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Abstract
Matrix Profile (MP) is a data mining structure increasingly used
for time series analysis in both academic and industrial contexts.
Given its application to sensitive domains such as healthcare or
energy monitoring, it is crucial to examine associated privacy risks,
especially since MPs are often shared or processed in untrusted
environments like the cloud. While recent studies suggest that
MPs offer some privacy protection, this assumption remains largely
untested. This paper analyzes the privacy risks of MP publication
through the lens of EU data protection law, focusing on singling-
out, linkability, and inference risks. We introduce a reconstruction
technique based on constraint optimization, capable of recovering
approximate original time series from their MPs, leading to severe
privacy attacks. Experiments on real-world datasets reveal vulnera-
bilities to all attack types, with reconstructed series reaching up to
0.99 Pearson Correlation with the original.

1 Introduction
Matrix Profile (MP) [66] has emerged as a versatile data mining
structure for analyzing and sharing time series data in domains
such as healthcare [23, 60], energy management [36, 53], anom-
aly detection [36, 45], and continuous authentication [28], in both
cloud and edge models [35]. It has seen increasing adoption in
real-world industrial settings for time series analysis and anomaly
detection. For instance, Oracle employs MP techniques to enhance
root cause analysis in vehicle manufacturing. By detecting patterns
and anomalies in time series data frommachines and products, these
methods bolster intelligent observability for IoT applications [42].
In the financial sector, TD Ameritrade integrates the open-source
stumpy Python library to implement scalable MP-based analytics
for time series data, enabling robust and interpretable data min-
ing pipelines for monitoring and investment tools [3]. Similarly,
Amazon Web Services (AWS) demonstrate the use of MP for real-
time anomaly detection in streaming applications via the Apache
Flink service, highlighting MP’s value in scalable cloud analyt-
ics environments [2]. Importantly, real-world applications of MP
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often concern personal data, including biomedical data from pa-
tients, such as Electro-Cardiograms (ECG) [40, 69] or beat-to-beat
intervals [64], smart-home measurements (e.g., for energy con-
sumption [12, 41, 56] and home sensors [7]). [31] lists numerous
but non exhaustive additional application examples in research.
Also, MP computation libraries are integrated officially into pro-
gramming languages used for data analysis, such as Python, R, and
MatLab (since release R2024B in sept 2024), encouraging their use
in academia and beyond.

Among all MP uses, we focus on the essential unsupervised
anomaly detection in time series using self-join MP (comparing a
time series with itself, see Figure 1). Comparing a time series to
another reference/template time series is possible, but is neither
always feasible nor unsupervised, hence the need for self-join MP.
E.g., the Statewide California Earthquake Center [70] explain that
they use the self-join MP to find non cataloged events by matching
all sub-windows in the continuous stream with the rest of the
stream, which can not be done with a template matching method.

By transforming raw time series into more complex represen-
tations using various mathematical techniques, MPs are assumed
to obscure the original data sufficiently, offering a perceived level
of privacy protection. This perception has fueled claims that MP
can act as a privacy-preserving tool. For instance, recent work [68]
suggest that the complexity of MP transformations prevents shape
leakage and hinders raw data reconstruction. Similarly, [16] propose
generating synthetic time series that preserve MPs while altering
the shape of the original data, ensuring utility while mitigating sen-
sitive attribute inference risks. In addition, [28] leverages MPs as
privacy-enhancing features in deep learning algorithms, achieving
high accuracy in continuous authentication tasks.

However, consider a concrete scenario in the healthcare domain:
a hospital publishes MPs derived from patients’ electrocardiogram
(ECG) data for research purposes. An adversary with domain knowl-
edge could use MPs to infer parts of the original ECG data, use
it single out or identify patients and deduce medical markers or
demographic attributes. This would violate patient privacy and
could lead to severe consequences, such as stigmatization, insur-
ance discrimination, or unauthorized profiling.

This example highlights the critical nature of being able to quan-
tify the privacy risks associated with MPs. While the nonlinear
transformations involved in MP computation introduce some form
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of blurring, they do not inherently prevent adversaries from exploit-
ing auxiliary information to infer sensitive attributes or reconstruct
the original time series.
Research question. The central question of this work is:What are
the privacy risks associated with publishing Matrix Profiles, particu-
larly in privacy-sensitive domains? This question is critical, given the
increasing adoption of MPs as a tool for data sharing and analysis,
often in unsecured environments such as cloud systems [35]. The
assumption that MPs inherently protect privacy must be rigorously
evaluated, especially in light of modern privacy threats.

Formally, the problem lies in assessing whether MPs are vulner-
able to major privacy risks identified in privacy regulations, such
as singling-out, linkability, and inference attacks, as defined by the
European Data Protection Board (EDPB) [21, 22, 61]. It has lead us
to consider reconstruction techniques to mount attacks that recover
complete or partial sensitive raw time series from their MP. These
risks reflect realistic threats that could compromise the privacy of
individuals whose data is encoded in MPs.
Limits of existing solutions. Anonymeter [22] is a framework
developed to quantify privacy risks. Its core contribution is to model
and quantify the three GDPR inspired privacy risks (singling-out,
linkability and inference) for synthetic tabular data. However, its
model is not suitable for time series data (particularly MP data)
which requires a privacy risk model that specifically identifies,
defines, quantifies, and evaluates the risks of MP publishing, a topic
that, to the best of our knowledge, remains unexplored.
Contributions. To answer this research question, the paper makes
the following contributions:
• Formalization of privacy risks in MPs publication. We
adapt the privacy risks of the EDPB to the context of MPs, and
formally define the notions of singling-out, linkability, and
inference in this context (Section 3).
• Design of targeted attack strategies. We develop concrete
attack methods corresponding to each risk, with a particular
focus on a novel reconstruction technique capable of approxi-
mating original time series from MP data. This reconstruction
serves as a key building block for privacy attacks (Section 4).
• Experimental validation on real data.We evaluate the ef-
fectiveness of the proposed attacks on diverse real-world time
series datasets, demonstrating that MP publication can lead to
significant privacy breaches in practice. All code and data are
made available for reproducibility at our repository [67] and
will be discussed in Section 5.

Paper organization. Section 2 describes the background and prob-
lem formulation. Privacy attack models against𝑀𝑃 are described
in Section 3. The reconstruction technique and its application to
attacks is presented in Section 4 and evaluated in Section 5. Related
works are presented in Section 6. Future works and conclusion are
given in Section 7.
Ethical considerations and responsible disclosure. No com-
pany systems were analyzed in this work. All referenced use of MP
is based on public documentation or academic publications. Our
goal is to inform on the limitations of MP as a privacy mechanism,
not to attack specific deployments.

Figure 1: Matrix Profile for a time series 𝑡 .

2 Problem Statement
We introduce the necessary background and notations concerning
Matrix Profile (MP), and formulate the problem addressed.

2.1 Background on Matrix Profile
Matrix Profile (𝑀𝑃 ) [66] is a data mining structure composed of
two vectors 𝑀𝑃𝐷 and 𝑀𝑃𝐼 , parameterized by two time series
(𝑡, 𝑡 ′), a distance measure 𝐷𝑖𝑠𝑡 and a subsequence length𝑚 noted
𝑀𝑃𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡 ′) = (𝑀𝑃𝐷𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡 ′), 𝑀𝑃𝐼𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡 ′)), as shown in
Figure 1. For this paper, we adopt a generalized definition adapted
to any distance measure (e.g., Dynamic Time Warping, etc.).

Subsequence Notation. Consider two time series 𝑡 and 𝑡 ′ of lengths
𝑛 and 𝑛′. We denote a subsequence 𝑠𝑡𝑖,𝑚 as a continuous subset of
values of 𝑡 of length 𝑚, starting at index 𝑖 . We denote the set of
subsequences of length𝑚 of 𝑡 as 𝑆𝑢𝑏𝑡𝑚 = {𝑠𝑡0,𝑚, ..., 𝑠𝑡𝑛−𝑚,𝑚}.

We introduce next the 1-NN subsequence, which will be used in
the definition of𝑀𝑃 :

Definition 2.1 (1-Nearest Neighbor (1-NN) subsequence). We say
that 𝑠𝑡 ′𝑗,𝑚 (the subsequence of 𝑡 ′ starting at index 𝑗 and of length𝑚)
is the 1-NN subsequence of a subsequence 𝑠𝑡𝑖,𝑚 if 𝐷𝑖𝑠𝑡 (𝑠𝑡𝑖,𝑚, 𝑠𝑡

′
𝑗,𝑚) is

the minimum value in {𝐷𝑖𝑠𝑡 (𝑠𝑡𝑖,𝑚, 𝑠𝑡
′

𝑘,𝑚
) |𝑠𝑡 ′

𝑘,𝑚
∈ 𝑆𝑢𝑏𝑡 ′𝑚}.

Nowwe give the definitions ofMatrix Profile Distance andMatrix
Profile Index, which are the two components of a MP:

Definition 2.2 (Matrix Profile Distance). Given two time series 𝑡
and 𝑡 ′ of lengths𝑛 and𝑛′, theMatrix Profile Distance w.r.t a distance
measure 𝐷𝑖𝑠𝑡 and a subsequence length𝑚, noted𝑀𝑃𝐷𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡 ′),
is a vector of size n-m+1 of the distance between each subsequence
𝑠𝑡𝑖,𝑚 ∈ 𝑆𝑢𝑏𝑡𝑚 , and its 1-NN subsequence in 𝑡 ′. Formally,

𝑀𝑃𝐷𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡 ′) = [ min
𝑗∈[0;𝑛′−𝑚]

(𝐷𝑖𝑠𝑡 (𝑠𝑡𝑖,𝑚, 𝑠𝑡
′
𝑗,𝑚)]𝑖∈[0;𝑛−𝑚]

Definition 2.3 (Matrix Profile Index). Using the same notations as
in the previous definition, the Matrix Profile Index (𝑀𝑃𝐼𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡 ′))
is a vector of size n-m+1 of integers, where each entry corresponds
to the index of the 1-NN subsequence in 𝑡 ′ of a given subsequence
𝑠𝑡𝑖,𝑚 in 𝑡 . Formally,

𝑀𝑃𝐼𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡 ′) = [ argmin
𝑗∈[0;𝑛′−𝑚]

(𝐷𝑖𝑠𝑡 (𝑠𝑡𝑖,𝑚, 𝑠𝑡
′
𝑗,𝑚)]𝑖∈[0;𝑛−𝑚]
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Symbol Definition
𝑡 A time series
𝑛 The length of the time series
D The domain of the values in the time series
𝑚 The subsequence length in the Matrix Profile
𝑠𝑡𝑖,𝑥 Subsequence in 𝑡 starting from 𝑖 , of length 𝑥
𝑠𝑖 Subsequence in 𝑡 starting from 𝑖 of length 𝑥 =𝑚

(subsequence length in the Matrix Profile)
𝑀𝑃𝑡 The (self-join) Matrix Profile of 𝑡
𝑀𝑃𝐷𝑡 The (self-join) Matrix Profile Distance vector of 𝑡
𝑀𝑃𝐼𝑡 The (self-join) Matrix Profile Index vector of 𝑡
𝑑𝑀 The Manhattan Distance
𝑑𝐸 The Euclidean Distance
𝑑𝑍 The z-normalized Euclidean Distance
𝑇 The set of time series considered
𝑀𝑃𝑇 The set of Matrix Profiles associated to the set of

time series 𝑇

Table 1: Notations used in the paper.

Notation Simplifications. In most cases (and this will be the case
in the rest of the article), one calculates the 𝑀𝑃 of a time series
with itself (i.e., self-join with 𝑡 = 𝑡 ′, thus 𝑛 = 𝑛′), and both 𝐷𝑖𝑠𝑡
and𝑚 are omitted; thus the subsequence 𝑠𝑡𝑖,𝑚 is simplified as 𝑠𝑖 and
𝑀𝑃𝐷𝑖𝑠𝑡,𝑚 (𝑡, 𝑡) is noted as𝑀𝑃𝑡 , with the distance and index vectors
noted as𝑀𝑃𝐷𝑡 and𝑀𝑃𝐼𝑡 . It is important to note that in this case,
the computation of min (resp. argmin) in𝑀𝑃𝐷 (resp.𝑀𝑃𝐼 ) are now
typically taken over 𝑗 ∈ [0;𝑛 −𝑚] 𝑎𝑛𝑑 | 𝑗 − 𝑖 | > 𝑚, in order to
exclude the trivial solutions where 𝑗 is within the same𝑚 length
subsequence as 𝑖 . Thus we define:

𝑀𝑃𝐷𝑡 = [ min
𝑗∈[0;𝑛−𝑚] 𝑎𝑛𝑑 | 𝑗−𝑖 |>𝑚

(𝐷𝑖𝑠𝑡 (𝑠𝑖 , 𝑠 𝑗 )]𝑖∈[0;𝑛−𝑚]

𝑀𝑃𝐼𝑡 = [ argmin
𝑗∈[0;𝑛−𝑚] 𝑎𝑛𝑑 | 𝑗−𝑖 |>𝑚

(𝐷𝑖𝑠𝑡 (𝑠𝑖 , 𝑠 𝑗 )]𝑖∈[0;𝑛−𝑚]

Self-joinMP is notably used to detect patterns in an unsupervised
way. As illustrated in Figure 1, the first red time series represents
an ECG signal. In order to build the MP, we consider the 𝑛 = 140
first points with a window of size𝑚 = 20, containing two heartbeat
phases, which are similar. The second and third graphs show the
two components of the MP: the MPD and the MPI. In the MPD,
the detection of similar patterns corresponds to the parts of the
curve where the distance value is lowest (0 and 90 in Figure 1). The
corresponding indexes are then read on the MPI. For instance, using
the MPD we can see that a pattern beginning at index 0 (resp. 90)
is similar to another pattern. Using MPI, we see that this pattern
begins at index 90 (resp. 0).

For clarity, other notations concerning𝑀𝑃 and used throughout
the paper are summarized in Table 1.

2.2 Problem Definition
Matrix Profiles (MPs) are often viewed as offering privacy protec-
tion by design: they replace raw time series with derived representa-
tions involving z-normalization, distance-based similarity and non
invertible operations like argmin. These transformations are be-
lieved to protect the underlying shape of the signal, supporting the

assumption that MPs enhancing privacy [28, 68] and that synthetic
data which preserve MPs can be considered privacy preserving [16].

However, such assumptions remain largely untested. In practice,
the abstraction provided by MPs may not prevent adversaries from
exploiting auxiliary knowledge to recover sensitive information.
Recent advanced reconstruction methods could recover the original
time series, enabling re-identification attacks or exposing sensitive
attributes.

To study this systematically, we introduce a general model of
privacy attacks on MPs, grounded in the categories identified by
privacy regulations (e.g., GDPR). This includes singling-out, linka-
bility, and inference, representing distinct risks depending on what
the attacker knows and aims to extract. Formally:

Definition 2.4 (Generic Attack on Matrix Profiles). Let
• 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢𝑝 } represent a set of 𝑝 users;
• 𝑀𝑃𝑇 = {𝑀𝑃𝑡1 , 𝑀𝑃𝑡2 , . . . , 𝑀𝑃𝑡𝑞 } denotes a public set of𝑞matrix
profiles. Each𝑀𝑃𝑡𝑖 = (𝑀𝑃𝐷𝑡𝑖 , 𝑀𝑃𝐼𝑡𝑖 ) is the MP of a time series
𝑡𝑖 , and each time series 𝑡𝑖 is associated with a single user𝑢 𝑗 ∈ 𝑈 .
The user associated with a time series 𝑡𝑖 is denoted by 𝑢 (𝑡𝑖 ). A
single user in𝑈 may have multiple associated time series and
corresponding matrix profiles;
• A represents auxiliary knowledge available to the attacker,
which encodes relations between users, time series, and other
data sources. Formally, A may contain mappings such as R :
𝑈 → 𝐸, where 𝐸 includes external datasets, partial attributes,
fragments of time series, etc.

An attacker seeks to exploit𝑀𝑃𝑇 and A to define a function FA :
𝑀𝑃𝑇 → 𝑅, where 𝑅 represents the outcome domain of the attack.
Potential outcomes considered in this article are:

(1) Singling-out: Identifying a specific matrix profile 𝑀𝑃𝑡𝑖 ∈
𝑀𝑃𝑇 corresponding to a single individual 𝑢 𝑗 ∈ 𝑈 ;

(2) Linkability: Establishing associations between two (or more)
matrix profiles𝑀𝑃𝑡𝑖 , 𝑀𝑃𝑡𝑘 that correspond to the same user
(or group of users);

(3) Inference: Deriving sensitive or personal attributes, such as
the shapes or values of all or part of the original time series
in 𝑇 , associated with the matrix profiles about one or more
users 𝑢 𝑗 ∈ 𝑈 .

This generic attack problem is denotedMPA,𝑅 and depends on
the specific definitions of A and 𝑅.

The novelty of this work lies in analyzing the privacy risks posed
by MP publication under this attack model. MPs occupy a position
between raw data and anonymized representations: they are widely
used as feature descriptors, yet implicitly assumed to obfuscate
sensitive information. However, this trade-off between utility and
privacy has never been rigorously evaluated. Unlike established
frameworks for synthetic data (e.g., [22]), MPs lack a dedicated risk
assessment methodology. Differential privacy techniques [20] are
not directly applicable, and MP-specific protections remain unex-
plored. Rather than adapting MPs to privacy models, we first aim
to understand the extent to which they leak information, especially
when auxiliary knowledge is sparse or partial.

The difficulty of the problem lies in several aspects: (i) privacy
risks vary by attack type and attacker capability, (ii) MP transforma-
tions are nonlinear and complex, impeding intuitive understanding
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of what is leaked, and (iii) no existing tools quantify these risks.
Moreover, in terms of implementation, the attacks highly depend
on the auxiliary knowledge A. While an attacker with a lot of
auxiliary knowledge may be able to launch certain attacks easily
(e.g., an attacker that has full knowledge of a time series with a
frequency of 2 minutes may simply interpolate values to predict
the values of the 1-minute frequency time series, an example of an
inference attack), an attacker with little or no auxiliary knowledge
would resort to a reconstruction of the initial time series from the
MP.

In the following sections, we instantiate and formalize the three
privacy attack types outlined above, then develop and evaluate a
reconstruction-based method capable of enabling all three, under
limited (or even inexistent) auxiliary knowledge.

3 Modeling Privacy Attacks on Matrix Profile
This section focuses on three foundational principles of privacy risk
analysis representing real world attacks: singling-out, linkability
and inference. These principles are well established in legal [37, 47],
technical [22] and industrial privacy frameworks [29] as they target
core aspects of data protection frameworks, such as those enshrined
in the GDPR. While non-exhaustive, these principles encapsulate
key mechanisms by which attackers can exploit datasets.

We first describe potential auxiliary knowledge of the attacker in
the studied scenarios. Then, for each principle, we provide a precise
model by instantiating the result 𝑅 of the generic attackMPA,𝑅

and by providing illustrative examples of the attacker’s knowledge
A. Algorithms based on reconstruction techniques are described in
Section 4, while baseline algorithms, evaluations, and benchmarks
are presented in Section 5.

3.1 Auxiliary Knowledge of the Attacker
Beyond access to the MP, attackers may leverage potential auxiliary
knowledge to improve the accuracy of their attack, to realistically
simulate a wide range of scenarios depending on what the attacker
knows about the domain or the individual.

Domain knowledge includes global properties of the dataset
that can be inferred from its nature or from public documentation.
For example, the attacker may have access to public knowledge
such as the generic shape (A𝑠ℎ𝑎𝑝𝑒 , e.g., standard ECG waveforms)
of specific types of time series. These elements are often easily
accessible, e.g., through technical reports or industry standards.

Individual knowledge refers to what the attacker knows about
a specific user or target time series. While this may seem like a
strong assumption, it is justified by real-world cases where such
information is accessible. As detailed in the next sections, prac-
tical scenarios of singling-out, linkability and inference attacks
may include cases involving knowledge of original time series of
given individuals (noted A𝑡𝑠 ), continuous subsequences (A𝑠𝑢𝑏𝑠𝑒𝑞)
or sparse points (A𝑠𝑝𝑎𝑟𝑠𝑒 ), sum of the values for a given time in-
terval (A𝑠𝑢𝑚 , e.g., daily energy consumption in a house) or even
known ownership of certain MPs (A𝑙𝑖𝑛𝑘 ).

A summary of the attacker’s potential auxiliary knowledge is
shown in Table 2, including notations and references to examples.

3.2 Singling-out Attacks
In the context of data privacy, singling-out is defined as “the pos-
sibility of isolating some or all records which identify an individual
in the dataset”1. Under GDPR Recital 262 data that allows singling-
out is not considered anonymized but pseudonymized. Several
works [13, 22] have formalized this principle. Anonymeter [22]
evaluates this principle only for tabular data. In [13], the notion
of Predicate Singling Out (PSO) is introduced, where an attacker
can uniquely identify an individual from published data. For Ma-
trix Profiles, time series (personal data) are transformed into MPs
(published data). While the transformation is not strictly invertible
(e.g., all time series modulo a constant share the same MP), an at-
tacker with sufficient but reasonable auxiliary knowledge could
still isolate a time series using its MP. This risk depends on the
data distribution and available auxiliary knowledge, motivating our
definition of singling-out attacks on MPs by taking the auxiliary
knowledge into account. For MPs, we define singling-out attacks
as follows:

Definition 3.1 (Singling-out Attack on Matrix Profiles). Given a
generic attackMPA,𝑅 , a singling-out attack assumes that A in-
cludes information about a specific individual 𝑢 𝑗 ∈ 𝑈 . Given the set
𝑀𝑃𝑇 , the attacker must identify the matrix profile𝑀𝑃𝑡𝑖 such that
𝑢 𝑗 = 𝑢 (𝑡𝑖 ). The output domain 𝑅 is {1, 2, ..., 𝑞}, and the attackers’
result 𝑟 ∈ 𝑅 is the identifier of the singled-out matrix profile𝑀𝑃𝑡𝑖 .
If no matrix profile can be singled out, the attacker outputs 𝑟 = ∅
(to avoid false positives).

Auxiliary Knowledge Scenarios. The attacker’s success depends
on the type of auxiliary knowledge A, which takes various forms:
• A𝑡𝑠 : The attacker knows a time series 𝑡𝑘𝑛𝑜𝑤𝑛 ;
• A𝑠𝑢𝑏𝑠𝑒𝑞 : The attacker knows a partial subsequence 𝑠

𝑡𝑘𝑛𝑜𝑤𝑛

𝑖,ℓ
of

length ℓ (see example 3.1 below);
• A𝑠𝑝𝑎𝑟𝑠𝑒 : The attacker knows only sparse points {𝑠𝑡𝑘𝑛𝑜𝑤𝑛

𝑖,1 }.
For example, a singling-out attack based on a known subse-

quence is as follows (for additional examples, see Appendix A):

Example 3.1 (Singling-out from a known subsequence -A𝑠𝑢𝑏𝑠𝑒𝑞-).

Alice underwent an ECG at a hospital for diagnosis purposes.
The hospital published 𝑀𝑃s, including Alice’s, with associated
signal classified as either benign or malignant. These MPs were
published under the assumption that the identities of the patients
were anonymized. However, due to a data leakage, Eve, an at-
tacker, gained access to a part of an original ECG of Alice. Using
this auxiliary information, Eve aims to single out Alice’s𝑀𝑃 to
determine whether it corresponds to a malignant anomaly.

3.3 Linkability Attacks
In data privacy, linkability refers to “the ability to link, at least, two
records concerning the same data subject or a group of data subjects
(either in the same database or in two different databases)”1. Privacy
risks emerge when attackers associate multiple matrix profiles

1Definition from the EU Data Protection Working Party and by the French CNIL.
2Excerpt from GDPR, Recital 26: “(...) To determine whether a natural person is iden-
tifiable, account should be taken of all the means reasonably likely to be used, such as
singling-out (...)”.

68

https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
https://www.cnil.fr/en/sheet-ndeg1-identify-personal-data
https://www.privacy-regulation.eu/en/recital-26-GDPR.htm


Privacy Attacks on Matrix Profile Proceedings on Privacy Enhancing Technologies 2026(1)

Annotation Description Knowledge Type Justification
A𝑡𝑠 A complete time series in𝑇 Individual Sections 3.2-3.4, Appendix A and B.
A𝑠𝑢𝑏𝑠𝑒𝑞 A continuous subsequence from a time series in𝑇 Individual Sections 3.2, 4.3 and Appendix A (A.2).
A𝑠𝑝𝑎𝑟𝑠𝑒 Sparse points in a time series in𝑇 Individual Sections 3.2, 3.4, 4.3 and Appendix A.
A𝑠𝑢𝑚 Sum of the values in a time series in𝑇 Individual Sections 3.4 and 4.3.
A𝑙𝑖𝑛𝑘 A set of one or more MPs of an individual in𝑀𝑃𝑇 Individual Section 3.3 and Appendix B.
A𝑠ℎ𝑎𝑝𝑒 Public knowledge of the time series shape in𝑇 Domain Sections 3.4, 4.3 and Appendix C.

Table 2: Auxiliary Knowledge Summary

corresponding to the same user across datasets or contexts. We
define linkability attacks on MPs as follows:

Definition 3.2 (Linkability Attack on Matrix Profiles). Given the
generic attackMPA,𝑅 , a linkability attack assumes thatA includes
auxiliary information about specific users in 𝑈 or relationships
between them, and at least two MPs in 𝑀𝑃𝑇 correspond to the
same user 𝑢 𝑗 ∈ 𝑈 (or to the same group of users). The output
domain is a set of 𝑘 integers in [1;𝑞], where 𝑅 = {1, 2, ..., 𝑞}𝑘 . The
attacker must produce 𝑟 = {𝑟1, 𝑟2, . . . , 𝑟𝑘 }, a set of identifiers for
matrix profiles 𝑀𝑃𝑡𝑟1 , 𝑀𝑃𝑡𝑟2 , . . . , 𝑀𝑃𝑡𝑟𝑘 ∈ 𝑀𝑃𝑇 that are linked to
the same user 𝑢 𝑗 ∈ 𝑈 (or the same group of users). If no such
profiles can be linked, the attacker outputs 𝑟 = ∅.

Auxiliary Knowledge Scenarios. The success of linkability attacks
depends on the auxiliary knowledge A available to the attacker.
This may include the knowledge of one or more MPs corresponding
to a target individual or group (A𝑙𝑖𝑛𝑘 ), which may potentially be
computed from the knowledge of a complete time series (A𝑡𝑠 )3.

An example of a linkability attack scenario is as follows:

Example 3.2 (Linking matrix profiles from ECGs -A𝑙𝑖𝑛𝑘 -).
Two hospitals, 𝐻1 and 𝐻2, share pseudonymized MPs of their
patients’ ECGs for research purposes. Alice, a patient at both
hospitals, has multiple ECGs recorded at each. All these MPs are
published in𝑀𝑃𝑇 along with meta-data specific to each hospital.
Eve, an attacker, gains knowledge of one or more of Alice’s MPs
from𝐻1 (e.g. due to data leakage) and links them to a MP from𝐻2,
which will grant her knowledge of Alice’s additional metadata.

The algorithm detailing the implementation of the baseline link-
ability attack is given in Algorithm 2, Appendix B. It takes as input
the attacker’s knowledge of one or several MPs (A𝑙𝑖𝑛𝑘 ) and outputs
the closest MP in𝑀𝑃𝑇 that is not already part of A𝑙𝑖𝑛𝑘 .

3.4 Inference Attacks
The regulator defines Inference as “the possibility to deduce, with
significant probability, the value of an attribute from the values of
a set of other attributes”1. In the context of MPs, we consider each
value of the original time series 𝑡 of length 𝑛 to be an attribute, thus
we consider the inference of 𝑛 attributes.

Definition 3.3 (Inference Attack on Matrix Profiles). Given the
generic attackMPA,𝑅 , an inference attack assumes that A can in-
clude (or not) prior knowledge either about the global characteristics
of the data, or about specific target users 𝑢𝑘 ∈ 𝑈 .
3See Example B.1 in Appendix B.

Given the set𝑀𝑃𝑇 , the attacker must infer the values 𝑡𝑖 associ-
ated with each matrix profile𝑀𝑃𝑡𝑖 ∈ 𝑀𝑃𝑇 , leveraging the auxiliary
knowledge A. The output domain 𝑅 consists of all possible time
series of length 𝑛, noted T𝑛 . Specifically, the attacker must produce
as a result 𝑟 = (𝑟1, 𝑟2, . . . , 𝑟𝑛), a time series inferred for each user
𝑢 (𝑡𝑖 ). If the attacker cannot infer a specific value at a given times-
tamp for a given matrix profile, the corresponding entry in 𝑟 is left
empty (e.g., 𝑟1 = ∅) or if no inferences are possible then 𝑟 = ∅.

Auxiliary Knowledge Scenarios. The attacker’s ability to infer
personal attributes depends on the auxiliary knowledge A, which
may include:
• Some points of the original time series (A𝑠𝑢𝑏𝑠𝑒𝑞 orA𝑠𝑝𝑎𝑟𝑠𝑒 ): For
instance by observing a user or obtaining the time series values
during a limited duration or by possessing a smart meter read
with a lower frequency.
• Aggregate points of the original time series (A𝑠𝑢𝑚): For instance
aggregated points of a given time series e.g., 1 hour aggregates
of a smart meter reading instead of a point per minute, or
the daily total energy consumption (sum of daily readings)
deduced from an electricity bill.
• General information on the original time series (A𝑠ℎ𝑎𝑝𝑒 ): Knowl-
edge of the type of time series allowing to know some charac-
teristics of the time series such as its general shape, amplitude,
frequency, etc.

An illustrative scenario is as follows:

Example 3.3 (Inference attack from smart meter readings -A𝑠𝑢𝑚-).

An electricity company suffers a data leak of the 1h frequency
time series of their clients. The electricity company also shared
the 𝑀𝑃𝑠 of the 1 minute frequency time series with a cloud
provider for data analysis with a view to lessen power peaks.
A malicious employee of the cloud provider who has retrieved
the leaked dataset aims to reconstruct these leaked time series
with a 1 minute frequency.

Another possible inference scenario is to infer sensitive label
such as age or gender, which is discussed in Appendix D.

4 Exploiting Reconstruction for Privacy Attacks
This section defines the reconstruction problem, models it as a
Constraint Satisfaction Problem (CSP), provides a high-level de-
scription of the reconstruction algorithm, and demonstrates how
this technique can be leveraged to enhance the effectiveness of the
three privacy attacks introduced earlier.
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4.1 Reconstruction Definition
A reconstruction seeks to recover partial or complete time series
data from a published matrix profile. Formally:

Definition 4.1 (Reconstruction fromMatrix Profile). Given a𝑀𝑃𝑡 ∈
𝑀𝑃𝑇 of a user 𝑢𝑖 ∈ 𝑈 . The attacker’s objective is to reconstruct
the time series 𝑡 corresponding to the 𝑀𝑃𝑡 . The output domain
𝑅 = (D)𝑛 is a vector of values of length 𝑛. The attack outputs the
reconstructed vector 𝑟 ∈ 𝑅 or 𝑟 = ∅ if no value can be reconstructed.

4.2 Modeling Reconstruction as CSP
A matrix profile,𝑀𝑃𝑡 , computed with subsequence length𝑚 and
distance measure 𝐷𝑖𝑠𝑡 , can be interpreted as two vectors: 𝑀𝑃𝐷
(Matrix Profile Distances) the distance values, and 𝑀𝑃𝐼 (Matrix
Profile Indices), the indices of nearest neighbors. These vectors
form constraints on distances and indices:
• Equality constraints: The distance between any subsequence
𝑠𝑖 of 𝑡 (starting at index 𝑖) and its nearest neighbor 𝑠 𝑗 (with
𝑗 = 𝑀𝑃𝐼 [𝑖]) must be equal to the value 𝑀𝑃𝐷 [𝑖]: ∀𝑖 ∈ (0, 𝑛 −
𝑚),Dist(𝑠𝑖 , 𝑠𝑀𝑃𝐼 [𝑖 ]) =𝑀𝑃𝐷 [𝑖].
• Inequality constraints: For each subsequence 𝑠𝑖 , the distance
to all other subsequences 𝑠 𝑗 ( 𝑗 ≠ 𝑖) must be greater than or
equal to𝑀𝑃𝐷 [𝑖]: ∀(𝑖, 𝑗) ∈ (0, 𝑛−𝑚)2, |𝑖− 𝑗 | > 𝑚,Dist(𝑠𝑖 , 𝑠 𝑗 ) ≥
𝑀𝑃𝐷 [𝑖].

While MP is widely used and developed for data mining appli-
cations, few prior works have explored the use of noisy or partial
MPs as a privacy-preserving measure. As such, the exploration of
obfuscated or noisy MPs falls outside the scope of this paper and is
left as future work (see Section 7). Also, the subsequence length and
the distance metric used in the MP computing are usually publicly
known, as in practice, the metric used is one of a few classical ones
(e.g., (z-normalized) Euclidean, see [16, 36, 66]), and is usually de-
ducible from the kind of data treated. Hence, the attacker assumes
access to the MP components (𝑀𝑃𝐷 , 𝑀𝑃𝐼 ,𝑚 and 𝐷𝑖𝑠𝑡 ) and pub-
lic knowledge of the data type (e.g., ECG, energy consumption).
Additional information (that can be easily computed) used in our
approach is:
• Upper and lower bounds of time series values based on data
characteristics;
• The time series length, inferred as 𝑛 = |𝑀𝑃𝐼 | +𝑚 − 1;
• Normalization of data (e.g., scaled to [0, 1], see Appendix E).
Reconstructing 𝑡 involves solving a CSP to find a sequence of val-

ues 𝑡 in domain D𝑛 , subject to equality and inequality constraints.

Definition 4.2 (CSP for Reconstruction). The CSP seeks to find
(ideally a unique) sequence 𝑡 = [𝑡 [0], . . . , 𝑡 [𝑛 − 1]], where each
subsequence 𝑠𝑖 = [𝑡 [𝑖], . . . , 𝑡 [𝑖 +𝑚 − 1]] satisfies the following
equality and inequality constraints:{

∀𝑖 ∈ (0, 𝑛 −𝑚),Dist(𝑠𝑖 , 𝑠𝑀𝑃𝐼 [𝑖 ]) =𝑀𝑃𝐷 [𝑖]
∀(𝑖, 𝑗) ∈ (0, 𝑛 −𝑚)2, |𝑖 − 𝑗 | > 𝑚,Dist(𝑠𝑖 , 𝑠 𝑗 ) ≥ 𝑀𝑃𝐷 [𝑖]

Optimized Reconstruction. CSP are potentially exponentially long
to solve, thus we adopt an optimization approach : instead of search-
ing for an exact solution, we seek to minimize the following objec-
tive function (note that the original time series verifies 𝑂 (𝑡) = 0),
while removing the equality constraints:

𝑂 (𝑡) =
𝑛−𝑚∑︁
𝑖=0
(Dist(𝑠𝑖 , 𝑠𝑀𝑃𝐼𝑡 [𝑖 ]) −𝑀𝑃𝐷𝑡 [𝑖])2 (1)

This presents the advantage of not needing to wait for the com-
plete computation of the CSP solution (thus providing anytime
solutions), however it may lead to the presence of violated con-
straints (i.e., incorrect solutions) in any case where𝑂 (𝑡) > 0. While
this approach does provide anytime solutions, experimental con-
vergence remains slow. Thus, inspired by [16], we use a modified
objective function 𝐶 , which incorporates penalties for constraint
violations using the popular Rectified Linear Unit (ReLU) activation
function, in order to also remove the inequality constraints:

𝐶 (𝑡) =
𝑛−𝑚∑︁
𝑖=0

𝑛−𝑚∑︁
𝑗=0

𝑅𝑒𝐿𝑈 (𝑀𝑃𝐷𝑡 [𝑖] − 𝐷𝑖𝑠𝑡 (𝑠𝑖 , 𝑠 𝑗 )) (2)

where ReLU penalizes violations of the inequality constraints.
The final combined objective function that we use is thus:

𝑂𝑜𝑝𝑡 (𝑡) = 𝛼 ∗𝑂 (𝑡) + 𝛽 ∗𝐶 (𝑡) (3)

with 𝛼 and 𝛽 as weighting parameters (default: 𝛼 = 𝛽 = 1), and
𝐷𝑖𝑠𝑡 = 𝑑𝐸 or 𝐷𝑖𝑠𝑡 = 𝑑𝑍 , as discussed in Section 5.1 and in Appen-
dix G.

This formulation embeds the constraints into the objective func-
tion, which improves experimental efficiency as we no longer try
to satisfy them exactly. In practice, reconstructing a time series of
length 200 shows a threefold speed-up compared to using the 𝑂
objective function (See Appendix H).

4.3 Incorporating Auxiliary Knowledge
Auxiliary knowledge can be incorporated as constraints in our
reconstruction model, to improve the accuracy of the attack.

Both individual knowledge likeA𝑠𝑢𝑏𝑠𝑒𝑞 andA𝑠𝑝𝑎𝑟𝑠𝑒 and domain
knowledge (e.g., A𝑠ℎ𝑎𝑝𝑒 ) can be expressed as hard constraints. For
A𝑠𝑢𝑏𝑠𝑒𝑞 and A𝑠𝑝𝑎𝑟𝑠𝑒 (see Section 3.1), let 𝐼 be the set of indices for
which the attacker knows the values. Thus:

∀𝑖 ∈ 𝐼 , 𝑡 [𝑖] = 𝑡𝑘𝑛𝑜𝑤𝑛 [𝑖] (4)

We model A𝑠ℎ𝑎𝑝𝑒 for a function 𝑡 of period 𝜏 (allowing for a
relative error 𝜂) and/or amplitude [𝑚𝑖𝑛,𝑚𝑎𝑥] by:

∀𝑖 ∈ [1, 𝑛 − 𝜏], (1 − 𝜂).𝑡 [𝑖] ≤ 𝑡 [𝑖 + 𝜏] ≤ (1 + 𝜂).𝑡 [𝑖] (5)

∀𝑖 ∈ [1, 𝑛],𝑚𝑖𝑛 ≤ 𝑡 [𝑖] ≤𝑚𝑎𝑥 (6)

Overall modeling. Our reconstruction attack model thus con-
sists of an objective function𝑂𝑜𝑝𝑡 (𝑡) (i.e., equation 3) which encodes
the soft constraints from the MP and is minimized to approximate
the target profile while maintaining performance. When relevant,
attacker auxiliary knowledge is incorporated as additional hard
constraints (e.g., equations 5 and 6). Any knowledge that cannot
be formulated as constraints will be incorporated during the post-
processing stage (see Section 4.4).

4.4 Reconstruction Algorithm
The reconstruction attack algorithm, which derives from this model,
is as follows (see Appendix C for the pseudo-code):
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(a) Before post-processing. (b) Zone identification. (c) After post-processing.

Figure 2: Post-processing for ECG reconstruction improves PCC from 0.8 to 0.87 and decreases RMSE from 0.16 to 0.09.

(1) Initialization: Given𝑀𝑃𝑡 ∈ 𝑀𝑃𝑇 and𝑚, deduce the length 𝑛
of the target time series. Deduce𝑀𝑃𝑡 calculated from normal-
ized values (see equation 10 in Appendix E). Then generate
a set 𝑇 = {𝑡𝑖 } of candidate time series of length 𝑛. Each 𝑡𝑖 is
built by generating 𝑛 random values in this normalized range
[0,1];

(2) Objective function evaluation: For each candidate time series
𝑡𝑖 , evaluate its loss versus𝑀𝑃𝑡 , using objective function𝑂𝑜𝑝𝑡 ;

(3) Candidate selection: Select the best-performing candidates
with the lowest loss for further optimization (in practice, we
keep as many candidates as the parallel rate 𝑝𝑟𝑎𝑡𝑒 );

(4) CSP solving (for computational efficiency, this step is per-
formed in parallel on 𝑝𝑟𝑎𝑡𝑒 CPUs): For each of the 𝑝𝑟𝑎𝑡𝑒 best-
performing candidates {𝑡𝑏𝑒𝑠𝑡𝑖 }, run the CSP solver to itera-
tively refine 𝑡𝑏𝑒𝑠𝑡𝑖 to minimize 𝑂𝑜𝑝𝑡 ;

(5) Post-processing (optional): Domain-specific knowledge can
be used to further refine each reconstructed time series 𝑡𝑏𝑒𝑠𝑡𝑖 .
For example, for ECG data, the attacker can apply standard
ratios to adjust waveforms (e.g., QRS, T, U, V patterns);

(6) Final Output: Output 𝑟 ∈ {𝑡𝑏𝑒𝑠𝑡𝑖 }, by choosing the time series
whose MP has the lowest 𝑂𝑜𝑝𝑡 loss value.

Post-Processing (case of ECG) Prior knowledge that can be natu-
rally expressed using variables can be encoded as hard constraints;
otherwise, it can be incorporated during the post-processing phase
to improve the effectiveness of the reconstruction. In the case of
ECG data, this involves leveraging public knowledge of ECG pat-
terns to correct distortions in amplitude, timing, or waveform pro-
portions introduced during reconstruction, as the fundamental QRS
patterns (most prominent peaks in the ECG, see Figure 2b and Ap-
pendix C for more details) are typically preserved. We propose the
following Post-Processing, for ECG Data, as step (5) of reconstruc-
tion algorithm above (see Appendix C for detailed description):

(1) QRS Pattern Identification: Identify QRS complexes using the
distance profile;

(2) Segmentation of Adjacent Waveforms: Divide the intervals be-
tween successive QRS patterns into three primary segments
corresponding to U, T, and V waveforms, based on standard
proportional spacing in a typical ECG signal;

(3) Normalization and Adjustment: Normalize the amplitude of
each segment using conventional ratios relative to the QRS
complex, to align with standard clinical ECG proportions.

Figure 2a illustrates a reconstructed ECG signal before post-
processing. While the general shape of the signal is captured, am-
plitude ratios between waveforms are inconsistent, and some dis-
tortions are present. Figure 2b shows the segmentation of the ECG
signal into QRS, U, T, and V zones, based on proportional spacing.
Finally, Figure 2c demonstrates the corrected signal after apply-
ing amplitude normalization and proportional adjustments, using
public information for a classic ECG.

The application of post-processing techniques significantly im-
proves the quality of the reconstructed signal. In the example pre-
sented, which is representative of general results of our approach,
the Pearson Correlation Coefficient (PCC [54], see Section 5.1) be-
tween the reconstructed ECG and the original signals increases
from 0.8 to 0.87 after post-processing. On the contrary, the Root
Mean Square Error (RMSE) decreases from 0.16 to 0.08, thus ensur-
ing closer alignment with the raw data.

4.5 Privacy Attacks using Reconstruction
We now show how the reconstruction algorithm developed in the
previous section can be used to instantiate concrete privacy attacks,
even in the absence of strong auxiliary knowledge. For each of the
three categories of privacy risk identified in Section 3 we describe
how the attack is implemented using the reconstructed time series,
and how its effectiveness can be evaluated.

Inference attack. In the inference setting, the attacker seeks to
extract sensitive attributes or behavioral features directly from the
reconstructed signal.

Algorithm. The attacker takes as input the matrix profile𝑀𝑃𝑡 of
a time series 𝑡 and produces a reconstruction 𝑡 using the method
from Section 4.4. This reconstructed signal is then directly inter-
preted as the inferred output. No auxiliary knowledge is required.
Depending on the context, 𝑡 may itself be the sensitive information
(e.g., biomedical signal), or serve as a proxy to infer higher-level
properties (e.g., activity, condition).

Evaluation Metrics. We measure inference quality using stan-
dard similarity metrics between 𝑡 and 𝑡 , when the ground truth is
available: Root Mean Squared Error (RMSE), Pearson Correlation
Coefficient (PCC), and Partial PCC on regions of interest. To assess
the quality of inference, we also adopt a conformal-based confi-
dence score, inspired by conformal prediction [34, 44], that reflects
the stability of the reconstruction with respect to input variations.
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Singling-out attack. Here, the adversary aims to identify which
matrix profile in a public set corresponds to a known partial time
series from a target user.

Algorithm. Given a collection 𝑀𝑃𝑇 of matrix profiles, the at-
tacker first reconstructs a set of estimated time series 𝑇 . Provided
with a partial original time series 𝑡 (auxiliary knowledge), they
compute the distance between 𝑡 and each 𝑡 ′ ∈ 𝑇 . The matrix profile
whose reconstruction is closest to 𝑡 is selected as the predicted
match.

Evaluation Metrics. We report the singling-out success rate, de-
fined as the proportion of individuals 𝑢𝑖 ∈ 𝑈 for whom the correct
matrix profile is identified. This is evaluated in a top-1 identification
setting over the candidate set, and measures how reconstruction
reduces anonymity.

Linkability attack. In this scenario, the attacker attempts to asso-
ciate multiple MPs to the same user, even when no identity infor-
mation is provided.

Algorithm. The attacker begins by reconstructing 𝑇 from𝑀𝑃𝑇 ,
and selects a reference reconstruction 𝑡 known to belong to a given
user. Then, they compute similarity scores between 𝑡 and all other
𝑡 ′ ∈ 𝑇 . Any series sufficiently close to 𝑡 is linked to the same user.

Evaluation Metrics. We measure linkability success as the pro-
portion of users for whom at least one additional MP is correctly
linked to the same identity. This task is analogous to recall in a one-
vs-rest matching problem, and reflects the ability of reconstruction
to compromise unlinkability.

5 Experiments
5.1 Experimental Setting
Datasets. We evaluate our methods using datasets already em-
ployed in privacy studies involving matrix profiles [16, 28, 49, 68]:
• ECG: The ElectroCardioGram Database [23] contains seven
long-duration recordings (14-22 hours, sampled at 128 Hz) with
annotations and demographic labels (including age, sex). We
extracted the first 4000 points from each record and segmented
them into 20 samples of 200 points each.
• IHEPC: The Individual Household Electricity Power Con-
sumption Dataset [25], comprises electricity usage recorded
every minute for four years. We selected randomly data from
140 days, sampling 200 data points (10:00-13:20).
• H-MOG: The dataset [65] provides smartphone accelerometer
data, we use the X-axis, sampled at 80-length time series.

Platforms. For the baseline attacks used for comparison with our
reconstruction based attacks, evaluations were conducted on an HP
laptop equipped with a 13th Gen Intel® Core™ i7-1365U processor
and 30 GB of RAM. The reconstruction based attacks are executed
on a server equipped with an Intel(R) Xeon(R) E-2276G CPU (3.80
GHz, 12 cores) and 62 GB RAM.

CSP Solvers. OR-Tools [48] was used for preliminary analysis
involving an integer programming formulation of the CSP (see Ap-
pendix L). IPOPT [59] was used for real-valued optimization, with
hyperparameters and coefficients for objective functions carefully

tuned. While other solvers were tested, they provided less efficient
results (See Appendix G-F-I for details).

Metrics. We list here the metrics that quantify the effectiveness of
the reconstruction and of the inference attack. For singling-out and
linkability attacks, we use success rate to evaluate.
• Root Mean Squared Error (𝑅𝑀𝑆𝐸) [27]: measures the av-
erage deviation between the original time series 𝑡 and its re-
construction 𝑡 , scaled between 0 and 1. Lower 𝑅𝑀𝑆𝐸 values
indicate better reconstruction.
• Pearson Correlation Coefficient (𝑃𝐶𝐶) [52, 54]: quantifies
the linear relationship between 𝑡 and 𝑡 , or their respective
matrix profile distances (𝑀𝑃𝐷𝑡 and𝑀𝑃𝐷𝑡 ), with values rang-
ing from 0 to 1. Higher 𝑃𝐶𝐶 values indicate stronger linear
similarity. As in prior work (see e.g., [52]), reconstructed time
series with a 𝑃𝐶𝐶 above 0.7 are considered to have shapes
closely matching the original.
• Partial-PCC and Partial-RMSE: These metrics evaluate sub-
sequences of reconstructed time series. For time series of size
𝑛, Partial-𝑃𝐶𝐶 (or Partial-𝑅𝑀𝑆𝐸) is the maximum 𝑃𝐶𝐶 (or
the minimum RMSE) value computed for all subsequences of
length 2 ∗𝑚 in 𝑡 . For example, a Partial-𝑃𝐶𝐶 of 0.7 indicates
that at least one subsequence of size 2 ∗𝑚 has a 𝑃𝐶𝐶 ≥ 0.7
compared to its counterpart in 𝑡 .

5.2 Reconstruction Efficiency
We evaluate the reconstruction technique introduced in Section 4.4.
The experimental process comprises four steps:

(1) Select 140 random normalized time series {𝑡} =𝑇 from each
dataset.

(2) Compute their matrix profiles {𝑀𝑃𝑡 } = 𝑀𝑃𝑇 (with 𝑀𝑃𝑡 =

{𝑀𝑃𝐷𝑡 , 𝑀𝑃𝐼𝑡 })
(3) Reconstruct each time series 𝑡 using the proposed reconstruc-

tion attack. We note 𝑇 = {𝑡}
(4) Evaluate the fidelity of reconstructed series (𝑇 vs. 𝑇 ) and

their matrix profiles (𝑀𝑃𝑇 vs. 𝑀𝑃𝑇 ) using 𝑅𝑀𝑆𝐸, 𝑃𝐶𝐶 and
Partial-𝑃𝐶𝐶 and -𝑅𝑀𝑆𝐸 metrics.

Time series are obtained from the ECG, IHEPC and H-MOG
datasets, and are normalized to the range [0, 1] to enable cross-
dataset comparison4. Matrix profiles are computed using Euclidean
distance (𝑑𝐸 ) and and Z-normalized Euclidean distance (𝑑𝑍 ) distance
measures. The size of time series 𝑛 and subsequence length𝑚 are
aligned with configurations used in prior studies (see Table 3).

Reconstruction results without Auxiliary Knowledge.
• Quantitative Results: Table 4 summarizes the quality of re-
constructed time series 𝑡 compared to original time series 𝑡 ,
and 𝑀𝑃𝑡 compared to 𝑀𝑃𝑡 , using PCC (and Partial-PCC for
subsequences) to evaluate shape similarity, and RMSE (and
Partial-RMSE) to assess value accuracy.
• Results Distributions and Cross-Dataset Comparisons: Figures 5
and 6 show the distribution of different metrics (i.e., PCC and
RMSE values) for both ECG and IHEPC datasets with the two

4Normalization of input time series has no impact on our reconstruction algorithm,
calculating the normalized MP from the original MP is explained in Appendix E.
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Parameter H-MOG ECG IHEPC
Number of time series 140 140(∗∗) 140
Length for 𝑡 (𝑛) 80(∗) 200(∗∗) 200(∗∗∗)

Subseq. length for𝑀𝑃𝑡 (𝑚) 5(∗) 10 10(∗∗∗)
Max Solver time (in min.) <5 ∼60 ∼60

(∗) same as [28], is 5 sec. movements
(∗∗) 𝑛 = 200 represents 3̃ heart beats, 140 time series to align with [16]
(∗∗∗) 𝑛 = 200 is 3 hours 20 min. energy consumption,𝑚 = 10 is 10 min.
Table 3: Parameters for the reconstruction experiments.

distance measures (i.e., 𝑑𝐸 and 𝑑𝑍 ) to facilitate comparisons
across different datasets and𝑀𝑃 parameters.
• Reconstruction Examples: Representative examples of recon-
structed time series versus their original counterparts are
shown in Figures 3 (ECG dataset) and 4 (IHEPC dataset), with
PCC and RMSE scores to illustrate the reconstruction quality.

Takeaway. The following main conclusions can be drawn from
these results about the reconstruction process:
• Reconstruction quality in shape and values: Table 4 shows that
the average 𝑃𝐶𝐶 is above 0.71 and the average 𝑅𝑀𝑆𝐸 is below
0.25 for all the time series considered in the experiments (see
“TOTAL” in the last line of Table 4) with both 𝑑𝐸 or 𝑑𝑍 distance
metrics. Nearly 60% of the complete reconstructed time series
have 𝑃𝐶𝐶 > 0.7, and on average 37.1% have 𝑅𝑀𝑆𝐸 ≤ 0.1.
Partial-𝑃𝐶𝐶 is above 0.7 for nearly 100%, meaning all the re-
constructed time series have at least one subsequence of signif-
icant size with well-preserved shape. Similarly, Partial-RMSE
is below 0.1 for almost 90% of the time series encountered in
the experiments, indicating that the values are also very well-
preserved. In general, time series with constant or perfectly
repeated patterns (though this is an unrealistic case) are more
resistant to reconstruction, as they admit a larger number of
possible preimages that correspond to the same MP.
• Significant post-processing improvement: Values marked with
a star in Table 4 were obtained after post-processing. While
𝑃𝐶𝐶 remains mostly unchanged after post-processing (as post-
processing involves vertical shifts that do not alter the shape),
the 𝑅𝑀𝑆𝐸 is significantly improved, reducing the average error
by almost 30%. This improvement doubles the proportion of
reconstructed time series with 𝑅𝑀𝑆𝐸 ≤ 0.1.
• Preservation of Matrix Profiles accuracy: Table 7 shows that the
matrix profiles of the reconstructed time series are very close
to their counterparts in𝑀𝑃𝑇 . The average accuracy for indices
in 𝑀𝑃𝐼 is > 0.86 (i.e., 86% of indices in 𝑀𝑃𝐼𝑡 are identical to
those in𝑀𝑃𝐼𝑡 ), and the average RMSE < 0.1 and PCC > 0.97,
indicating that the values and shapes of the reconstructed MPs
are very similar to the originals.
• Limited impact of distance metrics: Using z-normalized Eu-
clidean Distance rather than simply Euclidean Distance does
not provide much significant advantage in average in pro-
tection against reconstruction attacks, contrary to what was
expected in previous works (see e.g., [28, 68]). Results are sim-
ilar with both distances for H-MOG, slightly better with 𝑑𝐸

(a) Avg. solution with 𝑑𝐸 (b) Best solution with 𝑑𝐸

(c) Avg. solution with 𝑑𝑍 (d) Best solution with 𝑑𝑍

Figure 3: Avg/best quality reconstructions examples (ECG).

(a) Avg. solution with 𝑑𝐸 (b) Best solution with 𝑑𝐸

(c) Avg. solution with 𝑑𝑍 (d) Best solution with 𝑑𝑍

Figure 4: Avg/best quality reconstructions examples (IHEPC).

for ECG, and slightly better with 𝑑𝑍 for IHEPC (Table 4). Im-
portantly, for the ECG dataset, although 𝑑𝑍 yields a lower
average 𝑃𝐶𝐶 for the total time series, it reconstructs QRS pat-
terns more effectively (see Figure 3), raising significant privacy
concerns due to the sensitivity of QRS data in ECG. All met-
rics show good preservation of MPs (Table 7), confirming the
success of the reconstruction. This finding contradicts certain
assumptions from previous work [16, 68] that 𝑑𝑍 increases
reconstruction difficulty due to its non-linearity.

Reconstruction results with Auxiliary Knowledge. The results
presented so far assume that the attacker only has access to the MP.
We now evaluate reconstruction performance when the attacker
possesses auxiliary knowledge, as discussed in Section 4.3. The
selected knowledge types and parameters are inspired by real-world
use cases and include: (i) fixing the first 30 points (i.e., knowing the
consumption pattern over the first 30 minutes), (ii) downsampling

73



Proceedings on Privacy Enhancing Technologies 2026(1) Zhang et al.

Dataset Dist. PCC Part-𝑃𝐶𝐶 RMSE Part-𝑅𝑀𝑆𝐸
(Avg - ≥ 0.7 - Max) (≥ 0.7) (Avg- ≤ 0.1 - Min) (≤ 0.1)

H-MOG 𝑑𝐸 0.83 - 84% - 0.99 100% 0.16 - 58% - 0.03 90%
𝑑𝑍 0.78 - 79% - 0.97 100% 0.23 - 36% - 0.07 80%

ECG 𝑑𝐸 0.53 - 39% - 0.98 100% 0.15 - 57% - 0.03 99%
𝑑𝑍 0.68 - 61% - 0.86 100% 0.25 - 9% - 0.10 93%
𝑑𝑍 * 0.67* - 59%* - 0.92* 100%* 0.18* - 19%* - 0.06* 94%*

IHEPC 𝑑𝐸 0.81 - 89% - 0.99 100% 0.19 - 49% - 0.03 87%
𝑑𝑍 0.69 - 60% - 0.98 99% 0.34 - 14% - 0.06 75%

TOTAL 𝑑𝐸 0.72 - 70.7% - 0.99 100% 0.17 - 54.7% - 0.03 92%
𝑑𝑍 0.71 - 64.8% - 0.98 99.8% 0.25 - 19.5% - 0.07 85.5%
* The results on this line were obtained using post-processing.

Table 4: Reconstruction fidelity: 𝑡 vs. 𝑡 .

(a) ECG. (b) Energy consumption.

Figure 5: 𝑃𝐶𝐶 distribution for 𝑡 after reconstruction.

(a) ECG. (b) Energy consumption.

Figure 6: 𝑅𝑀𝑆𝐸 distribution for 𝑡 after reconstruction.

at a rate of 1 point per 30 minutes, and (iii) knowing the mean value
(i.e., the average consumption per minute).

Table 5 summarizes the results. Both shape and value recon-
struction improve with all types of auxiliary knowledge, except
for shape reconstruction from 𝑀𝑃 calculated with 𝑑𝐸 using the
mean value. An example of reconstruction under different auxil-
iary knowledge conditions is shown in Appendix M. Notably, we
observe that real-value reconstruction accuracy can improve sig-
nificantly with even limited auxiliary information, such as a mean

Distance measure
Auxiliary Knowledge 𝑑𝐸 𝑑𝑍

∅ (Baseline) 0.83 (0.19) 0.69 (0.34)
A𝑠𝑝𝑎𝑟𝑠𝑒 (1 point/30 min.) 0.90 (0.12) 0.76 (0.17)
A𝑠𝑢𝑏𝑠𝑒𝑞 (first 10% time series) 0.89 (0.09) 0.77 (0.21)

A𝑠𝑢𝑚 0.79 (0.12) 0.75 (0.14)

Table 5: Average PCC (and average RMSE in parentheses) be-
tween reconstructed and original time series under different
attacker auxiliary knowledge and distance measures, using
the energy consumption dataset.

value or a low-resolution sampling (e.g., 3% of the points). This is
because such constraints effectively reduce the size of the output
domain.

5.3 Privacy Attacks Baselines and Evaluation
In this section, we first define baselines for the three attacks. We
then present the evaluations with reconstruction techniques and
compare them with these baselines. Table 6 summarizes the results
of the attacks using reconstruction, compared to baseline attacks
(see Section 5.1), with high effectiveness highlighted in red. For
detailed results, please refer to Appendices A and B.

Baseline attacks. We consider several simple baselines that do
not use reconstruction, for comparison purposes (see repository git
and Appendices A-B for details).
• Singling-out baseline: This baseline attack exploits auxiliary
knowledge and the known function and parameters of MP.
If the attacker knows an entire time series 𝑡𝑘𝑛𝑜𝑤𝑛 , they can
compute its matrix profile and directly match it to an identifier
in𝑀𝑃𝑇 . With only a subsequence (partial time series), the at-
tacker compares the matrix profile of the subsequence against
the published𝑀𝑃𝑇 , looking for alignment in𝑀𝑃𝐷 (distance)
and𝑀𝑃𝐼 (index) values (an example is given in Appendix A).
If the auxiliary information is sparse or insufficient, we com-
pute the missing values using linear interpolation to form an
estimated time series 𝑡 ′

𝑘𝑛𝑜𝑤𝑛
. Then the published profile with

a most similar 𝑀𝑃𝐷 (i.e., by measuring the correlations) is
returned.
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• Linkability baseline: The linkability baseline attack consid-
ers that the attacker has complete knowledge of 𝑦 different
MPs of a target user (A𝑙𝑖𝑛𝑘 ). In this baseline attack, the 𝑦
known MPs are taken from𝑀𝑃𝑇 (as each user in the dataset
has 10 MPs, we test values of 𝑦 < 10). The goal of the attack
is to find another MP in 𝑀𝑃𝑇 that belongs to the same user.
This baseline attack simply computes the distance between
the known MPs and all the MPs of𝑀𝑃𝑇 (i.e., we take the MPD
component of theMPs, and view them here as vectors of length
𝑛) and chooses the one that is the closest to a MPD inA𝑙𝑖𝑛𝑘 . If
this chosen MP belongs to the same user, the attack is deemed
successful. Any distance between vectors can be used in the
baseline attack algorithm (e.g., the Euclidean Distance), how-
ever in our experiments we chose to use the minimal value
of the MPD between these vectors, as it is more general, and
allows for comparing smaller subsequences. It is tailored to
the characteristics of the application, such as ECG, using a
specific length (e.g., ℓ = 100 for the results in Table 6) of the
vectors rather than only being able to compare the whole vec-
tors (of length 𝑛). Note that if we chose ℓ = 𝑛 this is equivalent
to simply computing their Euclidean Distance. The baseline
algorithm is detailed in Appendix B (Algorithm 2).
• Inference baseline: Inferring original time series from their
matrix profiles is a difficult task. Traditional basic methods
such as interpolation [50], moving average smoothing [9], and
nearest-neighbor search [32] cannot be directly applied, as
the matrix profile represents a non-linear transformation of
the time series. Additionally, inference capacity cannot be
fully captured by RMSE or PCC alone. Indeed, given a set of
𝑁 time series 𝑇 and their corresponding 𝑀𝑃𝑠 , a low RMSE
or a high PCC between a reconstructed time series 𝑡 and its
true antecedent (the original time series 𝑡 ) does not guarantee
successful inference by an adversary. We adapt to our context
a baseline metric inspired by conformal prediction: for each
𝑡 , we rank the time series in 𝑇 from closest to furthest (using
PCC or RMSE) and record the rank of the true time series. We
then report the percentage of cases where the true series is
ranked top-1. A value of 100% indicates a highly successful
attack, where each 𝑡 is closest to its true source 𝑡 .

Singling-out. We evaluate two types of auxiliary knowledge:
A𝑠𝑢𝑏𝑠𝑒𝑞 and A𝑠𝑝𝑎𝑟𝑠𝑒 . For A𝑠𝑝𝑎𝑟𝑠𝑒 (see first line of Singling-out in
Table 6), the baseline attack fails with only one point and remains
largely ineffective at low sampling frequencies (e.g., one point every
four), achieving at most a 24% success rate. The baseline achieves its
maximum at 72% with one in two points. In contrast, reconstruction
achieves 80% with every eighth point, then sharply increases to
92% success when given every fourth point, and achieves 95% with
one in two points. ForA𝑠𝑢𝑏𝑠𝑒𝑞 (see the second line of Singling-out),
our experiments show that reconstruction can successfully single
out 57% of matrix profiles using just𝑚 known points (5% of the
time series), compared to 0% with the baseline attack. With 2𝑚 and
3𝑚 known points, reconstruction achieves 80% and 82% success
rates, respectively, while the baseline only reaches 21% and 60%.
When more than 3𝑚 points are known (see the last two lines of
Singling-out), both baseline and reconstruction attacks are highly
effective (over 96% accuracy, up to 100% for reconstruction).

Figure 7: Ground truth prediction ranking distribution.

Linkability. The successful rate of a linkability attack by con-
sidering a weak attacker is low, with success rate of 67% (see the
first line of Linkablity in Table 6). Success rate increases with the
attacker’s knowledge, with 2 to 3 known links, it achieves around
70% and with 4 to 6 known links it reaches 76%. However, with
more prior knowledge (more than 6), it stays within a narrow band
of 67% to 76%. More detailed results are provided in Appendix B.
This result is slightly improved, with an increased success rate of
77% when using the reconstructed time series, by considering the
same weak attacker (first line of last column for Linkability). When
the attacker knows a pair of 𝑀𝑃𝑠 , the success rate increases to
94.3%, and remains high (between 85% and 95.7%) with more prior
knowledge, indicating a high risk of linkability.

Inference. The results are shown in Figure 7. Over 92% of predic-
tions (129 out of 140) correctly identify the true time series as the
top-1 prediction, signifying fully successful prediction, and over
97% place the true time series within the top-5 across all datasets.
The outliers (outside the top-10) in the energy consumption dataset
correspond to days with near-zero consumption (i.e., when no one
is home), resulting in matrix profiles heavily affected by noise. For
the H-MOG dataset, outliers arise due to insufficient resolution, as
the algorithm was run for a shorter duration, as detailed in Table 3.
Results of another type of inference attack (i.e., label inference) are
proposed and discussed in Appendix D.

5.4 Conclusion and Limitations
Experimental results demonstrate that sharing MPs does not ensure
privacy. Firstly, MP does not preserve privacy against singling-out,
linkability and inference attacks. Secondly, it is not secure against
reconstruction attack, considering an attacker with moderate power
and limited prior knowledge.

There are some limitations to our evaluations. Firstly, we eval-
uate our attacks on three time series datasets to validate their ef-
fectiveness. Additional datasets could be explored to draw broader
conclusions about the attack utility based on high-level dataset
characteristics, such as value distribution.

Secondly, due to computational constraints, we used six “good
enough” starting points to solve the constraint systems and yielding
six candidate solutions per reconstruction. This limits solution
space exploration, but more sophisticated mechanisms could be
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Attack Knowledge Dataset Baseline attack Reconstruction-based attack
(Algorithm) (A) (Section 5.1) (Accuracy) (Accuracy)

{𝑡 [𝑖,1] }, at least 1 element IHEPC [0%, 72%] [1%, 95%]
𝑡 [𝑖,𝑥 ] with𝑚 ≤ 𝑥 ≤ 3𝑚 IHEPC ≤ 60% [57%, 82%]

Singling-out 𝑡 [𝑖,𝑥 ] with 4𝑚 ≤ 𝑥 ≤ 5𝑚 IHEPC [87%, 97%] [85%, 96%]
𝑡 [𝑖,𝑥 ] with 𝑥 > 5𝑚 IHEPC ≥ 97% [96%, 100%]
𝑦 = 1, at least 1𝑀𝑃 ECG 67% 77%

Linkability 2 ≤ 𝑦 ≤ 3 MPs linked ECG ≈ 70% [85%, 95.7%]
𝑦 ≥ 4 MPs linked ECG [72%, 76%] 95%

Table 6: Summary of Singling out (SO) and Linkability attacks and their effectiveness.

Dataset Dist. RMSE - PCC for𝑀𝑃𝐷𝑡 Accuracy for𝑀𝑃𝐼𝑡
(Avg. - Avg.) (Avg.)

H-MOG 𝑑𝐸 0.05 - 0.97 0.95
𝑑𝑍 0.04 - 0.97 0.95

ECG 𝑑𝐸 0.02 - 0.99 0.90
𝑑𝑍 0.13 - 0.97 0.88

IHEPC 𝑑𝐸 0.03 - 0.99 0.86
𝑑𝑍 0.09 - 0.98 0.93

TOTAL 𝑑𝐸 0.03 - 0.98 0.90
𝑑𝑍 0.09 - 0.97 0.92

Table 7: Reconstruction:𝑀𝑃𝑡 vs.𝑀𝑃𝑡 .

developed to dynamically or statically identify the true solution
among the candidates, based on the nature of the time series.

Finally, a remaining limitation of our reconstruction attack stems
from the restricted modeling of the attacker’s knowledge within
the CSP framework. Specifically, certain types of knowledge (such
as general, approximate, or statistical prior) are not easily express-
ible using the standard constraint formulations considered in this
work. While our approach accounts for explicit and determinis-
tic constraints, it does not incorporate more advanced inference
techniques, such as those offered by machine learning, particularly
reinforcement learning, which could enable an attacker to identify
and exploit complex patterns in the data or solver behavior. The
absence of such methods limits the generality of our model and
potentially underestimates the capabilities of a more sophisticated
adversary employing data-driven strategies.

6 Related Work
In this section, we review existing privacy attacks and counter-
measures designed for and applied to personal data, and discuss
existing studies on using MP for privacy protection.

6.1 Privacy Attacks on Time Series Data
We summarize the state-of-the-art privacy attacks on personal data,
in particular time series data, in Table 8. We provide also a descrip-
tion of each attack in the following subsections. It is important to
note that MP contains a non-linear transformation that discards
explicit temporal alignment and compresses time series into sub-
sequence distance and index profiles. It thus removes much of the
direct attribute-record mapping structure that many privacy attacks
exploit, indicated in the Compatible with MP column.

Singling-out/Re-identification: Anonymeter [22] was the first
to quantify the risks of singling-out in synthetic datasets. [46]
propose using Generative Adversarial Networks (GANs) to generate
synthetic tabular data and evaluate re-identification risks. However,
they focus on synthetic tabular data. Simply treating time series
data as tabular data would trivially show high singling-out risk
(due to the uniqueness of TS) and no linkability risk (due to the non-
linear nature of MP transformation). [13] translates the singling-
out concept in GDPR into a mathematical framework, through the
concept of Predicate Singling Out (PSO), and illustrates it using
Differential Privacy and k-anonymity. However, they assume no
prior auxiliary knowledge, which is different from our definition.
[1] and [58] quantify re-identification risk by assessing subsequence
unicity in synthetic time series, both differ from our perspective
of singling-out. For human mobility data, [15] shows that four
spatio-temporal points can identify 95% of individuals. However,
that analysis is based on measuring uniqueness in raw data, without
considering any anonymization or transformation like MP.
Linkability: [47] identifies linkability as a key risk in anonymiza-
tion, and [5, 22, 46] evaluate this risk using tabular or graph data,
but not time series data. [6] demonstrates linkability attacks on
𝑀𝑖𝑐𝑟𝑜𝑅𝑁𝐴 patterns to infer health characteristics, while [11] tar-
gets GPS data of the same individual. [14] further shows that even
pseudonymized interaction histories remain linkable over extended
time periods. However, none of these works investigate linkability
risks when time series data is transformed using MP.
Inference: Prior works have examined original data inference in
time series by reconstructing perturbed datasets using filtering tech-
niques and leveraging known values or approximate shapes [43].
Shape extraction attacks under Local Differential Privacy (LDP)
has been proposed [38], as well as original location inference un-
der DP [24, 63]. Other work mathematically quantifies the risk
of predicting future points in continuous DP releases [8]. To our
knowledge, no prior work analyzes attribute inference with MP.

Other inference attacks such as sensitive label and membership
inference on time series data have also been explored in several
studies. [16] predict label like age and sex from ECG data, while
[68] propose a location inference attack on energy consumption
data, and [57] analyze privacy risks in IoT networks. Only [16]
and [68] consider inference attacks on data after a Matrix Profile
transformation, which we will compare in Section 6.3.

Membership inference attacks [55] involve determining if an
individual’s data is part of a dataset (mainly used for training AI
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Ref. Singling-out/ Linkability Inference attack type Applicable Compatible Reconstruction
Reidentification to TS Data with MP technique

[22, 46, 47] ✓ ✓ Sensitive label & Membership ✗ ✗ ✗

[13] ✓ ✗ ✗ ✗ ✗ ✗

[1, 58] ✓ ✗ Membership ✓ ✗ ✗

[15] ✓ ✗ ✗ ✓ ✗ ✗

[6, 11] ✗ ✓ ✗ ✓ ✗ ✗

[5] ✗ ✓ ✗ ✗ ✗ ✗

[57] ✗ ✗ Original data & Sensitive label ✓ ✗ ✗

[33, 51] ✗ ✗ Membership ✓ ✗ ✗

[8, 24, 38, 43, 63] ✗ ✗ Original data ✓ ✗ ✓
[16, 68] ✗ ✗ Sensitive label ✓ ✓ ✗

ours ✓ ✓ Original data & Sensitive label ✓ ✓ ✓

Table 8: Privacy attacks in state-of-the-art personal data releasing.

models). MIA efficiency is assessed using confidence scores [1, 51]
or unsupervised methods [58], and can be enhanced by leveraging
time series features [33]. MIA attacks are beyond the scope of this
work but could be explored in future research.

6.2 Differential Privacy
Differential Privacy (DP) is a well known privacy-preserving tech-
nique, initially tailored for tabular data. Numerous studies have
sought to adapt DP principles to time series data. For instance, [30]
introduces event-level DP, which safeguards a single element within
the TS, and user-level DP, which protects all elements associated
with an individual. A recent survey [39] outlines state-of-the-art
DP mechanisms for various TS processing tasks.

Despite these advancements, DP techniques encounter notable
limitations. Ensuring user-level privacy often comes at the expense
of utility [39]. Furthermore, attacks leveraging temporal correla-
tions present significant challenges [8, 24, 39, 63], particularly for
time series data with strong temporal dependencies, thus contrary
to tabular data, DP may not be as good a silver bullet [17].

6.3 Claims on MP as Privacy Preserving
Some priorworks have usedMP to claim some degree of privacy pro-
tection. [16] claim that synthetic data preserving the same𝑀𝑃 can
prevent sensitive attribute inference attacks. However, we showed
that all of our attacks can be applied to the solution they propose,
when both𝑀𝑃𝐷𝑡 and𝑀𝑃𝐼𝑡 are well-preserved. If only𝑀𝑃𝐷𝑡 is pre-
served, all our attacks except for inversion can always be applied.
[68] shows that index vector 𝑀𝑃𝐼 is vulnerable to long-pattern
location inference, while𝑀𝑃𝐷𝑡 combined with slightly modified
𝑀𝑃𝐼𝑡 is robust against reconstruction, and can be used as privacy-
preserving data sharing technique. However, all of our attacks can
be applied since the𝑀𝑃 is well-preserved in their proposition: the
slight modification of 𝑀𝑃𝐼𝑡 does not have enough impact to foil
our proposed inversion attack, which tolerates an average error of
10-12% of𝑀𝑃𝐼𝑡 indexes, which is comparable to the expectation of
the number of long patterns (See Section 5).

As shown in Table 8, our work is the first to address and propose
singling-out, linkability, inference, and reconstruction attacks in
the context of time series data transformed using MP.

7 Conclusion and Future Work
Matrix Profile (MP) has established itself as a valuable tool for time
series analysis due to its versatility and efficiency. However, this
study highlights significant privacy vulnerabilities associated with
using MPs in time series data analysis. By formalizing generic pri-
vacy risks and proposing targeted attacks (singling-out, linkability,
and inference), our work highlights the shortcomings of MP as
a standalone privacy-preserving technique. By incorporating re-
construction techniques, our evaluations show over 90% success
rate for singling-out, even when considering an attacker know-
ing only a small subsequence in the original time series (only a
few points). Linkability attacks achieved up to 95% accuracy. In-
ference attacks are also very efficient, even without any auxiliary
knowledge, yielding an average PCC of 0.71, and up to 0.99. No-
tably, 99.8% of cases included at least one strongly reconstructed
subsequence, indicating robust shape recovery. The average RMSE
was 25%, with 20% of cases below 10% (low error rate), and 85.5%
featured at least one highly accurate subsequence, demonstrating
strong value reconstruction. By considering auxiliary knowledge
in reconstruction, we further amplify the risk of value inference. To
our knowledge, this is the first work to address privacy concerns
associated with sharing MPs. We believe our study paves the way
for future research on privacy-preserving methods for MP.

Future work. For the reconstruction technique, we have demon-
strated that it is possible to invert the𝑀𝑃 function on time series
of up to 200 points, using small subsequence lengths, which are
common parameters in many MP applications [28, 68]. Longer
time series (over 1,000 points) with larger subsequence lengths
(e.g., 𝑚 = 75, 150, or 256) should be considered for alignment
with anomaly detection in long ECG sequences using MPs [66].
A more comprehensive analysis of adversarial knowledge in the
context of reconstruction attacks remains an important direction
for future work, for instance, by considering fuzzy or incomplete
MPs. Another important direction is the implementation of coun-
termeasures, such as adding Laplacian noise to perturb the𝑀𝑃𝐷 ,
which could offer privacy protection under event-DP. More ad-
vanced countermeasures [8] should also be explored and evaluated
to strengthen the privacy of MP.
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A Singling Out Case Study
Several concrete scenarios of singling-out attacks, characterized by
distinct types of auxiliary knowledge, are presented below:

Example A.1 (Singling out from a known time series ).
Alice underwent an ECG at a hospital for diagnosis purposes. The
hospital published𝑀𝑃s, including Alice’s, with associated anom-
aly classification, where anomalies are classified as either benign
or malignant. These MPs were published under the assumption
that the identities of the patients were anonymized. However,
due to a data leakage, Eve, an attacker, gained access to the origi-
nal ECG of Alice. Using this auxiliary information, Eve aims to
single out Alice’s𝑀𝑃 to determine whether it corresponds to a
malignant anomaly.

In this scenario, the attacker knows the time series 𝑡𝑘𝑛𝑜𝑤𝑛 of
an individual 𝑢 𝑗 , i.e., A = {𝑡𝑘𝑛𝑜𝑤𝑛, 𝑢 𝑗 = 𝑢 (𝑡𝑘𝑛𝑜𝑤𝑛)}. To realize
the singling-out attack, all the attacker needs to do is compute
𝑀𝑃𝑡𝑘𝑛𝑜𝑤𝑛

and identify 𝑟 = 𝑖 such that 𝑀𝑃𝑡𝑖 = 𝑀𝑃𝑡𝑘𝑛𝑜𝑤𝑛
. This is

straightforward and very efficient.Note that although the Matrix
Profile function 𝑀𝑃 is non-injective (e.g., two time series up to
a constant have the same 𝑀𝑃 ), the probability of multiple time
series mapping to the same𝑀𝑃 is negligible due to the high variety,
precision and length of real time series datasets.

Example A.2 (Singling out from a known subsequence -A𝑠𝑢𝑏𝑠𝑒𝑞-).

Eve, a taxi driver, takes Alice on a trip and thus knows her exact
trajectory for that specific journey. The taxi company publishes
weekly trajectory𝑀𝑃s for all users, including Alice’s, to analyze
travel patterns and predict rush hours. These MPs are assumed to
be anonymized. However, using the trajectory information from
Alice’s trip as auxiliary knowledge, Eve seeks to single out Alice’s
𝑀𝑃 within the dataset. His goal is to deduce sensitive details, such
as Alice’s typical absence hours, identify her workplace, or exploit
this information to rob her house during her absence.

Example A.3 (Singling out from a known set of points -A𝑠𝑝𝑎𝑟𝑠𝑒 -).

Alice uses Strava to track her running trajectory. One day, Eve
observes her running at noon in Central Park and near a com-
pany building 20 minutes later, giving him two specific points
along Alice’s trajectory. Strava later publishes anonymized𝑀𝑃s
of users running trajectories to analyze exercise habits. Using his
knowledge of these discard points as auxiliary information, Eve
seeks to single out Alice’s𝑀𝑃 within the dataset. His goal is to
infer her repeated running trajectories or even reconstruct her
raw trajectory to identify the places she frequently visits.

Algorithm. The general singling-out algorithm operates in two
main steps (see Algorithm 1). First, the algorithm classifies the type
of auxiliary information into one of three categories according to
the three examples (line 4). Second, based on classification, the
algorithm applies a tailored attack strategy. For an integral time
series or sufficiently large subsequences, it computes the matrix
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Algorithm 1 SO_basic
Input: Attacker knowledge object A, published MP datasetMPT,
MP subsequence length m
Output: One identifier of𝑀𝑃 in𝑀𝑃𝑇
𝑟 ← ∅
𝑡𝑦𝑝𝑒 ← TypeClassifier(A) ⊲ Identify type: entire series
("integral"), subsequence ("subsequence"), points ("points")
if 𝑡𝑦𝑝𝑒 = "integral" then

𝑀𝑃 ′ ← 𝑀𝑃 (𝐴.𝑡𝑠,𝑚)
for each𝑀𝑃𝑡𝑖 ∈ 𝑀𝑃𝑇 do

if 𝑀𝑃𝑡𝑖 =𝑀𝑃
′ then

𝑟 ← 𝑖

break
end if

end for
else if 𝑡𝑦𝑝𝑒 = "subsequence" then

𝑀𝑃 ′ ← 𝑀𝑃 (𝐴.𝑡𝑠,𝑚)
𝑖𝑛𝑑𝑒𝑥 ← 𝐴.𝑖𝑛𝑑𝑒𝑥 ⊲ Indices of known subsequence in 𝑡 ∈ 𝑇
𝑚𝑎𝑡𝑐ℎ ← False
for each𝑀𝑃𝑡𝑖 ∈ 𝑀𝑃𝑇 do

for each 𝑖 such that𝑀𝑃𝑡𝑖 .𝑀𝑃𝐼 [𝑖] ∈ index do
𝑚𝑎𝑡𝑐ℎ ← True
if 𝑀𝑃𝑡𝑖 .𝑀𝑃𝐷 [𝑖] ≠ 𝑀𝑃 ′ .𝑀𝑃𝐷 [𝑖] or 𝑀𝑃𝑡𝑖 .𝑀𝑃𝐼 [𝑖] ≠

𝑀𝑃 ′ .𝑀𝑃𝐼 [𝑖] then
𝑚𝑎𝑡𝑐ℎ ← False
break

end if
end for
if 𝑚𝑎𝑡𝑐ℎ then

𝑟 ← 𝑖

break
end if

end for
else

𝑇 ′ ← 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝐴.𝑡𝑠)
𝑀𝑃 ′ ← 𝑀𝑃 (𝑇 ′,𝑚)
𝑑𝑖𝑠𝑡𝑠 = []
for each𝑀𝑃𝑡𝑖 ∈ 𝑀𝑃𝑇 do

dists.append(𝐷𝑖𝑠𝑡 (𝑀𝑃𝑡𝑖 .𝑀𝑃𝐷,𝑀𝑃 ′ .𝑀𝑃𝐷))
end for
𝑟 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝑠)

end if
return 𝑟

profile 𝑀𝑃 ′ of the known data and compares it directly with the
profiles in𝑀𝑃𝑇 to identify a match ((lines 5 to 12)). A match occurs
if, for indices within the known subsequence (or the integral time
series), the distance values in𝑀𝑃𝐷 and index values in𝑀𝑃𝐼 match
those in𝑀𝑃 ′. If a match is found, the corresponding matrix profile
is singled out. If no match is found or if the auxiliary information
is insufficient (e.g., sparse points), the algorithm returns an empty
set, indicating that no profile could be singled out.

If the attacker knows one or more intervals, as illustrated in
Figure 8 with two intervals of length 40 from the original time
series (Additional examples are provided in our artifact repository).
The attacker can then compute the matrix profile of the known
subsequences and single out amatrix profile in the published dataset

matching all the points that fall in the known subsequence (see lines
13 to 19). Precisely, the attacker can firstly compute the𝑀𝑃𝐼𝑡𝑘𝑛𝑜𝑤𝑛

and 𝑀𝑃𝐷𝑡𝑘𝑛𝑜𝑤𝑛
of the known subsequence. By comparing these

values to the published𝑀𝑃𝐼 and𝑀𝑃𝐷 , the attacker can confidently
identify ID = i, as all 𝑀𝑃𝐼 points within the window match A
(points matching A are highlighted in red).

Figure 8: Singling out from two known subsequences.

Experimental Result. We applied the SO_basic algorithm to elec-
tricity consumption time series from the IHEPC dataset [25] (details
in Section 5.1). We extract series of 𝑛 = 200 points, with MPs com-
puted using𝑚 = 10. We vary the known subsequence length or
number of sparse points, denoted as ℓ , to assess the success rate of
singling-out. For the known subsequence use case, we suppose the
attacker knows the first ℓ consecutive points. And for the known
sparse points use case, we form the attacker knowledge by down-
sampling the time series. Figure 9 shows the results, with the blue
curves corresponding to known subsequences and the green curve
to known sparse points. The zoomed-in portion of the plot focuses
on ℓ values between 40 and 46, the point of transition for success
rate across 90%, for the known subsequence scenario, since the tran-
sition does not exist in the known sparse point scenario. Results
for other datasets are consistent (hence are not shown).
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Algorithm 2 Link_basic
1: Input: Attacker knowledge object A𝑙𝑖𝑛𝑘 (a set of MPs linked

to the same individual), published MPs dataset MPT, pattern
length ℓ (= n) by default

2: Output: Set of identifiers of𝑀𝑃 linked to A𝑙𝑖𝑛𝑘 in𝑀𝑃𝑇
3: 𝑀𝑃𝑠′ ← A𝑙𝑖𝑛𝑘 .𝑚𝑝 // Known MPs
4: 𝑟 ← {Identifier of the known MPs}
5: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑠 ← ∅
6: for each𝑀𝑃 ′ ∈ 𝑀𝑃𝑠′ do
7: 1𝑁𝑁𝐷𝑖𝑠𝑡𝑠 ← empty list
8: for each𝑀𝑃𝑡𝑖 ∈ 𝑀𝑃𝑇 // Compute the 1NN distance

between 𝑀𝑃𝐷𝑡𝑖 and target 𝑀𝑃𝐷 do
9: 𝑑 ← min

(
𝑀𝑃𝐸𝑢𝑐 (𝑀𝑃 ′ .𝑀𝑃𝐷,𝑀𝑃𝑡𝑖 .𝑀𝑃𝐷, ℓ).𝑀𝑃𝐷

)
10: Append (𝑀𝑃𝑡𝑖 .𝑖𝑑, 𝑑) to 1𝑁𝑁𝐷𝑖𝑠𝑡𝑠
11: end for
12: Sort 1𝑁𝑁𝐷𝑖𝑠𝑡𝑠 by distance values
13: (𝑟 ′, 𝑑min) ← 1𝑁𝑁𝐷𝑖𝑠𝑡𝑠 [0]
14: Append (𝑟 ′, 𝑑min) to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑠
15: end for
16: 𝑟𝑒𝑠 ← Indexes with minimum distance values in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑠
17: Append 𝑟𝑒𝑠 into 𝑟

return 𝑟

Attacker knowledge size (𝑦) Min Avg. Max
1 0.67 0.67 0.67
[2, 3] 0.69 0.7 0.71
[4, 6] 0.72 0.74 0.76
[6, 8] 0.72 0.73 0.74

Table 9: Success rate with various attacker knowledge 𝑦.

  

Figure 9: Success rate of 𝑆𝑂 in function of ℓ .

Takeaway. The risk of singling-out a matrix profile is limited
when the known subsequences in the original time series are short
(ℓ < 𝑚 + 20). However, as the length of the known subsequence
increases (ℓ > 𝑚 + 32), the risk escalates rapidly, exceeding 90%.
The risk associated with known sparse points becomes relatively
high only when the downsampling frequency is high (e.g., every
other point). Access to the full time series or sufficiently long sub-
sequences (ℓ > 𝑚 + 50) results in very high privacy risks.

B Linkability Attack Scenario and Algorithm
B.1 Algorithm and Extended Experiments

Context. We consider an attacker with knowledge of one or more
MPs that belong to a given individual (A𝑙𝑖𝑛𝑘 ). The baseline linka-
bility attack tries to link this attacker knowledge to MPs present in

𝑀𝑃𝑇 . This is done by taking the matrix profile(s) either (i) directly
fromA𝑙𝑖𝑛𝑘 (Example 3.2), or (ii) after buildingA𝑙𝑖𝑛𝑘 by calculating
the MP of the known time series A𝑡𝑠 (see below, Example B.1).

Algorithm. Algorithm 2 gives the pseudo-code of this attack.
The algorithm work as follows: it first computes the matrix profile
distances (with Euclidean distance measure) between the target
𝑀𝑃𝐷 and the𝑀𝑃𝐷 vectors in𝑀𝑃𝑇 , storing the minimum distances
from these profiles (lines 4-6); then, as these distances represent the
distances of the closest matching patterns of length ℓ . This value is
defined by the attacker. If the attacker has no knowledge then this
can simply be ℓ = 𝑛 the total length of the vector (in which case this
is equivalent to using simply the Euclidean distance between both
vectors), or if the attacker has some knowledge of the application
domain, ℓ can be tailored more finely e.g., ℓ can be the interval
size between two 𝑄𝑅𝑆 in a normal ECG, the algorithm identifies
the matrix profiles with the smallest distance (line 7). If several
matrix profiles have exactly the same smallest distance (this never
occurred experimentally), all of them would be returned. Note that
other measures may be used, such as Pearson correlation, or even
simply using vector Euclidean distance between known MPs and
the other MPs. However, measures like DTW [26] are less effective
because warping disregards the critical length of patterns, which
reflects cardiac rhythm in this context.

Experimental Result. We evaluate Link_basic algorithm on a pub-
lic ECG dataset [23] containing 70 recordings from 7 individuals
(details in Section 5.1). The experimental setup is as follows: each in-
dividual contributes 10 non-overlapping ECG time series of length
200, aligning with Example 3.2. The attacker knows 𝑦 < 10 MPs of
a single individual and attempts to link them to other MPs of the
same individual in the published dataset𝑀𝑃𝑇 . The success rate is
defined as the ratio of correctly identified MPs linked to the target
individual. A success rate of around 1/7 corresponds to random
guessing. To avoid bias, each experiment was repeated at least 5
times, and the average success rates are reported in Table 9 in Ap-
pendix B. The results demonstrate the influence of the attacker’s
knowledge size (𝑦) on linkability risks.

Takeaway. The obfuscation introduced by matrix profiles is in-
sufficient to prevent linkability attack under certain scenarios. As
shown in Table 9, the success rate increases with the attacker’s
knowledge, ranging from 67% with a single known link to 76%
with 4–6 known links. Even with 6–8 known links, the success rate
remains high. Although the risk rises with more prior knowledge,
it stays within a narrow band of 67% to 76%, indicating that even
limited attacker knowledge poses a significant privacy threat.

B.2 A Linkability Scenario Using A𝑡𝑠

Another scenario of linkability attack, with a different attacker
knowledge definition is described below:

Example B.1 (Linkability attack from known subsequence -A𝑡𝑠 -).

Alice uses a ride-sharing service and is driving Marvin as a pas-
senger. Marvin activates his ride-sharing app during all the trip,
thus he records the time series of the trajectory in real time. The
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Algorithm 3 Reconstruction
1: Input: Published MP dataset MPT, distance measure in 𝑀𝑃
𝐷𝑖𝑠𝑡 , subsequence length used in 𝑀𝑃 𝑚, number of parallel
processors 𝑥 , CSP solver 𝑠𝑜𝑙𝑣𝑒𝑟 .

2: Output: Original time series dataset 𝑇
3: 𝑇 ← []
4: for each𝑀𝑃𝑡𝑖 ∈ 𝑀𝑃𝑇 do
5: 𝑛 ← 𝑚 + len(𝑀𝑃𝑡𝑖 ) − 1 // Deduce the length of the

time series from the lengths of subsequence and the
𝑀𝑃

6: 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 ← {𝑡0, 𝑡1, . . . } // Initialize a population
of time series of length 𝑛 with random float values
in [0,1].

7: 𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 ← []
8: for each 𝑡 𝑗 ∈ 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 do
9: 𝑙𝑜𝑠𝑠 ← 𝑂𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 (𝑡 𝑗 , 𝑀𝑃𝑡𝑖 )
10: Append (𝑡 𝑗 , 𝑙𝑜𝑠𝑠) to 𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑
11: end for
12: Sort 𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 by increasing order of loss values
13: 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 ← 𝐿𝑜𝑠𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 [0 : 𝑥] [:, 0] // Retain only

the 𝑥 series with the lowest losses, where 𝑥 is the
number of processors

14: 𝐿𝑜𝑠𝑠𝑓 𝑖𝑛𝑎𝑙 ← []
15: for each 𝑡 𝑗 ∈ 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 do
16: 𝑙𝑜𝑠𝑠 ← 𝑆𝑜𝑙𝑣𝑒 (𝑡 𝑗 , 𝑀𝑃𝑡𝑖 , 𝐷𝑖𝑠𝑡,𝑚, 𝑠𝑜𝑙𝑣𝑒𝑟,𝑂𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 ) //

Solve the CSP problem defined in 4.2
17: Append (𝑡 𝑗 , 𝑙𝑜𝑠𝑠) to 𝐿𝑜𝑠𝑠𝑓 𝑖𝑛𝑎𝑙
18: end for
19: Sort 𝐿𝑜𝑠𝑠𝑓 𝑖𝑛𝑎𝑙 by increasing order of loss values
20: 𝑡𝑖 ← 𝐿𝑜𝑠𝑠𝑓 𝑖𝑛𝑎𝑙 [0] [0] // Keep the reconstructed time

series with the minimum loss value
21: Append 𝑡𝑖 to 𝑇
22: end for

return 𝑇

Algorithm 4 Post_processing_ECG
1: Input: A time series 𝑡 , standard ratios of U, T, and V relative to

the QRS pattern 𝜎𝑈 , 𝜎𝑇 and 𝜎𝑉 , a set of exemplar QRS patterns
𝑄𝑅𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 , exemplar portions of U, T, and V 𝑝𝑈 , 𝑝𝑇 , and 𝑝𝑉 ,
similarity threshold 𝜖 .

2: 𝑄𝑅𝑆,𝑇 ,𝑈 ,𝑉 ← [], [], [], []
3: for each 𝑄𝑅𝑆 ′ ∈ 𝑄𝑅𝑆𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠 // Detect QRS patterns do
4: 𝑄𝑅𝑆_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑝 ← 𝑀𝑃 (𝑡, |𝑄𝑅𝑆 ′ |)
5: end for
6: for each 𝑖 where 𝑄𝑅𝑆_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑝.𝑀𝑃𝐷 [𝑖] < 𝜖 do
7: 𝑄𝑅𝑆𝑠𝑡𝑎𝑟𝑡 ← 𝑄𝑅𝑆_𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛_𝑚𝑝.𝑀𝑃𝐼 [𝑖]
8: Append (𝑄𝑅𝑆𝑠𝑡𝑎𝑟𝑡 , 𝑄𝑅𝑆𝑠𝑡𝑎𝑟𝑡 + |𝑄𝑅𝑆 ′ |) to 𝑄𝑅𝑆
9: end for
10: for 𝑖 ← 1 to |𝑄𝑅𝑆 | − 1 // Add the U, T, and V intervals

according to their standard proportional spacing in
a typical ECG do

11: 𝑠𝑡𝑎𝑟𝑡𝑇 ← 𝑄𝑅𝑆 [𝑖] [1]
12: 𝑒𝑛𝑑𝑉 ← 𝑄𝑅𝑆 [𝑖 + 1] [0]
13: 𝑙𝑒𝑛𝑔𝑡ℎ ← 𝑒𝑛𝑑𝑉 − 𝑠𝑡𝑎𝑟𝑡𝑇
14: Append (𝑠𝑡𝑎𝑟𝑡𝑇 , 𝑙𝑒𝑛𝑔𝑡ℎ × 𝑝𝑇 ) to 𝑇
15: Append (𝑙𝑒𝑛𝑔𝑡ℎ × 𝑝𝑇 + 1, 𝑙𝑒𝑛𝑔𝑡ℎ × (𝑝𝑇 + 𝑝𝑈 ) + 1) to𝑈
16: Append (𝑙𝑒𝑛𝑔𝑡ℎ × (𝑝𝑇 + 𝑝𝑈 ) + 2, 𝑒𝑛𝑑𝑉 ) to 𝑉
17: end for
18: for each 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∈ 𝑇 // Normalize each pattern with

their scaling factor in a typical ECG do
19: 𝑡 [𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙] ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑡 [𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙], 𝜎𝑇 )
20: end for
21: for each 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∈ 𝑈 do
22: 𝑡 [𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙] ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑡 [𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙], 𝜎𝑈 )
23: end for
24: for each 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ∈ 𝑉 do
25: 𝑡 [𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙] ← 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑡 [𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙], 𝜎𝑉 )
26: end for

return

ride-sharing service publishes anonymized matrix profiles (MPs)
of its drivers’ trajectories for the whole week, including those
associated with Alice’s trips. These matrix profiles summarize the
patterns in the trajectories while preserving anonymity. Lever-
aging the time series he observed during his ride with Alice,
Marvin conducts a linkability attack: he compares it with the
pseudonymized MPs published by the ride-sharing service, seek-
ing to identify which published profiles correspond to Alice’s trip
for the whole week.

In this scenario, the attacker knows a time series 𝑡𝑘𝑛𝑜𝑤𝑛 for
individual 𝑢 𝑗 , i.e., A𝑡𝑠 = {𝑡𝑘𝑛𝑜𝑤𝑛} and can thus compute its MP in
order to build the knowledge needed to run the linkability attack,
i.e.A𝑙𝑖𝑛𝑘 = {𝑀𝑃 (𝑡𝑘𝑛𝑜𝑤𝑛)}. The objective is to link at least one other
matrix profile in𝑀𝑃𝑇 that corresponds to the same individual using
this auxiliary knowledge.

Note that attacks can be combined: the attacker (Marvin) could
first perform a linkability attack to link his own subsequence with
the week MP of Alice, and then conduct a reconstruction attack on
Alice’s MP to obtain trajectory details.

C Reconstruction Algorithms
Based on the optimized reconstruction of MPs as a CSP problem, we
derive a reconstruction attack algorithm, which proceeds as follows:
For each𝑀𝑃 in𝑀𝑃𝑇 , we first initialize a population of time series
with random float values in [0,1] (lines 3-4). Only 𝑥 series with
the lowest loss value calculated with the function 𝑂𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 will
be kept, where 𝑥 can be defined as the number of processors that
the attacker possesses to execute the resolution in parallel (lines
5-10). This step is crucial as the non-convex objective function has
multiple minima, and a larger population boosts attack success.
Then we solve the system presented in definition 4.2 by using a
CSP solver and each initialized series in the population in parallel
(line 15). Finally, we append the best solution (with the minimum
loss value) to the result list (lines 16-17).

This algorithm can be followed by appropriate post-processing.
The specifics of the post-processing depend on the context and the
nature of the data (e.g., ECG, electric consumption), as well as any
additional knowledge the attacker may have.

Post-processing for ECG Reconstruction. After reconstructing the
time series by solving the CSP system, post-processing methods can
be applied to improve the utility of the reconstructed time series.
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Classifier Original TS Matrix Profile
(F-score - Acc.) (F-score - Acc.)

SVM 0.84 - 0.84 0.87 - 0.88
Age RF 0.86 - 0.87 0.88 - 0.89

kNN 0.86 - 0.87 0.88 - 0.89
SVM 0.92 - 0.92 0.83 - 0.83

Sex RF 0.92 - 0.92 0.79 - 0.80
kNN 0.92 - 0.92 0.86 - 0.86

Table 10: F-score and Accuracy for Age/Sex attribute infer-
ence using original time series 𝑇𝑆 and MPs𝑀𝑃𝐷 .

Classifier Original TS Reconstructed TS
(F-score - Acc.) (F-score - Acc.)

Age CNN 0.86 - 0.87 0.73 - 0.73
Sex CNN 0.90 - 0.87 0.90 - 0.84

Table 11: F-score and Accuracy for Age/Sex label inference
using original time series 𝑇𝑆 and reconstructed ones 𝑇𝑆 .

For instance, filtering methods can be applied to separate the noise
from the true signal [18, 19, 43]. Assuming the attacker knows
the data type (e.g., ECG, energy consumption), they can apply
transformation processes to improve the utility of the reconstructed
time series.

For ECG data, we present here a specific post-processing leverag-
ing public knowledge of ECG patterns. In a normal heartbeat, four
primary waveforms are present: V, QRS, T, and U. The knowledge of
this specific “shape” constitutes the attacker’s auxiliary knowledge
that we term A𝑠ℎ𝑎𝑝𝑒 . The reconstructed time series often show
slight translations and dilatations, but the QRS patterns are usually
preserved. Thus, the attacker can identify the QRS patterns (lines
2-6) and deduce the patterns T, U, and V (lines 7-13) and transform
them using the corresponding ratios (lines 14-19). The detailed
algorithm is described in Algorithm 4.

D Label Inference Attacks with Matrix Profile
In Section 4.5, we proposed an inference attack where the goal is
to infer the original attributes (data) from a MP. We now propose
another possible inference, which is to infer sensitive label such as
age and gender that can be possibly lead to discrimination. We dis-
cuss this attack under different scenarios and auxiliary knowledge
and give experimental results.

Example D.1 (Inference from a public dataset).
A hospital publishes a database of Matrix Profiles derived from
patients’ ECGs. Eve, an attacker, aims to infer the patients’ age
and gender from this data.

The general example that we consider here is described in Ex-
ample D.1, that we will then precise the auxiliary knowledge. We
suppose firstly an auxiliary knowledge that includes public matrix
profiles or time series with sensitive labels, from a public annotated
dataset with data from the same distribution for example. The
algorithm trains a model where𝑀𝑃𝐷 vectors serve as inputs and

attribute labels as outputs (though it could be extended to include
𝑀𝑃𝐼 values). It then applies the trained model to the MPs in𝑀𝑃𝑇
to predict and return inferred attribute values.

Experimental Results. We evaluate the inference attack using the
ECG dataset [23] described in Section 5.1. For each patient, we
extract 140 samples of 200 points, and calculate MPs using the same
subsequence length and distance measure as in the linkability at-
tack experiments. We used 10-fold cross validation with 50% of the
data used for training and 50% for testing, ensuring no overlap and
divided randomly, and for each 14, 000 samples of 100 points over
sliding windows, which aligns with the same settings used in previ-
ous work [16]. We apply SMOTEENN [10, 62] for gender inference,
to mitigate issues arising from the imbalanced class distribution.
Support Vector Machine (SVM), Random Forest (RF) and k-Nearest
Neighbors (kNN) are used for label inference, with parameters
tuned for each classifier (default settings for SVM, maximum depth
of 20 for RF, and 𝑘 = 10 for kNN). Table 10 summarizes the F-score
and accuracy for age and sex inference using original time series
𝑇𝑆 and matrix profiles𝑀𝑃𝐷 . Attributes were labeled as binary for
age (over or under 60 years) and sex (male or female).

Takeaway. The results highlight the effectiveness of matrix pro-
files for label inference. For age, accuracy and F-score using matrix
profile exceed those obtained from the original time series (see val-
ues in bold). For sex inference, while matrix profiles leads to a slight
degradation (10%) in performance compared to the original time
series, they remain highly effective for inference. These findings
challenge the assumption that matrix profiles provide sufficient
protection against inference attacks as considered in [16]. High-risk
scenarios arise when attackers have access to auxiliary datasets
with similar time series distributions and corresponding attribute
labels.

We now consider a black-box attacker scenario, where auxiliary
knowledge is limited to an inference model trained on a dataset
drawn from the same distribution as the original time series, but
without access to the actual training data (e.g., when the dataset
is private). In this setting, the attacker must first reconstruct the
time series from published MPs before attempting to infer sensitive
labels.

Experimental Results. We use the same ECG dataset as in the
previous case study and a streamlined version of the CNN model
proposed in [4]. To mitigate class imbalance in the gender inference
task, we apply the same SMOTEENN mechanism. Each model is
trained for 100 epochs, and the averaged results are reported in
Table 11.

Takeaway. As shown in Table 11, reconstructed time series re-
main highly effective for both age and sex inference. For age in-
ference, the F-score drops from 0.86 to 0.73 (accuracy from 0.87
to 0.73), a degradation of about 13–14%, yet performance remains
strong (above 70%). For sex inference, reconstructed time series
achieve virtually the same F-score as the original data (0.90) and
only a slight drop in accuracy (0.87 to 0.84), confirming that MP
reconstruction can preserve sensitive information to a degree that
poses a privacy risk.
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E Normalized Matrix Profile
Suppose a vector (time series) denoted 𝑇 , we note𝑚𝑖𝑛 and𝑚𝑎𝑥 as
the minimum and maximum values in 𝑇 , the normalized vector 𝑇
where 𝑇𝑖 = 𝑇𝑖−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
. Suppose a Matrix Profile𝑀𝑃 , with a distance

measure between Manhattan distance, Euclidean distance and z-
normalized Euclidean distance, and the subsequence length𝑚. 𝑀𝑃
is composed by 𝑀𝑃𝐼 and 𝑀𝑃𝐷 , we denote 𝑀𝑃 = (𝑀𝑃𝐷,𝑀𝑃𝐼 )
as the Matrix Profile calculated from 𝑇 and 𝑀𝑃 = (𝑀𝑃𝐷,𝑀𝑃𝐼 )
the Matrix Profile calculated from 𝑇 , now we demonstrate how to
calculate𝑀𝑃 from𝑀𝑃 .

The𝑀𝑃𝐼 corresponds to the indices of the nearest subsequences,
the normalization of the values have no impact on this information,
so we have𝑀𝑃𝐼 =𝑀𝑃𝐼 for any distance measure.

For the𝑀𝑃𝐷 vector, the transformation depends on the distance
measure used (which is an information public to the attacker when
sharing the Matrix Profile).

If the distance measure is z-normalized Euclidean distance, we
have 𝑀𝑃𝐷 = 𝑀𝑃𝐷 , since the z-normalization will be applied on
each subsequence before calculating the distances, which erase the
difference of 𝑇 and 𝑇 values.

If the distance measure is Euclidean distance, we have

𝑀𝑃𝐷2
𝑖 =

𝑚∑︁
𝑘=0
(𝑇𝑖,𝑘 −𝑇𝑗,𝑘 )2 (7)

𝑀𝑃𝐷𝑖

2
=

𝑚∑︁
𝑘=0
(
𝑇𝑖,𝑘 −𝑚𝑖𝑛
𝑚𝑎𝑥 −𝑚𝑖𝑛 −

𝑇𝑗,𝑘 −𝑚𝑖𝑛
𝑚𝑎𝑥 −𝑚𝑖𝑛 )

2 (8)

1
(𝑚𝑎𝑥 −𝑚𝑖𝑛)2

𝑚∑︁
𝑘=0
(𝑇𝑖,𝑘 −𝑇𝑗,𝑘 )2 =

𝑀𝑃𝐷2
𝑖

(𝑚𝑎𝑥 −𝑚𝑖𝑛)2 (9)

By inference from equations 8 and 9, we get

𝑀𝑃𝐷 =
𝑀𝑃𝐷

𝑚𝑎𝑥 −𝑚𝑖𝑛 (10)

If the distance measure is Manhattan distance, the proof is similar
to that with Euclidean distance, we can easily get𝑀𝑃𝐷 = 𝑀𝑃𝐷

𝑚𝑎𝑥−𝑚𝑖𝑛
.

F Hyperparameters in IPOPT
The hyperparameter tuning has been effected using optuna, with
randomly generated time series of size 120 and matrix profile cal-
culated with m=20 and z-normalized Euclidean Distance. Each
proposition of hyperparameters are evaluated with 10 samples,
with solving time to each time series limited to 70 seconds. The
best hyperparameters are as following, for the explications of the
hyperparameters, please refer to the official site of IPOPT 5:
• linear_solver : ma57
• alpha_for_y : full
• mu_strategy : adaptive
• hessian_approximation : limited-memory
• nlp_scaling_method : none
• fast_step_computation : no
• limited_memory_max_history : 30
• recalc_y : yes
• sens : FD

5COIN-HSL: A Collection of Linear Algebra Libraries. 2024.
https://licences.stfc.ac.uk/product/coin-hsl.

Here, two parameters are worth a little explanation:
The choice of ma57 as the linear solver. As indicate in [59], this

solver is best used on small/medium-sized problems. Therefore, its
choice might be due to the small size of the problem that we did the
tuning on. For bigger a bigger 𝑛, it could be better to choose ma86.

The choice of FD (Forward Difference) as the gradient approxi-
mation method. Among the other options were the exact gradient
computation. When comparing both, we observe that the exact
formula leads to a slightly faster convergence in terms of iterations,
but at the cost of a lot more time to compute. Therefore, we will
let this option behind as proposed by the process of tuning, but if
one is more interested in accuracy than efficiency he might find it
useful.

G Coefficients in Objective Function
There are two coefficients, 𝛼 and 𝛽 , in the objective function 𝑂𝑜𝑝𝑡

(see section 4.2). We tuned the coefficients ranging from 1 to 5
(1,1.57,2.14,2.71,3.29,3.86,4.43,5), over time series of n=200 andm=10,
solving for each in 15 minutes and calculating a mean with 10
time series. The best coefficients according to the experiments are
𝛼 = 4.43 and 𝛽 = 2.14 for 𝑑𝐸 and 𝛼 = 𝛽 = 1 for 𝑑𝑍 .

H Soft vs Hard Constraints
When reconstructing a time series of length 200 with 𝐷𝑖𝑠𝑡 = 𝑑𝐸 and
𝑚 = 10, and the 𝑂𝑜𝑝𝑡 objective function, the model yields 400 non-
zero entries in the equality constraint Jacobian (down from 1912 =
36𝐾 with the CSP model), 0 entries in the inequality constraint
Jacobian (down from around 1913 = 7𝑀 with the initial 𝑂 function
or the CSP model). In 200 seconds, the solver is able to complete 30
iterations using𝑂𝑜𝑝𝑡 , compared to 10 when using objective function
𝑂 and inequality constraints, and no result produced for the CSP
model.

I Benchmark of Solvers
Apart from IPOPT and Or-Tools that we used to solve the CSP
system, we also tried SLSQP, it stops to iterate when finding a local
minimum point, which is harmful for the utility of the attack.

Another popular gradient-descent-based solver is Adam. How-
ever, as shown in Figure 10, our benchmark demonstrates that
IPOPT achieves faster convergence.

J Parameters Influence in IPOPT
We first study the influence of the parameters 𝑛 and𝑚 in the solver
IPOPT. In each plot in Figure 12, we show the evaluation of the loss
value of the objective function in equation 3 and the 𝑃𝐶𝐶 between
the solution and the ground-truth time series varying with itera-
tions. Figures 12a and 12b (resp., 12c and 12d) show the influence
of parameter𝑚 (resp. 𝑛), with 𝑛 fixed to 100 (resp., with𝑚 fixed
to 10) for euclidean distance and z-normalized euclidean distance.
Each point in the figures is the mean of 10 runs of experiments.
The faster the loss decreases, the more efficient the resolution, and
the higher the 𝑃𝐶𝐶 value, the more effective the attack (that we
reconstruct a more useful time series).

In general, the loss decreases all quite quickly at the start of the
iterations and slows down after, with any value of 𝑛 or𝑚. Specially
for 𝑛, the bigger the value of 𝑛 is, the slower the loss decrease,
because the number of variables and the number of equations in84
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Figure 10: Adam v.s. IPOPT.

Figure 11: Avg. quality solution with 𝑑𝑍 .

the objective function increase (which is equals to (𝑛 −𝑚 + 1)2),
leading to a higher skewness function and slower convergence.
The experimental time complexity is 𝑂 (𝑛3). However, the 𝑃𝐶𝐶
increases faster with larger value of 𝑛 (see figures 12c,12d), because
little change in loss brings great improvement in the utility when
𝑛 is big. For another parameter𝑚, the loss decreases faster with
bigger value of𝑚, with the same reason explained with 𝑛. The 𝑃𝐶𝐶
increases faster with smaller value at the start of the iterations (see
figures 12a and 12b). Additionally, by comparing the values of 𝑃𝐶𝐶 ,
the performance is better with smaller values of𝑚 (with𝑚 ≤ 18
for 𝑑𝐸 and𝑚 ≤ 18 for 𝑑𝑍 ).

In conclusion, the attack is efficient when 𝑛 is small and𝑚 is
large, but becomes more effective with a small𝑚, regardless of 𝑛.

K Example of Real Matrix Profile Inversion
We use the maximum partial PCC as one of the metrics to quantify
the reconstruction attack’s ability to reconstruct at lease one sub-
sequence with high fidelity. As illustrated in Figure 11, the overall
PCC is 0.61, showing a moderate performance, yet the first pattern
of around 50 points is reconstructed very accurately, yielding a
high partial PCC of 0.95. This gap reveals a substantial privacy risk
that the global PCC alone would understate.

L Integer Matrix Profile Inversion
We also implement the reconstruction attack using values from a
reduced domain (i.e., integer numbers) as preliminary work. The
results showed perfect resolution.

The energy consumption dataset was used to evaluate the re-
construction, which contains real numbers. We then digitized the
values by dividing the real domain into several intervals. Each point
is assigned an integer value based on the interval it belongs to, as
shown in Figure 13a.

After digitization, we compute the 𝑀𝑃 with 𝑑𝑀 (ensuring the
matrix profile values remain integers) and set m to 10, which is
suitable for applications such as detecting activities lasting at least
10 minutes. Using Or-Tools as the solver, we obtain four solutions.
All solutions share the same𝑀𝑃 as the original time series, achiev-
ing perfect resolution. The original time series is reconstructed
(represented by the green curve in Figure 13b), while the other
solutions differ only by one or two points each.

M Reconstruction with Individual Knowledge
Figure 14 illustrates the results of a reconstruction attack on an
example using different types of auxiliary knowledge, as described
in Section 4.3. The effectiveness of the attack increases with all types
of auxiliary knowledge. Among them, using the mean value and
downsampling (one point every 30) proves to be the most effective
in enhancing reconstruction accuracy with minimal information.
In contrast, fixing the first 30 points yields less improvement in this
example because the known pattern does not recur in the remainder
of the time series. This yields a limitation of using fixed, continuous
points as auxiliary knowledge in such cases.

85
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(a)𝑚 with 𝑑𝐸 . (b)𝑚 with 𝑑𝑍 . (c) 𝑛 with 𝑑𝐸 . (d) 𝑛 with 𝑑𝑍 .

Figure 12: Results for parameters𝑚 and 𝑛 with different distance measures.

0

25

50

75

100

E
n

er
gy

co
n

su
m

p
ti

on
(W

at
t) Original time series

0 200 400 600 800 1000 1200 1400
0

2

4

6

D
ig

it
iz

ed
en

er
gy

co
n

su
m

p
ti

on Digitized time series

(a) Domain reduction of an energy consumption time series of size 1440 over 6
values.

(b) 𝐼𝑀𝑃𝐼 ran over a digitized energy time series Matrix Profile with Manhattan distance and
𝑚 = 10, in 43.076 seconds.

Figure 13: Integer Matrix Profile Inversion

(a) No auxiliary knowledge. (b) A𝑠𝑢𝑏𝑠𝑒𝑞 (c) A𝑠𝑢𝑚 (d) A𝑠𝑝𝑎𝑟𝑠𝑒

Figure 14: Results of reconstruction with auxiliary knowledge (using 𝑑𝑍 ).
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