SPRINT: Scalable Secure & Differentially Private Inference for
Transformers

Francesco Capano
SAP SE
Karlsruhe, Germany
francesco.capano@sap.com

Abstract

Machine learning as a service (MLaaS) enables scalable model de-
ployment and inference on cloud servers. However, MLaa$S exposes
user queries and model parameters to servers. To guarantee con-
fidentiality of queries and model parameters, multi-party compu-
tation (MPC) enables secure inference by distributing data and
computations across multiple service providers. MPC eliminates
single points of failure, mitigates provider breaches and ensures
confidentiality beyond legal agreements. Beyond confidentiality of
queries and parameters, the model itself can memorize and leak
training data during inference. To mitigate privacy concerns, differ-
ential privacy (DP) provides a formal privacy guarantee for training
data, which can be satisfied by injecting carefully calibrated noise
into gradients during training. However, naive combinations of
DP and MPC amplify accuracy loss due to DP noise and MPC ap-
proximations, and incur high computational and communication
overhead due to cryptographic operations.

We present SPRINT, the first scalable solution for efficient MPC
inference on DP fine-tuned models with high accuracy. SPRINT
fine-tunes public pre-trained models on private data using DP. It
integrates DP-specific optimizations, e.g., parameter-efficient fine-
tuning and noise-aware optimizers, with MPC optimizations, e.g.,
cleartext public parameters and efficient approximations of non-
linear functions. We evaluate SPRINT on GLUE benchmark with
RoBERTa, achieving up to 1.6x faster MPC inference than the state-
of-the-art non-DP solution SHAFT, reducing communication by
1.6X. Notably, SPRINT maintains high accuracy during MPC infer-
ence, with < 1 percentage point gap compared to cleartext accuracy.

Keywords

Differential privacy, Multiparty computation, secure inference, trans-
formers fine-tuning

1 Introduction

LLMs can be pretrained on large-scale public datasets and fine-
tuned on smaller, private datasets to improve task-specific per-
formance, e.g., sentiment analysis. Model owners can deploy fine-
tuned models via machine learning as a service (MLaa$S), outsourc-
ing inference to cloud servers. MLaaS relieves model owners of
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2026(1), 134—153

© 2026 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2026-0008

*Work done while he was at SAP SE.

This work is licensed under the Creative Commons Attribu-

Jonas Bohler
SAP SE
Karlsruhe, Germany
jonas.boehler@sap.com

134

Benjamin Weggenmann'
Technische Hochschule
Wiirzburg-Schweinfurt, Germany
benjamin.weggenmann@thws.de

resource management and infrastructural burdens of running in-
ference themselves while providing users seamless access to pre-
dictions. However, model parameters, user queries, and predictions
are exposed to MLaaS servers [39], potentially leaking sensitive
information. Even servers adhering to legal agreements remain
vulnerable to data breaches. To guarantee confidentiality of model
parameters, user queries and predictions against cloud servers,
multi-party computation (MPC) enables secure inference. MPC as-
sumes multiple non-colluding servers that jointly compute a func-
tion on secret-shared data, i.e, random split of data, where each
share reveals nothing on its own. By distributing trust among mul-
tiple servers from different providers, MPC eliminates single points
of failure, mitigating risks such as provider breaches and providing
cryptographic protections beyond contractual and legal agreements.
Besides confidentiality, LLMs face privacy issues since they can
memorize fine-tuning data and leak sensitive information in predic-
tions [9, 29, 40, 46]. To mitigate memorization, differential privacy
(DP) provides a formal privacy guarantee for fine-tuning data satis-
fied by injecting carefully calibrated noise into gradients [16, 41].
Specifically, DP bounds the maximum difference of the model’s be-
havior when including or excluding a record from fine-tuning data.

While offering strong guarantees, DP and MPC introduce practi-
cal challenges when deploying transformer models, i.e., trade-offs
between privacy, accuracy, and computational efficiency. Combin-
ing DP fine-tuning and MPC inference introduces two error sources
that degrade final accuracy. (I) DP injects noise during fine-tuning,
which scales with the model size and can hinder convergence [41].
(II) MPC relies on fixed-point arithmetic [36] for efficiency and ap-
proximates costly non-linear functions, e.g., GeLU, which can lead
to numerical errors. Balancing these two error sources while opti-
mizing performance is crucial to ensure scalability and accuracy of
MPC inference, as larger models and datasets have wider parameter
ranges and require more precise approximations trading accuracy
for performance. Additionally, MPC inference introduces significant
performance overhead as computation on secret shares requires
interaction, e.g., servers exchanging shares for matrix multiplica-
tions. This is especially challenging for large transformer models
(e.g., BERT with 110M parameters) as communication overhead
grows with model size. Consequently, naively combining DP fine-
tuning and MPC inference is impractical due to DP’s noise-induced
accuracy loss combined with MPC’s cryptographic overhead and
approximation errors. To overcome these challenges, we propose
SPRINT, the first scalable approach co-designing DP fine-tuning
and efficient MPC inference for high accuracy. SPRINT enables
private and secure inference by ensuring privacy for fine-tuning
data (via DP) and confidentiality for model parameters, user queries,
and predictions during inference (via MPC). Unlike prior works
focusing solely on DP [41, 70] or MPC [54], SPRINT integrates both

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2026-0008

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

(I) Fine-Tuning

Proceedings on Privacy Enhancing Technologies 2026(1)

(I1) Inference
MPC Server 1

1
1
1

! (\
1
Ia. MO adapts the base model to be MPC-aware, leveraging 1

MPC non-linear function approximations, and an adapter 1 MPC model Adapter Query

e . .
e Ib. MO D? jf‘e tunes the adapter on the private data MPC model Adapter X

> ~———o
w — 1

Private 1 IIa. U secret shares P
Model dataset =— % ITb. Secure Inference the query 3

Owner (MO) — MPC-aware Ic. MO converts the MPC-aware base | [\

= 1
B :> base model Adapter model into an MPC version, which | Label User (U)
m;flil if)cludes MI?C protocol.s fo{ the non- MPC model Adapter
linear function approximations, and | Ile. U ives th
secret shares the fine-tuned DP adapter | €. Lrecelves the

1

secret-shared label

————
1 MPC Server 2

Figure 1: High level SPRINT overview: during fine-tuning (I) the model owner (MO) DP fine-tunes a large base model adapted
to be MPC-aware, on a private dataset using a small adapter. Before inference (Ic), the MO converts the fine-tuned model into
an MPC protocol and secret shares only the small adapter. During inference (II), the user secret shares its query to MPC servers
which run secure inference, returning the secret-shared labels. Red blocks are secret-shared, while blue blocks are in cleartext.

techniques. Fig. 1 outlines SPRINT’s approach. Initially (Ia), model
owner (MO) adapts a large public base model to be MPC-aware
(i.e., integrating suitable non-linear function approximations used
in MPC inference), and adds a small adapter. Then, only the small
adapter is DP fine-tuned on private data, while the large base model
remains frozen (Ib). For secure inference (Ic), MO converts the fine-
tuned model to an MPC version (i.e., translating all model functions
to MPC protocols) and secret-shares only the fine-tuned adapter.
Consequently, during inference (II), user (U) secret-shares its query
(ITa) and each MPC server performs the bulk of large matrix opera-
tions locally on the cleartext base model, with no interaction. Only
the small adapter matrix multiplications and activation functions
in the model uses secure protocols (IIb). Finally, U reconstructs the
secret-shared prediction (IIc). We evaluate SPRINT by fine-tuning
RoBERTa [44] on the GLUE benchmark [66], achieving high MPC
inference accuracy, i.e., within 1 percentage point (pp) of cleartext
accuracy. Notably, SPRINT maintains high accuracy while scaling
to large datasets (e.g., QQP with more than 40k validation samples),
while many prior MPC works [31, 45, 54] tested only on smaller
datasets (e.g., SST2 with < 1 k validation samples). Additionally,
SPRINT delivers up to 1.6x faster MPC inference than the state-of-
the-art non-DP solution SHAFT [31], reducing communication by
1.6x. We evaluate SPRINT for practical deployments using Poisson
subsampling for rigorous privacy guarantees, which some prior DP
works [41, 70] neglected, impacting their privacy guarantees.

1.1 Contributions

We present SPRINT, a scalable solution for DP fine-tuning and MPC
inference for transformer models. SPRINT integrates DP-specific
and MPC-aware techniques, to improve accuracy, computation and
communication efficiency. Our contributions include:

1. Unified solution for secure and private MPC inference
on DP fine-tuned transformer-based models. We present the
first solution to integrate DP fine-tuning with MPC inference for
transformer-based models, ensuring: (I) privacy for the fine-tuning
dataset, (II) model confidentiality during inference, and (IIl) con-
fidentiality for inference query and results. SPRINT bridges the
gap between prior works which solely focus on either DP fine-
tuning [7, 41, 70] or MPC inference [31, 45, 54]. We address com-
putational overhead and numerical errors in MPC, and accuracy

135

degradation due to DP noise (Sec. 3.1) to provide a scalable solution
with high-accuracy for private and secure inference for transformer-
based models (Sec. 4). While some of SPRINT’s components build on
existing work, their integration under the combined constraints of
DP fine-tuning and MPC inference presents non-trivial challenges.

2. MPC-aware DP fine-tuning with high accuracy MPC in-
ference. To achieve high accuracy during MPC inference, SPRINT
balances DP noise with MPC approximation errors through: (I)
parameter-efficient fine-tuning to mitigate the impact of DP noise,
and (II) making DP fine-tuning MPC-aware by using the same
non-linear function approximations as in inference. Specifically,
(I) DP fine-tuning adds carefully calibrated noise to clipped gradi-
ents, with noise scaling with model size, hindering convergence
for large models [41]. To mitigate noise impact, we use a variant
of parameter-efficient fine-tuning, i.e., FALoRA [61], that reduces
trainable parameters by ~ 200x (Sec. 4.1). While FALoRA is effec-
tive in non-DP settings and DP federated learning [61], it has not
been previously applied to centralized DP fine-tuning. We find that
centralized DP fine-tuning with FALoRA causes an accuracy drop
of about 2 pp (App. A), which we mitigate using the DP-specific
optimizer DPAdamBC [62] that accounts for noise-induced bias
(Sec. 4.1). (I) Finally, our DP fine-tuning is made MPC-aware by
using the same non-linear function approximations (e.g., GeLU)
as in MPC inference. This ensures consistency in the non-linear
functions between fine-tuning and inference improving final MPC
accuracy (Sec. 5). However, integrating MPC approximations dur-
ing fine-tuning introduces additional error sources. While previous
works apply this approach only for MPC inference, we investigate
the effect of combining it with DP fine-tuning and how to balance
the two error sources. We find that while MPC inference-only works
can use more aggressive approximations (as in distillation, App. D),
our integrated approach requires more conservative approxima-
tions, trading off performance to achieve high accuracy.

3. Scalable and efficient secure inference via MPC. To im-
prove efficiency and scalability in MPC inference, we introduce tar-
geted optimizations: (I) for Linear layers, we minimize MPC matrix
multiplications (i.e., which require interactions) by secret-sharing
only fine-tuned parameters; and (II) for non-linear functions, we
prioritize numerical stability and accuracy by adapting and im-
proving state-of-the-art approximations. Specifically, (I) Linear lay-
ers require high-dimensional matrix multiplications, introducing

Proceedings on Privacy Enhancing Technologies 2026(1)

significant overhead in MPC since each multiplication between
secret-shared matrices requires interaction. While ML LoRA imple-
mentations merge low-rank matrices into pre-trained weights [28],
SPRINT keeps them separated during inference and secret-shares
only fine-tuned parameters. Despite increasing the total parameter
count, this approach enhances scalability. Only secret-shared pa-
rameters require costly MPC multiplication with server interaction,
whereas multiplication with cleartext, public weights can happen
locally. With FALoRA, SPRINT keeps ~ 99% of the parameters in
cleartext (Sec. 4.2). Regarding non-linear functions (II), they can
account for up to 75% of MPC inference runtime [24]. MPC relies
on fixed-point representations for efficiency, introducing numerical
errors, e.g., overflows, particularly for non-linear function approxi-
mations which trade off accuracy for efficiency. While existing MPC
works [31, 45, 54] typically train/test on small datasets (e.g., SST2
<1k validation samples), SPRINT scales to large datasets (e.g., QQP
>40k validation samples) with broader input and parameter ranges,
which normally, increase numerical instability. To mitigate this,
we propose specific enhancements: (I) for Softmax, we introduce
SoftCap-based approximation that bounds maximum input values
and eliminates expensive max operations; (II) for LayerNorm, we de-
velop a piecewise approximation for inverse square root improving
accuracy with minimal overhead; and (III) for GeLU, we evaluate
multiple approximations (App. D), and select and adapt BOLT’s
GelLU [54] which offers the best accuracy-performance trade-off.
4. Comprehensive evaluation with various network set-
tings. We evaluate SPRINT on GLUE benchmark datasets [66],
i.e., SST2, MNLI, QQP and QNLI, in multiple network conditions,
i.e., LAN and WANS, to measure MPC inference performance (Sec. 5).
We compare with state-of-the-art DP fine-tuning [41, 70] and MPC
inference [24, 31, 45, 54]. SPRINT improves MPC inference, achiev-
ing up to 1.6x faster MPC inference than the state-of-the-art non-
DP solution SHAFT [31], reducing communication by 1.6x (Tab. 2,
Sec. 5.2). Despite approximations of non-linear function required
for MPC in fine-tuning, SPRINT maintains accuracy comparable to
DP-LoRA fine-tuning [70] (Tab. 1, Sec. 5.1), and MPC inference accu-
racy within 1 pp of cleartext (Tab. 6, Sec. 5.2). We also compare and
discuss different approximations for non-linear functions from re-
lated works, e.g., from SHAFT [31] and BOLT [54] (Tab. 3, Sec. 5.2),
and we evaluate the advantage of GPU acceleration and batched
inference (Tab. 5, Sec. 5.2). Additionally, we perform extensive hy-
perparameter search, including different initialization strategies
(for FALoRA matrices) to guide hyperparameter choice for faster
convergence with high accuracy (Tab. 10, Sec. 5.1), and evaluate the
impact of MPC-aware DP fine-tuning on model accuracy (Sec. 5.2).
5. Practical and modular framework with DP deployment
considerations. SPRINT is a modular framework for DP fine-
tuning and MPC inference, which builds on top of existing libraries,
i.e., Opacus [69] for DP fine-tuning and CrypTen [36] for MPC
inference.! SPRINT is designed to be extendible and include ad-
ditional models via PyTorch-like modeling files. While this work
focuses on BERT-like models for sequence classification due to
computational constraints, SPRINT can be easily adapted to other
architectures and tasks, such as GPT-like models for text generation.
By building on top of CrypTen, SPRINT supports integration of any

1Code available at: https://github.com/SAP/sprint

136

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

X Y

¥ 4
Embedding —(LayerNorm Linearjass + Linearpro;

Classifier A

T Y !

P—

Linearg Linearg Lineary w
Q » -« K A% Lineargyt

Linearjnt FEN

W

Attention Encoder 1)V

Figure 2: RoBERTa architecture with z encoders, highlighting
non-linear layers and layers with

non-linear function approximation (App. D), to assess how each ap-
proximation impacts performance. This modularity allows SPRINT
to quickly adapt to new models and approximations. SPRINT in-
tegrates Poisson subsampling for DP fine-tuning, contrarily to a
common practice in the literature of replacing Poisson subsampling
with shuffling for computational efficiency [73], which degrades ef-
fective privacy guarantees by, e.g., over 4X for the MNLI dataset [3].
The rest of this work introduces preliminaries (Sec. 2), details
SPRINT’s design and challenges (Sec. 3), and presents our optimiza-
tions (Sec. 4). We then evaluate our approach (Sec. 5), review related
work (Sec. 6) and discuss limitations and future work (Sec. 7).

2 Preliminaries

Next, we define our notation, overview the transformer architecture
and fine-tuning, and introduce MPC and DP.

Notation. Upper case bold letters, e.g., X € R%%?_ denote a
matrix of @ x b real values. For indices (i, j), X; = x € R? represents
the i-th row vector, and X; ; = x; = x € R is a scalar. An ML model
M is defined by its parameters 6 and architecture M*, where
M* encapsulates the algorithmic description of how parameters
0 and inputs X are processed to output classifier logits Y. Model
parameters @ include weights W and biases b for each layer in M4.
Dataset D contains N samples (X;, Y;), and batch B has size B.

2.1 Transformers

Transformers [65] are widely used in NLP tasks, e.g., text classi-
fication, question answering. We focus on RoBERTa, a variant of
BERT [13], for sequence classification, as DP related works [41,
54, 70]. RoBERTa consists of a stack of z = 12 Encoder that pro-
cess an input sequence and output hidden states. Each Encoder
contains a multi-head self-attention mechanism (Attention) and a
feed-forward neural network (FFN). The Classifier processes the
last encoder’s output to output logits for the labels. Next, we detail
on the main components of the RoBERTa architecture in Fig. 2.

Embedding. The input text is tokenized and mapped to a contin-
uous space via the Embedding layer implemented as lookup tables
of size Ny X d, where Ny = 50625 (vocabulary size) and d = 768
(model dimension). Token embeddings X'* € R™*9 are summed
with positional embeddings XP° € R"™* to encode position in the
sequence (m = 128). Then, the output is normalized via LayerNorm.

LayerNorm. LayerNorm ensures numerical stability by normal-
izing across all the features in the hidden states (or input sequence).

https://github.com/SAP/sprint

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

For a row vector x € R, weights W and bias b:
x — ji(x)
V(%)

where p(x) and v(x) are the mean and variance of the input.

W +b, 1)

LayerNorm(x) =

Attention. Attention captures the relationships between words
in a sequence by weighting their importance. Each input is projected
into query (Q € R™?'), key (K € R™*?), and value (V € R™*?)
matrices. Here d’ = d/H, where H = 12 is the number of attentions
heads. Each head processes a distinct subset of Q, K, and V in
parallel. The intermediate attention scores are computed as:

Q-K'
T

where Softmax is applied row-wise, i.e., for each row x € R™:

Attention(Q, K, V) = Softmax().V,

eX

Softmax(x) = <m—-
Ly e

@

Outputs from all heads are concatenated, passed through a linear
layer (Linearay), and normalized.

FFN. The FFN applies two Linear layers with a GeLU activation
to the Attention output X € R™*?. GeLU introduces non-linearity
and is applied element-wise to x € R:

V2

where erf(x) = \/i; fox e~ dt is the error function [27].

GelLU(x) = %x(l + erf(—)), (3)

Classifier. For sequence classification, the first output row Xgl €
R? from the last encoder is processed by two linear layers (Linearpyo;,
Linearj,ss) with Tanh activation to output logits for I labels.

2.2 Fine-Tuning

LLMs are pre-trained on large amounts of public data to learn
general language representations. However, pre-trained models
may not perform well on specific tasks. Fine-tuning is a stan-
dard approach to adapt a large, pre-trained model (e.g., RoBERTa)
to a downstream, specific task (e.g., sentiment analysis) using a
smaller, task-specific dataset. This approach is particularly relevant
in privacy-sensitive scenarios, where data is scarce, and the public
model needs to be adapted to a specific task on private data.

Low-Rank Adaptation (LoRA). LoRA [28] is a parameter-
efficient fine-tuning technique that reduces the number of trainable
parameters and computational cost. LORA decomposes the weight
matrix Wy € R of a linear layer into two low-rank matrices
A € R™* and B € R?*" where r is the rank. For an inputX € Rmxd
the output Y € R™*¥ of the linear layer is computed as follows:

Y=X-Wo+X-(B-A)Z,)
r

where « is a scaling factor. During fine-tuning only A and B are
updated, where r < min(d, k) reduces trainable parameters to e.g.,
~ 1% of RoBERTa parameter with r = 16.

2.3 Multi-Party Computation

Multi-Party Computation (MPC) is a cryptographic technique en-
abling multiple servers to jointly compute a function on private
inputs while keeping the inputs confidential; only the output is

137

Proceedings on Privacy Enhancing Technologies 2026(1)

revealed. We focus on the 2-out-of-2 secret sharing scheme (SS) of
CrypTen [36], where 2 servers S;, S, perform the computation.? A 2-
out-of-2 scheme splits a secret into 2 shares via Shr and reconstructs
it from the shares via Rec. Shares are of two types: arithmetic suit-
able for operations like additions and multiplications (e.g., in linear
layers), and binary suitable for comparisons (e.g., in GeLU) [36].

Arithmetic Secret Sharing. Arithmetic secret sharing maps a
scalar value x to shares Shr(x) = ({x)%, (x)?) such that the sum
of all shares is x, i.e., Rec({x)4, (x)g‘) = (x)f‘ + (x)gx = x. Notably,
SPRINT relies on the fact that additions and multiplications with
public values can be executed on local shares, whereas multiplica-
tion of shares requires interaction between the servers. Specifically,
CrypTen leverages Beaver triples [5] requiring one round of in-
teraction. Before Shr, floating-point values (xf) are converted to
fixed-point (x), where xg, = Xy -2/ rounded to integers, and f is the
precision. Fixed-point arithmetic uses integers, reducing communi-
cation overhead in MPC, whereas floating-point requires handling
multiple shares (e.g., base and exponent) [19]. In SPRINT we set
f =16 and the shares are mapped into a 64-bit field, i.e., Zyss [36].

Binary Secret Sharing & Conversion. Binary secret sharing
maps each bit x;, of x to shares Shr(xp) = ({x3), (x;,)f) in a binary
field Z,, such that Rec({x})?) = (xb){B ® (xb)‘,’zB [36]. Transformers
require arithmetic and binary SS for linear and non-linear opera-
tions, respectively. For non-linear operations, arithmetic shares are
converted to binary shares (A2B), which after the computations,
are converted back to arithmetic shares (B2A) [36]. In A2B, each S;
converts (x)l‘.“ to binary shares (x)iB via bit-wise decomposition. In
B2A, (x)f =2 2b (xb)lB, where n is the bit-width [36].

2.4 Differential Privacy

DP is a formal privacy guarantee that the presence or absence of a
record in a dataset D does not significantly affect the outcome of any
function over D. Formally, a randomized mechanism M satisfies
(e, 8)-DP if for any neighboring dataset Dy, D,, for € > 0,6 > 0, and
for any subset S of possible outputs:

Pr[M(D;) € 8] < exp(e) x Pr[M(Dz) € S] + 6

Here, € is the privacy budget and bounds the output variation of
M on Dy, D,. Smaller € indicates stronger privacy. Parameter §
represents the probability of breaking the privacy guarantee, typi-
cally set to § << 1/N, where N is the dataset size. The neighboring
datasets D; and D, differ by a single record, i.e., D, can be obtained
from D, by adding or removing a record [17]. Notably, DP is im-
mune to post-processing, i.e., any data-independent transformation
of the output of an (e, §)-DP mechanism does not reduce the pri-
vacy guarantees [17]. Furthermore, DP mechanisms are composable,
enabling tracking of privacy loss across training iterations. The pri-
vacy budget accumulates as multiple DP operations are performed,
requiring careful accounting to bound the overall privacy guarantee.
For tighter accounting, we employ the Rényi Differential Privacy
(RDP) [50] definition. RDP is parameterized by (a, p) where a > 1

is the Rényi order and p > 0 is the privacy parameter. RDP can be
log((a—1)/a)—(log d+log a) [4]
a-1 :

converted to (& 8)-DP using ¢ = p +

2All SS operation are performed in a finite field, i.e., modulo a prime number, and we
omit the modulo for notational simplicity.

Proceedings on Privacy Enhancing Technologies 2026(1)

DP in Machine Learning. To achieve DP guarantees in ML
training, stochastic gradient descent (SGD) is adapted into DP-
SGD [1] through two steps: (I) per-example gradient clipping Clip,
which bounds the sensitivity of the gradient g by clipping the I,-
norm to a fixed threshold C:

Clipc(g) = g min(1,C/|lgll2) = g min(1,C/y D giepg?),

and (II) noise addition, where Gaussian noise ¥ ~ N (0, 62C?) (with
o derived from €, § via [69]) is added to clipped gradients:

0+ = 0\ — y(Clip(g) + ¥).

The DP guarantee can be amplified by randomly subsampling a
batch of size B for each iteration. Subsampling introduces uncer-
tainty for an adversary to infer the presence of a specific record in
the dataset. By applying Poisson subsampling (Alg. 6, App. C), each
sample is included with a probability g = B/N, yielding a variable
batch size that follows a Poisson distribution with mean B. Subsam-
pling improves the privacy-accuracy trade-off amplifying the DP
guarantees for a given € to (O(g(exp(e) — 1)), 0(gd))-DP [1, 57].
DP for Transformers. Naively computing per-example gradi-
ent norms is memory-intensive and can be impractical for large
models like RoOBERTa. To enable batched gradient computation,
we employ GhostClipping (Alg. 5), reducing memory and com-
putational overhead [41]. GhostClipping indirectly estimates per-
example gradient norms by computing the squared Frobenius norm
and decomposing the batch-level operations into matrix multiplica-
tions, avoiding the need to compute or store individual gradients
explicitly. GhostClipping achieves substantial memory savings (up
to 22x for GPT-2) without affecting accuracy or privacy [41]. For
more details, see Alg. 5 and App. B. Additionally, transformers train-
ing and fine-tuning often use adaptive optimizers, e.g., Adam [35],
which maintain moving averages of the gradient’s first and second
moments, i.e., its mean m; and variance v; (Alg. 4), to enable adap-
tive learning rates and faster convergence. Adam is adapted into
DP-Adam by adding noise to the gradients as in DP-SGD [70].

3 SPRINT Design

Next, we introduce our problem setting and threat model, followed
by an overview of the challenges (Sec. 3.1) and high-level design of
SPRINT, which integrates DP fine-tuning with MPC inference for
LLMs (Sec. 3.2). Sec. 4 details the optimizations.

Problem Setting. In our scenario (Fig. 3) model owner MO
seeks to deploy a secure inference service for an LLM fine-tuned
on its sensitive data Dgr. Our goal is threefold: (I) to guarantee
the privacy of Dgr from the user U of the service; (II) to ensure
model confidentiality from the MLaaS servers (MPC servers S; and
Sz); and (II) to protect the confidentiality of the user’s query from
the servers. To combine these privacy guarantees, MO DP-fine-
tunes a public model, Mg‘ with parameters 6y, on Dgr. Then, MO
secret-shares DP fine-tuned parameters fpp across Sy, S;. Finally,
U secret-shares the embeddings of its sample (X‘z]mb) to securely
query the model and reconstruct the output (Yy).

Threat Model. We consider two semi-honest, non-colluding

servers S, S,, i.e., they follow the protocol but may try to infer
private information from their view of the protocol execution.

138

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

(I) Fine-Tuning Inference (II)

1
Model owner MO :
1
i R (v N
M{ipes 160, (Opp)1} L \U
Mg : (Yuh
A MPCfyModel 1
MA . | MpC U
{60, Opp } ! (V
A
0~ [DPFinetune| Miiec- {60 (Fpp)2} B S ‘(Kg"b)z
Dir»| Alg.2 2
& 1

Figure 3: Overview of MPC-aware DP fine-tuning and MPC
inference. Model owner MO prepares the model (AdaptModel)
and fine-tunes it (DPFinetune). Before inference, MO converts
the model to an MPC version (MPCfyModel) and secret-shares
the DP fine-tuned parameters Opp to servers Sy, S;. The U
secret-shares the embeddings of its data Ding to the servers,
which execute and return the result.

The semi-honest assumption is standard in private inference lit-
erature [2, 15, 23, 38, 47, 54] as it balances security and perfor-
mance [54], and is used in real-world applications. For instance,
Firefox [18] privately collects telemetry data via two independent,
semi-honest servers. Some protocols require precomputed crypto-
graphic material, i.e., multiplication triples [5]. We follow [31, 36]
and assume a trusted dealer provides necessary cryptographic ma-
terials during an offline preprocessing phase.

3.1 Design Challenges

Next, we outline the challenges arising from combining DP fine-
tuning and MPC inference.

Accuracy degradation from DP noise and MPC limited
precision. Key challenges when integrating DP fine-tuning and
MPC inference for transformer-based models include: (I) mitigating
accuracy degradation from both DP-induced noise and the limited
precision inherent in MPC approximations; and (I) minimizing the
accuracy gap between cleartext training and MPC inference while
improving performance. DP noise degrades model accuracy, espe-
cially in large models like RoBERTa (125M parameters), as noise
typically scales with number of parameters [41]. Furthermore, the
limited precision of fixed-point arithmetic impacts accuracy, in-
troducing approximation errors not only during the conversion of
weights from floating-point to fixed-point but also in the approxi-
mations of non-linear functions (e.g., GeLU). Consequently, naively
performing MPC inference on DP fine-tuned models can lead to
accuracy degradation (Sec. 4.2). To address these issues, SPRINT
integrates targeted strategies. First, to minimize the impact of DP
noise on accuracy SPRINT employs parameter-efficient fine-tuning
(PEFT) such as FALoRA (Sec. 4.1). Second, SPRINT implements an
MPC-aware fine-tuning process (Sec. 3.2); this involves using the
same non-linear function approximations during DP fine-tuning
and MPC inference. This approach allows the model to learn and
adapt to specific approximations, thereby reducing the accuracy gap
between cleartext fine-tuning and MPC inference (Sec. 5). Further-
more, we carefully select non-linear approximations balancing their
inherent approximation error and cryptographic overhead (Sec. 4.2).

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

Scalability in MPC Inference. Achieving scalable MPC infer-
ence for transformers presents two primary challenges: (I) man-
aging the high computation and communication overhead from
high-dimensional matrix multiplications in Linear layers; and (II)
ensuring the numerical stability of MPC inference across diverse
and wide input ranges. Transformer-based models can be very large
and require high-dimensional matrix multiplications. For example,
in RoBERTa, Linear layers in Attention have size 768 X 768. For
non-optimized inference, a single sample in MPC requires 1.4 GB
communication for Linear layers (Tab. 4, Sec. 5.2). Thus, optimizing
Linear layers is crucial to reduce the communication overhead. No-
tably, MPC protocols for Linear layer can be optimized indirectly
by keeping public, non-trainable parameters in cleartext, allowing
local, i.e., interaction free, matrix multiplications between secret
shared inputs and cleartext parameters (Sec. 4.2). Furthermore,
scaling to larger datasets and models requires the MPC protocol,
especially non-linear function approximations, to be numerically
stable for a wider input range. Fixed-point arithmetic is prone to
numerical errors, e.g., underflow/overflow, modulo wrap-around,
and truncation errors. These errors are difficult to detect in multi-
party settings as no single server has full visibility of intermediate
computations [36]. Defining a stable and accurate approximation
for a wide input range requires more communication and compu-
tation overhead, which can be a bottleneck in MPC inference. For
example, the inverse square root for LayerNorm in CrypTen [36]
is stable only for a limited input range, i.e., it causes overflow for
input with absolute values larger than 330, and by getting closer
to this threshold the mean squared error increases significantly
(Sec. 4.2). While more stable approximations negatively impact per-
formance, they also reduce the gap between the MPC and cleartext
inference accuracy. We not only propose stable approximations for
Softmax, LayerNorm, and GeLU [54], but also target measures to
ensure numerical stability across the model, such as logits capping
which bounds the input to the Softmax reducing the risk of over-
flow during MPC inference, and modifying the attention masking
for padding to values which do not cause numerical issues (Sec. 4.2).

3.2 System Design

Our solution addresses the dual challenge of minimizing the accu-
racy loss due to DP noise and MPC approximations while enabling
efficient MPC inference for transformer-based models. Fig. 3 shows
SPRINT’s system architecture in its two phases: (I) DP fine-tuning
performed by MO, and (II) MPC inference involving S;, Sz, and U. In
the fine-tuning phase, we address the challenges of MPC inference
and DP fine-tuning (Sec. 3.1) in three steps, summarized here and
detailed in the following paragraphs. Specifically, we: (a) adapt the
pre-trained model for MPC-aware fine-tuning (AdaptModel, Alg. 1),
(b) perform DP fine-tuning on the adapted model (DPFinetune,
Alg. 2), and (c) convert the fine-tuned model functions (i.e., matrix
multiplications and non-linear functions) into MPC-compatible
protocols for inference (MPCfyModel, Alg. 3).

AdaptModel for MPC-aware fine-tuning. The pretrained
model M is not optimized for MPC inference. Specifically, it re-
lies on non-linear functions, i.e., Softmax, GeLU, and LayerNorm,
which lead to accuracy degradation and numerical issues. Further-
more, the high dimensionality of the model parameters makes DP

139

Proceedings on Privacy Enhancing Technologies 2026(1)

Input: Public pretrained model M(‘]A, capping threshold K, LoRA params r, a.
Output: MPC-aware cleartext model Mér for DPFinetune.
Function AdaptMode[(MA, r,a, K):
foreach Encoder € M’o“ do
/* Apply FALORA */
A,B « Initialize Lora Matrices// Sec. 5.1
Linear(x) « Linear(x) +x - (B-A)%// Sec. 4.1
/* Apply MPC-Aware approximations Sec. 4.2 */
Softmax(x) « Softmax(SoftCap(x,K)) // Cap logits
GeLU(x) « GeLUmpc (x) // Replace GelLU Eq. (3)
Embedding(x) « SoftCap(Embedding(x))// Sec. 4.2
M?l. — M(’)“ with added Classifier // Add classifier
| return M?T

Algorithm 1: MO adapts cleartext model M for the MPC-
aware DP fine-tuning.

Input: MPC-aware cleartext model M;‘T, with parameters 6, fine-tuning

data Dy of size N, batch size B, epochs E.
Output: Finetuned parameters Opp.
Function DPFinetune (M3}, 6o, Drr, B, N, E):
/* Freeze Embedding, non-LoRA parameters in Attention, and
LoRA A matrices (Sec. 4.1) */
GI()(L) «— 0y // Initialize trainable parameters
fort=1,...,Edo
/* Sample random batch with probability P */
B « PoissonSampling(P = B/N) // Alg. 6, App. C
LOE, B) Loss(MA(5",60:X5), Ya)

DP
/* Compute per-example clipped gradients */
G = GhostClipping(L(6, ", B), B)// Alg. 5, App. B
/* Add noise and update model parameters */

6\ = DPAdamBC(G, 1,655 ") // Alg. 4

(1)
| return Onp

Algorithm 2: MO runs MPC-aware DP fine-tuning on cleartext
model M?T for a given loss function Loss(+).

fine-tuning and MPC inference computationally expensive. To ad-
dress these challenges, AdaptModel (Alg. 1) adapts the pretrained
model architecture Mg (Fig. 2) to be MPC-aware. Specifically, MO
first applies LoRA to the Linear layers in the Encoder to reduce
the number of trainable parameters, and minimize the impact of
DP noise during fine-tuning (Sec. 4.1). The LoRA A matrices are
initialized to maximize accuracy during fine-tuning (App. F.2). Sec-
ond, MO applies SoftCap to limit the input range of Softmax, and
the embeddings output, to prevent numerical issues in inference
(Sec. 4.2). Third, MO replaces GeLU with a cleartext version of the
MPC approximation GeLUppc [54] to be MPC-compatible and im-
prove the MPC inference accuracy (Sec. 4.2). Finally, MO adds the
Classifier to create the MPC-aware model for fine-tuning M?T.

DPFinetune. DP fine-tuning introduces noise into model up-
dates, which can degrade model accuracy. Additionally, DP fine-
tuning typically requires per-example clipping and noise sampling,
which increases memory and computation costs. To address these
challenges, DPFinetune (Alg. 2) minimizes the impact of DP noise
via DP-specific techniques (Sec. 4.1), and optimizes fine-tuning
performance with batched gradient clipping (Sec. 4.1). Specifically,
before fine-tuning, MO freezes Embedding, non-LoRA parameters,
and LoRA A matrices (6, in Alg. 2), and trains from scratch LoRA B
matrices as well as the two linear layers in the Classifier (with pa-
rameters Opp). For each fine-tuning iteration, MO first sub-samples
a set of training examples B with probability P = B/N via Poisson

Proceedings on Privacy Enhancing Technologies 2026(1)

Input: MPC-aware DP fine-tuned model M]ér, with fine-tuned and frozen
parameters Opp and 6y, respectively.
Output: MPC model MQPC’ shares of parameters (Opp)1, (Opp 2.
Function MPnyMode[(M?T, Opp, 60):
/* Apply MPC approximations from Sec. 4.2 */
foreach Encoder € MfT do // For each Encoder
/* Replace Softmax and add logits capping */
Softmax(x) « SoftmaxK(SoftCap(x,K))// Alg. 8-9, App. E
GeLU(x) « GeLUmpc(x) // Alg. 10, App. E
LayerNorm(x) « LayerNormmpc (x) // Alg. 11, App. E
MﬁPC « Replace cleartext functions with MPC protocols in model MI‘?T
with Embedding layer removed
(Opp)1, {Opp)2 « Shr(Opp)
| return Mﬁpc, (Opp)1, {Opp)2

Algorithm 3: MO transforms the cleartext functions Mg, to

MPC protocols M4

Apcs and shares parameters Opp.

subsampling (PoissonSampling in Alg. 6, App. C). Second, MO com-
putes gradients and clips per-example gradients via GhostClipping
(Alg. 5, App. B). GhostClipping enables batched computation of per-
example gradient norms, reducing the overhead of DP fine-tuning
computing the Frobenius norm | - | from activations and gradients.
Third, MO updates the model parameters Opp using the DP-noise
aware optimizer DPAdamBC (Alg. 4, Sec. 4.1), which corrects the
gradient updates to account for the DP noise.

MPCfyModel for MPC Inference. To enable efficient MPC
inference, MPCfyModel (Alg. 3) replaces cleartext functions with
optimized MPC protocols (Sec. 4.2) to balance accuracy and cryp-
tographic overhead. Specifically, in MPCfyModel, MO first ap-
plies SoftCap to the Softmax input, and replaces non-linear lay-
ers Softmax, GeLU, and LayerNorm with MPC approximations
SoftmaxK, GeLUpmpc, and LayerNormmpc (Sec. 4.2). Second, MO
builds an MPC model My, from clear model My, replacing cleart-
ext functions with MPC protocols. MO also removes the Embedding
layer, since they are computed locally by U to reduce MPC overhead.
Third, MO secret-shares the fine-tuned parameters dpp between
servers Sy, Sy, ensuring Opp confidentiality.

MPC Inference. Mﬁpc defines the MPC inference protocol,
i.e., how servers Sy, S, interact to securely process the secret-shared
parameters and user input to compute the model output. During in-
ference (Alg. 3), user U locally computes the embeddings of their pri-
vate input Xy via the publicly available and unchanged Embedding
layer. U secret-shares the computed embedding with the servers
to query the model. The servers perform MPC inference applying
M?/IPC on (fpp) and 8y, and return the secret-shared result to U.

Next, we formalize our optimizations (Sec. 4), and present a
comprehensive evaluation of SPRINT (Sec. 5).

4 SPRINT Optimizations

Naively applying DP fine-tuning and MPC inference to transformer-
based models results in significant accuracy and performance degra-
dation. DP fine-tuning suffers due to DP noise. MPC inference incurs
accuracy loss and high computational and communication costs due
to non-linear function approximations (e.g., GeLU, Softmax), nu-
merical errors from fixed-point arithmetic, and large secret shared
matrix multiplications. To reduce performance overhead and pre-
serve high accuracy we integrate MPC, DP, and ML techniques.

140

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

FALoRALinear

Pre-trained

Figure 4: FALoRA in Linear layer. Blue blocks are frozen during
fine-tuning ({Wy, A} € 6, in clear during inference), while
red blocks are secret-shared during inference (B € 6pp).

4.1

Next, we detail two optimizations for DP fine-tuning: FALoRA to
reduce trainable parameters and DP-Adam Bias-Correction to im-
prove optimizer performance under DP.

MPC-aware DP Fine-tuning Optimizations

Reducing trainable parameters with FALoRA. To reduce
the number of trainable parameters, improve performance dur-
ing MPC inference (Sec. 4.2) and reduce the impact of DP noise
during fine-tuning, we freeze the Embedding layer and perform
parameter-efficient fine-tuning with FALoRA which freezes LoRA’s
A matrix. Previous works in non-DP context [72] and DP federated
learning [61] have shown that freezing the A matrix (thus further
reducing the number of trainable parameters compared to LoRA)
improves fine-tuning performance while maintaining high accu-
racy. From a theoretical perspective, the DP noise ¥4, ¥p in LoRA
updates the weights as follows (omitting gradient notation):

Wiy + (B+¥5)(A+Y¥,) =Wy +BA + YgA + BY, + Yp¥y.

Here, the quadratic noise term ¥g¥4 no longer follows a Gaussian
distribution, which can degrade model performance. By freezing
A, the quadratic noise term is removed obtaining the desired per-
layer noise variance from ¥g [61]. While FALoRA offers theoretical
advantages in reducing the noise amplification, and improves the
accuracy in previous works, our preliminary experiments revealed
that FALoRA alone performs worse than state-of-the-art LoRA [70]
(Tab. 7, App. A). This could be due to the MPC-aware fine-tuning,
where the model may struggle to adapt to the non-linear approxima-
tions with such a small number of trainable parameters. However,
FALoRA is still beneficial for reducing the number of trainable
parameters and improving performance during MPC inference
(Sec. 4.2). To overcome this accuracy drop, we propose to combine
FALoRA with a DP-specific optimizer, DPAdamBC [62], which cor-
rects the bias introduced in the second moment v; of Adam, and
improves convergence, which is discussed below in detail. Notably,
since A is not updated, its initialization directly affects accuracy;
we therefore evaluate several initialization techniques in App. F.2.

DP-Adam Bias-Correction. Naively adapting Adam to DP by
adding noise to the gradients leads to a biased second moment v;
due to the variance of the DP Gaussian noise 02C? [62]. This bias
makes DP-Adam behave more like DP-SGD (Sec. 2.4), losing con-
vergence benefits while consuming 3x the memory of DP-SGD [62].
DPAdamBC [62] corrects the bias in v, by a factor 62C?/B?, retain-
ing convergence advantages of Adam [62]. The first moment m; is
unbiased as the noise is zero-centered (App. A). In our experiments
on SST2, DPAdamBC shows, on average, about 2 pp higher accu-
racy than DPAdamW, confirming its effectiveness (Tab. 7, App. A).

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

Input: Clipped gradients G, iteration ¢, parameters 9](3;_”, clipping
threshold C, noise variance o® computed from €, § via [69], stability
constant y’, decay rates f31, f3,, batch size B.

Output: Updated DP parameters 6']();)

Function DPAdamBC (G, t, BI()[I;I)):

=1 (dec i ¢t) with i ~ N(0,62C219)

my — Pr-mpy+ (1= p1) - g

iy —mg /(1 _ﬁf)

o — Po-vp1+(1-f) - 82

o — v /(1= B})

6) — 0L — - vy [\Jmax(s, - (aC/B)%y’)
()

| return Opp

Algorithm 4: DPAdamBC step ¢ from [62], with bias-correction

term oC/B? (my, vy are initialized to zero).

4.2 MPC Inference Optimizations

Next, we detail optimizations to achieve scalable MPC inference
while maintaining accuracy comparable to cleartext. We introduce
enhancements for linear layers, mitigations for numerical instability
in MPC fixed-point arithmetic (e.g., SoftCap), and widely applicable
non-linear function approximations (e.g., for LayerNorm, Softmax).

Local Cleartext Computations. Typically, in non-private in-
ference, matrices A and B are merged into the layer weights W,
otherwise the number of parameters for inference would increase
compared to the original model. However, in our setting where
LoRA matrices contain sensitive information from fine-tuning, the
weights matrices, merged with A and B, need to be secret-shared
during MPC inference, resulting in a significant performance over-
head. The optimization for Linear layer proposed by SPRINT is to
not merge the matrices A and B into the layer weights W. Keeping
LoRA matrices separated allows SPRINT to keep the large, frozen
parameters of the public pretrained model in cleartext. Fine-tuning
with FALoRA further enhances performance by freezing the ma-
trix A, i.e., no need for secret sharing as A is not data-dependent,
halving the number of secret-shared parameters compared to LoRA.
Consequently, after fine-tuning, the model owner MO secret shares
only the matrix B and the Classifier weights to the servers S1,S,. As
shown in Fig. 4 only the matrix B and the input to the Linear layer
are secret shared. This enables S;,S, to perform local matrix multi-
plications between secret-shared inputs and cleartext parameters
(as formalized in Alg. 7, App. E). More formally:

(Y) = ((X) - A) - (B) + (X) - W.

Overall, FALoRA reduces the communication costs for Linear layers
by 70x compared to full fine-tuning and 10X compared to LoRA.
Also, FALoRA improves LAN runtime by 5X and 2Xx compared to
full fine-tuning and LoRA, respectively (Tab. 4, Sec. 5). Addition-
ally, since the Embedding layer is frozen, users U can locally pre-
compute embeddings and secret-share them. This approach offloads
the computation of the embeddings from the MPC servers Sy, S,.

Logits Capping. To improve numerical stability during infer-
ence, we apply logits capping to Softmax inputs in Attention layers.
Given input vector x and threshold K, the output is:

SoftCap(x, K) = K- Tanh(x/K).

141

Proceedings on Privacy Enhancing Technologies 2026(1)

This method, employed in Gemma 2 models [63], helps the model
maintain more stable and effective learning dynamics by bounding
the Softmax inputs, while preserving the proportional relationships
between them via Tanh [63], as formalized in Alg. 8 (App. E). Addi-
tionally, we cap embeddings to bound the input range of the first
Encoder and minimize truncation errors from large matrix mul-
tiplications in Attention. Although capping enhances numerical
stability, it requires Tanh computation in MPC and a new hyper-
parameter to tune, i.e., K. In terms of runtime, SoftCap accounts
for 20% of the total MPC runtime, and 25% of the total communica-
tion cost (Tab. 3, Sec. 5.2). However, SoftCap enables our Softmax
optimization SoftmaxK, improving the overall runtime and commu-
nication cost compared to non-optimized Softmaxmpc. Regarding
accuracy, a capping threshold K = 50 shows comparable accuracy to
non-capped fine-tuning (reducing at most by 0.1 pp) when applied
during inference only or also during fine-tuning (Tab. 11, App. F.4).

SoftCap-based Softmax Approximation. Computing a highly
accurate Softmax approximation in MPC is costly requiring ex-
ponentiation and division, which are also prone to numerical er-
rors. Existing MPC approximations, such as fully connected neural
networks [49], quadratic function [38], and ReLU-based approx-
imations [2, 51], do not achieve high accuracy in our evaluation
(App. D.1). For example, quadratic function approximation [38]
achieves accuracy close to random guessing. Most of these approxi-
mations are designed either for model distillation or training neural
networks, rather than fine-tuning LLMs, which may explain the
poor performance. To achieve accuracy comparable to the state of
the art while stabilizing Softmax, we first adopt a common trick
from MPC literature (Softmaxmpc) [15, 23, 36, 47, 54]: normalizing
the input of the exponential function by subtracting the maximum
value for each of the input vectors x € R?. The normalization en-
sures that the exponentiation is computed only for non-positive
values, preventing overflows. Additionally, we avoid computation
of the maximum since we already apply logits capping (SoftCap) to
the Softmax input, which constrains the input range to [-K, K]. We
set the maximum to K (as formalized in Alg. 8, App. E), resulting in:

efo
SoftmaxK(x) = 7

- e/

SoftmaxK provides a reliable alternative, reducing runtime and
communication while maintaining accuracy. Specifically, compared
to Softmaxmpc, SoftmaxK reduces communication by 10X, and is
up to 5X faster. Even when SoftCap is not strictly necessary for nu-
merical stability, it enables SoftmaxK, improving MPC performance.
In our evaluation, SoftCap with SoftmaxK reduces total runtime
and communication by ~ 2X compared to Softmaxmpc.

Modified Attention Masking. In Attention, padding tokens
are added to handle variable-length sequences in batched inputs.
To prevent padding tokens from affecting the model output, their
logits are typically masked with the smallest representable value.
After Softmax, the padding positions receive negligible scores, en-
suring only relevant input tokens contribute to the output. However,
this approach causes numerical errors during the computation of
Softmax, and Tanh (in SoftCap) in MPC. To address this issue, we
modify the padding mask by setting the minimum value to —200
which does not cause errors in the Softmax inverse computation.

Proceedings on Privacy Enhancing Technologies 2026(1)

When SoftCap is applied, we further adjust the padding value by
scaling it with K to ensure stability for Tanh which works correctly
within [-250, 250]. This adjustment minimizes the influence of
padding tokens and ensures numerical stability (Sec. 5.2).

LayerNorm Approximation. LayerNorm computes the inverse
square root of the variance (Eq.(1)). Rather than sequentially com-
puting the square root and reciprocal, we adapt the inverse square
root protocol InvSqrt [36], which enhances numerical stability (max-
imum absolute value of ~ 330 vs. 220) and improves performance,
achieving a 3 speedup, and reducing communication cost by 3x.

LayerNormypc (%) = (x — p(x)) - InvSqrt(v(x, u(x))) - Wo + by

Here, (x) and v(x) are the mean and variance of the input tensor.
The variance is not computed from scratch but reusing the mean
result. However, large datasets, e.g., MNLI and QQP, present sam-
ples that when processed have variances exceeding the maximum
input range of InvSqrt. To address this, we scale the variance before
applying InvSqrt. Yet, the scaled InvSqrt performs poorly for inputs
below 1, resulting in ~ 10 pp accuracy drop in MPC inference. To
minimize the approximation error, we implemented a piecewise
approximation of InvSqrt. Specifically, for inputs x € x lower than
a threshold T, i.e., x < T, we use the unscaled InvSqrt, while for
larger inputs, we apply the scaled variant with a scaling factor f:

InvSqrt(x) ifx<T
InvSqrt(x/B) - 1/4/B else

While the piecewise InvSqrtypc increases InvSqrt communication
by 2%, rounds by 1.5%, and runtime by 1.5X in WAN settings due
to A2B and B2A conversions, it effectively extends the input range.
With a scaling factor = 10° and a threshold T = 100, InvSqrt,pc
achieves an MSE of 1.9 x 10~° compared to 2 X 10~ for scaled
InvSqrt in the range (0, 10000] (evaluated over 10° evenly spaced
points), and 3.9 x 107 compared to 2 in (0, 1]. We formalize the
LayerNormpmpc MPC protocol in Alg. 11 (App. E).

GeLU Approximation. Computing the GeLU (Eq. (3)) in MPC
is challenging due to numerical instability of the erf function [36].
Specifically, CrypTen’s approximation for erf [36] becomes unstable
for inputs |x| > 5. We tested different alternatives, such as GeLU
that uses Tanh instead of erf [27], but it is numerically unstable for
|x] > 20. We evaluated with ReLU [49], a quadratic function [38],
and HardTanh [53] in place of Tanh to improve stability. However,
these methods showed poor performance, likely because they have
been primarily used for model distillation rather than direct train-
ing. We find that GeLU approximation from BOLT [54] (GeLUmpc)
offers the best accuracy-performance trade-off among the tested
alternatives. Despite being slower than the Tanh approximation, it
provides a more stable solution across any input range. GeLUypc is
a piecewise approximation that combines a polynomial (polyGeLU)
around 0 with ReLU elsewhere, formalized as:

InvSqrtypc (%) = { (5)

ReLU(x)
polyGeLU

if x| > 2.7

else

GeLUmpc(x) = { (6)
Here, polyGeLU(x) = (Py(x) + gol|x| + g3) - Po(x) + g4 + 0.5x, with
Py(x) = (go|x|+g1)-|x|+g2. In the range [—2.7, 2.7] where GeLUmpc
approximates the non-linearity of the GeLU compared to RelLU,
polyGeLU achieves a floating-point error of 9.77x 10~* for inputs in

142

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

[-5, 5] [54]. To optimize GeLUpmpc implementation in CrypTen, we
addressed the inefficiency of computing |x| which requires costly
A2B and subsequent B2A conversions. We pre-compute |x| and
use its value in both polyGeLU and ReLU. Specifically, we modify
the CrypTen implementation by computing ReLU as ReLU(x) =
(x + |x])/2, instead of ReLU(x) = x - sign(x). This saves one A2B
and B2A conversion, as |x| is computed only once. We formalize
the GeLUppc MPC protocol in Alg. 10 (App. E).

Security of SPRINT. SPRINT inherits its security guarantees
from the underlying CrypTen framework. Specifically, CrypTen
protocols are secure against information leakage from any static
passive adversary corrupting up to |P| — 1 of the |P| parties in-
volved in the computation [36, Lemma 1]. The primitives used by
CrypTen are detailed in [36, Tab. 2, App. D], with security proofs
for arithmetic multiplication [6, Thm. 1], binary AND operations
[12, Sec. IIL.B], A2B conversions [11, Sec. 3], B2A conversions and
truncation protocols [36, App. 1.2, App. A.1.1]. We prove the se-
curity of SPRINT in the semi-honest model using the simulation
paradigm [21] (App. E). We provide formal security proofs for each
novel protocol introduced in SPRINT (Tab. 8) in App. E. The security
of SPRINT follows from the sequential composition theorem [8].

5 Experiments

This section provides a comprehensive evaluation of SPRINT, struc-
tured in two phases (as in Fig. 3): (I) MPC-aware DP fine-tuning
(Sec. 5.1) to evaluate the cleartext accuracy (on MfT), and (II) MPC
inference (Sec. 5.2) to evaluate inference runtime, communication
cost and the accuracy of the MPC model (MICKPC). We split the
evaluation to isolate the impact of DP fine-tuning and MPC in-
ference on final accuracy (Tab. 6). Notably, SPRINT is the first
end-to-end framework for both DP fine-tuning and MPC inference.
We compare the DP fine-tuning accuracy with works covering only
DP fine-tuning [41, 70], and the MPC inference performance with
works performing only MPC inference (with non-DP fine-tuning)
[31, 45, 54]. First, we introduce model and datasets and then describe
the frameworks used for DP fine-tuning and MPC inference.

Model and Datasets. We fine-tune the RoBERTa-base [44]
model on GLUE benchmark tasks [66] with over 10k training ex-
amples, i.e., SST2 (67.3k examples), QNLI (105k), MNLI (393k), and
QQP (364k), following DP fine-tuning baselines [41, 70].

Frameworks. We implement DP fine-tuning with PyTorch [56]
due to its flexibility and large availability of pre-trained models. We
use Opacus [69] for Poisson subsampling, Gaussian noise sampling
and DP accounting, and integrate it with the PrivateTransformers
library [41] to support GhostClipping [41]. For MPC inference, we
use CrypTen [36] since it has PyTorch-like APIs and data structures.

5.1 MPC-Aware DP Fine-Tuning

Next, we evaluate the cleartext accuracy of MPC-aware DP fine-
tuning (on M?T) and provide details on our hyperparameter search.

State-of-the-Art Baselines. Several works [7, 41, 68, 70] ex-
plore DP fine-tuning for RoBERTa or BERT models. Among these,
we use as baselines the two works achieving the highest accuracy:
Yu et al. [70] fine-tune the full RoBERTa model, while Li et al. [41]
apply various parameter efficient fine-tuning techniques, including

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

LoRA. However, none uses DP-specific optimizers. Furthermore,
they do not employ theoretically sound Poisson subsampling, using
shuffling instead, which can impact formal DP guarantees [3].

Privacy Accounting. We use Gaussian noise ¥ ~ N(0, 0%C?)
and set € = 8 and § ~ 0.1/|Dgr| as typical in related works [41, 70].
Specifically, § = 1 x 107> for SST2 and QNLI, and § = 1 x 107 for
MNLI and QQP. We track the privacy budget across epochs using
the Rényi Differential Privacy (RDP) [50] accounting tool provided
by Opacus [69]. The noise variance o2 for each training step is
numerically computed by Opacus from ¢, §, the sampling rate g,
the batch size B, and the number of training epochs E.

Hyperparameters Discussion. To achieve the best accuracy,
we explore a comprehensive set of hyperparameters, including not
only ML parameters, but also DP parameters (e.g., C), SoftCap K,
and FALoRA A initialization. We report the set of hyperparameters
tested for each dataset in Tab. 9 (App. F.1). Due to the large number
of hyperparameters, and the high resources needed to test different
MPC approximations, we set a compute-bound of 10 epochs. In
DP fine-tuning, small batch sizes (e.g., B = 128) with small learn-
ing rates (e.g., = 5 X 107°) perform considerably worse than in
non-DP fine-tuning, since the DP noise scales with 1/B [41]. Hence,
we test large batch sizes (i.e., B € {1024,2048}) for Poisson sub-
sampling to reduce the effective noise in gradient updates [41, 57].
Similar to [41], we found that B = 2048 consistently performs bet-
ter across all learning rates by reducing noise variance, despite
less frequent parameter updates. We test different learning rates
n and weigh decay from related works [41, 70]. SPRINT performs
best with higher 7 = 5 x 107 for smaller datasets (SST2, QNLI) to
compensate for fewer samples per epoch, and smaller = 5 x 107>
for larger datasets (MNLI, QQP). A small weight decay of 0.001
performs best across all dataset. The clipping threshold C is criti-
cal in balancing gradient magnitude and noise variance. From our
experiments, C = 1 performs best across all tested learning rates
and datasets, providing an optimal balance between noise vari-
ance and gradient updates magnitude. A larger threshold C = 10
(as in [70]) performs better with low 1 = 5 x 107> but does not
achieve the best accuracy, likely due to excessive noise variance
preventing optimal convergence [41]. Instead, a smaller C = 0.1
(as in [41]), which clips almost all gradients, performs well with
higher learning rates (y > 1 x 107%), achieving 3 pp lower accu-
racy than the best values (Tab. 1). This may stem from FALoRA
updating only ~ 0.5% of parameters, requiring larger updates to
converge. For FALoRA, the optimal setup varies by dataset. We eval-
uate applying LoRA to different set of Linear layers, with different
ranks (r = {8,16,32}) setting @ = {r, 2r} following LoRA litera-
ture [28, 61, 70]. For all datasets, applying FALoRA to all Linear
layers yields the best results, except for QNLI, where restricting
FALORA to Linearg, Lineary, and Linearay is more effective. The
best rank is r = 16, with @ = 16 for SST2, QNLI, and a = 32 for
MNLL QQP, indicating that larger datasets benefit from a higher a.
Since matrix A is not updated during fine-tuning, its initialization
impacts final accuracy. We evaluate different initialization methods
(detailed in App. F.2) expanding on the research direction proposed
by FFA-LoRA [61]. We find that the best initialization is dataset-
dependent. For example, Kaiming performs best on SST2, while
Orthogonal is better on QNLI. We test also the effect of different

143

Proceedings on Privacy Enhancing Technologies 2026(1)

DP fine-tuning type (¢ =8) SST2 MNLI QNLI QQP
Full [41] 921 832 879 86.1
LoRA [70] 92.2 83.5 87.3 85.7
SPRINT 92.2 78.6 85.2 82.7
SPRINT (Kgr = 50) 923 786 848 827
SPRINT (Kg = 10) 90.7 77.2 81.5 81.3

Table 1: Cleartext accuracy (in %) on GLUE with RoBERTa.

capping thresholds Kgr in fine-tuning: Kgr = 50 following [63], and
Kpr = 10 to reduce the probability of numerical error in inference.
Consistent with Gemma [63], Kpr = 50 generally preserves model
accuracy. Contrarily, a smaller Kpr = 10 leads to an accuracy drop
of, e.g., up to 3.7 pp compared to non-capped training on QNLL

Fine-Tuning Accuracy. We evaluate the fine-tuning accuracy
using DPAdamBC and DPAdamW on the SST2 dataset across dif-
ferent capping thresholds (Tab. 7, App. A). Our results show that
DPAdamBC consistently outperforms DPAdamW in accuracy for
any capping threshold, with an average of = 2 pp accuracy improve-
ment confirming its effectiveness in DP fine-tuning. Tab. 1 compares
the cleartext accuracy (on M?‘T) with related works [7, 41], and ap-
plying different capping thresholds in fine-tuning (Kgr). Compared
to DP baselines, i.e., full fine-tuning [41] and LoRA [70], SPRINT is
more parameter-efficient, using only 50% of LoRA parameters and
0.52% of the parameters for full fine-tuning. Despite training fewer
parameters and leveraging MPC-aware approximations, SPRINT
fine-tuning achieves comparable accuracy on the SST2 dataset.
On average, SPRINT achieves accuracy within 2.5 pp compared to
LoRA [70], with at most 5 pp accuracy drop on MNLI (Tab. 1). The
accuracy drop may stem from the compute-bound constraint of
10 epochs, since Tab. 1 shows that the accuracy gap widens with
increasing dataset size and larger datasets generally need more
iterations for convergence. Notably, the accuracy drop is not due to
Poisson subsampling, as it performs similarly to shuffling; e.g., on
MNLI, Poisson achieves 0.2 pp higher accuracy. Similarly, the MPC
approximation integrated during fine-tuning do not significantly
impact accuracy due to their integration in fine-tuning.

Finally, to assess practical deployment we evaluate the impact of
random seeds on accuracy across different LoRA A initializations
(App. E.3). Tab. 10 (App. F.3) shows that fixed-seed accuracy can be
misleading, with up to 1.1 pp variation between fixed and random
seeds on SST2. However, with random seeds, most initialization
techniques achieve similar performance within a 0.4 pp range.

5.2 MPC Inference

Here, we evaluate and compare SPRINT’s inference runtime and
communication with state-of-the-art MPC inference works. We
also evaluate GPU acceleration and batched inference. Finally, we
evaluate the accuracy drop from the cleartext evaluation (Tab. 1,
Sec. 5.1) due to MPC approximations, and perform ablation studies
on the impact of MPC-aware fine-tuning on model accuracy.

Evaluation Setup. We evaluate latency and communication
cost with 2 AWS c6.xlarge machines (as BOLT [54]). We simulate
network conditions via Linux traffic control in 3 scenarios: LAN
(3Gbps bandwidth, 0.8ms delay), regional WANR (200Mbps, 40ms),
and global WANg (100Mbps, 80ms). Communication is measured in
bytes exchanged and number of rounds. All reported numbers are
averaged over 10 runs. Following DP fine-tuning works (Sec. 5.1),

Proceedings on Privacy Enhancing Technologies 2026(1)

Framework Runtime (s) Communication
LAN WANR WANg GB Rounds

Iron [24] 4750 6453.0 12996.0 | 280.99 13663

BOLT [54] 91.0 9130 17440 | 25.74 10901

BumbleBee [45] 1358 650.7 1161.8 6.81 -

SHAFT [31] 512 385.6 736.1 10.46 1495

SPRINT 326 3108 613.4 6.55 1813
Table 2: End-to-end runtime and communication for
RoBERTa MPC inference.

we fine-tune and perform MPC inference on RoBERTa [44] instead
of BERT used in MPC inference works [24, 31, 45, 54]. However,
the two models share the same architecture and number of param-
eters, the important aspects to evaluate MPC inference.® For the
GPU evaluations (Tab. 5), we use 2 AWS g5.xlarge instances with 1
NVIDIA A10G GPU. Finally, we compare the accuracy drop from
cleartext (i.e., on M’FL‘T with cleartext Opp, Tab. 1) to MPC inference

(i.e., on M{CIPC with secret-shared (Opp)).

State-of-the-art MPC Inference Baselines. We compare with
BOLT [54], SHAFT [31], BumbleBee [45], and Iron [24], which
perform MPC inference without DP fine-tuning. These solutions
can be categorized based on used cryptographic primitives: BOLT,
BumbleBee, and Iron are hybrid solutions combining homomor-
phic encryption (HE) for matrix multiplications and secret shar-
ing (SS) for non-linear layers, while SHAFT relies only on SS and
it is built on CrypTen[36] like SPRINT. The goal of HE matrix
multiplications is to reduce the communication cost compared to
SS, however, this requires additional communication to convert
shares to HE ciphertexts. Hybrid solutions BOLT, BumbleBee, and
Iron propose optimizations for Linear layers leveraging HE. Specif-
ically, Iron and BOLT use compact packing of HE ciphertexts to
reduce communication, while BumbleBee uses ciphertext interleav-
ing and matrix oblivious linear evaluation. For GeLU, BumbleBee
leverages a 4-segment polynomial approximation, while BOLT and
SHAFT propose different approximations for the function {(x) =
GeLU(x) — ReLU(x), and use ReLU elsewhere. Specifically, BOLT
uses a polynomial approximation, while SHAFT uses a sinusoidal
function with Fourier approximation. Iron uses the Tanh approxi-
mation (App. D.2) with an optimized protocol for squaring and Tanh.
For Softmax, BOLT uses the integer-only exponential function from
I-BERT [34]. BumbleBee and Iron normalize the argument of the
exponential function (Sec. 4.2). SHAFT combines input clipping
and an iterative approximation (i.e., ordinary differential equation)
to avoid computing the maximum and reciprocal. Notably, BOLT
integrates word elimination to reduce the input size of non-linear
layers by discarding words with low attention scores. From BOLT’s
evaluation, this technique allows to reduce the end-to-end com-
munication by 2.3X and the runtime by up to 2Xx. However, this
requires an oblivious protocol to rank and discard tokens with
low attention scores. Next, we empirically compare the end-to-end
performance of SPRINT with these baselines.

Performance: End-to-End. Tab. 2 compares the end-to-end
MPC inference performance of SPRINT with BOLT [54], SHAFT [31],
BumbleBee [45], and Iron [24] in three network conditions. SPRINT
is the fastest in all networking settings, followed by SHAFT. SPRINT

3RoBERTa and BERT differs for the pre-training strategy and have different vocabulary
sizes in the embeddings, which are not computed in MPC during inference.

144

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

Framework Laver Runtime (s) Communication
Yy LAN WANR WANg | GB Rounds
Linear 63.8 75.0 89.0 2.75 122
Softmax 6.0 164.0 315.0 5.28 2748
BOLT [54] GelLU 3.6 205.0 423.0 9.1 1056
LayerNorm 11.5 312.0 626.0 3.4 2640
Linear 10.84 54.21 100.3 1.52 98
Softmax 16.97 137.1 266.1 4.28 492
SHAFT [31] GelLU 17.4 123.5 2339 4.18 228
LayerNorm 2.7 56.21 109.92 | 0.11 650
Linear 2.67 10.84 22.2 0.03 97
SoftmaxK 3.35 54.09 106.02 0.33 564
SPRINT SoftCap 6.94 58.56 113.6 1.65 276
GeLUmpc 161 1186 2420 | 4.36 240
LayerNorm 2.85 58.9 121.8 0.07 696

Table 3: Per-layer runtime and communication for BOLT,
SHAFT, and SPRINT for RoBERTa MPC inference.

Linear optimization None LoRA(r =16) FALoRA (r =16)
Runtime 104 s 40s 23s
Rounds 74 144 72

GB 1.43 0.2 0.02

Table 4: Linear layers runtime and communication for MPC
inference per fine-tuning method (excluding Classifier).

is 1.6X faster than SHAFT in LAN, and 1.2X faster in WANg and
WANG. The best hybrid solution in LAN is BOLT, yet, SPRINT is
3x faster than BOLT on average across all network settings. While
BumbleBee is the best hybrid solution in WANr and WANg, it
is still 2x slower on average than SPRINT in those settings. In
terms of total communication, SPRINT is the best solution, closely
followed by BumbleBee. SHAFT requires 1.6X more communica-
tion than SPRINT, while BOLT 3x and Iron 43X more. Regarding
number of communication rounds, SHAFT is the most efficient
solution, followed by SPRINT which requires 1.2X more rounds.
This explains why SHAFT performance are closer to SPRINT in
WANyR and WANG, despite requiring more communication. BOLT
and Iron require 10X more rounds than SPRINT and SHAFT, likely
due to HE-to-secret sharing conversions.* In App. F.5, we show how
SPRINT scales to larger models, specifically to RoBERTa-large (with
2x more Encoder layers than RoBERTa-base) while remaining 1.4x
faster than SHAFT. CrypTen is optimized for 2-party setting [36],
as most MPC inference works [24, 31, 45, 54]. Still, we also evaluate
SPRINT with 3 and 4 parties. Overall, runtime increases by 2.6X and
3.6X respectively (details in App. F.5). Next, we evaluate per-layer
runtime and communication costs to assess the impact of different
optimizations, comparing with BOLT [54] and SHAFT [31], whose
implementations provide such a breakdown.

Performance: Linear Layers. SPRINT outperforms BOLT [54]
and SHAFT [31] in terms of runtime and communication cost for
Linear layers (Tab. 3). Specifically, SPRINT is 5x faster than SHAFT
across all network settings, 2.5X faster than BOLT in LAN and
1.3% in WANG. BOLT is less sensitive to networking conditions for
Linear layers, since it leverages homomorphic encryption to mini-
mize interactions. Despite this, BOLT is the most communication-
intensive solution, requiring 90X more communication than SPRINT
and 1.2X more rounds. This is mostly due to the HE ciphertext con-
version. SPRINT, unlike related works [24, 31, 45, 54], does not

4BumbleBee is implemented with SPU [48] which does not compute rounds.

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

. Runtime (s) Communication
Framework Batch Size LAN WANg WANG GB Rounds
1 20.4 298.6 606.6 6.55 1909
8 13.0 180.8 368.82 6.53 238.6
SPRINT 16 12.5 175.1 341.12 6.53 119.3
32 12.3 168.50 327.64 6.52 59.6
SHAFT [31] 1 29.59 358.70 723.89 ‘ 10.46 1495

Table 5: E2E per-sample (amortized) cost for ROBERTa MPC
inference on GPUs and batched inference.

secret share all parameters but only a small subset (i.e., FALoORA B).
Next, we also investigate SPRINT’s performance without FALoRA.
Specifically, we compare the MPC runtime of Linear layers in
LAN across three configurations based on the fine-tuning strat-
egy (Tab. 4). With full fine-tuning the entire model is secret shared.
With LoRA, only the LoRA A and B matrices are secret shared,
whereas FALoRA secret shares only B matrices. During inference,
FALORA reduces runtime by 5X compared to full fine-tuning and
1.7X compared to LoRA. Also, FALoRA fine-tuning significantly
reduces communication costs of Linear layers, i.e., by 70x and 10x
compared to full fine-tuning and LoRA (Tab. 4), respectively. Un-
like FALoRA and full fine-tuning, which require one secret-shared
matrix multiplication per layer, LORA needs two rounds for its se-
quential A and B multiplications. Notably, even without FALoRA,
SPRINT is faster than SHAFT and BOLT, since encrypting all linear
layer increases runtime by 1.3x (Tab 4, Tab. 2).

Performance: Non-Linear Layers. SoftmaxK is the most effi-
cient solution across the proposed approximations (Tab. 3). Com-
bined with SoftCap (required to optimize SoftmaxK), SPRINT re-
duces Softmax runtime by up to 1.4X compared to BOLT in WANg
and 1.6X compared to SHAFT in LAN. While BOLT’s Softmax is the
fastest in LAN, its performance drops in WANRr and WANG, since
it requires 2.7X more communication and 3.3X more rounds than
SPRINT. Instead, SHAFT’s Softmax runtime gets closer to SPRINT
in WANRr and WANG, since it requires 1.7X less communication
rounds. For GeLU, SPRINT adapts BOLT’s solution to CrypTen.
Despite this, BOLT is the fastest implementation in LAN, while
SPRINT is 1.7 faster in WANgr and WANG, since BOLT’s implemen-
tation requires 2.1X more communication and 7.3X more rounds.
SHAFT’s approximation has comparable performance to SPRINT
in terms of runtime and communication, i.e., SHAFT GelLU is 1.1X
slower than SPRINT in LAN, but 1.03X faster in WANG. LayerNorm
performance are comparable for SPRINT and SHAFT, since they
both use CrypTen. However, SPRINT uses a piecewise approxima-
tion for InvSqrt in LayerNorm to reduce the approximation error
(Sec. 4.2). Compared to BOLT, our LayerNorm is faster across all
settings with up to a 10X speedup in WANG. Across all layers in
SPRINT, GeLU makes up the largest part of the runtime (up to 50%
in LAN) and communication (over 20%). SoftCap has the second-
highest cost, i.e., 17% of the total.

GPU and Batched Inference. We evaluate the performance of
SPRINT with GPUs and batching, comparing against SHAFT where
possible (Tab. 5).> While we tested batched inference on CPU and
GPU, we found it only beneficial on GPUs. Batching on CPU leads
up to 1.4x slower per-sample runtime. For a single inference, using

SSHAFT [31] does not report results for batched inference, and their implementations
leads to out-of-memory errors with batch size of 8.

145

Proceedings on Privacy Enhancing Technologies 2026(1)

Krr /KiNF
Dataset \;11e/50 None/10 50/50 50/10 10/10
SST2 914 (0.8) 89.8(0.2) 91.4 (0.9) 89.5(0.5) 90.0 (0.3)
MNLI 782 (0.4) 706 (0.5) 78.3(0.3) 71.3(0.4) 76.6 (0.6)
ONLI 85.0 (0.2) 736 (0.6) 848(0) 70.1(0.5) 80.7 (0.8)
QQP 826(0.1) 751(0) 82.6(0.1) 759(0) 79.4 (0.2)
Table 6: MPC inference accuracy (MK}IPC with (6pp)) with

different Kgr/King. Parentheses show accuracy gap (in pp)
vs. cleartext (M‘F“T with 6pp) with the same Kgr/KiNE.

a GPU is most effective in a LAN, providing a 1.6X speedup over
CPU (Tab. 2). This advantage diminishes in high-latency networks,
reducing to a 1.04X speedup in WANR, and comparable runtimes
in WANG. However, enabling batched inference provides a signif-
icant speedup in all scenarios. As the batch size increases to 32,
the amortized, per-sample communication rounds decrease by 32X,
and the runtime improves significantly. Specifically, in LAN, B = 32
leads to a 1.7X speedup over the non-batched GPU baseline and
a 2.6X speedup over the non-batched CPU baseline. More impor-
tantly, batching effectively mitigates the network bottleneck, with
speedups reaching 1.8x in WANg and 1.9% in WANg. Compared
to SHAFT, SPRINT is up to 1.4X faster in LAN. We expect similar
trends with batched inference, since both leverage CrypTen.

MPC Inference Accuracy. Tab. 6 reports the MPC inference
accuracy of SPRINT on SST2, QNLI, MNLIL and QQP datasets using
inference capping thresholds King € {10, 50}, where King < Kpr
from fine-tuning. We compare the accuracy gap between cleartext
(M?T) and MPC inference (M?APC) for matching Kgr and Kinp com-
binations. SPRINT achieves high MPC inference accuracy with gaps
under 0.9 pp compared to cleartext. Across all datasets and settings,
the average accuracy gap is at most 0.5 pp. The optimal setting is
Krr = King = 50 with only 0.3 pp gap, demonstrating that K = 50
provides the best trade-off between cleartext and MPC accuracy.
All MPC related works [31, 45, 54] show accuracy drops < 1.0 pp.
However, they evaluate on small datasets (e.g., SHAFT validates on
QNLI with 5k samples), whereas we include larger datasets like
QQP (over 40k validation samples) for a comprehensive assessment
of SPRINT’s accuracy and stability. Fine-tuning on large datasets
(e.g., QQP and MNLI) produces model weights with broader value
ranges due to more training updates, increasing risk of numerical
error in inference. The InvSqrt protocol in LayerNorm causes over-
flows with these datasets, leading to near-random accuracy. We
mitigate this with the piecewise approximation InvSqrt,p¢ (Eq. (5)),
ensuring numerical stability while prioritizing accuracy over perfor-
mance (Sec. 4.2). Notably, SPRINT achieves MPC accuracy within
0.1 pp of its best cleartext accuracy on QQP, highlighting its scala-
bility and robustness with large datasets. Next, we evaluate how our
MPC-aware fine-tuning strategy impacts MPC inference accuracy.

Impact of MPC-aware Fine-tuning. To quantify the benefit
of MPC-aware fine-tuning, we conducted ablation studies on the
impact of SoftCap, which enables SoftmaxK, and GeLU approxima-
tion. For SoftCap, Tab. 6 shows that applying it during fine-tuning
can reduce the cleartext-to-MPC accuracy gap (in parentheses)
but does not always yield the best final MPC accuracy. For in-
stance, on QNLI, the highest MPC accuracy is achieved without
SoftCap during fine-tuning, while the lowest accuracy gap is with
Krr = Kine = 50 (0 pp). This suggests fine-tuning with SoftCap is

Proceedings on Privacy Enhancing Technologies 2026(1)

not always necessary, though SoftCap enables SoftmaxK by avoid-
ing the max computation. For GeLU approximation, we evaluate:
(I) using non MPC-aware GeLU (Eq. (3)) during fine-tuning and
inference, (II) performing a naive post-hoc conversion from GelLU
to MPC-aware GeLUppc (Eq. (6)) for inference. We observe that
using the non MPC-aware GelLU also during inference (I) leads
to random guessing accuracy and causes overflows. The failure
occurs since CrypTen’s MPC approximation for the erf function
in GelLU is only numerically stable for a small input range (i.e.,
[-5, 5]). Additionally, not performing MPC-aware fine-tuning with
GeLUpmpc (I) widens the accuracy gap between cleartext and MPC
inference, especially with low capping thresholds. Specifically, with
Kine = 10, the MPC accuracy drops from 0.2 pp to 3 pp from the
cleartext baseline. With K = 50, the accuracy drops from 0.8 pp
to 1.7 pp. Overall, these results show that MPC-aware fine-tuning
on cleartext provides clear benefits for MPC inference on secret
shares, alleviating overflow and accuracy issues.

6 Related Works

SPRINT is the first solution to integrate DP fine-tuning and MPC
inference for transformer-based models. Existing works focus on
either DP fine-tuning [41, 70] (Sec. 5.1) or MPC inference [24, 31,
45, 54] (Sec. 5.2). Next, we discuss additional MPC inference works.

MPC Inference for Transformers. Several approaches have
been proposed for MPC inference on transformers [2, 15, 23, 38, 47,
49, 54, 58, 59]. Distillation-based approaches [15, 38, 47, 49] reduce
model size and use aggressive approximations for non-linear layers,
such as quadratic Softmax and GeLU [38] or replacing Softmax
with a neural network [49]. Akimoto et al. [2] replace Softmax with
ReLU using a kernelized version of Attention. PUMA [15] uses
piecewise polynomial approximations for GeLU and normalization
in Softmax. Gupta et al. [23] use function secret sharing (FSS) for
efficient comparisons and LUTs for non-linear functions. However,
FSS differs from standard MPC, relying on large evaluation keys
with large generation and transfer overheads (e.g., ~ 16 GB key size
and transfer runtime 10X larger than inference for BERT). Concur-
rent work [58] applies LoRA to GPT-based models, fine-tuning only
a fraction of the decoder layers, without relying on any non-linear
function approximations, but on heads merging. Recently, Curl [59]
considers LUTs for non-linear functions in CrypTen. Curl inference
is 10s faster than SPRINT in LAN. However, its accuracy evaluation
is limited to LAN and small models (BERT-tiny, z = 4). Furthermore,
LUTs have inherent limitations, requiring predefined input ranges
and larger table sizes for higher accuracy and larger models.

7 Discussion & Future Works
Next, we discuss limitations and future research directions.

Expand Evaluation. SPRINT can be extended to more complex
models, such as Llama [64], and tasks like table-to-text genera-
tion [52] and summarization. Despite our computational constraints
limiting fine-tuning to 10 epochs, SPRINT achieves strong accuracy:
matching state-of-the-art on SST2 and an average accuracy within
2.5pp of LoRA-based fine-tuning [70]. Extended training would
likely improve accuracy and close this gap. We focus on encoder-
only models since, due to resource constraints, we cannot perform a
full hyperparameter search also for encoder-decoder architectures.

146

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

However, SPRINT can be easily extended to encoder-decoder mod-
els (e.g., GPT-2) thanks to its modularity and scalability. We expect
SPRINT to perform similarly to encoder-only models by keeping
the encoder in cleartext and applying FALoRA in the decoder.

Consumption of privacy budget from hyperparameter
search. Like prior works [41, 70], we do not account for hyperpa-
rameter search costs in the privacy budget. Existing approaches [55]
for tracking the privacy budget during hyperparameter search as-
sume a fixed set of public hyperparameters and a non-adaptive
search. These assumptions do not align with SPRINT’s adaptive
hyperparameter search. And, more importantly, since SPRINT guar-
antees model parameters confidentiality, also hyperparameters and
potentially the hyperparameter search space itself are not assumed
to be public in a deployment scenario, e.g., to guarantee a competi-
tive advantage by keeping proprietary information on the model.

Malicious Security. SPRINT assumes two semi-honest servers,
a common setting in private inference [15, 23, 31, 45, 47, 54]. To
detect malicious behavior with a certain probability (covert secu-
rity), SPRINT can use the Mix-and-Match technique [14] without
server-side changes. Users mix N private samples with T public,
labelled samples. Malicious servers succeed only if they correctly
identify and tamper with private samples only. Cheating probability
decreases with increasing T [14, Sec. IV.B] at the cost of T additional
samples per query. Alternatively, CrypTen can be enhanced with
cryptographic protocols, such as MASCOT [33] or zero-knowledge
proofs [43]. However, cryptographic protocols introduce significant
overhead, e.g., up to 10x slowdown for logistic regression [32].

Advanced Privacy Accounting for DP-LoRA. Another di-
rection is to improve the privacy-utility trade-off for the original
DP-LoRA setting. The core challenge in DP-LoRA arises from the
quadratic noise term created when adding noise to both A and
B matrices (Sec. 4.1). FALoRA and recent works in DP federated
learning [22, 67] sidestep this issue by freezing matrix A or modify-
ing the training protocol. Therefore, developing advanced privacy
accounting methods for DP-LoRA that can manage the quadratic
noise term remains an open research question.

8 Conclusion

We introduced SPRINT, the first scalable solution integrating DP
fine-tuning and MPC inference for transformers, ensuring privacy,
scalability, and efficiency for secure LLM outsourcing. SPRINT guar-
antees privacy for fine-tuning data and confidentiality for model
parameters, user queries, and predictions. SPRINT achieves high
fine-tuning accuracy in cleartext, matching state-of-the-art clear-
text DP performance on SST2 [70], and maintains MPC accuracy
within 1 pp of its cleartext accuracy. Additionally, SPRINT achieves
up to 1.6x faster MPC inference than the state-of-the-art non-DP
solution (SHAFT) [31], reducing communication by 1.6X. SPRINT
achieves these results through integrated optimizations for DP fine-
tuning and MPC inference. For DP fine-tuning, we used noise-aware
optimizers to minimize DP noise amplification. For MPC inference,
SPRINT introduced accurate approximations for non-linear func-
tions (e.g., GeLU, Softmax) and mitigates numerical instability with
logits capping. A key optimization in SPRINT is FALoRA which re-
duces trainable parameters to minimize DP noise amplification and
lowers inference overhead by reducing secret-shared computations.

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

Acknowledgments

The authors would like to thank the anonymous reviewers for their
valuable feedback. The authors used generative Al-based tools to
revise the text, correct any typos, and grammatical errors. This
work has received funding from the European Union’s Horizon
Europe research and innovation program under grant agreement
No 101070141 (GLACIATION).

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

[2

[3

[10

[11

[13
[14
[15
[16
[17

[18

[19
[20
[21

[22

[26

=

]

]

]

]

]

Kunal Talwar, and Li Zhang. Deep learning with differential privacy. CCS. ACM,
2016.

Yoshimasa Akimoto, Kazuto Fukuchi, Youhei Akimoto, and Jun Sakuma. Priv-
former: Privacy-preserving transformer with mpc. EUROS&P . IEEE, 2023.
Meenatchi Sundaram Muthu Selva Annamalai, Borja Balle, Emiliano De Cristo-
faro, and Jamie Hayes. To shuffle or not to shuffle: Auditing dp-sgd with shuffling.
arXiv preprint arXiv:2411.10614, 2024.

Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hy-
pothesis testing interpretations and renyi differential privacy. AISTATS , 2020.
Donald Beaver. Efficient multiparty protocols using circuit randomization.
CRYPTO. Springer, 1992.

Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for
fast privacy-preserving computations. In European Symposium on Research in
Computer Security, 2008.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private
bias-term only fine-tuning of foundation models. 2022.

Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of CRYPTOLOGY, 2000.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson,
et al. Extracting training data from large language models. USENIXSec, 2021.
Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei.
Faster cryptonets: Leveraging sparsity for real-world encrypted inference. arXiv
preprint arXiv:1811.09953, 2018.

Ivan Damgard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditionally secure constant-rounds multi-party computation for equality,
comparison, bits and exponentiation. In Theory of Cryptography Conference, 2006.
Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for
efficient mixed-protocol secure two-party computation. In NDSS, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina N. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. 2018.
URL https://arxiv.org/abs/1810.04805.

Caigin Dong, Jian Weng, Jia-Nan Liu, Yue Zhang, Yao Tong, Anjia Yang, Yudan
Cheng, and Shun Hu. Fusion: Efficient and secure inference resilient to malicious
servers. NDSS, 2023.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu, Derun Zhao, Jin Tan, Zhicong
Huang, Cheng Hong, Tao Wei, and Wenguang Cheng. Puma: Secure inference of
llama-7b in five minutes. arXiv preprint arXiv:2307.12533, 2023.

Cynthia Dwork. Differential privacy. ICALP. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential
privacy. FTTCS, 2014.

Steven Englehardt. Next steps in privacy-preserving telemetry with
prio. urlhttps://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-
preserving-telemetry-with-prio/, 2010.

David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. A pragmatic introduction
to secure multi-party computation. 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. AISTATS , 2010.

Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques.
Cambridge University Press, 2001.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and
Lianggiong Qu. Selective aggregation for low-rank adaptation in federated
learning. arXiv preprint arXiv:2410.01463, 2024.

Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya
Gupta, Ashish Panwar, and Rahul Sharma. Sigma: secure gpt inference with
function secret sharing. Cryptology ePrint Archive, 2023.

Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu, and Tianwei
Zhang. Iron: Private inference on transformers. NeurIPS, 2022.

Christopher Harth-Kitzerow, Ajith Suresh, Yongqin Wang, Hossein Yalame, Georg
Carle, and Murali Annavaram. High-throughput secure multiparty compu-
tation with an honest majority in various network settings. arXiv preprint
arXiv:2206.03776, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. ICCV,

147

[27

[28

'S
=

w w
& —

®
&

®
i

=
&

[47]

(48

[57

Proceedings on Privacy Enhancing Technologies 2026(1)

2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415, 2016.

Edward] Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language
models. ICLR , 2022.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained lan-
guage models leaking your personal information? arXiv preprint arXiv:2205.12628,
2022.

Stephanie L Hyland and Shruti Tople. An empirical study on the intrinsic privacy
of sgd. arXiv preprint arXiv:1912.02919, 2019.

Andes YL Kei and Sherman SM Chow. Shaft: Secure, handy, accurate, and fast
transformer inference. NDSS, 2025.

Marcel Keller. Mp-spdz: A versatile framework for multi-party computation.
CCS, 2020.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: faster malicious
arithmetic secure computation with oblivious transfer. CCS, 2016.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
I-bert: Integer-only bert quantization. ICML, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark
Ibrahim, and Laurens van der Maaten. Crypten: Secure multi-party computation
meets machine learning. NeurIPS, 2021.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient
backprop. Neural networks: Tricks of the trade, 1998.

Dacheng Li and Rulin Shao. Mpcformer: Fast, performant and private transformer
inference with mpc. ICLR, 2023.

Haoran Li, Yulin Chen, Jinglong Luo, Jiecong Wang, Hao Peng, Yan Kang, Xiaojin
Zhang, Qi Hu, Chunkit Chan, Zenglin Xu, et al. Privacy in large language models:
Attacks, defenses and future directions. arXiv preprint arXiv:2310.10383, 2023.
Haoran Li, Dadi Guo, Wei Fan, Mingshi Xu, Jie Huang, Fanpu Meng, and
Yangqiu Song. Multi-step jailbreaking privacy attacks on chatgpt. arXiv preprint
arXiv:2304.05197, 2023.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large
language models can be strong differentially private learners. arXiv preprint
arXiv:2110.05679, 2021.

Yehuda Lindell. How to simulate it-a tutorial on the simulation proof technique.
Tutorials on the Foundations of Cryptography: Dedicated to Oded Goldreich, 2017.
Tianyi Liu, Xiang Xie, and Yupeng Zhang. Zkcnn: Zero knowledge proofs for
convolutional neural network predictions and accuracy. CCS, 2021.

Yinhan Liu. Roberta: A robustly optimized bertpretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Wen-jie Lu, Zhicong Huang, Zhen Gu, Jingyu Li, Jian Liu, Cheng Hong, Kui
Ren, Tao Wei, and WenGuang Chen. Bumblebee: Secure two-party inference
framework for large transformers. NDSS, 2025.

Nils Lukas, Ahmed Salem, Robert Sim, Shruti Tople, Lukas Wutschitz, and Santi-
ago Zanella-Béguelin. Analyzing leakage of personally identifiable information
in language models. SP. IEEE, 2023.

Jinglong Luo, Yehong Zhang, Jiaqi Zhang, Xin Mu, Hui Wang, Yue Yu, and Zenglin
Xu. Secformer: Towards fast and accurate privacy-preserving inference for large
language models. arXiv preprint arXiv:2401.00793, 2024.

Junming Ma, Yancheng Zheng, Jun Feng, Derun Zhao, Haoqi Wu, Wenjing
Fang, Jin Tan, Chaofan Yu, Benyu Zhang, and Lei Wang. {SecretFlow-SPU}: A
performant and {User-Friendly} framework for {Privacy-Preserving} machine
learning. USENIXSec, 2023.

Neo Wei Ming, Zhehui Wang, Cheng Liu, Rick Siow Mong Goh, and Tao Luo.
Ma-bert: Towards matrix arithmetic-only bertinference by eliminating complex
non-linear functions. ICLR , 2022.

Ilya Mironov. Rényi differential privacy. CSF. IEEE, 2017.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. SP. IEEE, 2017.

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser. The e2e dataset: New
challenges for end-to-end generation. arXiv preprint arXiv:1706.09254, 2017.
Chigozie Nwankpa, Winifred [jomah, Anthony Gachagan, and Stephen Marshall.
Activation functions: Comparison of trends in practice and research for deep
learning. arXiv preprint arXiv:1811.03378, 2018.

Qi Pang, Jinhao Zhu, Helen Méllering, Wenting Zheng, and Thomas Schnei-
der. Bolt: Privacy-preserving, accurate and efficient inference for transformers.
Cryptology ePrint Archive, 2023.

Nicolas Papernot and Thomas Steinke. Hyperparameter tuning with renyi differ-
ential privacy. ICLR , 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep learning library. NeurIPS,
2019.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison,
H Brendan McMahan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Thakurta.

https://arxiv.org/abs/1810.04805

Proceedings on Privacy Enhancing Technologies 2026(1)

How to dp-fy ml: A practical guide to machine learning with differential privacy.
arXiv preprint arXiv:2303.00654, 2023.

Deevashwer Rathee, Dacheng Li, Ion Stoica, Hao Zhang, and Raluca Popa. Mpc-
minimized secure llm inference. arXiv preprint arXiv:2408.03561, 2024.

Manuel B Santos, Dimitris Mouris, Mehmet Ugurbil, Stanislaw Jarecki, José Reis,
Shubho Sengupta, and Miguel de Vega. Curl: Private llms through wavelet-
encoded look-up tables. Cryptology ePrint Archive, 2024.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks. ICLR , 2014.
Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-
preserving federated learning. arXiv preprint arXiv:2403.12313, 2024.

Qiaoyue Tang, Frederick Shpilevskiy, and Mathias Lécuyer. Dp-adambc: Your
dp-adam is actually dp-sgd (unless you apply bias correction). volume 38, 2024.
Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy
Hardin, Surya Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari,
Alexandre Ramé, et al. Gemma 2: Improving open language models at a practical
size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
NeurlPS, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R
Bowman. Glue: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461, 2018.

Ming Wen, Jiaqi Zhu, Yuedong Xu, Yipeng Zhou, and Dingding Han. Differen-
tially private federated low rank adaptation beyond fixed-matrix. arXiv preprint
arXiv:2507.09990, 2025.

Lukas Wutschitz, Huseyin A. Inan, and Andre Manoel. dp-transformers: Training
transformer models with differential privacy. https://www.microsoft.com/en-
us/research/project/dp-transformers, August 2022.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine,
Karthik Prasad, Mani Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jes-
sica Zhao, Graham Cormode, and Ilya Mironov. Opacus: User-friendly differential
privacy library in PyTorch. arXiv preprint arXiv:2109.12298, 2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam
Kamath, Janardhan Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al.
Differentially private fine-tuning of language models. ICLR , 2021.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Large scale private
learning via low-rank reparametrization. ICML. PMLR, 2021.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa:
Memory-efficient low-rank adaptation for large language models fine-tuning.
arXiv preprint arXiv:2308.03303, 2023.

Yuqing Zhu and Yu-Xiang Wang. Poission subsampled rényi differential privacy.
ICML. PMLR, 2019.

[58]

[59

[60

[61

[62]

[63

[64]

[65]

[66

[67

[68]

[69

[70]

[71]

[72

[73]

A Adam BC

In Adam, computing the second moment on noisy gradients intro-
duces a statistical bias, since the DP noise has a variance greater
than 0. Following Alg. 4, the first moment m; depends on the noise
gradient g;, whereas the second moment v; depends on the square
of the noisy gradient.

Computation of the bias term. Next, we compute the expecta-
tion of g, and g, showing why only v, is biased. We recall that the
noise ¥, ~ N (0, 02C?) is statistically independent of the gradient
gr, and for each training iteration is averaged over the batch size B.

For the first moment m;:

E

(gr + %)] =E [gr] + %E [l//r] =E [gr] .

Instead, for the second moment v;:

)| =tz e

e

1
B

g5 | + g E V]

E (g,+

= E[g2] + 2Elge Bl + 55E (2]

148

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

No Kgr Krr =50 Kpr =10
FA-LoRA & AdamW 90.5 90.4 88.5
FA-LoRA & AdamBC 92.3 92.3 90.7

Table 7: Comparison of DPAdamBC and DPAdamW accuracies
on SST2 dataset with different capping thresholds.

Input: Batch of samples 8 € RE*™X4 weight matrix W € RP*9, gradient
of the batched loss £ w.r.t output G € RBXm*P,
Output: Clipped gradient G.
Function GhostClipping (8, W, G):
foreach X; € B do
1Vw Lil|% = vee(XiX;T) Tvee(G;G; ™)

/* Compute the per-example scaling factor I */
T; = max(1,C/|| Vw £Li]1%)
/* Scale each loss and compute clipped gradient */
G« Vw Ex,es i Li
return G

Algorithm 5: Ghost clipping for Linear layers [41].

Input: Fine-tuning dataset Dpr, total dataset size N, batch size B.
Output: Random subsampled batch B.
Function PoissonSampling (Dfr, P = B/N):

/* Initialize the subsampled batch */

B {}

/* Sample each data point independently with probability P
using a Uniform distribution */

foreach x; € Dprdo
if Uniform(0,1) < P then
LZS — BU{x;}

L return 8

Algorithm 6: Poisson Subsampling for DP Fine-tuning

_ 2 1 2 _ 27, 0°C
=E[g] + 55 (EWel* + Var [y2]) = E[g7] + —;
which results in the bias term ”;(232 corrected in Alg. 4.

Evaluation. We compare the cleartext accuracy of fine-tuning
with DPAdamBC and DPAdamW on the SST2 dataset with differ-
ent capping thresholds. Tab. 7 shows that DPAdamBC consistently
outperforms DPAdamW across all thresholds, achieving an average
improvement of 2 pp in accuracy. This demonstrates the effective-
ness of bias correction in DPAdamW’s second moment estimation.

B Ghost Clipping

GhostClipping (Alg. 5) enables batched gradient computation and
reduces memory overhead by avoiding the need to explicitly com-
pute or store individual gradients. For a Linear layer with W ¢
R4, given an input X € REX™*d GhostClipping computes the
squared Frobenius norm of the per-example gradient as ||V L; ||12u =
vec(X;X])Tvec(G;G;), where G; € RBX™*P is the gradient of the
loss with respect to the output, and vec(-) denotes the vectorization
of a matrix. This approach reduces memory complexity to O(Bm?),
compared to the naive method O (Bpd) [41].

C Poisson Subsampling

Alg. 6 outlines the Poisson subsampling algorithm used in our
experiments. Each data point in the fine-tuning dataset Dgr (size
N) is independently sampled into the batch 8 with probability

https://www.microsoft.com/en-us/research/project/dp-transformers
https://www.microsoft.com/en-us/research/project/dp-transformers

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

P = B/N. The resulting batch size follows a Poisson distribution
with mean P- N = B.

D Non-Linear functions

Next, we discuss the MPC approximations for Softmax and GeLU
evaluated on our preliminary experiments on SST2 to select the
best-performing approximations balancing accuracy and efficiency.

D.1 Softmax Approximations

We evaluated various Softmax approximations to improve compu-
tational efficiency and numerical stability in MPC inference, testing
them alongside GeLU from PyTorch [56] to isolate the impact of
the Softmax approximation on the overall model accuracy.

Neural Network Approximation. Ming et al. [49] propose
a neural network-based approximation for Softmax, which con-
sists of two Linear layers with a ReLU activation in between. This
method is computationally efficient, requiring only two matrix mul-
tiplications between secret shared inputs and cleartext weights
of the network, along with a ReLU activation. However, this ap-
proximation yielded random accuracy results in our fine-tuning,
likely because the neural network weights were tailored for model
distillation and not fine-tuned for our specific use case.

Quadratic Approximation. MPCFormer [38] introduces a qua-
dratic transformation of the Attention logits, followed by a normal-
ization. Formally, for an input vector x € R™:

2
f(x) = (x+—c)2

2i(xi+¢)
where c is a constant, set to 5 in the original work. Even though
this approximation is computationally efficient, it differs signifi-
cantly from the original Softmax function in terms of numerical
values. This discrepancy leads to random accuracy results in our
fine-tuning experiments, as the approximation was designed for
model distillation and not fine-tuning.

Double ReLU Approximation. Proposed in [38], this method
uses the ReLU activation to retain positive logits while discarding
negative values, with normalization to ensure a valid probability
distribution:

ReLU(x) +t/d
f) =7

2.i ReLU(x;) + ¢
where 1 is a small constant, and d is the input dimension. This
approximation is more accurate than the quadratic approximation,
but still not suitable for fine-tuning, since it was designed to be
used in a model distillation scenario for inference.

D.2 GelLU Approximations

We tested several approximations of GeLU to balance accuracy
and efficiency in MPC inference. First, we report the coefficients of
the polynomial approximation in GeLUppc, and then we discuss
the other approximations tested. We tested all the approximations
alongside Softmax from PyTorch [56], to isolate the impact of the
GeLU approximation on the overall model accuracy.

Coefficients for polyGeLU in GeLUpmpc. SPRINT leverages
an optimized version of GeLUppc [54] for GeLU approximation,
which is the best performing approximation in our experiments,
not only in terms of computational efficiency, but also in terms of

149

Proceedings on Privacy Enhancing Technologies 2026(1)

accuracy and numerical stability. Here, we provide the polynomial
coefficients used in GeLUppc:

go = 0.1444,
g1 = —0.7077,
g> = 4.5703,

gs = —8.1544,
gs = 16.3823.

Quadratic Approximation. MPCFormer [38] leverages a qua-
dratic approximation (as for Softmax), also for GeLU, which was
proposed to approximate the ReLU function by Chou et al. [10].
The approximation is computed as:

f(x) = 0.125x% + 0.5x + 0.25.

However, despite being computationally efficient, this approxima-
tion is too aggressive for fine-tuning, leading to random accuracy.

Tanh Approximation. Proposed by Google [27], this approxi-
mation is computed as:

f(x) = 0.5x (1 + Tanh (7 (x + 0.044715x?))),

where Tanh is defined as:

eX —e™™

This approximation of GeLU provides reliable accuracy results.
However, during MPC inference, it causes numerical instability
due to the Tanh approximation implemented in CrypTen, which is
numerically stable only for values in the range [-250, 250].

Tanh(x) =

HardTanh Approximation. To enhance numerical stability of
the GeLU approximation based on Tanh [27], we replaced Tanh
with HardTanh, resulting in the following approximation:

f(x) = 0.5x (1 + HardTanh (7 (x + 0.044715x°))) .
where HardTanh is defined as:

-1, ifx<-1,
HardTanh(x) ={x, if —1<x<1,
1, if x > 1.

HardTanh, implemented as a piecewise function, ensures numerical
stability for all inputs and is more efficient than the Tanh-based ap-
proximation. However, it results in a 10 pp accuracy drop compared
to the GeLUmpc approximation adopted in SPRINT.

E Security Analysis

We prove the security of SPRINT using the simulation paradigm [21],
which ensures that each server learns nothing from the proto-
col execution beyond its own inputs and outputs. Specifically, for
any adversary corrupting a server, there exists a simulator that
can generate a view indistinguishable from the real protocol ex-
ecution, given only the server’s input and output. Thus, a cor-
rupted server cannot distinguish between a real execution and
a simulated one, guaranteeing security of the computation. We
start by introducing notation for the simulation paradigm. Let
f = (fi, f2) be a probabilistic time functionality and let II be a
two-party protocol to realize f. The view of server S; during an
execution of 77 on inputs x = (x1, x2) is denoted view (xi, x2). This
view contains the party’s input, its internal random tape, and all

Proceedings on Privacy Enhancing Technologies 2026(1)

Ideal Functionality Input/Output Description Proof
Multiplication fi (X),(Y) - (XY) [36, App. A]
Less-than fo (x),{y) or y = (lx<y(x,y)) [36, App. A]
InVSqrt ﬁnqurt <x> - (1/\&) [36: App' A]
Tanh franh (x) — (Tanh(x)) [36, App. A]
Exponential foyp (x) = (exp(x)) [36, App. A]
Reciprocal fReciprocal (x) = (1/x) [36, App. A]
MUX fiux (), {x0), {x1) = {e(x1 — X0) +x0) [36, App. A]
FALORA fraLorA (x), (B) — (FALoRA(x)) Sec. E.1
SoftmaxK fSoftmaxk (x) — (SoftmaxK(x)) Sec.E3
GeLUmpc fGeLuype (x) = (GeLUmpc (x)) Sec. E4
SoftCap fsoftcap (x),K - (K- Tanh(x/K)) Sec. E.2
LayerNormpmpc f‘-ayefNOTmMPc (x) — (LayerNormmpc (x)) Sec. E.5

Table 8: Definitions of ideal functionalities from CrypTen
(first half) and newly introduced by SPRINT.

Input: Servers hold shares of input (X). Public parameters W, A. Servers
hold shares of fine-tuned matrix (B).
Output: Servers hold shares of output (Y).
Protocol ITpaora ({X), W, A, (B)):
/* Local, non-interactive computations */
(Yo)i « (X)i - Wo
(Xa)i < (X)i- A

/* Interactive MPC multiplication */
(Ypp) « Ix({Xa), (B))

/* Final local addition x/
(Y)i « (Yo)i +(Ypp)i

return (Y)

Algorithm 7: FALoRA Linear Layer Protocol, ITfaiorA

messages it received. The joint output of both parties is denoted
by out” (x1,x2) = (out] (x1, x2), out] (x1, x2)). Tab. 8 provides the
ideal functionality for existing building blocks in CrypTen [36] and
SPRINT protocols in the second half of the table. Note that all func-
tionalities in Tab. 8 are deterministic, so we can use the following
definition of security [42].

Definition E.1 ([42]). Let f = (fi, f2) be functionality. We say
that IT securely realizes f in the presence of a static semi-honest
adversary if there exist probabilistic polynomial time simulators
81, S; such that for any input (x, y):

{(S1(xr, fi(x)) }x, = {(view] (x))}x,, and
{(Sz(x2, f2(x)) }x = {(views (x)) }x,

where x1, x5 € {0,1}* such that |x{| = |x|.

All functionalities in Tab. 8 introduced by SPRINT (i.e., FALoRA,
SoftmaxK, GeLUmpc, SoftCap, LayerNormmpc) are defined to com-
pute the approximated version of the functions. Next, we provide
the security proofs for the protocols introduced in SPRINT.

E.1 Security of FALoRA Linear Layer

THEOREM E.2. Suppose Il securely realizes fx. Then IIfaLorA
(Algorithm 7) securely realizes the functionality fraLora against static
semi-honest adversaries.

ProoF. Let x be an arbitrary input and IIx securely realize
the multiplication functionality fi. By definition fraLora () <
outTFALorA(X) Since TTraLoRA (Alg. 7) sequentially invokes local com-
putations and calls Iy, by the sequential composition theorem [8],

150

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

Input: Servers hold shares of input (x). Public capping threshold is K.
Output: Servers hold shares of capped output (y).
Protocol IIseficap ({x), K):
/* Local, non-interactive scaling */
(x")i « (x)i/K
/* Interactive MPC Tanh computation */
(') « Hranh ({x))
/* Final local, non-interactive scaling */
(yhi < K-{y')

return (y)

Algorithm 8: SoftCap Protocol, Iseficap

Input: Servers hold shares of input vector (x), guaranteed to be in [K, K].
Public capping constant K.

Output: Servers hold shares of softmax output (y).

Protocol Isoftmaxk ((X), K):

/* Local, non-interactive normalization */
<Xnorm>i — <X>,' -K

/* Interactive MPC exponentiation */
(Ynum) < Hexp(<xnorm>)

/* Summation and interactive MPC reciprocal */

(Sum>i — Zj <Ynum >i,j
<yden > — HReciprocal (< Sum>)

/* Final local multiplication */
<Y>i « <YHum>i . (yden>i
return (y)

Algorithm 9: SoftmaxK Protocol, Isoftmaxk

the security of the protocol follows from the security of the un-
C

derlying multiplication protocol IIx. Hence, {(S;(x;, fi(x)))}x
{(view[AR (x)))} for i € {1,2).

[m]

E.2 Security of SoftCap

THEOREM E.3. Suppose ltann securely realizes franh. ThenIsoficap
(Algorithm 8) securely realizes the functionality fsoficap against static
semi-honest adversaries.

PROOF. Let x be an arbitrary input and I,y securely realize the
hyperbolic tangent functionality frann. By definition fsoficap (x) =
outlsoficap(*) The protocol seficap (Alg. 8) consists of local com-
putations and a single call to the secure sub-protocol ITt,,,, which
computes the hyperbolic tangent. Since the local computations are
secure, the security of the overall protocol follows from the security
of the underlying IIr,,, protocol by the sequential composition
theorem [8]. Hence, {(S;(x;, fi(x)))}x {(view?map (x))}« for
ie{1,2}. O

E.3 Security of SoftmaxK

THEOREM E.4. Suppose ey, and I eciprocal Securely realize fox,
and fReciprocal respectively. Then Isopmaxk (Algorithm 9) securely real-
izes the functionality fsoumaxk against static semi-honest adversaries.

PRrROOF. Let x be an arbitrary input vector and the protocols
{Hexp, MReciprocat } securely realizes { fexp, fReciprocal }- By definition,
SSoftmaxk (X) £ outTsetmak (%) Since the protocol seftmaxk (Alg. 9)
consists of local computations and calls to secure sub-protocols ITex,
and Tlgeciprocal: by sequential composition theorem [8], the security
of the protocol follows from the security of the underlying protocols.

Hence, {(S;i(xi, fi(x))) }x = {(view?s‘)“m""‘K (x))}cforie{1,2}. O

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

Input: Servers hold shares of input (x). Public threshold is 2.7.

Output: Servers hold shares of GeLUmpc output (y).

Protocol ITgeLuppe (x):

/* Pre-compute absolute value */
(Ix]) < Ix({x),1 = 2-T<((x),0))

// Requires A2B/B2A conversions

/* Compute polynomial approximation and RelLU */
<ypoly> — HpolyGeLU(<x>’ (lx1))

Each server S; locally computes (Yrely)i < ((x); + {|x])i)/2

/* Select the correct output based on input range */
(bcomp> — I ((Ix[), 2.7)

(y) < Omux ({beomp)> <ypoly>» (Yrelu))s

return (y)

Algorithm 10: GeLUppc Protocol, IgeLuyypc

Input: Servers hold shares of input (x), weights (W), bias (b). Public
threshold T, scaling factor f.
Output: Servers hold shares of normalized output (y).
Protocol HLayerNormMPC «x), (W), (b), T, B):
/* Compute Mean and Variance */
()i — |<T1>l\ Dixye(xy; (X)i
(Xc)i (X)i = (Wi
<X£> — Ik ({xc), (X))
1 2
(V)i « Tl Z("gh’e(x%)i (x)i
/* Piecewise Inverse Square Root */
<bc0mp> — Il< (<V>, T)
<Vunscaled7inv> — HInqurt (< V>)
< Vscaled_in> — < V)/ﬁ
(Vscaledﬁoul) — l—IInqurt « Vscaled_in))
Vs’caledﬁnul> — <Vscaled70ut>/\/ﬁ
(V') « HMUX(<hcomp>s <vs’caled70ut>’ <Vunscaled7inv>)
/* Final Normalization */
(Xnorm) = Ix ({Xc), (V')
<ytemp> — HX(<Xn0rm>: <W>)
(y)i — <ytemp>i +(b)i
return (y)

Algorithm 11: LayerNormypc Protocol, I ayerNormypc

E.4 Security of GeLU

THEOREM E.5. Suppose the protocols for absolute value (I1}.), poly-
nomial evaluation (IT,o1yceLu) greater-than (I), and MUX (I jux)
securely realize their respective ideal functionalities, i.e., f|.), deYGeLU,
f>, and fyux. ThenTlgeLuype (Algorithm 10) securely realizes fGeLuypc
against static semi-honest adversaries.

ProOF. Let x be an arbitrary input, and {IT,olyGeLus IT>, Imux }
securely realize {fyolyGeLU, f>» fmux }- By definition, fceLuypc () =
outGeluppc %) Since the protocol IgeLuype (Alg. 10) consists of
local computations and sequential calls to secure sub-protocols
{polyGeLu, >, TImux }, the security of TIgeLuypc follows from the
security of the underlying protocols by the sequential composition

IlGe
theorem [8]. Thus, {(S;(x;, fi(x)))}x = {(view, “™M* (x))} for
ie{1,2}. O

E.5 Security of LayerNorm

THEOREM E.6. Suppose Iy, Il<, Minysqrt, and Iywy securely re-

alize {fx, f<, finvsqrts fuux}. Then MiayerNormype (Algorithm 11) se-
curely realizes fiayerNormypc @gainst static semi-honest adversaries.

151

Proceedings on Privacy Enhancing Technologies 2026(1)

ProOF. Let x be an arbitrary input, and {IIx, II<, Ijnysqre, Hmux }
securely realize { fx, f<, finvsqrt> fmux }- By definition, fi ayerNormypc (X)
£ out!tayeNormype () The protocol I ayerNormype (Alg. 11) consists
of local computations and calls to secure sub-protocols ITy, I,
inysqrt> and yux. By the sequential composition theorem [8], the
security of the protocol follows from the security of the underlying

protocols. Hence, {(S;(xi, i(x)}x = {(view, “™™PC (1))}
fori e {1,2}. o

F Evaluation

This section expands our evaluation (Sec. 5) by providing the com-
plete list of hyperparameters, an evaluating the impact of different
LoRA A initialization techniques on the accuracy, the effect of
random seeds and SoftCap on cleartext inference accuracy, and
a detailed comparison of SPRINT and BOLT in terms of runtime
and communication for decomposed Linear layers. Furhtrmore, we
evaluate how SPRINT scales to larger models (i.e., RoBERTa-large)
and more than two parties, a setting not explored by related works.

F.1 Hyperparameters Search

Tab. 9 reports the hyperparameters values tested for each dataset
for DP fine-tuning.

F.2 LoRA A initialization techniques
Next, we detail the initialization techniques tested for LoRA A.

Initialization techniques. The Kaiming initialization is de-
signed for layers with ReLU activations. It initializes weights from
a distribution with zero mean and a variance of 2/n (either Uniform
or Normal), where n is the number of input units [26]. This ap-
proach compensates for the ReLU behavior of outputting zero for
negative inputs, which effectively reduces the number of active
neurons. By using a higher variance, Kaiming initialization ensures
that the variance of activations remains consistent across layers,
preventing vanishing activations. In our case, the GelLU activa-
tion function is used, which behaves similarly to ReLU since it
also outputs values close to zero for sufficiently negative inputs
(approximately those less than —2.7 based on our approximation).
The Xavier initialization aims to maintain the scale of gradients
across layers by initializing weights from a distribution with zero
mean and a variance of 2/(ny, + noy) (either Uniform or Normal),
where nj, and ngyt are the number of input and output units, respec-
tively [20]. The Normal initialization is more suited for layers with
Sigmoid or Tanh activations and initializes weights from a normal
distribution with zero mean and a variance of 1/n, where n is the
number of input units [37]. The Orthogonal initialization, on the
other hand, initializes weight matrices as orthogonal matrices, en-
suring uncorrelated weights with unit variance. This property can
help preserve the variance of activations across layers, potentially
improving stability during training [60].

Impact on accuracy. We found that the initialization of the
frozen A matrix directly affects SPRINT accuracy, with variations of
up to 2.1 pp. To evaluate the effect of A initialization on accuracy, we
tested several techniques: Kaiming [26], Xavier [20], Normal [37],
and Orthogonal [60], using uniform and normal distributions for
Kaiming and Xavier. Tab. 10 reports our evaluation on SST2. Here,

Proceedings on Privacy Enhancing Technologies 2026(1)

Francesco Capano, Jonas Bohler, and Benjamin Weggenmann

Parameter Component / Phase Description Tested Values
Batch size (B) DP fine-tuning Number of samples per training step out of N samples 1024, 2048
Subsampling rate (g) DP PoissonSampling Probability of a sample being included in a batch. B/N
Learning rate (1) DP fine-tuning Step size for the optimizer. 5x1073,1x1073,5x 1074, 1 x 10745 x 107°
Epochs (E) DP fine-tuning Total number of steps over the training dataset size. 10
Clipping threshold (C) DP fine-tuning L2 norm limit for per-sample gradients. 0.1,1,10
Weight decay DP fine-tuning L2 regularization coefficient to prevent overfitting. 0.1,0.01,0.001
Privacy budget (€) DP Definition Target epsilon (€) for the privacy guarantee. 8
Failure probability (&) DP Definition Target delta () for approximate DP. 107> (SST,QNLI), 10~¢ (QQP,MNLI)
Noise variance (62) DP Mechanism DP noise variance for Gaussian noise Analytically computed from €, 8, E, g by Opacus [69]
FALORA rank (r) FALoRA Rank r of the low-rank adapter matrices. 8,16, 32
FALORA alpha («) FALoRA Scaling factor « for the FALORA update (a/r). r,2r
FALoRA layers FALoRA Specific linear layers where FA-LoRA adapters are applied. All Lmear, all ITlnear exc;ept Linearg,
{Linearg, Lineary, Lineara }
A Initializations FALoRA Initialization method for the FALORA A matrix. Kaiming Uniform/Normal, Xavier Uniform/Normal,
Orthogonal, Normal
Capping (Kpr) SoftCap Capping threshold for Attention logits. None, 50, 10
Table 9: Set of hyperparameters tested in fine-tuning for each dataset.
Kaiming Kaiming Xavier Xavier Krr /KiNe
Seed niform Normal Uniform Normal Normal Orthogonal Dataset . e/None None/50 None/10 50/50 50/10 10/10
0 92.2 92.1 90.7 90.2 92.1 91.9 SST2 92.2 92.2 (0) 90.0 (2.2) 923 90.0 (2.3) 90.3
Rnd 91.1+£0.3 91.3+0.2 90.1+0.2 90.5+0.2 91.2+0.2 91.5+0.2 MNLI 78.6 78.5(0.1) 71.1(7.5) 78.6 717(6.9) 77.2
Table 10: Cleartext accuracy (in %) on SST2 for different QNLI 85.2 85.1 (0.1) 742 (11) 848 706 (14.2) 815
QQP 82.7 82.8 (+0.1) 75.1 (7.6) 827 759 (6.8) 79.6

FALORA A initialization, comparing fine-tuning with fixed
seed (0) and the average over 10 random seeds (rnd).

we discuss the results with fixed seed (seed = 0), and consider ran-
dom seeds later. Kaiming Uniform performs best, followed closely
by Kaiming Normal and Normal (both within 0.2 pp). In contrast,
Xavier shows the worst performance, with accuracy drops of up
to 2.1 pp. We extended this evaluation (with seed=0) also on QQP,
QNLI, MNLL finding that the best initializations are either Normal
or Orthogonal. For example, on QNLI, Orthogonal performs best
with 0.5 pp accuracy improvement over Kaiming Uniform. These
results confirm the impact of FALoRA A initialization, and shows
the best initialization is dataset-dependent.

F.3 Practical Deployment Considerations

A common practice in literature [41, 71] is to replace Poisson sub-
sampling with shuffling for computational efficiency. However,
shuffling processes all samples and lacks Poisson’s theoretical guar-
antees [3]. Specifically, shuffling ensures each sample in the dataset
is processed exactly once per epoch. In contrast, with Poisson sub-
sampling, a sample might be selected multiple times or not at all
within a single epoch which is essential for DP guarantees. Addition-
ally, existing works [41, 71] fix the PRNG seed for reproducibility.
However, the seed influences parameter initialization, DP noise,
and subsampling, which affect model convergence leading to dif-
ferent local minima [30]. To address these limitations, we perform
fine-tuning with Poisson subsampling (Sec. 5.1) and evaluate the
impact of different random seeds on model accuracy.

Evaluation. We assess the impact of Poisson subsampling with
random seeds on model accuracy using the SST2 dataset. Poisson
subsampling offers stricter privacy guarantees than shuffling, but
random seeds may introduce accuracy variability, since the seed
alters the data sampled during fine-tuning. Furthermore, the seed
is also responsible for the initialization of the A matrix and the

152

Table 11: Cleartext accuracy (/\/[i;‘T with 6pp) with differ-
ent combinations of Kgr/King for fine-tuning and infer-
ence. In parentheses, the accuracy gap (in pp) compared to
Ker = King (Tab. 1, Sec. 5.1).

DP noise. To evaluate SPRINT under these conditions, we fine-
tuned RoBERTa with 10 random seeds, and tested different LoRA
A initializations. Tab. 10 shows an accuracy drop between fixed
and random seeds ranging from 0.4 pp to 2.1 pp across initializa-
tions. While Kaiming Uniform achieves the highest fixed-seed ac-
curacy (92.2%), its accuracy drops by 1.1 pp under random seeds.
Instead, Orthogonal performs best with random seeds, showing
only a 0.4 pp drop compared to its fixed-seed counterpart. These
results suggest that relying on the best-performing initialization
with fixed seeds may not yield optimal performance under random
seeds and the best initialization for practical deployment should be
selected based on its resistance to seed variability.

F.4 Cleartext Inference Capping

Tab. 11 presents the cleartext accuracy of M?T under various SoftCap
configurations during fine-tuning (Kgr) and inference (King). Ap-
plying King = 50 during inference only results in, at most, a 0.1 pp

accuracy drop compared to non-capped fine-tuning. Additionally,

fine-tuning with Kpr = 50 achieves similar accuracy to non-capped

fine-tuning when combined with Ky = 50 during inference. In

contrast, using Kiyg = 10 during inference only results in a signifi-
cant accuracy degradation (up to 14.2 pp on QNLI) when combined

with Kgr = 50 or non-capped fine-tuning. However, fine-tuning

with Kgr = 10 reduces the accuracy gap to a smaller margin (up to

3.8 pp on QNLI) compared to non-capped fine-tuning.

SPRINT : Scalable Secure & Differentially Private Inference for Transformers

Communication
GB Rounds

Runtime (s)

Framework ¢ ANy WANG

SHAFT [31] 140.88 970.15 1836.88 | 28.46 2935
SPRINT 95.90 73522 1438.22 17.4 3649

Table 12: E2E cost of private inference on RoBERTa-large in
different network settings.

Runtime (s) Communication

Nparties | \N WANg WANG ‘ GB Rounds
3 8579 87550 1710.94 | 1454 5728
4 11891 128596 256394 | 208 14320

Table 13: SPRINT E2E per-sample cost of private inference on
RoBERTa-base for more than 2 parties.

F.5 Scaling SPRINT

To evaluate how SPRINT scales to larger models and more than two
parties, we conduct two additional experiments. First, we evaluate
SPRINT on RoBERTa-large, which has 2X more Encoder layers
than RoBERTa-base. Second, we evaluate SPRINT with more than
two parties, a setting not explored by related works [24, 31, 45, 54].

Scaling SPRINT to RoBERTa-large. For the first experiment,
we evaluate SPRINT’s performance on RoBERTa-large and compare
it with SHAFT. As shown in Tab. 12, scaling from RoBERTa-base
to RoBERTa-large increases communication by 2.7X and rounds by
1.6X. SPRINT’s runtime increases by 2.9 in LAN, 2.4X in WANg,
and 2.3X in WANg compared to the RoBERTa-base baseline. De-
spite this expected overhead, SPRINT remains faster than SHAFT,
ie., from 1.3x in WANg to 1.4X in LAN, and reduces communica-
tion by 1.6X despite requiring 1.2X more rounds. This shows that
SPRINT’s optimizations scale effectively to larger models, main-
taining a performance advantage over SHAFT.

Scaling SPRINT to more than 2 parties. For the second ex-
periment, we evaluate SPRINT’s performance with 3 and 4 parties
on RoBERTa-base. As shown in Tab. 13, the runtime increases sig-
nificantly, i.e., from 2.6X in LAN to 2.8x in WAN for 3 parties,
and from 3.6X in LAN to 4.2X in WANG; for 4 parties compared to
the 2-party baseline. The communication also increases, i.e., from
2.2 for 3 parties to 3.2X for 4 parties. Notably, also the number of
communication rounds increases significantly, i.e., from 3.1X for 3
parties to 7.9% for 4 parties. These results confirm the effectiveness
of CrypTen in 2-party settings, but also highlight the scalability
challenges of MPC protocols in multi-party settings. The focus of
this work is on the two-party setting, but we note that custom
protocols for 3 and 4 parties also exist, e.g., [15, 25].

153

Proceedings on Privacy Enhancing Technologies 2026(1)

	Abstract
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Transformers
	2.2 Fine-Tuning
	2.3 Multi-Party Computation
	2.4 Differential Privacy

	3 bold0mu mumu SPRINTSPRINTSPRINTSPRINTSPRINTSPRINT Design
	3.1 Design Challenges
	3.2 System Design

	4 SPRINT Optimizations
	4.1 MPC-aware DP Fine-tuning Optimizations
	4.2 MPC Inference Optimizations

	5 Experiments
	5.1 MPC-Aware DP Fine-Tuning
	5.2 MPC Inference

	6 Related Works
	7 Discussion & Future Works
	8 Conclusion
	Acknowledgments
	References
	A Adam BC
	B Ghost Clipping
	C Poisson Subsampling
	D Non-Linear functions
	D.1 Softmax Approximations
	D.2 GeLU Approximations

	E Security Analysis
	E.1 Security of FALoRA Linear Layer
	E.2 Security of SoftCap
	E.3 Security of SoftmaxK
	E.4 Security of GeLU
	E.5 Security of LayerNorm

	F Evaluation
	F.1 Hyperparameters Search
	F.2 LoRAA initialization techniques
	F.3 Practical Deployment Considerations
	F.4 Cleartext Inference Capping
	F.5 Scaling SPRINT

