 1% of results from AutoGluon, given identical

datasets and feature parameters. For Alexa, AutoGluon achieved 4%

higher accuracy. Despite this, we use Random Forest with default

settings in our evaluations, as it enables efficient comparison across

thousands of parameter combinations during grid search for all

29

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

Table 1: Fingerprinting performance across three different
platforms. The results show high attack accuracy in all cases
for Spying attack [3] while performance for DeepVC [59] is
higher for Google Assistant compared to other platforms.

Platform Attack Accuracy Precision Recall

Alexa

Spying 88.40% 85.83% 86.02%

DeepVC 54.03% 59.40% 54.84%

Google Spying 88.40% 88.49% 88.29%

Assistant DeepVC 81.30% 86.04% 81.17%

Siri

Spying 85.90% 85.78% 86.20%

DeepVC 64.90% 69.46% 65.16%

defenses. However, we evaluated the performance of AutoGluon

against the final defense (with optimized parameters) proposed by

Ahmed et al. [3], and compared it with our Random Forest model

to demonstrate that the defense remains effective regardless of the

classifier employed by the attack. The corresponding results are

reported in Tables 13 and 14 in Appendix A.

We partition the benchmark dataset using a standard 80:20

train/test split. For baseline performance evaluation, we use the

raw network metadata without applying any defenses or modifi-

cations, reflecting typical voice assistant communication patterns.

This setup aligns with the methodology adopted in prior attack

studies. The results are presented in Table 1. Ahmed et al. [3] outper-

formWang et al. [59] in fingerprinting undefended traffic, achieving

an accuracy of 88% compared to 54%. We also test the respective

models on Google Assistant and Siri. We achieve similar results

with high undefended accuracy for both platforms showcasing the

need for an effective countermeasure against such attacks.

4.3 Evaluation Setup
We test multiple traffic analysis countermeasures designed for both

website fingerprinting and voice command fingerprinting. Each

countermeasure is typically parameterized to accommodate various

types of network traffic and operational scenarios. In our evalua-

tion, we analyze each countermeasure across different parameter

settings, at least as expansive as suggested by the original work.

It is crucial to highlight that the majority of website fingerprint-

ing attacks and defenses have been studied within the context of

the Tor network. The Tor network inherently provides anonymous

tunneled routing and has the ability to transmit data in fixed-size

chunks, known as cells. Consequently, many of these defenses are

tailored to this environment and, in addition to not obfuscating

destination addresses, assume each packet (cell) is padded to a fixed

size. For our evaluations, we adapt these defenses, where applicable,

to a fixed-packet size configuration as to not create a disadvantage

for such defenses.

To assess the impact of countermeasures, we utilize bandwidth

overhead and delay alongside standard classification performance

metrics, including Accuracy, Precision, and Recall. Bandwidth over-

head refers to the additional amount of data transmitted due to

the countermeasure, including any padding or dummy traffic. The

bandwidth overhead is calculated using the following percentage

increase formula:

𝐵/𝑊𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑉final −𝑉initial

𝑉initial
× 100 (1)

where 𝑉initial represents the original traffic volume, whereas 𝑉final
represents the total volume after applying the countermeasure.

Delay is a measure of time overhead, which is defined as the

difference between the time that a packet was originally supposed to

be sent (in undefended traffic) compared to the time it was actually

sent after the defense was applied.

𝐷𝑒𝑙𝑎𝑦 =
1

𝑛

𝑛∑︁
𝑖=1

(𝑇defended −𝑇plain) (2)

where 𝑛 represents the total number of packets in the trace. If a

packet is split into multiple parts and these parts arrive at different

times, 𝑇𝑑𝑒𝑓 𝑒𝑛𝑑𝑒𝑑 is the time when the last part arrives (𝑇𝑝𝑙𝑎𝑖𝑛 refers

to the original timestamp of the packet). The delay metric excludes

processing or transmission delays, as they are assumed to remain

consistent and cancel out.

Given that our threat model assumes a fully informed adversary

with complete knowledge of the deployed countermeasure and its

parameters, we adopt a conservative evaluation approach. Specif-

ically, we assume a worst-case scenario in which the adversary

acts last and is able to train their models on traffic that has already

been processed by the defense mechanism. Accordingly, in all our

evaluations, we apply the countermeasure to both the training and

test subsets of the benchmark dataset, thereby ensuring that the

adversary operates under maximally favorable conditions.

4.4 Voice Command Fingerprinting Defenses
DeepVC-CM [59] proposed a proof-of-concept defense against

their own voice command fingerprinting attack, DeepVC. The de-

fense works by generating dummy packets based on the adaptive

padding principle, sampling from a distribution of intervals and

sizes of real packets. A Laplacian noise function dictates the size

of both real and dummy packets as well as any delays to be in-

corporated. We use the open-sourced implementation provided to

evaluate this defense. We found that differential privacy noise func-

tion occasionally causes unrealistically significant packet delays,

due to highly varied packet sizes from different domains.

Our evaluation of DeepVC-CM [59] on Alexa (Table 2) shows

that its most robust configuration reduces attacker accuracy to

approximately 37%, but at the cost of a 131% bandwidth overhead.

In the lowest bandwidth setting, accuracy increase to 42%. We

note that we get abnormally high delays, thousands of seconds,

due to a combination of large packet sizes observed in streaming

commands, Laplacian noise design, and how DeepVC’s simulation

code applies the delays [59, 58]. Reducing delay by adjusting the

Laplacian noise function is possible, however, would likely weaken

its ability to conceal timing features. These results indicate that,

although the defense effectively obfuscates traffic, its high latency

limits real-world viability. However, for Google Assistant and Siri,

we do not observe similarly large delays. This is likely due to the

absence of large packet sizes in their datasets, which consist solely

of simple commands (i.e., no streaming commands), resulting in

comparatively lower delays on these platforms relative to Alexa.

Nonetheless, when compared to other defenses, the delays remain

significantly higher, indicating the need to re-evaluate and adapt

the noise function to accommodate multiple scenarios rather than

being tailored to a single dataset or attack.

30

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

Table 2: Attack performance after applying existing coun-
termeasures on all traffic from the voice assistant using the
benchmark dataset.

Countermeasure Details Performance Overheads

Name Setting Attack Accuracy Precision Recall B/W Delay(s)

Strongest

Spying 37.42% 36.22% 37.41% 131% 6323

DeepVC-CM DeepVC 0.95% 0.44% 1.00% 411% 1061

[59]

Low B/W

Spying 41.62% 40.93% 41.35% 94% 8956

DeepVC 2.20% 1.99% 2.09% 94% 8956

Strongest

Spying 77.09% 77.16% 77.26% 66% 0

VoiceDefense DeepVC 4.00% 6.08% 4.74% 12% 0

[23]

Low B/W

Spying 82.59% 82.83% 82.70% 12% 0

DeepVC 4.00% 6.08% 4.74% 12% 0

Strongest

Spying 9.80% 11.99% 9.97% 1003% 0.45

BuFLO DeepVC 2.05% 0.57% 2.39% 645% 0.76

[20]

Low B/W

Spying 37.02% 36.04% 36.78% 196% 1.78

DeepVC 24.36% 26.11% 24.67% 196% 1.78

Strongest

Spying 16.41% 10.07% 16.88% 330% 0.81

Tamaraw DeepVC 13.56% 9.47% 14.17% 220% 1.78

[12]

Low B/W

Spying 23.56% 17.81% 24.22% 145% 2.53

DeepVC 19.21% 10.41% 19.90% 145% 2.53

Strongest

Spying 11.66% 4.63% 12.26% 196% 4.11

DynaFlow DeepVC 0.65% 0.01% 1.00% 196% 4.11

[33]

Low B/W

Spying 11.66% 4.63% 12.26% 196% 4.11

DeepVC 0.65% 0.01% 1.00% 196% 4.11

Strongest

Spying 69.83% 69.87% 69.92% 84% 0

WTF-PAD DeepVC 0.70% 0.16% 0.69% 84% 0

[28]

Low B/W

Spying 78.74% 79.37% 79.01% 9% 0

DeepVC 1.40% 1.30% 1.38% 9% 0

VoiceDefense [23] is a proof-of-concept defense developed to mit-

igate voice command fingerprinting attacks. This approach intro-

duces "random reshaping" of outgoing traffic and proposes blending

incoming traffic with "invalid requests". However, the specifics of

these invalid requests are not detailed, and the available implemen-

tation from the open-source repository does not include the code

for invalid requests, with only the random reshaping component

provided. Based on the paper’s description, we interpret "invalid

requests" as instances where the voice assistant is activated with-

out any follow-up command, causing it to listen for a limited time

without issuing a response. We use this assumption to simulate and

evaluate the proposed defense in our study.

Our evaluation of VoiceDefense [23] on Alexa (as shown in Table

2) shows that even in its strongest configuration, it only reduces

attack accuracy to 77%, with a bandwidth overhead of 66% and

no delays. The lowest bandwidth configuration performs slightly

worse, with an accuracy of 83% and a bandwidth overhead of 12%.

These results indicate that while the approach is lightweight, it

does not provide strong privacy guarantees against fingerprinting

attacks. Similar ineffectiveness as a defense is also observed when

evaluated in Google Assistant and Siri (as highlighted in Table 3)

with the lowest accuracy in Google Assistant of 68%.

4.5 Website Fingerprinting Defenses
BuFLO [20]. Dyer et al. [20] argue that efficient countermeasures

inherently leak information and are therefore ineffective. To address

this, they propose a bi-directional constant-rate padding scheme,

known as BuFLO, as an intentionally inefficient yet robust defense

against website fingerprinting. BuFLO transmits traffic at a constant
rate (e.g., every 20 ms) using fixed-size packets (e.g., 500 bytes) for
at least a specified minimum duration which causes BuFLO to incur

significant bandwidth overhead but guarantee strong performance.

Our evaluation shows that BuFLO, in its strongest configuration,

reduces attack accuracy for Alexa to 10% (Table 2), but at the cost

of sending 1003% more data. A lower bandwidth configuration of

645% overhead reduces the attacker accuracy to 37%. On Google

Assistant and Siri a reduced attacker accuracy of about 2% (as shown

in Table 3) is observed in both cases with similarly high overheads.

These results underscore the trade-off between effectiveness and

resource consumption, rendering BuFLO impractical for real-world

deployment.

Tamaraw [12]. Tamaraw, proposed by Cai et al., improves upon

BuFLO by introducing direction-specific transmission rates, ac-

knowledging that web traffic typically involves more incoming

than outgoing data [12]. Additionally, Tamaraw replaces BuFLO’s

minimum time parameter with a padding parameter to determine

the defense’s end condition. Instead of stopping immediately after

the actual transmission ends, Tamaraw continues to send dummy

packets until the total duration aligns with a multiple of the padding

parameters. This obscures the precise end time of the transmission,

further mitigating information leakage to an adversary.

Our results show that Tamaraw’s strongest configuration re-

duces attack accuracy to 16%, with a bandwidth overhead of 330%

and a moderate delay of 1.13 seconds. In its lowest bandwidth

setting, accuracy rises to 24%, while overhead decreases to 145%.

Analysis across platforms (as shown in Table 3) shows better results

on Google Assistant and Siri with an accuracy of 4% and 9% respec-

tively with similar overheads. These results suggest that Tamaraw

offers a more practical balance between effectiveness and efficiency

compared to BuFLO.

DynaFlow [33]. Lu et al. proposeDynaFlow, an adjustable constant-
rate defense similar to Tamaraw [12]. DynaFlow periodically modi-

fies the transmission rate based on prior inter-packet delays and

sends packets in fixed patterns at direction-specific rates to reflect

differences in incoming and outgoing traffic. While its design aims

to reduce overhead through adaptive rate adjustments, the parame-

ters provided are tailored for website fingerprinting and may not

directly translate to voice command fingerprinting due to differ-

ing traffic characteristics. We evaluate DynaFlow using both the

parameters suggested in the original work and additional settings

tailored to voice command traffic.

Our evaluation shows that DynaFlow’s strongest and lowest-

bandwidth configuration was the same in our parameter sweep,

reducing attacker accuracy to 12% with an overhead of 196% at

a mean latency of 4.11 seconds. These results indicate that while

DynaFlow offers lower overhead than BuFLO, it still introduces sig-

nificant latency due to its design tailored to website fingerprinting

traces [33]. DynaFlow’s performance worsens for Siri compared to

other platforms (as shown in Table 3).

WTF-PAD [28]. Juarez et al. propose a probabilistic link-padding
defense, extending the concept of Adaptive Padding [53]. This de-

fense introduces dummy packets during periods of low network

traffic to disrupt the characteristic patterns used by machine learn-

ing models for fingerprinting. WTF-PAD leverages the natural

fluctuations in traffic streams, alternating between bursts of pack-

ets and quiet intervals. While it proved effective against earlier

website fingerprinting attacks relying solely on packet sizes and

31

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

Table 3: Evaluating different countermeasures on Google Assistant and Siri. Results show a high overhead and/or low privacy
performance of existing countermeasures.

Countermeasure Details Google Assistant Siri
Performance Overheads Performance Overheads

Name Setting Attack Accuracy Precision Recall B/W Delay(s) Accuracy Precision Recall B/W Delay(s)

Strongest

Spying 26.60% 24.82% 26.18% 144% 8.09 33.63% 31.11% 33.20% 556% 0.52

DeepVC-CM DeepVC 2.30% 0.05% 2.00% 106% 4.99 2.00% 0.04% 2.00% 556% 0.52

[59]

Low B/W

Spying 31.60% 28.61% 31.47% 106% 4.99 44.24% 44.54% 43.65% 53% 11.44

DeepVC 2.30% 0.05% 2.00% 106% 4.99 25.33% 32.38% 25.82% 53% 11.44

Strongest

Spying 67.70% 66.73% 67.22% 73% 0.0 76.58% 76.42% 75.97% 498% 0.0

VoiceDefense DeepVC 57.50% 70.90% 57.90% 69% 0.0 1.70% 0.43% 2.08% 429% 0.0

[23]

Low B/W

Spying 79.40% 79.26% 79.29% 22% 0.0 81.38% 81.36% 80.85% 105% 0.0

DeepVC 72.80% 79.82% 72.97% 22% 0.0 62.96% 71.80% 63.76% 105% 0.0

Strongest

Spying 1.60% 0.28% 1.68% 1063% 0.12 1.70% 0.61% 1.83% 1169% 0.02

BuFLO DeepVC 1.60% 0.06% 1.84% 785% 0.21 1.70% 0.03% 2.00% 503% 0.04

[20]

Low B/W

Spying 10.90% 10.68% 11.04% 400% 0.46 44.74% 44.13% 44.37% 411% 0.04

DeepVC 3.90% 3.03% 4.10% 400% 0.46 2.00% 0.04% 2.00% 411% 0.04

Strongest

Spying 4.10% 0.57% 4.79% 322% 0.72 8.91% 2.00% 11.52% 344% 0.06

Tamaraw DeepVC 1.40% 0.06% 2.18% 898% 0.12 1.60% 0.03% 2.00% 493% 0.04

[12]

Low B/W

Spying 7.30% 3.28% 7.96% 302% 0.72 20.62% 13.60% 22.87% 321% 0.06

DeepVC 8.00% 3.55% 7.72% 302% 0.72 2.00% 0.04% 2.00% 321% 0.06

Strongest

Spying 4.30% 1.44% 5.06% 1492% 0.41 21.82% 16.53% 24.26% 328% 0.44

DynaFlow DeepVC 1.10% 0.02% 2.00% 1466% 0.8 2.00% 0.04% 2.00% 439% 0.07

[33]

Low B/W

Spying 6.60% 3.09% 7.84% 347% 3.74 21.82% 16.53% 24.26% 328% 0.44

DeepVC 1.60% 0.03% 2.00% 347% 3.74 5.71% 2.33% 5.71% 328% 0.44

Strongest

Spying 66.10% 65.84% 66.06% 89% 0.0 72.97% 72.81% 72.26% 136% 0.0

WTF-PAD DeepVC 1.80% 0.04% 2.00% 64% 0.0 25.83% 32.85% 25.97% 136% 0.0

[28]

Low B/W

Spying 79.90% 80.29% 80.15% 9% 0.0 76.88% 77.52% 76.43% 14% 0.0

DeepVC 25.70% 35.24% 26.73% 9% 0.0 39.84% 50.14% 40.52% 14% 0.0

directions, more advanced attacks incorporating timing informa-

tion have bypassed WTF-PAD, as it does not conceal the original

timing of packets [47].

Our evaluation (Table 2) shows that WTF-PAD’s strongest con-

figuration reduces the accuracy to 70%, with a modest bandwidth

overhead of 84% and no added delay. The lowest bandwidth setting

causes an accuracy jump to 79% while reducing bandwidth usage

to 9%. We observe similar trends on Google Assistant and Siri (as

highlighted in Table 3). These results indicate that while WTF-PAD

is lightweight, it does not provide strong privacy protection against

fingerprinting attacks.

Other defenses. Researchers have proposed various countermea-

sures to prevent website fingerprinting on Tor, with traffic-splitting

defenses [25] being a promising low-overhead, high-performance

solution in specific threat models. However, in most home net-

works, it is unrealistic to assume the presence of multiple ISPs for

voice assistant devices. Additionally, countermeasures that rely on

adversarial examples to defeat specific attack vectors are ineffective

against other attack models [36, 20], and as such, we do not con-

sider them in this work. Other defenses are either challenging to

implement for voice assistants [61] or require large databases [39],

which are not feasible for low-powered IoT devices.

Takeaway. Existing voice command fingerprinting defenses are

largely ineffective against diverse attack types. While website traffic

fingerprinting techniques—such as constant rate defenses—show

promise, they are not optimized for the unique characteristics of

voice application traffic.

5 PriVA-C
In this section, we present the design and evaluation of multiple

setups of PriVA-C to address RQ2 & RQ3. As highlighted by pre-

vious works and our analysis of defenses discussed in Section 4,

constant-rate defenses are most effective at obscuring network pat-

terns and provide robust privacy against various traffic analysis

attacks. However, they tend to incur higher overhead compared to

other defenses, making optimization of these defenses crucial. We

identify several key areas for potential improvement.

5.1 Traffic Pattern Analysis & Defense Design
To develop a defense mechanism that ensures privacy while mini-

mizing overhead, it is crucial to first understand the traffic patterns

of voice assistant interactions. This understanding helps identify

the information that needs to be concealed from potential adver-

saries, while also identifying opportunities to reduce overhead. To

achieve this, we conducted an in-depth analysis of the traffic pat-

terns associated with 100 different voice assistant commands from

our benchmark dataset. Our analysis uncovers several key insights:

Incoming vs. Outgoing. To assess the sensitivity of each traffic

direction to fingerprinting, we divided the dataset into two parts.

The first dataset contains only outgoing traffic, while the second

includes only incoming traffic.We then extracted features from each

dataset and trained the model. The results in Table 4 reveal that an

adversary can fingerprint voice commands with approximately 79%

accuracy using only outgoing traffic and 78% accuracy with only

incoming traffic. This highlights the importance of securing traffic

in both directions to achieve substantial privacy protection for the

32

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

Table 4: Fingerprinting performance using only incoming
or outgoing traffic in Alexa. This shows the importance of
defended bidirectional traffic.

Direction Attack Accuracy Precision Recall

Outgoing

Spying 78.89% 78.83% 79.02%

DeepVC 38.82% 40.93% 39.20%

Incoming

Spying 77.99% 77.68% 78.00%

DeepVC 46.15% 52.14% 47.74%

user. Modifications to outgoing traffic must be implemented on

the “client-side” (before an adversary can observe outgoing traffic),

while changes to incoming traffic should be made on the server

side. The “server-side” refers to any service or point beyond which

the adversary cannot intercept the traffic. This may include VPN

services, reverse proxies, or even the endpoint itself.

Contacted Endpoints. Figure 7 in Appendix A demonstrates that

approximately 65% of the commands in our benchmark dataset in-

teract with a single domain, the Alexa Voice Service (AVS) Endpoint.

For most of the remaining commands, the endpoints contacted

are enough information to uniquely identify them; for instance,

the command to play CNBC news connects to a subdomain of

cnbc.com. In such cases, a tunneled proxy would be necessary to

prevent information leakage from endpoints, requiring the voice

assistant platform to route all traffic through itself, or the user to

use a tunneled proxy. This tunneled setup can be complex to set

up for an average user and/or increase the costs of operation for

the platform owner. In our design, we consider two deployment

scenarios. First, in which all the traffic is tunneled and protected,

and another in which only traffic to the AVS domain is protected.

We expect the former to be more privacy-preserving, however, the

latter is more realistically deployable by the platform owner.

Outgoing Phase. Once the wake word is detected, the voice assis-

tant begins streaming encrypted user audio from the microphone

to the Amazon Alexa AVS Endpoint [5, 3]. This phase of commu-

nication is represented by the blue bars in Figure 2. The duration

of this phase reflects how long it takes for the user to complete

the command or for the Alexa Voice Service to interpret the user’s

intent. Except for the duration, this phase is similar for all com-

mand types. While the outgoing phase alone does not provide

enough information to infer the user’s voice commands — since

factors like user age, speaking speed, and accent can affect the audio

stream [59] — we propose a design that extends the duration of the

outgoing phase. This extension can be achieved either by adding

dummy packets at the same rate as the original traffic or by keeping

the audio stream active. In our design, all outgoing traffic phases

last for at least out_min_len seconds. Any outgoing phase longer

than this is padded until the next interval, where the interval is

defined by outgoing_interval. For instance, if out_min_len = 5 and
outgoing_interval = 2, an outgoing phase lasting 2 seconds will be

padded to appear as 5 seconds to a network observer, while an

outgoing phase of 6 seconds will be padded to 7 seconds.

Incoming Phase. Immediately, after the initial outgoing phase we

observe a more incoming heavy traffic phase. This aligns with voice

assistants’ response to the user. This incoming phase exhibits a high

degree of similarity for different instances of the same command

0 1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

0 1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

0 1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

0 1 2 3 4 5 6 7

−1500

−1000

−500

0

500

1000

1500

time (s)

si
ze

(b
y
te

s)

outgoing - AVS Endpoint

incoming - AVS Endpoint

outgoing - dcs.megaphone.fm

incoming - dcs.megaphone.fm

outgoing - traffic.megaphone.fm

incoming - traffic.megaphone.fm

outgoing - chrt.fm

incoming - chrt.fm

outgoing - Other Endpoints

incoming - Other Endpoints

Figure 2: Network traffic for different commands. Positive
sizes refers to outgoing traffic and negative sizes refers to
incoming traffic (from the client’s perspective). The network
traffic has been adjusted to show a maximum of 1500 bytes
for presentation.

Command 1

Command 2

Pad Outgoing Phase

Non-overlapping Phases

Overlapping Phases

Raw Input Traffic Pad Incoming Phase

Outgoing Actual Traffic Incoming Actual Traffic Outgoing Dummy Traffic Incoming Dummy Traffic

time (s)time (s) time (s)

time (s)time (s) time (s)

si
ze

 (b
yt

es
)

si
ze

 (b
yt

es
)

Figure 3: PriVA-C operates by independently padding each
phase of communication. Both the outgoing and incoming
phase are padded to the next interval to obscure their dura-
tion and potential revealing traffic patterns. Depending on
the configuration, incoming and outgoing phases may over-
lap—resulting in lower latency but higher traffic volume—or
remain non-overlapping, which reduces traffic volume at the
cost of increased delay.

but varies across different command and command types. The start

timing of this incoming phase can leak information about the true

duration of the outgoing phase. One way to avoid this is to post-

pone the start of this phase, however, this increases the response

latency and could negatively impact the user experience. Alterna-

tively, the incoming phase can “appear” to start earlier by inserting

dummy traffic before the incoming phase begins. We add a delay,

controlled by parameter in_delay after which the incoming phase

begins from the start of the outgoing phase. Increasing the value of

this parameter reduces the bandwidth overhead but increases the

latency and vice versa. Alternatively in_delay can be set to null to
make the incoming phase start after the “padded” outgoing phase

ends. The incoming phase terminates after a fixed duration defined

by parameter initial_max_len.

33

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

Table 5: Different configurable parameters of PriVA-C with corresponding units.

Parameter Description (unit) Haven Forge Delta Strong

out_fast_rate The rate of outgoing packets when outgoing phase is active during initial transmission (pkts/s) 50 50 50 50

out_slow_rate The rate of outgoing packets when outgoing phase is inactive during initial transmission (pkts/s) 4 4 4 4

out_ext_rate The rate of outgoing packets during the extended transmission (pkts/s) 50 50 50 50

in_fast_rate The rate of incoming packets when incoming phase is active during initial transmission (pkts/s) 50 50 50 50

in_slow_rate The rate of incoming packets when incoming phase is inactive during initial transmission (pkts/s) 4 4 4 4

in_ext_rate The rate of incoming packets during the extended transmission (pkts/s) 50 50 50 50

out_fast_size The fixed size of outgoing packets when outgoing phase is active (bytes) 577 577 577 577

out_slow_size The fixed size of outgoing packets when outgoing phase is inactive (bytes) 250 250 250 250

out_ext_size The fixed size of outgoing packets during the extended transmission (bytes) 500 600 600 600

in_fast_size The fixed size of incoming packets when outgoing phase is active (bytes) 750 1000 1000 1000

in_slow_size The fixed size of incoming packets when outgoing phase is inactive (bytes) 250 250 250 250

in_ext_size The fixed size of incoming packets during the extended transmission (bytes) 600 750 750 750

out_min_len The minimum length of the outgoing active phase (s) 5 8 8 8

in_delay The delay of incoming from the start of outgoing. ‘null‘ implies start after outgoing ends (s) null 2 4 2

initial_max_len The maximum length of the initial transmission (s) 8 10 15 15

out_interval The intervals at multiple of which outgoing phase ends (s) 2 2 2 2

ext_interval The intervals at multiple which extended transmission ends (s) 1 2 2 2

Longer and Varied Interactions. The behavior of skills varies sig-
nificantly depending on their type. Interactive skills, such as trivia

games, may require repeated user interactions, while other skills

function more like a simple command, providing a brief response.

Additionally, some skills communicate with multiple domains to

generate responses (e.g., skills created using VoiceApps, a popular

voice app creation platform). This introduces an added layer of

complexity when it comes to ensuring robust privacy protections.

To allow for this variability, we employ a constant rate bidirec-

tional padded stream as the third phase of our communication. In

this setup, real data is sent when available, and dummy data is

added when no real data is present. The constant-rate padding ends

when the voice assistant completes the command (e.g., drops all

underlying connections and enters an ‘idle’ state). Upon this trigger,

padding continues until the next ext_interval parameter. This phase

of communication is functionally similar to existing constant-rate

defenses [20, 12, 11].

Figure 3 provides an overview of PriVA-C in action, demon-

strated using two simple commands. The diagram shows how each

outgoing phase of communication is padded to the next interval

to hide patterns such as the length of the outgoing phase. The sub-

sequent incoming phase is also padded and extended to the next

interval to hide any unique sensitive patterns for that particular

command. In addition to the aforementioned parameters, we use

the rate and size to set the rate of transfer for each state. The full

list of parameters along with description can be found in Table 5.

5.2 Evaluation
Similar to our evaluation of existing works in Section 4, we perform

a parameter sweep to identify the strongest and lowest-bandwidth

variant of PriVA-C, evaluating 1,256 unique combinations. Each

platform exhibited distinct traffic characteristics; for example, Alexa

generated outgoing packets of approximately 577 bytes every 20

milliseconds. By analyzing these traffic patterns, we fixed certain

parameters for each platform (e.g., outgoing phase traffic rate and

packet size). For the remaining parameters, given the exponential

number of possible combinations, we first determined approximate

operational ranges (e.g., the outgoing phase typically lasts between

3–5 seconds, we varied it from 1 second to 10 seconds in 1-second in-

crements) by assessing their privacy-utility tradeoffs—varying each

parameter individually while keeping others fixed. These trade-

offs were quantified using attack accuracy (Spying attack [3]) and

overhead (bandwidth × delay) for each configuration, as shown in

Figure 4. The identified ranges were then used in a constrained grid

search to determine the final parameter configuration that maxi-

mizes the overall privacy-utility tradeoff. We repeat this evaluation

for two defense setups: one where the defense is applied only to the

primary AVS domain, and another where it is applied to all traffic

generated by the voice assistant (see Figure 5).

The analysis reveals that certain parameters—such as traffic

rates and packet sizes—tend to increase overhead without offering

substantial privacy gains. Intuitively, simply increasing data trans-

mission does not significantly enhance privacy, while reducing it

beyond a certain threshold can delay all traffic. This delay may

cause shorter voice commands to extend beyond the initial defense

window, making them more identifiable to an attacker. At the same

time, these parameters must support real-time communication be-

tween the voice assistant and its endpoints. To balance privacy and

usability, we maintain a traffic rate that matches or slightly exceeds

the baseline (undefended) rate, thereby avoiding severe bottlenecks.

We identify a second group of parameters—such as out_min_len
and ext_interval—that tend to improve privacy without signifi-

cantly increasing overhead. Increasing these parameters reduces

the number of distinguishable values observable by an attacker,

thereby enhancing privacy. Additionally, we observe that parame-

ters like in_delay and initial_max_len increase overhead but also

contribute to stronger privacy protection. To explore these trade-

offs, we evaluate two defense variants. The first, Delta, uses a
larger value for in_delay to reduce overhead and a larger value

for initial_max_len to boost privacy. The second, Forge, adopts a
smaller value for initial_max_len to reduce overhead and a smaller

value for in_delay to enhance privacy. The specific parameter set-

tings for these two variants, alongwith the strongest variant, named

Strong, and the lowest bandwidth variant, named Haven, are de-
tailed in Table 5.

34

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

22 24 26 28 30 32 34 36

Accuracy (%)

0.4

0.5

0.6

0.7

O
ve

rh
ea

d
s

(B
W

*
M

ea
n

D
el

ay
)

out min len

ext interval

22 24 26 28 30 32 34 36

Accuracy (%)

0.4

0.5

0.6

0.7

in delay

initial max len

22 24 26 28 30 32 34 36

Accuracy (%)

0.4

0.5

0.6

0.7

out ext rate size

in ext rate size

in fast rate size

out fast rate size

out interval

Figure 4: Tradeoff between overheads and attack accuracy when different parameter values are varied.

AVS Endpoint

Other Endpoints

Protected Traffic
Plain Traffic

Server Side
Defense

Client Side
Defense

(a) Defend All Traffic

AVS Endpoint

Other Endpoints

Protected Traffic
Plain Traffic

Server Side
Defense

Client Side
Defense

(b) Defend AVS traffic only

Figure 5: Two different countermeasure setups. (a) shows a setup where all communication between the voice assistant and all
internet servers is protected. (b) shows a setup where only the communication between the voice assistant and the primary
AVS endpoint is protected using the countermeasure. While setup (a) is expected to be more secure as endpoint information
is hidden, it requires the use of a tunneled routed proxy (e.g., VPN or routing all traffic through AVS) which could increase
deployment costs for either the user or platform. Setup (b) secures only traffic from the AVS domain and is expected to be
slightly less secure but more readily deployable.

Table 6: Results of PriVA-C variants applied to the benchmark
dataset protecting "all traffic" from the voice assistant. The
results show strong performance with lower overheads.

Setup Performance Overheads

Type Attack Accuracy Precision Recall B/W Delay(s)

Strongest

Spying 12.51% 7.54% 12.91%

156% 3.21

DeepVC 1.10% 0.01% 1.00%

Low B/W Spying 22.22% 16.91% 22.50%

125% 3.92

(Haven) DeepVC 18.52% 11.31% 18.46%

Delta
Spying 12.51% 7.54% 12.91%

156% 3.21

DeepVC 1.10% 0.01% 1.00%

Forge
Spying 12.96% 7.32% 13.47%

145% 3.30

DeepVC 0.90% 0.01% 1.00%

The results for the setup that considers all traffic (Table 6) demon-

strate that our defense outperforms existing approaches against

voice command fingerprinting and achieves comparable effective-

ness to constant-rate website fingerprinting defenses, while signif-

icantly reducing overhead. Additionally, the results for the setup

that defends only traffic to the AVS domain (Table 7) highlight the

practicality of our approach in realistic scenarios—where only voice

assistant platform providers would need to adjust their communi-

cation patterns to enhance user privacy.

To demonstrate the generalizability of our approach, we evaluate

PriVA-C on both Google Assistant and Siri platforms. As shown

in Table 8, PriVA-C achieves similar performance to Alexa on Siri,

Table 7: Results of PriVA-C variants applied to the bench-
mark dataset protecting "only traffic to the AVS domain". The
results show strong performance with lower overheads.

Setup Performance Overheads

Type Attack Accuracy Precision Recall B/W Delay(s)

Strongest

Spying 19.42% 19.38% 19.54%

100% 0.73

DeepVC 10.86% 11.82% 10.71%

Low B/W Spying 29.88% 26.43% 29.61%

54% 1.40

(Haven) DeepVC 24.37% 20.34% 24.59%

Delta
Spying 19.47% 20.05% 19.54%

90% 0.76

DeepVC 12.16% 11.52% 11.53%

Forge
Spying 19.52% 19.29% 19.69%

76% 0.80

DeepVC 11.61% 12.26% 11.66%

reducing fingerprinting accuracy to 20% in its strongest configura-

tion. For Google Assistant, the attack accuracy drops even further

to 9%. In both cases, PriVA-C delivers strong privacy protection

while significantly lowering overhead compared to existing meth-

ods (see Table 3). These results highlight PriVA-C’s effectiveness

and adaptability across multiple voice assistant platforms.

Overall, the results indicate that our approach offers a promising

solution for enhancing user privacy. However, the true impact of

the countermeasure—both in terms of privacy and usability—cannot

be fully assessed through simulations alone. For instance, a higher

overall transmission delay might not affect usability if the con-

tent involves large audio files (e.g., a 60-minute podcast), where

later chunks can be delayed without interrupting playback due to

35

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

Table 8: Results of PriVA-C applied to Google Assistant and Siri protecting "all traffic" from the voice assistants. The results
show strong performance with lower overheads compared to existing defenses.

Setup Google Assistant Siri
Performance Overheads Performance Overheads

Type Attack Accuracy Precision Recall B/W Delay(s) Accuracy Precision Recall B/W Delay(s)

Strongest

Spying 9.22% 4.67% 9.22% 170% 0.35 19.83% 10.46% 19.81% 186% 0.12

DeepVC 1.20% 0.02% 1.85% 148% 1.36 1.50% 0.03% 2.00% 178% 0.15

Low B/W

Spying 9.40% 5.25% 9.40% 126% 0.82 22.78% 15.52% 22.80% 138% 0.14

DeepVC 2.10% 0.04% 2.00% 126% 0.82 2.00% 0.06% 2.00% 138% 0.14

Table 9: Results of countermeasure evaluation on real traffic
from Alexa prototype modded with PriVA-C. The results
show similar performance to simulations.

Setup Accuracy Precision Recall

AVS Domain 25.63% 26.04% 24.84%

All Traffic 17.48% 17.78% 17.00%

pre-loading by the platform. Conversely, even small delays could

negatively affect user experience if they cause a noticeable lag in

responding to user commands. Parameters like in_delay play a crit-

ical role in this balance. To validate these assumptions, we develop

a real-world prototype (in Section 5.3) and conduct a user study

across key defense variants (in Section 5.4).

5.3 Real-World Prototyping
Existing research has highlighted that some defense proposals per-

form well in simulations but face challenges when deployed on real

networks [47, 36]. To evaluate the effectiveness of our proposed

defense in a real-world setting, we implemented it on the Alexa

platform using the Alexa SDK. The SDK requires deployment on a

physical device to enable the installation of MITM proxy certificates

and modification of traffic. Since comparable SDKs are not available

for Google and Siri, we did not develop prototypes for those plat-

forms. Our implementation is deployed on a Raspberry Pi 4 (4 GB)

running the Amazon Alexa SDK [4], to emulate a voice assistant

device. Our defense is implemented in Python using a proxy archi-

tecture, extending the mitmproxy framework [16]. We developed

two proxies: a client-side proxy running on the same Raspberry

Pi as the client Alexa SDK, and a server-side proxy deployed on a

separate Ubuntu server in a different network.

5.4 User Study
We conduct an interactive user study to assess how delays intro-

duced by the proposed countermeasure affect usability.

5.4.1 Recruitment. We recruited 25 participants from the univer-

sity campus, all over 18 and residing in the U.S. Recruitment was

conducted via flyers, university Discord channels, and departmental

emails. Eligibility required prior experience with voice assistants,

either as standalone devices or integrated into other devices (e.g.,

mobile phones). Participants provided informed consent, agreed

to attend the study in person, and scheduled a timeslot. Of the

29 initial sign-ups, two participants were unable to find a suitable

timeslot, and two did not attend. Participant demographics are

summarized in Table 11 in Appendix A. The final sample (N =

25) was predominantly Asian (76%), with smaller representation

from Caucasian (12%), Black or African American (8%), and His-

panic/Latinx (4%) participants. Most participants were aged 25–34

(72%), with the remainder aged 18–24 (28%). Gender distribution

was skewed toward men (64%) compared to women (36%). The

sample was highly educated, with 52% holding a bachelor’s degree,

44% a master’s degree, and 4% a doctorate. While our sample is

biased toward younger adults and the Asian population, it included

diverse languages and accents, supporting the representativeness

and validity of our findings for evaluating PriVA-C.

5.4.2 Study design. To assess the impact of our defense on user

experience, we presented participants with four protocol variants.

Three variants implemented our countermeasure with different

parameter settings (as detailed in Section 5.2) protecting the traffic

to AVS domain, while the fourth was unmodified (Alexa’s default),

serving as a baseline. The baseline was labeled Crest, and the

defense variants were named Haven, Delta, and Forge (as named

in Section 5.2). Participants were unaware of each variant’s specific

properties and interacted with them in randomized order. Non-

sequential pseudonyms were used to prevent users from inferring

any delay patterns. Participants were told only that they would test

different network protocols affecting device communication. Each

participant interacted with all four variants in turn, issuing a fixed

set of three predefined commands—“What time is it?”, “What is the

weather outside?”, and “Play Jeopardy”. We opted for using three

commands per variant to balance time and participant fatigue with

reliable results. The three commands selected also have different

response lengths in increasing order. Additionally, maintaining the

same commands across variants also allows participants to compare

variants directly. After each interaction, they rated their experience

on a 5-point Likert scale with the statement: “I did not perceive

any delay in this interaction.” This allowed us to quantify perceived

delay across all variants.

After interacting with all four variants in randomized order, par-

ticipants were informed about how these protocols aim to enhance

user privacy. They were then asked which variants they would

or would not use, along with their reasoning in free-text form. To

assess their privacy awareness, participants completed a 7-point

IUIPC questionnaire [34]. The study lasted approximately 20-30

minutes per participant, with each receiving a $10 Amazon e-gift

card. The study was reviewed and approved by our university’s

IRB office.

36

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

Table 10: Dunn’s test post-hoc analysis. Only significant pairs
after Bonferroni correction are presented. ∗∗𝑝 < 0.01

Variant 1 Variant 2 p-value

Crest Haven 0.0016∗∗

Forge Haven 0.0031∗∗

5.4.3 Results. We now compare the ratings across different vari-

ants and assess whether the differences are statistically significant.

Ratings. To summarize the variant ratings, we assigned numerical

scores from 1 to 5 based on participants’ responses on a 5-point Lik-

ert scale, with 5 representing the highest rating. Forge and Crest
received the highest average rating of 4.24, followed by Delta with
3.88, and Haven with 2.84. These results suggest that participants

perceived Forge—the variant with our defense implemented—as

the fastest, on par with the default Alexa protocol (Crest). This
indicates that our defense did not introduce noticeable delays, pre-

serving usability. In contrast, participants detected delays in Delta
and Haven, resulting in lower ratings for those variants.

Statistical Analysis. We conducted statistical analysis to deter-

mine whether any variants were significantly more or less preferred

by participants. Given the ordinal nature of the 5-point Likert scale

ratings, we used the Kruskal-Wallis test, which is appropriate for

nonparametric data [22]. Upon finding a statistically significant

result, we performed post-hoc analysis using Dunn’s test with Bon-

ferroni correction [48]. A p-value below 0.05 was considered sig-

nificant. The Kruskal-Wallis test revealed a statistically significant

difference among the variants (𝐻 = 17.0, 𝑝 = 0.0007). Post-hoc analy-

sis showed that Havenwas rated significantly lower than Crest and
Forge, while no significant differences were found between Forge,
and Delta. This indicates that Haven — the lowest-bandwidth vari-

ant — was consistently perceived as slower, while Forge was rated

similarly to Alexa’s default (Crest) and Delta, confirming that

Forge introduced no noticeable lag. The corrected p-values for
significant comparisons are presented in Table 10.

Unacceptable Variant. When optionally asked which variants

they would not use, a significant number of participants (12) indi-

cated they would use all variants. Four participants found Haven
unacceptable, three considered Crest (the control variant) unac-

ceptable, and only one participant found Delta unacceptable. No
participant found Forge unacceptable. Participants were also asked
to provide their rationale. One who chose "Would use all" stated –

"I would choose any options given delay wasn’t that much." (P8)
Other opinions include participants who did not like particular

variants such as:

"Haven and Crest seemed particularly slow, and I want voice
assistants to be as fast as possible with minimal delay. Any sort
of perceivable delay makes the process of asking questions less
conversational and more cumbersome." (P17)
Another participant stated that they would not use Haven and

identified the artificial delay and stated:

"Haven - it has a clear 5 second lag" (P18)
Another participant also singled out Haven, stating

"The response is slow when compared to other variants" (P20)
Overall, most participants identified the variants with clear ar-

tificial delays, but a significant number did not find any variant

unusable. While some variants, like Haven, were less preferred,

other variants were considered acceptable options.

Variant Comparison. Participants responded to the open question
about what they think about different variants compared to each

other. Participants shared their thoughts about different variants in

comparison.

"I perceivedmore delay in Haven as compared to the other variants.
Delta had some delay but it was still a usable system. Forge and
Crest didn’t have any delay. Forge responses felt instant but the
difference between Forge and Crest was minimal." (P2)
One participant noted that while some variants were slower

than others, the delay was not disruptive. They also compared

these variants to another voice assistant they own:

“Crest and Forgewere the fastest, Delta and Havenwere slower.
I wouldn’t say any of them were slower to the point of disruption.
My Google assistant takes longer than any of these.” (P3)
One participant specifically mentioned that, despite noticing

slight delays in some variants, they would still accept them if they

offered better data privacy.

"Forge, and Crest were fast. Delta was little slower than the
first two but not noticeable. Haven was little slow but if it provides
me with data privacy I wouldn’t mind it giving slow response"
(P13)

IUIPC Score. We presented participants with a 7-point IUIPC

questionnaire to assess their perceptions of fairness and privacy

across three categories: 1) Control, 2) Awareness, and 3) Collection.

The full text of the questions and their average scores are shown

in Table 12 in Appendix A. Overall, the IUIPC scores were 6.35 for

Control, 6.49 for Awareness, and 5.72 for Collection. These results

indicate that participants highly value control over their data, being

informed about data handling, and are concerned about excessive

data collection, thus, resembling a privacy-conscious mindset.

Takeaway. PriVA-C significantly reduces attacker accuracy while

maintaining low overhead. Through a prototype implementation

that applies PriVA-C only to the AVS domain, we demonstrate that

the defense can be deployed without any noticeable impact on

usability. Because our approach requires changes only at the appli-

cation software level, it enhances deployability—enabling privacy

improvements on millions of existing devices through a software

update, without the need for modifications to the network stack.

6 Discussion
While previous works have provided privacy guardrails for voice

assistants, our approach introduces a strictly improved privacy-

preserving defense mechanism that strikes a practical balance be-

tween privacy and user experience. Our padding-to-interval ap-

proach offers excellent scalability as the number of voice com-

mands and command groups expands. The increasing complexity

introduced by a larger command set further confounds attackers,

enhancing the overall effectiveness of our defense.

Furthermore, advancements in technology may allow some com-

putational tasks—such as speech-to-text processing—to be offloaded

to the device itself, thanks to increasingly powerful on-device ma-

chine learning models. While this shift could reduce network over-

head, it is unlikely to significantly improve user privacy, as devices

will still need to contact network endpoints to retrieve real-time

37

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

information such as weather, traffic, or news. Moreover, the rise

of LLM-powered services [43] may drive more computation back

to network servers, as these models remain challenging to run on

power-constrained IoT devices.

Recommendations for Deployment. Deploying countermea-

sures across all network traffic via a proxy, or routing all traf-

fic through voice assistant platform servers, theoretically maxi-

mizes endpoint information obfuscation. While adopting this setup

is more privacy-preserving, if platform owners route all traffic

through their servers, it could increase costs for services [38]. Users

of voice assistants can route all their traffic through a VPN proxy

and apply this countermeasure even if the platform owners opt

not to adopt privacy-enhancing technologies; however, while adept

users might be successful in deploying it, an average user might

not have the technical prowess to achieve this.

For the aforementioned reasons, we recommend our AVS-only

defense, as it provides a slightly less secure, yet significantly more

deployable, countermeasure scenario with low overheads and ac-

ceptable usability as shown in Section 5.4. This targeted strategy

addresses the most critical vulnerabilities without necessitating net-

work reconfiguration, which is a significant advantage over meth-

ods that require extensive infrastructure changes. We acknowledge

that even with 60-70% bandwidth overhead, it might hinder the

adoption cost of operations for platform owners. However, either

of these approaches can be provided as a ’premium’ privacy feature

using a subscription-tier model, as Alexa recently announced with

its ’Alexa+’, which offers some privacy features [43].

Comparing Alexa SDK vs. Physical Device Traffic. For Alexa,
our analysis focuses on traffic generated by the Alexa SDK, which is

made available to third-party developers to integrate Alexa function-

ality into their products. All Alexa enabled devices utilize Amazon

Voice Service (AVS), a cloud-based platform that processes user re-

quests [5]. While the traffic exhibits similar structural patterns and

phases we conducted a comparative traffic analysis to examine dif-

ferences between traffic generated by the SDK and by the Amazon

Echo device. Figure 6 (a) in Appendix A illustrates domain-level in-

coming and outgoing traffic differences across selected commands.

The Echo device contacts more domains, on average, than the SDK

when fulfilling a request. Nevertheless, the overall traffic volume

across most commands remains similar between the two platforms

(see Figures 6 (b) and Figures 6 (c)). Observed discrepancies are

largely attributable to time-sensitive commands, consistent with

prior findings by Wang et al. [59], which highlight that such com-

mands evolve over time and may reflect platform-wide changes

rather than intrinsic differences between SDK and device traffic.

The primary AVS domain also varies between SDK and Echo, a

phenomenon also documented in other Alexa-enabled devices such

as smartphones [3]. For example, the command "set a timer for 2

minutes" contacts the domain avs-alexa-4-na.amazon.com and
unagi-na.amazon.com on the Echo device. The same commands

contacts avs-alexa-12-na.amazon.com on themobile phoneAlexa

app and alexa.na.gateway.devices.a2z.com on the SDK. De-

spite these variations, traffic from the Echo device remains similarly

fingerprintable to that generated by the SDK. In our evaluation of 50

commands, fingerprinting accuracy reached 83.54% for SDK traffic

and 79.70% for Echo device traffic. Importantly, our proposed sys-

tem, PriVA-C, effectively mitigates these risks, reducing fingerprint-

ing accuracy to 10.13% and 8.38%, respectively, for SDK and Echo

traffic. In summary, although command traffic may change over

time due to evolving responses or platform updates, such changes

do not necessitate fundamental alterations in countermeasure de-

sign. Instead, they highlight the importance of minor parameter

tuning to maintain performance and balance system overhead.

Limitations and Future Work. While our research advances

defenses against voice command fingerprinting attacks, several lim-

itations remain. Firstly, the optimization of our defense mechanism,

particularly for platforms like Google Assistant and Siri, presents

an area for further development. Moreover, dynamically adjusting

parameters based on user speech patterns, such as speed and accent,

could enhance personalization while reducing overheads. Second,

exploring anonymity set techniques, like Super-sequences[60, 41],

could strengthen privacy, but they require large databases, which

was a practical limitation in our study. Future research should inte-

grate these methods while balancing performance and overhead.

Lastly, a few observed corner cases in specific voice assistant third-

party skills like waiting for a complete large audio file to load before

starting playback might make a fixed rate defense difficult to op-

timize, since to avoid delays large overheads would be required.

However, such cases can be resolved by the platform owner by

enforcing playback as each chunk arrives. Despite these limitations,

our work lays the groundwork for future research to improve the

privacy of voice-controlled systems.

7 Conclusion
In conclusion, this research tackled the critical issue of voice com-

mand fingerprinting attacks by thoroughly evaluating existing de-

fense mechanisms. We demonstrated the inadequacy of current

voice assistant defenses and explored the applicability of website

fingerprinting defenses, revealing their potential yet highlighting

inefficiencies in the voice command context.

To address this gap, we introduced a defense mechanism specif-

ically optimized for voice assistants, achieving a strong balance

between overheads, privacy, and real-world deployability. We im-

plemented and deployed our solution within an Alexa SDK in a

controlled lab environment and conducted a user study to assess

the impact on user experience. Our findings emphasize the vulner-

ability of voice assistants to fingerprinting attacks and the need

for specialized defenses. This research proves that an effective and

usable defense is possible, underscoring the importance of ongoing

research to safeguard the privacy of voice-controlled systems in

the future.

Acknowledgments
We thank our anonymous reviewers for their valuable feedback.

This research is partially supported by the National Science Foun-

dation (NSF) under grants CNS-2219866 and CNS-2350075. The

opinions, findings, conclusions, or recommendations expressed in

this work are those of the authors and do not necessarily reflect

the views of the funding organization.

38

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

References
[1] Humberto J. Abdelnur, Radu State, and Olivier Festor. 2008. Advanced network

fingerprinting. In Recent Advances in Intrusion Detection. Richard Lippmann,

Engin Kirda, and Ari Trachtenberg, (Eds.) Springer, Berlin, Heidelberg, 372–389.

isbn: 978-3-540-87403-4. doi: 10.1007/978-3-540-87403-4_20.

[2] Dilawer Ahmed, AnupamDas, and Fareed Zaffar. 2022. Analyzing the feasibility

and generalizability of fingerprinting internet of things devices. Proceedings on
Privacy Enhancing Technologies, 2022, 2, (Mar. 2022). doi: 10.2478/popets-2022-

0057.

[3] Dilawer Ahmed, Aafaq Sabir, and Anupam Das. 2023. Spying through your

voice assistants: realistic voice command fingerprinting. In 32nd USENIX Se-

curity Symposium (USENIX Security 23), 2419–2436. isbn: 978-1-939133-37-3.

Retrieved Jan. 29, 2024 from https://www.usenix.org/conference/usenixsecurit

y23/presentation/ahmed-dilawer.

[4] [SW] alexa, avs-device-sdk Mar. 12, 2025. url: https://github.com/alexa/avs-d

evice-sdkRetrieved Mar. 15, 2025 from.

[5] 2025. Alexa voice service v20160207 alexa voice service. Amazon (Alexa). Re-

trieved Oct. 11, 2022 from https://developer.amazon.com/en-US/docs/alexa/ale

xa-voice-service/api-overview.html.

[6] Amazon. 2025. AI-native SDKs for alexa+. Amazon Alexa. Retrieved Mar. 10,

2025 from https://developer.amazon.com/en-US/alexa/alexa-ai.html.

[7] Blake Anderson and David McGrew. 2017. OS fingerprinting: new techniques

and a study of information gain and obfuscation. In 2017 IEEE Conference on
Communications and Network Security (CNS). IEEE, 1–9.

[8] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and

Nick Feamster. 2017. Spying on the smart home: privacy attacks and defenses

on encrypted IoT traffic. arXiv:1708.05044 [cs], (Aug. 2017). Retrieved Apr. 1,

2022 from http://arxiv.org/abs/1708.05044.

[9] [SW] AutoML.org, AutoML. url: https://www.automl.org/automl/Retrieved

Oct. 11, 2022 from.

[10] Charyyev Batyr and Mehmet Hadi Gunes. 2020. Voice command fingerprinting

with locality sensitive hashes. In Proceedings of the 2020 Joint Workshop on
CPS&IoT Security and Privacy (CPSIOTSEC’20). Association for Computing

Machinery, New York, NY, USA, (Nov. 2020), 87–92. isbn: 978-1-4503-8087-4.

doi: 10.1145/3411498.3419963.

[11] Xiang Cai, Rishab Nithyanand, and Rob Johnson. 2014. CS-BuFLO: a congestion

sensitive website fingerprinting defense. In Proceedings of the 13th Workshop
on Privacy in the Electronic Society. ACM, Scottsdale Arizona USA, (Nov. 2014),

121–130. isbn: 978-1-4503-3148-7. doi: 10.1145/2665943.2665949.

[12] Xiang Cai, Rishab Nithyanand, TaoWang, Rob Johnson, and Ian Goldberg. 2014.

A systematic approach to developing and evaluating website fingerprinting

defenses. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. CCS’14: 2014 ACM SIGSAC Conference on Computer

and Communications Security. ACM, Scottsdale Arizona USA, (Nov. 3, 2014),

227–238. isbn: 978-1-4503-2957-6. doi: 10.1145/2660267.2660362.

[13] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. 2012. Touching

from a distance: website fingerprinting attacks and defenses. In Proceedings of
the 2012 ACM conference on Computer and communications security (CCS ’12).

Association for Computing Machinery, New York, NY, USA, (Oct. 16, 2012),

605–616. isbn: 978-1-4503-1651-4. doi: 10.1145/2382196.2382260.

[14] Heyning Cheng and Ron Avnur. 1998. Traffic analysis of SSL encrypted web

browsing.

[15] Bogdan Copos, Karl Levitt, Matt Bishop, and Jeff Rowe. 2016. Is anybody home?

inferring activity from smart home network traffic. In 2016 IEEE Security and
Privacy Workshops (SPW). 2016 IEEE Security and Privacy Workshops (SPW).

(May 2016), 245–251. doi: 10.1109/SPW.2016.48.

[16] [SW] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors,

mitmproxy - an interactive HTTPS proxy 2010. url: https://mitmproxy.org

/Retrieved Mar. 15, 2025 from.

[17] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dawn Song.

2013. NetworkProfiler: towards automatic fingerprinting of android apps. In

2013 Proceedings IEEE INFOCOM. 2013 Proceedings IEEE INFOCOM. ISSN:

0743-166X. (Apr. 2013), 809–817. doi: 10.1109/INFCOM.2013.6566868.

[18] Wladimir De la Cadena, Asya Mitseva, Jens Hiller, Jan Pennekamp, Sebastian

Reuter, Julian Filter, Thomas Engel, Klaus Wehrle, and Andriy Panchenko. 2020.

TrafficSliver: fighting website fingerprinting attacks with traffic splitting. In

Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security. Association for Computing Machinery, New York, NY, USA,

(Oct. 2020), 1971–1985. isbn: 978-1-4503-7089-9. doi: 10.1145/3372297.3423351.

[19] Daniel J. Dubois, Roman Kolcun, Anna Maria Mandalari, Muhammad Talha

Paracha, David Choffnes, and HamedHaddadi. 2020.When speakers are all ears:

characterizing misactivations of IoT smart speakers. Proceedings on Privacy
Enhancing Technologies, 2020, 4, (Oct. 2020). doi: 10.2478/popets-2020-0072.

[20] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2012.

Peek-a-boo, i still see you: why efficient traffic analysis countermeasures fail.

In 2012 IEEE Symposium on Security and Privacy. 2012 IEEE Symposium on

Security and Privacy. ISSN: 2375-1207. (May 2012), 332–346. doi: 10.1109/SP.2

012.28.

[21] Anna Fleck. 2024. Infographic: alexa, what’s america’s favorite smart speaker?

Statista Daily Data. (May 2, 2024). Retrieved Mar. 15, 2025 from https://www.st

atista.com/chart/23943/share-of-us-adults-who-own-smart-speakers.

[22] Jim Frost. 2017. Nonparametric tests vs. parametric tests. Statistics By Jim.

(Apr. 11, 2017). Retrieved Mar. 17, 2025 from http://statisticsbyjim.com/hypoth

esis-testing/nonparametric-parametric-tests/.

[23] Xiaoguang Guo, Keyang Yu, Qi Li, and Dong Chen. 2024. VoiceAttack: finger-

printing voice command on VPN-protected smart home speakers. In Proceed-
ings of the 11th ACM International Conference on Systems for Energy-Efficient
Buildings, Cities, and Transportation (BuildSys ’24). Association for Computing

Machinery, New York, NY, USA, (Oct. 29, 2024), 55–65. isbn: 9798400707063.

doi: 10.1145/3671127.3698171.

[24] Jamie Hayes and George Danezis. 2016. K-fingerprinting: a robust scalable web-

site fingerprinting technique. In 25th USENIX Security Symposium (USENIX

Security 16), 1187–1203. isbn: 978-1-931971-32-4. Retrieved Mar. 31, 2022 from

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/pre

sentation/hayes.

[25] SébastienHenri, Ginés García, Pablo Serrano, Albert Banchs, and Patrick Thiran.

2020. Protecting against website fingerprinting with multihoming. Proceedings
on Privacy Enhancing Technologies, 2020, 2, 89–110. doi: 10.2478/popets-2020-0
019.

[26] Spherical Insights. [n. d.] Global voice assistant market size, share, forecast to

2033. Spherical Insights. Retrieved Mar. 15, 2025 from https://www.sphericalin

sights.com/reports/voice-assistant-market.

[27] Umar Iqbal et al. 2022. Your echos are heard: tracking, profiling, and ad targeting

in the amazon smart speaker ecosystem. arXiv:2204.10920 [cs], (Apr. 28, 2022).
Retrieved May 2, 2022 from http://arxiv.org/abs/2204.10920 arXiv: 2204.10920.

[28] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.

2016. Toward an efficient website fingerprinting defense. In European Sympo-
sium on Research in Computer Security. Springer, 27–46.

[29] Sean Kennedy, Haipeng Li, Chenggang Wang, Hao Liu, Boyang Wang, and

Wenhai Sun. 2019. I can hear your alexa: voice command fingerprinting on

smart home speakers. In 2019 IEEE Conference on Communications and Net-
work Security (CNS). 2019 IEEE Conference on Communications and Network

Security (CNS). (June 2019), 232–240. doi: 10.1109/CNS.2019.8802686.

[30] Hyojin Kim, Minji Jo, Jiwoo Hong, Hosung Kang, Nate Mathews, and Se Eun

Oh. 2024. WhisperVoiceTrace: a comprehensive analysis of voice command

fingerprinting. In Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security (ASIA CCS ’24). Association for Computing

Machinery, New York, NY, USA, (July 1, 2024), 667–683. isbn: 9798400704826.

doi: 10.1145/3634737.3657017.

[31] Christopher Lentzsch, Sheel Jayesh Shah, Benjamin Andow, Martin Degeling,

Anupam Das, and William Enck. 2021. Hey alexa, is this skill safe?: taking a

closer look at the alexa skill ecosystem. In 28th Annual Network and Distributed
System Security Symposium, NDSS.

[32] Manuel Lopez-Martin, Belen Carro, Antonio Sanchez-Esguevillas, and Jaime

Lloret. 2017. Network traffic classifier with convolutional and recurrent neural

networks for internet of things. IEEE Access, 5, 18042–18050. Conference Name:

IEEE Access. doi: 10.1109/ACCESS.2017.2747560.

[33] David Lu, Sanjit Bhat, Albert Kwon, and Srinivas Devadas. 2018. DynaFlow:

an efficient website fingerprinting defense based on dynamically-adjusting

flows. In Proceedings of the 2018 Workshop on Privacy in the Electronic Society
(WPES’18). Association for ComputingMachinery, New York, NY, USA, (Jan. 15,

2018), 109–113. isbn: 978-1-4503-5989-4. doi: 10.1145/3267323.3268960.

[34] Naresh K. Malhotra, Sung S. Kim, and James Agarwal. 2004. Internet users’

information privacy concerns (IUIPC): the construct, the scale, and a causal

model. Information Systems Research, 15, 4, (Dec. 2004), 336–355. Publisher:
INFORMS. doi: 10.1287/isre.1040.0032.

[35] Jianghan Mao, Chenyu Wang, Yanhui Guo, Guoai Xu, Shoufeng Cao, Xuanwen

Zhang, and Zixiang Bi. 2022. A novel model for voice command fingerprinting

using deep learning. Journal of Information Security and Applications, 65, (Mar. 1,

2022), 103085. doi: 10.1016/j.jisa.2021.103085.

[36] Nate Mathews, James K Holland, Se Eun Oh, Mohammad Saidur Rahman,

Nicholas Hopper, and Matthew Wright. [n. d.] SoK: a critical evaluation of

efficient website fingerprinting defenses.

[37] Takashi Matsunaka, Akira Yamada, and Ayumu Kubota. 2013. Passive OS

fingerprinting byDNS traffic analysis. In 2013 IEEE 27th International Conference
on Advanced Information Networking and Applications (AINA). IEEE, 243–250.

[38] Dana Mattioli. 2024. Alexa is in millions of households—and amazon is losing

billions. WSJ. Section: Tech. (July 23, 2024). Retrieved Mar. 17, 2025 from https:

//www.wsj.com/tech/amazon-alexa-devices-echo-losses-strategy-25f2581a.

[39] Khaled Al-Naami, Amir El-Ghamry, Md Shihabul Islam, Latifur Khan, Bhavani

Thuraisingham, Kevin W. Hamlen, Mohammed Alrahmawy, and Magdi Z.

Rashad. 2021. BiMorphing: a bi-directional bursting defense against website

fingerprinting attacks. IEEE Transactions on Dependable and Secure Computing,
18, 2, (Mar. 1, 2021), 505–517. doi: 10.1109/TDSC.2019.2907240.

39

https://doi.org/10.1007/978-3-540-87403-4_20
https://doi.org/10.2478/popets-2022-0057
https://doi.org/10.2478/popets-2022-0057
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer
https://www.usenix.org/conference/usenixsecurity23/presentation/ahmed-dilawer
https://github.com/alexa/avs-device-sdk
https://github.com/alexa/avs-device-sdk
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/api-overview.html
https://developer.amazon.com/en-US/alexa/alexa-ai.html
http://arxiv.org/abs/1708.05044
https://www.automl.org/automl/
https://doi.org/10.1145/3411498.3419963
https://doi.org/10.1145/2665943.2665949
https://doi.org/10.1145/2660267.2660362
https://doi.org/10.1145/2382196.2382260
https://doi.org/10.1109/SPW.2016.48
https://mitmproxy.org/
https://mitmproxy.org/
https://doi.org/10.1109/INFCOM.2013.6566868
https://doi.org/10.1145/3372297.3423351
https://doi.org/10.2478/popets-2020-0072
https://doi.org/10.1109/SP.2012.28
https://doi.org/10.1109/SP.2012.28
https://www.statista.com/chart/23943/share-of-us-adults-who-own-smart-speakers
https://www.statista.com/chart/23943/share-of-us-adults-who-own-smart-speakers
http://statisticsbyjim.com/hypothesis-testing/nonparametric-parametric-tests/
http://statisticsbyjim.com/hypothesis-testing/nonparametric-parametric-tests/
https://doi.org/10.1145/3671127.3698171
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/hayes
https://doi.org/10.2478/popets-2020-0019
https://doi.org/10.2478/popets-2020-0019
https://www.sphericalinsights.com/reports/voice-assistant-market
https://www.sphericalinsights.com/reports/voice-assistant-market
http://arxiv.org/abs/2204.10920
https://arxiv.org/abs/2204.10920
https://doi.org/10.1109/CNS.2019.8802686
https://doi.org/10.1145/3634737.3657017
https://doi.org/10.1109/ACCESS.2017.2747560
https://doi.org/10.1145/3267323.3268960
https://doi.org/10.1287/isre.1040.0032
https://doi.org/10.1016/j.jisa.2021.103085
https://www.wsj.com/tech/amazon-alexa-devices-echo-losses-strategy-25f2581a
https://www.wsj.com/tech/amazon-alexa-devices-echo-losses-strategy-25f2581a
https://doi.org/10.1109/TDSC.2019.2907240

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

[40] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2021. Defeating DNN-

based traffic analysis systems in real-time with blind adversarial perturbations.

In 30th USENIX Security Symposium (USENIX Security 21). 30th USENIX Secu-

rity Symposium (USENIX Security 21), 2705–2722. isbn: 978-1-939133-24-3.

Retrieved Nov. 13, 2024 from https://www.usenix.org/conference/usenixsecuri

ty21/presentation/nasr.

[41] Rishab Nithyanand, Xiang Cai, and Rob Johnson. 2014. Glove: a bespokewebsite

fingerprinting defense. In Proceedings of the 13th Workshop on Privacy in the
Electronic Society. CCS’14: 2014 ACM SIGSAC Conference on Computer and

Communications Security. ACM, Scottsdale Arizona USA, (Nov. 3, 2014), 131–

134. isbn: 978-1-4503-3148-7. doi: 10.1145/2665943.2665950.

[42] [SW] nmap.org, Nmap: the Network Mapper - Free Security Scanner Sept. 1997.

url: https://nmap.org/Retrieved Apr. 2, 2022 from.

[43] Panos Panay. 2025. Introducing alexa+, the next generation of alexa. (Feb. 26,

2025). Retrieved Mar. 17, 2025 from https://www.aboutamazon.com/news/devi

ces/new-alexa-generative-artificial-intelligence.

[44] Tajammul Pangarkar. 2025. Smart speaker statistics and facts (2025). Market.us

Scoop. (Jan. 14, 2025). Retrieved Mar. 15, 2025 from https://scoop.market.us/sm

art-speaker-statistics/.

[45] Roberto Perdisci, Thomas Papastergiou, Omar Alrawi, and Manos Antonakakis.

2020. IoTFinder: efficient large-scale identification of IoT devices via passive

DNS traffic analysis. In 2020 IEEE European Symposium on Security and Privacy
(EuroS P). 2020 IEEE European Symposium on Security and Privacy (EuroS P).

(Sept. 2020), 474–489. doi: 10.1109/EuroSP48549.2020.00037.

[46] Mohammad Saidur Rahman, Mohsen Imani, Nate Mathews, and Matthew

Wright. 2021. Mockingbird: defending against deep-learning-based website

fingerprinting attacks with adversarial traces. IEEE Transactions on Information
Forensics and Security, 16, 1594–1609. Conference Name: IEEE Transactions on

Information Forensics and Security. doi: 10.1109/TIFS.2020.3039691.

[47] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish

Gangadhara, and MatthewWright. 2020. Tik-Tok : the utility of packet timing in

website fingerprinting attacks. Proceedings on Privacy Enhancing Technologies,
2020, 3, (July 1, 2020), 5–24. doi: 10.2478/popets-2020-0043.

[48] Ash Rajesh. 2023. A post-hoc test for kruskal-wallis. The Analysis Factor.

(May 8, 2023). Retrieved Mar. 17, 2025 from https://www.theanalysisfactor.co

m/dunns-test-post-hoc-test-after-kruskal-wallis/.

[49] Aafaq Sabir, Evan Lafontaine, and Anupam Das. 2022. Hey alexa, who am i

talking to?: analyzing users’ perception and awareness regarding third-party

alexa skills. In CHI Conference on Human Factors in Computing Systems.
[50] Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun, Hamed Haddadi,

Daniel J. Dubois, David Choffnes, Georgios Smaragdakis, and Anja Feldmann.

2020. A haystack full of needles: scalable detection of IoT devices in the wild. In

Proceedings of the ACM Internet Measurement Conference (IMC ’20). Association

for Computing Machinery, New York, NY, USA, (Oct. 2020), 87–100. isbn:

978-1-4503-8138-3. doi: 10.1145/3419394.3423650.

[51] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal, and Ta-

dayoshi Kohno. 2007. Devices that tell on you: privacy trends in consumer

ubiquitous computing. In 16th USENIX Security Symposium (USENIX Security

07). Retrieved Apr. 1, 2022 from https://www.usenix.org/conference/16th-use

nix-security-symposium/devices-tell-you-privacy-trends-consumer-ubiquit

ous.

[52] Zain Shamsi, Ankur Nandwani, Derek Leonard, and Dmitri Loguinov. 2014.

Hershel: single-packet os fingerprinting. ACM SIGMETRICS Performance Eval-
uation Review, 42, 1, 195–206. Publisher: ACM New York, NY, USA.

[53] Vitaly Shmatikov and Ming-Hsiu Wang. 2006. Timing analysis in low-latency

mix networks: attacks and defenses. In Proceedings of the 11th European confer-
ence on Research in Computer Security (ESORICS’06). Springer-Verlag, Berlin,

Heidelberg, (Sept. 18, 2006), 18–33. isbn: 978-3-540-44601-9. Retrieved Mar. 15,

2025 from.

[54] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. 2018. Deep

fingerprinting: undermining website fingerprinting defenses with deep learn-

ing. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’18). Association for Computing Machinery, New

York, NY, USA, (Oct. 15, 2018), 1928–1943. isbn: 978-1-4503-5693-0. doi: 10.114

5/3243734.3243768.

[55] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and Matthew

Wright. 2019. Triplet fingerprinting: more practical and portable website fin-

gerprinting with n-shot learning. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19). Association

for Computing Machinery, New York, NY, USA, (Nov. 6, 2019), 1131–1148. isbn:

978-1-4503-6747-9. doi: 10.1145/3319535.3354217.

[56] Rahmadi Trimananda, Janus Varmarken, Athina Markopoulou, and Brian Dem-

sky. 2020. Packet-level signatures for smart home devices. In Proceedings 2020
Network and Distributed System Security Symposium. Network and Distributed

System Security Symposium. Internet Society, San Diego, CA. isbn: 978-1-

891562-61-7. doi: 10.14722/ndss.2020.24097.

[57] Yves Vanaubel, Jean-Jacques Pansiot, Pascal Mérindol, and Benoit Donnet. 2013.

Network fingerprinting: TTL-based router signatures. In Proceedings of the

2013 conference on Internet measurement conference (IMC ’13). Association for

Computing Machinery, New York, NY, USA, (Oct. 23, 2013), 369–376. isbn:

978-1-4503-1953-9. doi: 10.1145/2504730.2504761.

[58] [SW] Wang, SmartHomePrivacyProject/DeepVCFingerprinting Oct. 12, 2024.

url: https://github.com/SmartHomePrivacyProject/DeepVCFingerprinting

Retrieved Mar. 17, 2025 from.

[59] Chenggang Wang, Sean Kennedy, Haipeng Li, King Hudson, Gowtham Atluri,

Xuetao Wei, Wenhai Sun, and Boyang Wang. 2020. Fingerprinting encrypted

voice traffic on smart speakers with deep learning. In Proceedings of the 13th
ACMConference on Security and Privacy inWireless andMobile Networks (WiSec

’20). Association for Computing Machinery, New York, NY, USA, (July 2020),

254–265. isbn: 978-1-4503-8006-5. doi: 10.1145/3395351.3399357.

[60] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg.

2014. Effective attacks and provable defenses for website fingerprinting. In

23rd USENIX Security Symposium (USENIX Security 14), 143–157. isbn: 978-1-

931971-15-7. Retrieved Nov. 13, 2024 from https://www.usenix.org/conference

/usenixsecurity14/technical-sessions/presentation/wang_tao.

[61] Tao Wang and Ian Goldberg. 2017. {Walkie-talkie}: an efficient defense against

passive website fingerprinting attacks. In 26th USENIX Security Symposium

(USENIX Security 17), 1375–1390. isbn: 978-1-931971-40-9. Retrieved Apr. 2,

2022 from https://www.usenix.org/conference/usenixsecurity17/technical-ses

sions/presentation/wang-tao.

40

https://www.usenix.org/conference/usenixsecurity21/presentation/nasr
https://www.usenix.org/conference/usenixsecurity21/presentation/nasr
https://doi.org/10.1145/2665943.2665950
https://nmap.org/
https://www.aboutamazon.com/news/devices/new-alexa-generative-artificial-intelligence
https://www.aboutamazon.com/news/devices/new-alexa-generative-artificial-intelligence
https://scoop.market.us/smart-speaker-statistics/
https://scoop.market.us/smart-speaker-statistics/
https://doi.org/10.1109/EuroSP48549.2020.00037
https://doi.org/10.1109/TIFS.2020.3039691
https://doi.org/10.2478/popets-2020-0043
https://www.theanalysisfactor.com/dunns-test-post-hoc-test-after-kruskal-wallis/
https://www.theanalysisfactor.com/dunns-test-post-hoc-test-after-kruskal-wallis/
https://doi.org/10.1145/3419394.3423650
https://www.usenix.org/conference/16th-usenix-security-symposium/devices-tell-you-privacy-trends-consumer-ubiquitous
https://www.usenix.org/conference/16th-usenix-security-symposium/devices-tell-you-privacy-trends-consumer-ubiquitous
https://www.usenix.org/conference/16th-usenix-security-symposium/devices-tell-you-privacy-trends-consumer-ubiquitous
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1145/3319535.3354217
https://doi.org/10.14722/ndss.2020.24097
https://doi.org/10.1145/2504730.2504761
https://github.com/SmartHomePrivacyProject/DeepVCFingerprinting
https://github.com/SmartHomePrivacyProject/DeepVCFingerprinting
https://doi.org/10.1145/3395351.3399357
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tao

PriVA-C Proceedings on Privacy Enhancing Technologies 2026(1)

A Appendix
Table 11: Demographics of participants.

Demographic Value Count Percentage

Age Group

25-34 18 72%

18-24 7 28%

Gender

Man 16 64%

Woman 9 36%

Education

Bachelor’s degree 13 52%

Master’s degree 11 44%

Doctorate degree 1 4%

Race

Asian 19 76%

Caucasian 3 12%

Black or African American 2 8%

Hispanic, Latinx, or Spanish origin 1 4%

Table 12: IUIPC scores across three dimensions: Control,
Awareness, and Collection.

Dimension Question Summary Mean Score Section Mean

Control
Q1: Right to control information 6.35

6.35Q2: Control central to privacy 6.39

Q3: Loss of control invades privacy 6.30

Awareness
Q4: Data disclosure practices 6.78

6.49Q5: Clear privacy policies 6.87

Q6: Importance of knowledge about data use 5.83

Collection

Q7: Discomfort with sharing info 5.43

5.72

Q8: Hesitation to provide info 5.74

Q9: Concern over giving info to many companies 6.0

Q10: Concern over excessive data collection 5.7

Table 13: Results of using different end classification models
for ‘Spying’ attack with PriVA-C protecting "all traffic" from
the voice assistant. The results show similar performance
with very slight improvement for AutoGluon

Variant Model Accuracy Precision Recall

Strongest

Random Forest 12.51% 7.54% 12.91%

AutoGluon 12.61% 7.53% 13.00%

Low B/W Random Forest 22.22% 16.91% 22.50%

(Haven) AutoGluon 22.92% 16.57% 22.81%

Delta
Random Forest 12.51% 7.54% 12.91%

AutoGluon 12.61% 7.53% 13.00%

Forge
Random Forest 12.96% 7.32% 13.47%

AutoGluon 13.08% 8.17% 13.54%

Table 14: Results of using different end classification models
for ‘Spying’ attack with PriVA-C protecting “only traffic to
primary AVS domain”. The results show similar performance
with very slight improvement for AutoGluon

Variant Model Accuracy Precision Recall

Strongest

Random Forest 19.42% 19.38% 19.54%

AutoGluon 19.77% 20.26% 19.88%

Low B/W Random Forest 29.88% 26.43% 29.61%

(Haven) AutoGluon 30.22% 26.99% 30.02%

Delta
Random Forest 19.76% 20.05% 19.54%

AutoGluon 21.10% 20.85% 20.43%

Forge
Random Forest 19.52% 19.29% 19.69%

AutoGluon 20.77% 20.49% 20.39%

41

Proceedings on Privacy Enhancing Technologies 2026(1) Ahmed et al.

Figure 6: Comparison of traffic from Alexa SDK and Amazon Echo device. (a) shows that traffic from Amazon Echo on average
contacts more domains compared to traffic from SDK. (b) shows traffic volume in outgoing and incoming directions from SDK
and Amazon Echo to all domains. For most commands traffic patters are similar whereas for remaining we see some variance
in traffic. (c) shows traffic volume to primary domain only.

0 10 20 30 40 50 60

Percentage of Commands (%)

5+

4

3

2

1

E
n

d
p

oi
n
t

C
ou

n
t

Figure 7: 65% of commands contact only one AVS Endpoint.

42

	Abstract
	1 Introduction
	2 Background
	2.1 Network Traffic-Based Fingerprinting
	2.2 Threat Model

	3 Related Works
	3.1 Fingerprinting Attacks
	3.2 Fingerprinting Defenses
	3.3 Distinction with Prior Work

	4 Evaluating Existing Defenses
	4.1 Collection Setup & Datasets
	4.2 Baseline Attack Models
	4.3 Evaluation Setup
	4.4 Voice Command Fingerprinting Defenses
	4.5 Website Fingerprinting Defenses

	5 PriVA-C
	5.1 Traffic Pattern Analysis & Defense Design
	5.2 Evaluation
	5.3 Real-World Prototyping
	5.4 User Study

	6 Discussion
	7 Conclusion
	Acknowledgments
	A Appendix

