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Abstract
Machine learning as a service (MLaaS) enables scalable model de-

ployment and inference on cloud servers. However, MLaaS exposes

user queries and model parameters to servers. To guarantee con-

fidentiality of queries and model parameters, multi-party compu-

tation (MPC) enables secure inference by distributing data and

computations across multiple service providers. MPC eliminates

single points of failure, mitigates provider breaches and ensures

confidentiality beyond legal agreements. Beyond confidentiality of

queries and parameters, the model itself can memorize and leak

training data during inference. To mitigate privacy concerns, differ-

ential privacy (DP) provides a formal privacy guarantee for training

data, which can be satisfied by injecting carefully calibrated noise

into gradients during training. However, naive combinations of

DP and MPC amplify accuracy loss due to DP noise and MPC ap-

proximations, and incur high computational and communication

overhead due to cryptographic operations.

We present SPRINT, the first scalable solution for efficient MPC

inference on DP fine-tuned models with high accuracy. SPRINT
fine-tunes public pre-trained models on private data using DP. It

integrates DP-specific optimizations, e.g., parameter-efficient fine-

tuning and noise-aware optimizers, with MPC optimizations, e.g.,

cleartext public parameters and efficient approximations of non-

linear functions. We evaluate SPRINT on GLUE benchmark with

RoBERTa, achieving up to 1.6× faster MPC inference than the state-

of-the-art non-DP solution SHAFT, reducing communication by

1.6×. Notably, SPRINT maintains high accuracy during MPC infer-

ence, with < 1 percentage point gap compared to cleartext accuracy.

Keywords
Differential privacy,Multiparty computation, secure inference, trans-

formers fine-tuning

1 Introduction
LLMs can be pretrained on large-scale public datasets and fine-

tuned on smaller, private datasets to improve task-specific per-

formance, e.g., sentiment analysis. Model owners can deploy fine-

tuned models via machine learning as a service (MLaaS), outsourc-

ing inference to cloud servers. MLaaS relieves model owners of
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resource management and infrastructural burdens of running in-

ference themselves while providing users seamless access to pre-

dictions. However, model parameters, user queries, and predictions

are exposed to MLaaS servers [39], potentially leaking sensitive

information. Even servers adhering to legal agreements remain

vulnerable to data breaches. To guarantee confidentiality of model

parameters, user queries and predictions against cloud servers,

multi-party computation (MPC) enables secure inference. MPC as-

sumes multiple non-colluding servers that jointly compute a func-

tion on secret-shared data, i.e, random split of data, where each

share reveals nothing on its own. By distributing trust among mul-

tiple servers from different providers, MPC eliminates single points

of failure, mitigating risks such as provider breaches and providing

cryptographic protections beyond contractual and legal agreements.

Besides confidentiality, LLMs face privacy issues since they can

memorize fine-tuning data and leak sensitive information in predic-

tions [9, 29, 40, 46]. To mitigate memorization, differential privacy
(DP) provides a formal privacy guarantee for fine-tuning data satis-

fied by injecting carefully calibrated noise into gradients [16, 41].

Specifically, DP bounds the maximum difference of the model’s be-

havior when including or excluding a record from fine-tuning data.

While offering strong guarantees, DP and MPC introduce practi-

cal challenges when deploying transformer models, i.e., trade-offs

between privacy, accuracy, and computational efficiency. Combin-

ing DP fine-tuning and MPC inference introduces two error sources

that degrade final accuracy. (I) DP injects noise during fine-tuning,

which scales with the model size and can hinder convergence [41].

(II) MPC relies on fixed-point arithmetic [36] for efficiency and ap-

proximates costly non-linear functions, e.g., GeLU, which can lead

to numerical errors. Balancing these two error sources while opti-

mizing performance is crucial to ensure scalability and accuracy of

MPC inference, as larger models and datasets have wider parameter

ranges and require more precise approximations trading accuracy

for performance. Additionally, MPC inference introduces significant

performance overhead as computation on secret shares requires

interaction, e.g., servers exchanging shares for matrix multiplica-

tions. This is especially challenging for large transformer models

(e.g., BERT with 110M parameters) as communication overhead

grows with model size. Consequently, naively combining DP fine-

tuning and MPC inference is impractical due to DP’s noise-induced

accuracy loss combined with MPC’s cryptographic overhead and

approximation errors. To overcome these challenges, we propose

SPRINT, the first scalable approach co-designing DP fine-tuning

and efficient MPC inference for high accuracy. SPRINT enables

private and secure inference by ensuring privacy for fine-tuning

data (via DP) and confidentiality for model parameters, user queries,

and predictions during inference (via MPC). Unlike prior works

focusing solely on DP [41, 70] or MPC [54], SPRINT integrates both
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Figure 1: High level SPRINT overview: during fine-tuning (I) the model owner (MO) DP fine-tunes a large base model adapted
to be MPC-aware, on a private dataset using a small adapter. Before inference (Ic), the MO converts the fine-tuned model into
an MPC protocol and secret shares only the small adapter. During inference (II), the user secret shares its query to MPC servers
which run secure inference, returning the secret-shared labels. Red blocks are secret-shared, while blue blocks are in cleartext.

techniques. Fig. 1 outlines SPRINT’s approach. Initially (Ia), model

owner (MO) adapts a large public base model to be MPC-aware

(i.e., integrating suitable non-linear function approximations used

in MPC inference), and adds a small adapter. Then, only the small

adapter is DP fine-tuned on private data, while the large base model

remains frozen (Ib). For secure inference (Ic), MO converts the fine-

tuned model to an MPC version (i.e., translating all model functions

to MPC protocols) and secret-shares only the fine-tuned adapter.

Consequently, during inference (II), user (U) secret-shares its query

(IIa) and each MPC server performs the bulk of large matrix opera-

tions locally on the cleartext base model, with no interaction. Only

the small adapter matrix multiplications and activation functions

in the model uses secure protocols (IIb). Finally, U reconstructs the

secret-shared prediction (IIc). We evaluate SPRINT by fine-tuning

RoBERTa [44] on the GLUE benchmark [66], achieving high MPC

inference accuracy, i.e., within 1 percentage point (pp) of cleartext

accuracy. Notably, SPRINT maintains high accuracy while scaling

to large datasets (e.g., QQP with more than 40k validation samples),

while many prior MPC works [31, 45, 54] tested only on smaller

datasets (e.g., SST2 with < 1 k validation samples). Additionally,

SPRINT delivers up to 1.6× faster MPC inference than the state-of-

the-art non-DP solution SHAFT [31], reducing communication by

1.6×. We evaluate SPRINT for practical deployments using Poisson

subsampling for rigorous privacy guarantees, which some prior DP

works [41, 70] neglected, impacting their privacy guarantees.

1.1 Contributions
We present SPRINT, a scalable solution for DP fine-tuning andMPC

inference for transformer models. SPRINT integrates DP-specific

and MPC-aware techniques, to improve accuracy, computation and

communication efficiency. Our contributions include:

1. Unified solution for secure and private MPC inference
on DP fine-tuned transformer-based models.We present the

first solution to integrate DP fine-tuning with MPC inference for

transformer-based models, ensuring: (I) privacy for the fine-tuning

dataset, (II) model confidentiality during inference, and (III) con-

fidentiality for inference query and results. SPRINT bridges the

gap between prior works which solely focus on either DP fine-

tuning [7, 41, 70] or MPC inference [31, 45, 54]. We address com-

putational overhead and numerical errors in MPC, and accuracy

degradation due to DP noise (Sec. 3.1) to provide a scalable solution

with high-accuracy for private and secure inference for transformer-

basedmodels (Sec. 4).While some of SPRINT’s components build on

existing work, their integration under the combined constraints of

DP fine-tuning and MPC inference presents non-trivial challenges.

2. MPC-aware DP fine-tuning with high accuracy MPC in-
ference. To achieve high accuracy during MPC inference, SPRINT

balances DP noise with MPC approximation errors through: (I)

parameter-efficient fine-tuning to mitigate the impact of DP noise,

and (II) making DP fine-tuning MPC-aware by using the same

non-linear function approximations as in inference. Specifically,

(I) DP fine-tuning adds carefully calibrated noise to clipped gradi-

ents, with noise scaling with model size, hindering convergence

for large models [41]. To mitigate noise impact, we use a variant

of parameter-efficient fine-tuning, i.e., FALoRA [61], that reduces

trainable parameters by ≈ 200× (Sec. 4.1). While FALoRA is effec-

tive in non-DP settings and DP federated learning [61], it has not

been previously applied to centralized DP fine-tuning. We find that

centralized DP fine-tuning with FALoRA causes an accuracy drop

of about 2 pp (App. A), which we mitigate using the DP-specific

optimizer DPAdamBC [62] that accounts for noise-induced bias

(Sec. 4.1). (II) Finally, our DP fine-tuning is made MPC-aware by

using the same non-linear function approximations (e.g., GeLU)
as in MPC inference. This ensures consistency in the non-linear

functions between fine-tuning and inference improving final MPC

accuracy (Sec. 5). However, integrating MPC approximations dur-

ing fine-tuning introduces additional error sources. While previous

works apply this approach only for MPC inference, we investigate

the effect of combining it with DP fine-tuning and how to balance

the two error sources.We find that whileMPC inference-only works

can use more aggressive approximations (as in distillation, App. D),

our integrated approach requires more conservative approxima-

tions, trading off performance to achieve high accuracy.

3. Scalable and efficient secure inference via MPC. To im-

prove efficiency and scalability in MPC inference, we introduce tar-

geted optimizations: (I) for Linear layers, we minimize MPC matrix

multiplications (i.e., which require interactions) by secret-sharing

only fine-tuned parameters; and (II) for non-linear functions, we

prioritize numerical stability and accuracy by adapting and im-

proving state-of-the-art approximations. Specifically, (I) Linear lay-
ers require high-dimensional matrix multiplications, introducing
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significant overhead in MPC since each multiplication between

secret-shared matrices requires interaction. While ML LoRA imple-

mentations merge low-rank matrices into pre-trained weights [28],

SPRINT keeps them separated during inference and secret-shares

only fine-tuned parameters. Despite increasing the total parameter

count, this approach enhances scalability. Only secret-shared pa-

rameters require costly MPC multiplication with server interaction,

whereas multiplication with cleartext, public weights can happen

locally. With FALoRA, SPRINT keeps ≈ 99% of the parameters in

cleartext (Sec. 4.2). Regarding non-linear functions (II), they can

account for up to 75% of MPC inference runtime [24]. MPC relies

on fixed-point representations for efficiency, introducing numerical

errors, e.g., overflows, particularly for non-linear function approxi-

mations which trade off accuracy for efficiency. While existing MPC

works [31, 45, 54] typically train/test on small datasets (e.g., SST2

<1k validation samples), SPRINT scales to large datasets (e.g., QQP

>40k validation samples) with broader input and parameter ranges,

which normally, increase numerical instability. To mitigate this,

we propose specific enhancements: (I) for Softmax, we introduce
SoftCap-based approximation that bounds maximum input values

and eliminates expensivemax operations; (II) for LayerNorm, we de-

velop a piecewise approximation for inverse square root improving

accuracy with minimal overhead; and (III) for GeLU, we evaluate
multiple approximations (App. D), and select and adapt BOLT’s
GeLU [54] which offers the best accuracy-performance trade-off.

4. Comprehensive evaluation with various network set-
tings. We evaluate SPRINT on GLUE benchmark datasets [66],

i.e., SST2, MNLI, QQP and QNLI, in multiple network conditions,

i.e., LAN andWANs, tomeasureMPC inference performance (Sec. 5).

We compare with state-of-the-art DP fine-tuning [41, 70] and MPC

inference [24, 31, 45, 54]. SPRINT improves MPC inference, achiev-

ing up to 1.6× faster MPC inference than the state-of-the-art non-

DP solution SHAFT [31], reducing communication by 1.6× (Tab. 2,

Sec. 5.2). Despite approximations of non-linear function required

for MPC in fine-tuning, SPRINT maintains accuracy comparable to

DP-LoRA fine-tuning [70] (Tab. 1, Sec. 5.1), andMPC inference accu-

racy within 1 pp of cleartext (Tab. 6, Sec. 5.2). We also compare and

discuss different approximations for non-linear functions from re-

lated works, e.g., from SHAFT [31] and BOLT [54] (Tab. 3, Sec. 5.2),

and we evaluate the advantage of GPU acceleration and batched

inference (Tab. 5, Sec. 5.2). Additionally, we perform extensive hy-

perparameter search, including different initialization strategies

(for FALoRA matrices) to guide hyperparameter choice for faster

convergence with high accuracy (Tab. 10, Sec. 5.1), and evaluate the

impact of MPC-aware DP fine-tuning on model accuracy (Sec. 5.2).

5. Practical and modular framework with DP deployment
considerations. SPRINT is a modular framework for DP fine-

tuning and MPC inference, which builds on top of existing libraries,

i.e., Opacus [69] for DP fine-tuning and CrypTen [36] for MPC

inference.
1 SPRINT is designed to be extendible and include ad-

ditional models via PyTorch-like modeling files. While this work

focuses on BERT-like models for sequence classification due to

computational constraints, SPRINT can be easily adapted to other

architectures and tasks, such as GPT-like models for text generation.

By building on top of CrypTen, SPRINT supports integration of any

1
Code available at: https://github.com/SAP/sprint
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Figure 2: RoBERTa architecturewith 𝑧 encoders, highlighting
non-linear layers and layers with matrix multiplications.

non-linear function approximation (App. D), to assess how each ap-

proximation impacts performance. This modularity allows SPRINT
to quickly adapt to new models and approximations. SPRINT in-

tegrates Poisson subsampling for DP fine-tuning, contrarily to a

common practice in the literature of replacing Poisson subsampling

with shuffling for computational efficiency [73], which degrades ef-

fective privacy guarantees by, e.g., over 4× for the MNLI dataset [3].

The rest of this work introduces preliminaries (Sec. 2), details

SPRINT’s design and challenges (Sec. 3), and presents our optimiza-

tions (Sec. 4). We then evaluate our approach (Sec. 5), review related

work (Sec. 6) and discuss limitations and future work (Sec. 7).

2 Preliminaries
Next, we define our notation, overview the transformer architecture

and fine-tuning, and introduce MPC and DP.

Notation. Upper case bold letters, e.g., X ∈ R𝑎×𝑏
, denote a

matrix of 𝑎×𝑏 real values. For indices (𝑖, 𝑗), X𝑖 = x ∈ R𝑏
represents

the 𝑖-th row vector, and X𝑖, 𝑗 = x𝑗 = 𝑥 ∈ R is a scalar. An ML model

M is defined by its parameters 𝜃 and architecture M𝐴
, where

M𝐴
encapsulates the algorithmic description of how parameters

𝜃 and inputs X are processed to output classifier logits Y. Model

parameters 𝜃 include weightsW and biases b for each layer inM𝐴
.

Dataset 𝐷 contains 𝑁 samples (X𝑖 ,Y𝑖 ), and batch B has size 𝐵.

2.1 Transformers
Transformers [65] are widely used in NLP tasks, e.g., text classi-

fication, question answering. We focus on RoBERTa, a variant of

BERT [13], for sequence classification, as DP related works [41,

54, 70]. RoBERTa consists of a stack of 𝑧 = 12 Encoder that pro-
cess an input sequence and output hidden states. Each Encoder
contains a multi-head self-attention mechanism (Attention) and a

feed-forward neural network (FFN). The Classifier processes the
last encoder’s output to output logits for the labels. Next, we detail

on the main components of the RoBERTa architecture in Fig. 2.

Embedding. The input text is tokenized andmapped to a contin-

uous space via the Embedding layer implemented as lookup tables

of size 𝑁𝑉 × 𝑑 , where 𝑁𝑉 = 50625 (vocabulary size) and 𝑑 = 768

(model dimension). Token embeddings Xtok ∈ R𝑚×𝑑
are summed

with positional embeddings Xpos ∈ R𝑚×𝑑
to encode position in the

sequence (𝑚 = 128). Then, the output is normalized via LayerNorm.

LayerNorm. LayerNorm ensures numerical stability by normal-

izing across all the features in the hidden states (or input sequence).
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For a row vector x ∈ R𝑑
, weightsW and bias b:

LayerNorm(x) = x − 𝜇 (x)√︁
𝜈 (x)

W + b, (1)

where 𝜇 (x) and 𝜈 (x) are the mean and variance of the input.

Attention. Attention captures the relationships between words

in a sequence byweighting their importance. Each input is projected

into query (Q ∈ R𝑚×𝑑′
), key (K ∈ R𝑚×𝑑′

), and value (V ∈ R𝑚×𝑑′
)

matrices. Here 𝑑 ′ = 𝑑/𝐻 , where 𝐻 = 12 is the number of attentions

heads. Each head processes a distinct subset of Q, K, and V in

parallel. The intermediate attention scores are computed as:

Attention(Q,K,V) = Softmax(Q · K
𝑇

√
𝑑 ′
) · V,

where Softmax is applied row-wise, i.e., for each row x ∈ R𝑚
:

Softmax(x) = 𝑒x∑𝑚
𝑗=1

𝑒x𝑗
. (2)

Outputs from all heads are concatenated, passed through a linear

layer (LinearAtt), and normalized.

FFN. The FFN applies two Linear layers with a GeLU activation

to the Attention output X ∈ R𝑚×𝑑
. GeLU introduces non-linearity

and is applied element-wise to 𝑥 ∈ R:

GeLU(𝑥) = 1

2

𝑥 (1 + erf( 𝑥√
2

)), (3)

where erf(𝑥) = 2√
𝜋

∫ 𝑥

0
𝑒−𝑡

2

𝑑𝑡 is the error function [27].

Classifier. For sequence classification, the first output rowX𝑐𝑙
0
∈

R𝑑
from the last encoder is processed by two linear layers (Linearproj,

Linearclass) with Tanh activation to output logits for 𝑙 labels.

2.2 Fine-Tuning
LLMs are pre-trained on large amounts of public data to learn

general language representations. However, pre-trained models

may not perform well on specific tasks. Fine-tuning is a stan-

dard approach to adapt a large, pre-trained model (e.g., RoBERTa)

to a downstream, specific task (e.g., sentiment analysis) using a

smaller, task-specific dataset. This approach is particularly relevant

in privacy-sensitive scenarios, where data is scarce, and the public

model needs to be adapted to a specific task on private data.

Low-Rank Adaptation (LoRA). LoRA [28] is a parameter-

efficient fine-tuning technique that reduces the number of trainable

parameters and computational cost. LoRA decomposes the weight

matrix W0 ∈ R𝑑×𝑘
of a linear layer into two low-rank matrices

A ∈ R𝑟×𝑘
and B ∈ R𝑑×𝑟

, where 𝑟 is the rank. For an inputX ∈ R𝑚×𝑑
,

the output Y ∈ R𝑚×𝑘
of the linear layer is computed as follows:

Y = X ·W0 + X · (B · A)
𝛼

𝑟
, (4)

where 𝛼 is a scaling factor. During fine-tuning only A and B are

updated, where 𝑟 ≪ min(𝑑, 𝑘) reduces trainable parameters to e.g.,

≈ 1% of RoBERTa parameter with 𝑟 = 16.

2.3 Multi-Party Computation
Multi-Party Computation (MPC) is a cryptographic technique en-

abling multiple servers to jointly compute a function on private

inputs while keeping the inputs confidential; only the output is

revealed. We focus on the 2-out-of-2 secret sharing scheme (SS) of
CrypTen [36], where 2 servers 𝑆1, 𝑆2 perform the computation.

2
A 2-

out-of-2 scheme splits a secret into 2 shares via Shr and reconstructs
it from the shares via Rec. Shares are of two types: arithmetic suit-
able for operations like additions and multiplications (e.g., in linear

layers), and binary suitable for comparisons (e.g., in GeLU) [36].

Arithmetic Secret Sharing. Arithmetic secret sharing maps a

scalar value 𝑥 to shares Shr(𝑥) = (⟨𝑥⟩𝐴
1
, ⟨𝑥⟩𝐴

2
) such that the sum

of all shares is 𝑥 , i.e., Rec(⟨𝑥⟩𝐴
1
, ⟨𝑥⟩𝐴

2
) = ⟨𝑥⟩𝐴

1
+ ⟨𝑥⟩𝐴

2
= 𝑥 . Notably,

SPRINT relies on the fact that additions and multiplications with

public values can be executed on local shares, whereas multiplica-

tion of shares requires interaction between the servers. Specifically,

CrypTen leverages Beaver triples [5] requiring one round of in-

teraction. Before Shr, floating-point values (𝑥fl) are converted to

fixed-point (𝑥fx), where 𝑥fx = 𝑥fl ·2𝑓 rounded to integers, and 𝑓 is the
precision. Fixed-point arithmetic uses integers, reducing communi-

cation overhead in MPC, whereas floating-point requires handling

multiple shares (e.g., base and exponent) [19]. In SPRINT we set

𝑓 = 16 and the shares are mapped into a 64-bit field, i.e., Z
2

64 [36].

Binary Secret Sharing & Conversion. Binary secret sharing

maps each bit 𝑥𝑏 of 𝑥 to shares Shr(𝑥𝑏 ) = (⟨𝑥𝑏⟩𝐵1 , ⟨𝑥𝑏⟩𝐵2 ) in a binary

field Z2, such that Rec(⟨𝑥𝑏⟩𝐵) = ⟨𝑥𝑏⟩𝐵1 ⊕ ⟨𝑥𝑏⟩𝐵2 [36]. Transformers

require arithmetic and binary SS for linear and non-linear opera-

tions, respectively. For non-linear operations, arithmetic shares are

converted to binary shares (A2B), which after the computations,

are converted back to arithmetic shares (B2A) [36]. In A2B, each 𝑆𝑖
converts ⟨𝑥⟩𝐴𝑖 to binary shares ⟨𝑥⟩𝐵𝑖 via bit-wise decomposition. In

B2A, ⟨𝑥⟩𝐴𝑖 =
∑𝑛

𝑏=1
2
𝑏 ⟨𝑥𝑏⟩𝐵𝑖 , where 𝑛 is the bit-width [36].

2.4 Differential Privacy
DP is a formal privacy guarantee that the presence or absence of a

record in a dataset𝐷 does not significantly affect the outcome of any

function over 𝐷 . Formally, a randomized mechanismM satisfies

(𝜖, 𝛿)-DP if for any neighboring dataset 𝐷1, 𝐷2, for 𝜖 > 0, 𝛿 ≥ 0, and

for any subset S of possible outputs:

𝑃𝑟 [M(𝐷1) ∈ S] ≤ exp(𝜖) × 𝑃𝑟 [M(𝐷2) ∈ S] + 𝛿

Here, 𝜖 is the privacy budget and bounds the output variation of

M on 𝐷1, 𝐷2. Smaller 𝜖 indicates stronger privacy. Parameter 𝛿

represents the probability of breaking the privacy guarantee, typi-

cally set to 𝛿 ≪ 1/𝑁 , where 𝑁 is the dataset size. The neighboring

datasets 𝐷1 and 𝐷2 differ by a single record, i.e., 𝐷2 can be obtained

from 𝐷1 by adding or removing a record [17]. Notably, DP is im-

mune to post-processing, i.e., any data-independent transformation

of the output of an (𝜖, 𝛿)-DP mechanism does not reduce the pri-

vacy guarantees [17]. Furthermore, DP mechanisms are composable,
enabling tracking of privacy loss across training iterations. The pri-

vacy budget accumulates as multiple DP operations are performed,

requiring careful accounting to bound the overall privacy guarantee.

For tighter accounting, we employ the Rényi Differential Privacy

(RDP) [50] definition. RDP is parameterized by (𝛼, 𝜌) where 𝛼 > 1

is the Rényi order and 𝜌 ≥ 0 is the privacy parameter. RDP can be

converted to (𝜀, 𝛿)-DP using 𝜀 = 𝜌 + log( (𝛼−1)/𝛼 )−(log𝛿+log𝛼 )
𝛼−1

[4].

2
All SS operation are performed in a finite field, i.e., modulo a prime number, and we

omit the modulo for notational simplicity.
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DP in Machine Learning. To achieve DP guarantees in ML

training, stochastic gradient descent (SGD) is adapted into DP-

SGD [1] through two steps: (I) per-example gradient clipping Clip,
which bounds the sensitivity of the gradient g by clipping the 𝑙2-

norm to a fixed threshold C:

Clip𝐶 (g) = g ·min(1,𝐶/| |g| |2) = g ·min(1,𝐶/
√︃∑︁

𝑔𝑖 ∈gg
2

𝑖
),

and (II) noise addition, where Gaussian noise Ψ ∼ N(0, 𝜎2𝐶2) (with
𝜎 derived from 𝜖 , 𝛿 via [69]) is added to clipped gradients:

𝜃 (𝑡+1) = 𝜃 (𝑡 ) − 𝜂 (Clip𝐶 (g) + Ψ) .

The DP guarantee can be amplified by randomly subsampling a

batch of size 𝐵 for each iteration. Subsampling introduces uncer-

tainty for an adversary to infer the presence of a specific record in

the dataset. By applying Poisson subsampling (Alg. 6, App. C), each

sample is included with a probability 𝑞 = 𝐵/𝑁 , yielding a variable

batch size that follows a Poisson distribution with mean 𝐵. Subsam-

pling improves the privacy-accuracy trade-off amplifying the DP

guarantees for a given 𝜖 to (𝑂 (𝑞(exp(𝜖) − 1)),𝑂 (𝑞𝛿))-DP [1, 57].

DP for Transformers. Naively computing per-example gradi-

ent norms is memory-intensive and can be impractical for large

models like RoBERTa. To enable batched gradient computation,

we employ GhostClipping (Alg. 5), reducing memory and com-

putational overhead [41]. GhostClipping indirectly estimates per-

example gradient norms by computing the squared Frobenius norm

and decomposing the batch-level operations into matrix multiplica-

tions, avoiding the need to compute or store individual gradients

explicitly. GhostClipping achieves substantial memory savings (up

to 22× for GPT-2) without affecting accuracy or privacy [41]. For

more details, see Alg. 5 and App. B. Additionally, transformers train-

ing and fine-tuning often use adaptive optimizers, e.g., Adam [35],

which maintain moving averages of the gradient’s first and second

moments, i.e., its mean𝑚𝑡 and variance 𝑣𝑡 (Alg. 4), to enable adap-

tive learning rates and faster convergence. Adam is adapted into

DP-Adam by adding noise to the gradients as in DP-SGD [70].

3 SPRINT Design
Next, we introduce our problem setting and threat model, followed

by an overview of the challenges (Sec. 3.1) and high-level design of

SPRINT, which integrates DP fine-tuning with MPC inference for

LLMs (Sec. 3.2). Sec. 4 details the optimizations.

Problem Setting. In our scenario (Fig. 3) model owner MO
seeks to deploy a secure inference service for an LLM fine-tuned

on its sensitive data 𝐷FT. Our goal is threefold: (I) to guarantee

the privacy of 𝐷FT from the user 𝑈 of the service; (II) to ensure

model confidentiality from the MLaaS servers (MPC servers 𝑆1 and

𝑆2); and (III) to protect the confidentiality of the user’s query from

the servers. To combine these privacy guarantees, MO DP-fine-

tunes a public model,M𝐴
0
with parameters 𝜃0, on 𝐷FT. Then, MO

secret-shares DP fine-tuned parameters 𝜃DP across 𝑆1, 𝑆2. Finally,

𝑈 secret-shares the embeddings of its sample ⟨Xemb
𝑈
⟩ to securely

query the model and reconstruct the output ⟨Y𝑈 ⟩.
Threat Model. We consider two semi-honest, non-colluding

servers 𝑆1, 𝑆2, i.e., they follow the protocol but may try to infer

private information from their view of the protocol execution.

AdaptModel
Alg. 1

DPFinetune
Alg. 2

M𝐴
0

𝜃0

𝐷FT

MPCfyModel
Alg. 3

𝑆1

𝑆2

M𝐴
MPC

, {𝜃0, ⟨𝜃DP ⟩1 }

Model owner MOModel owner MO

AdaptModel
Alg. 1

DPFinetune
Alg. 2

M𝐴
0

𝜃0

𝐷FT

MPCfyModel
Alg. 3

𝑈MPCM𝐴
FT

M𝐴
FT

{𝜃0, 𝜃DP }

M𝐴
MPC

, {𝜃0, ⟨𝜃DP ⟩1 }

M𝐴
MPC

, {𝜃0, ⟨𝜃DP ⟩2 }

⟨Xemb
𝑈
⟩1

⟨Y𝑈 ⟩1

⟨Y𝑈 ⟩2

⟨Xemb
𝑈
⟩2

(I) Fine-Tuning Inference (II)

Figure 3: Overview of MPC-aware DP fine-tuning and MPC
inference. Model ownerMO prepares the model (AdaptModel)
and fine-tunes it (DPFinetune). Before inference,MO converts
themodel to anMPC version (MPCfyModel) and secret-shares
the DP fine-tuned parameters 𝜃DP to servers 𝑆1, 𝑆2. The user𝑈
secret-shares the embeddings of its data 𝐷INF to the servers,
which execute MPC inference and return the result.

The semi-honest assumption is standard in private inference lit-

erature [2, 15, 23, 38, 47, 54] as it balances security and perfor-

mance [54], and is used in real-world applications. For instance,

Firefox [18] privately collects telemetry data via two independent,

semi-honest servers. Some protocols require precomputed crypto-

graphic material, i.e., multiplication triples [5]. We follow [31, 36]

and assume a trusted dealer provides necessary cryptographic ma-

terials during an offline preprocessing phase.

3.1 Design Challenges
Next, we outline the challenges arising from combining DP fine-

tuning and MPC inference.

Accuracy degradation from DP noise and MPC limited
precision. Key challenges when integrating DP fine-tuning and

MPC inference for transformer-based models include: (I) mitigating

accuracy degradation from both DP-induced noise and the limited

precision inherent in MPC approximations; and (II) minimizing the

accuracy gap between cleartext training and MPC inference while

improving performance. DP noise degrades model accuracy, espe-

cially in large models like RoBERTa (125M parameters), as noise

typically scales with number of parameters [41]. Furthermore, the

limited precision of fixed-point arithmetic impacts accuracy, in-

troducing approximation errors not only during the conversion of

weights from floating-point to fixed-point but also in the approxi-

mations of non-linear functions (e.g., GeLU). Consequently, naively
performing MPC inference on DP fine-tuned models can lead to

accuracy degradation (Sec. 4.2). To address these issues, SPRINT
integrates targeted strategies. First, to minimize the impact of DP

noise on accuracy SPRINT employs parameter-efficient fine-tuning

(PEFT) such as FALoRA (Sec. 4.1). Second, SPRINT implements an

MPC-aware fine-tuning process (Sec. 3.2); this involves using the

same non-linear function approximations during DP fine-tuning

and MPC inference. This approach allows the model to learn and

adapt to specific approximations, thereby reducing the accuracy gap

between cleartext fine-tuning and MPC inference (Sec. 5). Further-

more, we carefully select non-linear approximations balancing their

inherent approximation error and cryptographic overhead (Sec. 4.2).

138



SPRINT : Scalable Secure & Differentially Private Inference for Transformers Proceedings on Privacy Enhancing Technologies 2026(1)

Scalability in MPC Inference. Achieving scalable MPC infer-

ence for transformers presents two primary challenges: (I) man-

aging the high computation and communication overhead from

high-dimensional matrix multiplications in Linear layers; and (II)

ensuring the numerical stability of MPC inference across diverse

and wide input ranges. Transformer-based models can be very large

and require high-dimensional matrix multiplications. For example,

in RoBERTa, Linear layers in Attention have size 768 × 768. For

non-optimized inference, a single sample in MPC requires 1.4 GB

communication for Linear layers (Tab. 4, Sec. 5.2). Thus, optimizing

Linear layers is crucial to reduce the communication overhead. No-

tably, MPC protocols for Linear layer can be optimized indirectly

by keeping public, non-trainable parameters in cleartext, allowing

local, i.e., interaction free, matrix multiplications between secret

shared inputs and cleartext parameters (Sec. 4.2). Furthermore,

scaling to larger datasets and models requires the MPC protocol,

especially non-linear function approximations, to be numerically

stable for a wider input range. Fixed-point arithmetic is prone to

numerical errors, e.g., underflow/overflow, modulo wrap-around,

and truncation errors. These errors are difficult to detect in multi-

party settings as no single server has full visibility of intermediate

computations [36]. Defining a stable and accurate approximation

for a wide input range requires more communication and compu-

tation overhead, which can be a bottleneck in MPC inference. For

example, the inverse square root for LayerNorm in CrypTen [36]

is stable only for a limited input range, i.e., it causes overflow for

input with absolute values larger than 330, and by getting closer

to this threshold the mean squared error increases significantly

(Sec. 4.2). While more stable approximations negatively impact per-

formance, they also reduce the gap between the MPC and cleartext

inference accuracy. We not only propose stable approximations for

Softmax, LayerNorm, and GeLU [54], but also target measures to

ensure numerical stability across the model, such as logits capping

which bounds the input to the Softmax reducing the risk of over-

flow during MPC inference, and modifying the attention masking

for padding to values which do not cause numerical issues (Sec. 4.2).

3.2 System Design
Our solution addresses the dual challenge of minimizing the accu-

racy loss due to DP noise and MPC approximations while enabling

efficient MPC inference for transformer-based models. Fig. 3 shows

SPRINT’s system architecture in its two phases: (I) DP fine-tuning

performed byMO, and (II) MPC inference involving 𝑆1, 𝑆2, and𝑈 . In

the fine-tuning phase, we address the challenges of MPC inference

and DP fine-tuning (Sec. 3.1) in three steps, summarized here and

detailed in the following paragraphs. Specifically, we: (a) adapt the

pre-trained model for MPC-aware fine-tuning (AdaptModel, Alg. 1),
(b) perform DP fine-tuning on the adapted model (DPFinetune,
Alg. 2), and (c) convert the fine-tuned model functions (i.e., matrix

multiplications and non-linear functions) into MPC-compatible

protocols for inference (MPCfyModel, Alg. 3).

AdaptModel for MPC-aware fine-tuning. The pretrained

modelM𝐴
0
is not optimized for MPC inference. Specifically, it re-

lies on non-linear functions, i.e., Softmax, GeLU, and LayerNorm,

which lead to accuracy degradation and numerical issues. Further-

more, the high dimensionality of the model parameters makes DP

Input: Public pretrained modelM𝐴
0
, capping threshold K, LoRA params 𝑟, 𝛼 .

Output:MPC-aware cleartext modelM𝐴
FT

for DPFinetune.
Function AdaptModel(M𝐴

0 , 𝑟 , 𝛼,K):
foreach Encoder ∈ M𝐴

0 do
/* Apply FALoRA */

A,B← Initialize Lora Matrices // Sec. 5.1

Linear(𝑥 ) ← Linear(𝑥 ) + 𝑥 · (B · A) 𝛼
𝑟
// Sec. 4.1

/* Apply MPC-Aware approximations Sec. 4.2 */

Softmax(𝑥 ) ← Softmax(SoftCap(𝑥,K) ) // Cap logits

GeLU(𝑥 ) ← GeLUMPC (𝑥 ) // Replace GeLU Eq. (3)

Embedding(𝑥 ) ← SoftCap(Embedding(𝑥 ) )// Sec. 4.2

M𝐴
FT
← M𝐴

0
with added Classifier // Add classifier

returnM𝐴
FT

Algorithm 1: MO adapts cleartext modelM𝐴
0
for the MPC-

aware DP fine-tuning.

Input: MPC-aware cleartext modelM𝐴
FT
, with parameters 𝜃0 , fine-tuning

data 𝐷FT of size 𝑁 , batch size 𝐵, epochs 𝐸.

Output: Finetuned parameters 𝜃DP .

Function DPFinetune(M𝐴
FT, 𝜃0, 𝐷FT, 𝐵, 𝑁 , 𝐸):

/* Freeze Embedding, non-LoRA parameters in Attention, and

LoRA A matrices (Sec. 4.1) */

𝜃
(0)
DP
← 𝜃0 // Initialize trainable parameters

for 𝑡 = 1, . . . , 𝐸 do
/* Sample random batch with probability 𝑃 */

B ← PoissonSampling(𝑃 = 𝐵/𝑁 ) // Alg. 6, App. C

L(𝜃 (𝑡−1)
DP

, B) ← Loss(M𝐴
FT
(𝜃 (𝑡−1)

DP
, 𝜃0;XB ),YB )

/* Compute per-example clipped gradients */

𝐺 = GhostClipping(L(𝜃 (𝑡−1)
DP

, B), B)// Alg. 5, App. B

/* Add noise and update model parameters */

𝜃
(𝑡 )
DP

= DPAdamBC(𝐺, 𝑡, 𝜃
(𝑡−1)
DP

) // Alg. 4

return 𝜃
(𝑡 )
DP

Algorithm 2: MO runsMPC-aware DP fine-tuning on cleartext

modelM𝐴
FT

for a given loss function Loss(·).

fine-tuning and MPC inference computationally expensive. To ad-

dress these challenges, AdaptModel (Alg. 1) adapts the pretrained
model architectureM𝐴

0
(Fig. 2) to be MPC-aware. Specifically, MO

first applies LoRA to the Linear layers in the Encoder to reduce

the number of trainable parameters, and minimize the impact of

DP noise during fine-tuning (Sec. 4.1). The LoRA A matrices are

initialized to maximize accuracy during fine-tuning (App. F.2). Sec-

ond, MO applies SoftCap to limit the input range of Softmax, and
the embeddings output, to prevent numerical issues in inference

(Sec. 4.2). Third, MO replaces GeLU with a cleartext version of the

MPC approximation GeLUMPC [54] to be MPC-compatible and im-

prove the MPC inference accuracy (Sec. 4.2). Finally, MO adds the

Classifier to create the MPC-aware model for fine-tuningM𝐴
FT
.

DPFinetune. DP fine-tuning introduces noise into model up-

dates, which can degrade model accuracy. Additionally, DP fine-

tuning typically requires per-example clipping and noise sampling,

which increases memory and computation costs. To address these

challenges, DPFinetune (Alg. 2) minimizes the impact of DP noise

via DP-specific techniques (Sec. 4.1), and optimizes fine-tuning

performance with batched gradient clipping (Sec. 4.1). Specifically,

before fine-tuning, MO freezes Embedding, non-LoRA parameters,

and LoRA Amatrices (𝜃0 in Alg. 2), and trains from scratch LoRA B
matrices as well as the two linear layers in the Classifier (with pa-

rameters 𝜃DP). For each fine-tuning iteration, MO first sub-samples

a set of training examples B with probability 𝑃 = 𝐵/𝑁 via Poisson
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Input: MPC-aware DP fine-tuned modelM𝐴
FT
, with fine-tuned and frozen

parameters 𝜃DP and 𝜃0 , respectively.

Output:MPC modelM𝐴
MPC

, shares of parameters ⟨𝜃DP ⟩1 , ⟨𝜃DP ⟩2 .
FunctionMPCfyModel(M𝐴

FT, 𝜃DP, 𝜃0):
/* Apply MPC approximations from Sec. 4.2 */

foreach Encoder ∈ M𝐴
FT do // For each Encoder

/* Replace Softmax and add logits capping */

Softmax(𝑥 ) ← SoftmaxK(SoftCap(𝑥,K) )// Alg. 8-9, App. E

GeLU(𝑥 ) ← GeLUMPC (𝑥 ) // Alg. 10, App. E

LayerNorm(𝑥 ) ← LayerNormMPC (𝑥 ) // Alg. 11, App. E

M𝐴
MPC
← Replace cleartext functions with MPC protocols in modelM𝐴

FT

with Embedding layer removed

⟨𝜃DP ⟩1, ⟨𝜃DP ⟩2 ← Shr(𝜃DP )
returnM𝐴

MPC, ⟨𝜃DP ⟩1, ⟨𝜃DP ⟩2

Algorithm 3: MO transforms the cleartext functionsM𝐴
FT

to

MPC protocolsM𝐴
MPC

, and shares parameters 𝜃DP.

subsampling (PoissonSampling in Alg. 6, App. C). Second,MO com-

putes gradients and clips per-example gradients via GhostClipping
(Alg. 5, App. B).GhostClipping enables batched computation of per-

example gradient norms, reducing the overhead of DP fine-tuning

computing the Frobenius norm | · |𝐹 from activations and gradients.

Third, MO updates the model parameters 𝜃DP using the DP-noise

aware optimizer DPAdamBC (Alg. 4, Sec. 4.1), which corrects the

gradient updates to account for the DP noise.

MPCfyModel for MPC Inference. To enable efficient MPC

inference,MPCfyModel (Alg. 3) replaces cleartext functions with
optimized MPC protocols (Sec. 4.2) to balance accuracy and cryp-

tographic overhead. Specifically, in MPCfyModel, MO first ap-

plies SoftCap to the Softmax input, and replaces non-linear lay-

ers Softmax, GeLU, and LayerNorm with MPC approximations

SoftmaxK, GeLUMPC, and LayerNormMPC (Sec. 4.2). Second, MO
builds anMPCmodelM𝐴

MPC
from clearmodelM𝐴

FT
, replacing cleart-

ext functions withMPC protocols.MO also removes the Embedding
layer, since they are computed locally by𝑈 to reduce MPC overhead.

Third, MO secret-shares the fine-tuned parameters 𝜃DP between

servers 𝑆1, 𝑆2, ensuring 𝜃DP confidentiality.

MPC Inference. M𝐴
MPC

defines the MPC inference protocol,

i.e., how servers 𝑆1, 𝑆2 interact to securely process the secret-shared

parameters and user input to compute the model output. During in-

ference (Alg. 3), user𝑈 locally computes the embeddings of their pri-

vate input X𝑈 via the publicly available and unchanged Embedding
layer. 𝑈 secret-shares the computed embedding with the servers

to query the model. The servers perform MPC inference applying

M𝐴
MPC

on ⟨𝜃DP⟩ and 𝜃0, and return the secret-shared result to𝑈 .

Next, we formalize our optimizations (Sec. 4), and present a

comprehensive evaluation of SPRINT (Sec. 5).

4 SPRINT Optimizations
Naively applying DP fine-tuning andMPC inference to transformer-

based models results in significant accuracy and performance degra-

dation. DP fine-tuning suffers due toDP noise.MPC inference incurs

accuracy loss and high computational and communication costs due

to non-linear function approximations (e.g., GeLU, Softmax), nu-
merical errors from fixed-point arithmetic, and large secret shared

matrix multiplications. To reduce performance overhead and pre-

serve high accuracy we integrate MPC, DP, and ML techniques.

FALoRALinear

+

Pre-trained

Weight

W0 ∈ R𝑛×𝑘

Input

𝑋 ∈ R𝑚×𝑛

B ∈ R𝑟×𝑘A ∈ R𝑛×𝑟
𝛼

Figure 4: FALoRA in Linear layer. Blue blocks are frozen during
fine-tuning ({W0,A} ∈ 𝜃0, in clear during inference), while
red blocks are secret-shared during inference (B ∈ 𝜃DP).

4.1 MPC-aware DP Fine-tuning Optimizations
Next, we detail two optimizations for DP fine-tuning: FALoRA to

reduce trainable parameters and DP-Adam Bias-Correction to im-

prove optimizer performance under DP.

Reducing trainable parameters with FALoRA. To reduce

the number of trainable parameters, improve performance dur-

ing MPC inference (Sec. 4.2) and reduce the impact of DP noise

during fine-tuning, we freeze the Embedding layer and perform

parameter-efficient fine-tuning with FALoRA which freezes LoRA’s
A matrix. Previous works in non-DP context [72] and DP federated

learning [61] have shown that freezing the A matrix (thus further

reducing the number of trainable parameters compared to LoRA)
improves fine-tuning performance while maintaining high accu-

racy. From a theoretical perspective, the DP noise Ψ𝐴 , Ψ𝐵 in LoRA
updates the weights as follows (omitting gradient notation):

W0 + (B + Ψ𝐵) (A + Ψ𝐴) =W0 + BA + Ψ𝐵A + BΨ𝐴 + Ψ𝐵Ψ𝐴 .

Here, the quadratic noise term Ψ𝐵Ψ𝐴 no longer follows a Gaussian

distribution, which can degrade model performance. By freezing

A, the quadratic noise term is removed obtaining the desired per-

layer noise variance from Ψ𝐵 [61]. While FALoRA offers theoretical

advantages in reducing the noise amplification, and improves the

accuracy in previous works, our preliminary experiments revealed

that FALoRA alone performs worse than state-of-the-art LoRA [70]

(Tab. 7, App. A). This could be due to the MPC-aware fine-tuning,

where the model may struggle to adapt to the non-linear approxima-

tions with such a small number of trainable parameters. However,

FALoRA is still beneficial for reducing the number of trainable

parameters and improving performance during MPC inference

(Sec. 4.2). To overcome this accuracy drop, we propose to combine

FALoRA with a DP-specific optimizer, DPAdamBC [62], which cor-

rects the bias introduced in the second moment 𝑣𝑡 of Adam, and

improves convergence, which is discussed below in detail. Notably,

since A is not updated, its initialization directly affects accuracy;

we therefore evaluate several initialization techniques in App. F.2.

DP-Adam Bias-Correction. Naively adapting Adam to DP by

adding noise to the gradients leads to a biased second moment 𝑣𝑡
due to the variance of the DP Gaussian noise 𝜎2𝐶2

[62]. This bias

makes DP-Adam behave more like DP-SGD (Sec. 2.4), losing con-

vergence benefits while consuming 3× the memory of DP-SGD [62].

DPAdamBC [62] corrects the bias in 𝑣𝑡 by a factor 𝜎2𝐶2/𝐵2
, retain-

ing convergence advantages of Adam [62]. The first moment𝑚𝑡 is

unbiased as the noise is zero-centered (App. A). In our experiments

on SST2, DPAdamBC shows, on average, about 2 pp higher accu-

racy than DPAdamW, confirming its effectiveness (Tab. 7, App. A).
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Input: Clipped gradients Ḡ, iteration 𝑡 , parameters 𝜃
(𝑡−1)
DP

, clipping

threshold𝐶 , noise variance 𝜎2
computed from 𝜖, 𝛿 via [69], stability

constant 𝛾 ′ , decay rates 𝛽1 , 𝛽2 , batch size 𝐵.

Output: Updated DP parameters 𝜃
(𝑡 )
DP

Function DPAdamBC(Ḡ, 𝑡 , 𝜃 (𝑡−1)
DP

):

g̃𝑡 = 1

𝐵

(∑
ḡ∈Ḡ ḡ +𝜓𝑡

)
with𝜓𝑡 ∼ N(0, 𝜎2𝐶2I𝑑 )

𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1 − 𝛽1 ) · g̃𝑡
𝑚̂𝑡 ←𝑚𝑡 /(1 − 𝛽𝑡

1
)

𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1 − 𝛽2 ) · g̃2

𝑡

𝑣𝑡 ← 𝑣𝑡 /(1 − 𝛽𝑡
2
)

𝜃
(𝑡 )
DP
← 𝜃

(𝑡−1)
DP

− 𝜂 · 𝑚̂𝑡 /
√︃

max(𝑣𝑡 − (𝝈𝑪/𝑩)2, 𝛾 ′ )
return 𝜃

(𝑡 )
DP

Algorithm4:DPAdamBC step 𝑡 from [62], with bias-correction

term 𝜎𝐶/𝐵2
(𝑚0, 𝑣0 are initialized to zero).

4.2 MPC Inference Optimizations
Next, we detail optimizations to achieve scalable MPC inference

while maintaining accuracy comparable to cleartext. We introduce

enhancements for linear layers, mitigations for numerical instability

in MPC fixed-point arithmetic (e.g., SoftCap), and widely applicable
non-linear function approximations (e.g., for LayerNorm, Softmax).

Local Cleartext Computations. Typically, in non-private in-

ference, matrices A and B are merged into the layer weights W0,

otherwise the number of parameters for inference would increase

compared to the original model. However, in our setting where

LoRA matrices contain sensitive information from fine-tuning, the

weights matrices, merged with A and B, need to be secret-shared

during MPC inference, resulting in a significant performance over-

head. The optimization for Linear layer proposed by SPRINT is to

not merge the matrices A and B into the layer weightsW0. Keeping

LoRA matrices separated allows SPRINT to keep the large, frozen

parameters of the public pretrained model in cleartext. Fine-tuning

with FALoRA further enhances performance by freezing the ma-

trix A, i.e., no need for secret sharing as A is not data-dependent,

halving the number of secret-shared parameters compared to LoRA.
Consequently, after fine-tuning, the model ownerMO secret shares

only the matrix B and the Classifierweights to the servers 𝑆1,𝑆2. As

shown in Fig. 4 only the matrix B and the input to the Linear layer
are secret shared. This enables 𝑆1,𝑆2 to perform local matrix multi-

plications between secret-shared inputs and cleartext parameters

(as formalized in Alg. 7, App. E). More formally:

⟨Y⟩ = (⟨X⟩ · A) · ⟨B⟩ + ⟨X⟩ ·W0 .

Overall, FALoRA reduces the communication costs for Linear layers
by 70× compared to full fine-tuning and 10× compared to LoRA.
Also, FALoRA improves LAN runtime by 5× and 2× compared to

full fine-tuning and LoRA, respectively (Tab. 4, Sec. 5). Addition-

ally, since the Embedding layer is frozen, users 𝑈 can locally pre-

compute embeddings and secret-share them. This approach offloads

the computation of the embeddings from the MPC servers 𝑆1, 𝑆2.

Logits Capping. To improve numerical stability during infer-

ence, we apply logits capping to Softmax inputs in Attention layers.

Given input vector x and threshold K, the output is:

SoftCap(x,K) = K · Tanh(x/K) .

This method, employed in Gemma 2 models [63], helps the model

maintain more stable and effective learning dynamics by bounding

the Softmax inputs, while preserving the proportional relationships
between them via Tanh [63], as formalized in Alg. 8 (App. E). Addi-

tionally, we cap embeddings to bound the input range of the first

Encoder and minimize truncation errors from large matrix mul-

tiplications in Attention. Although capping enhances numerical

stability, it requires Tanh computation in MPC and a new hyper-

parameter to tune, i.e., K. In terms of runtime, SoftCap accounts

for 20% of the total MPC runtime, and 25% of the total communica-

tion cost (Tab. 3, Sec. 5.2). However, SoftCap enables our Softmax
optimization SoftmaxK, improving the overall runtime and commu-

nication cost compared to non-optimized SoftmaxMPC. Regarding

accuracy, a capping threshold K = 50 shows comparable accuracy to

non-capped fine-tuning (reducing at most by 0.1 pp) when applied

during inference only or also during fine-tuning (Tab. 11, App. F.4).

SoftCap-based SoftmaxApproximation.Computing a highly

accurate Softmax approximation in MPC is costly requiring ex-

ponentiation and division, which are also prone to numerical er-

rors. Existing MPC approximations, such as fully connected neural

networks [49], quadratic function [38], and ReLU-based approx-

imations [2, 51], do not achieve high accuracy in our evaluation

(App. D.1). For example, quadratic function approximation [38]

achieves accuracy close to random guessing. Most of these approxi-

mations are designed either for model distillation or training neural

networks, rather than fine-tuning LLMs, which may explain the

poor performance. To achieve accuracy comparable to the state of

the art while stabilizing Softmax, we first adopt a common trick

from MPC literature (SoftmaxMPC) [15, 23, 36, 47, 54]: normalizing

the input of the exponential function by subtracting the maximum

value for each of the input vectors x ∈ R𝑑
. The normalization en-

sures that the exponentiation is computed only for non-positive

values, preventing overflows. Additionally, we avoid computation

of the maximum since we already apply logits capping (SoftCap) to
the Softmax input, which constrains the input range to [−K,K]. We

set the maximum to K (as formalized in Alg. 8, App. E), resulting in:

SoftmaxK(x) = 𝑒x−K∑𝑑
𝑗=1

𝑒x𝑗 −K
.

SoftmaxK provides a reliable alternative, reducing runtime and

communication while maintaining accuracy. Specifically, compared

to SoftmaxMPC, SoftmaxK reduces communication by 10×, and is

up to 5× faster. Even when SoftCap is not strictly necessary for nu-

merical stability, it enables SoftmaxK, improving MPC performance.

In our evaluation, SoftCap with SoftmaxK reduces total runtime

and communication by ≈ 2× compared to SoftmaxMPC.

Modified Attention Masking. In Attention, padding tokens

are added to handle variable-length sequences in batched inputs.

To prevent padding tokens from affecting the model output, their

logits are typically masked with the smallest representable value.

After Softmax, the padding positions receive negligible scores, en-
suring only relevant input tokens contribute to the output. However,

this approach causes numerical errors during the computation of

Softmax, and Tanh (in SoftCap) in MPC. To address this issue, we

modify the padding mask by setting the minimum value to −200

which does not cause errors in the Softmax inverse computation.
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When SoftCap is applied, we further adjust the padding value by

scaling it with K to ensure stability for Tanh which works correctly

within [−250, 250]. This adjustment minimizes the influence of

padding tokens and ensures numerical stability (Sec. 5.2).

LayerNormApproximation. LayerNorm computes the inverse

square root of the variance (Eq.(1)). Rather than sequentially com-

puting the square root and reciprocal, we adapt the inverse square

root protocol InvSqrt [36], which enhances numerical stability (max-

imum absolute value of ≈ 330 vs. 220) and improves performance,

achieving a 3× speedup, and reducing communication cost by 3×.

LayerNormMPC (x) = (x − 𝜇 (x)) · InvSqrt(𝜈 (x, 𝜇 (x))) ·W0 + b0
Here, 𝜇 (x) and 𝜈 (x) are the mean and variance of the input tensor.

The variance is not computed from scratch but reusing the mean

result. However, large datasets, e.g., MNLI and QQP, present sam-

ples that when processed have variances exceeding the maximum

input range of InvSqrt. To address this, we scale the variance before
applying InvSqrt. Yet, the scaled InvSqrt performs poorly for inputs

below 1, resulting in ≈ 10 pp accuracy drop in MPC inference. To

minimize the approximation error, we implemented a piecewise

approximation of InvSqrt. Specifically, for inputs 𝑥 ∈ x lower than

a threshold 𝑇 , i.e., 𝑥 ≤ 𝑇 , we use the unscaled InvSqrt, while for
larger inputs, we apply the scaled variant with a scaling factor 𝛽 :

InvSqrtMPC (x) =
{
InvSqrt(𝑥) if 𝑥 ≤ 𝑇
InvSqrt(𝑥/𝛽) · 1/

√︁
𝛽 else

(5)

While the piecewise InvSqrtMPC increases InvSqrt communication

by 2%, rounds by 1.5×, and runtime by 1.5× in WAN settings due

to A2B and B2A conversions, it effectively extends the input range.

With a scaling factor 𝛽 = 10
3
and a threshold 𝑇 = 100, InvSqrtMPC

achieves an MSE of 1.9 × 10
−9

compared to 2 × 10
−4

for scaled

InvSqrt in the range (0, 10000] (evaluated over 10
6
evenly spaced

points), and 3.9 × 10
−6

compared to 2 in (0, 1]. We formalize the

LayerNormMPC MPC protocol in Alg. 11 (App. E).

GeLU Approximation. Computing the GeLU (Eq. (3)) in MPC

is challenging due to numerical instability of the erf function [36].

Specifically, CrypTen’s approximation for erf [36] becomes unstable

for inputs |𝑥 | > 5. We tested different alternatives, such as GeLU
that uses Tanh instead of erf [27], but it is numerically unstable for

|𝑥 | > 20. We evaluated with ReLU [49], a quadratic function [38],

and HardTanh [53] in place of Tanh to improve stability. However,

these methods showed poor performance, likely because they have

been primarily used for model distillation rather than direct train-

ing. We find that GeLU approximation from BOLT [54] (GeLUMPC)

offers the best accuracy-performance trade-off among the tested

alternatives. Despite being slower than the Tanh approximation, it

provides a more stable solution across any input range.GeLUMPC is

a piecewise approximation that combines a polynomial (polyGeLU)
around 0 with ReLU elsewhere, formalized as:

GeLUMPC (𝑥) =
{
ReLU(𝑥) if |𝑥 | > 2.7

polyGeLU else

(6)

Here, polyGeLU(𝑥) = (𝑃0 (𝑥) +𝑔0 |𝑥 | +𝑔3) · 𝑃0 (𝑥) +𝑔4 + 0.5𝑥 , with

𝑃0 (𝑥) = (𝑔0 |𝑥 |+𝑔1)·|𝑥 |+𝑔2. In the range [−2.7, 2.7] whereGeLUMPC

approximates the non-linearity of the GeLU compared to ReLU,
polyGeLU achieves a floating-point error of 9.77×10

−4
for inputs in

[−5, 5] [54]. To optimize GeLUMPC implementation in CrypTen, we

addressed the inefficiency of computing |𝑥 | which requires costly

A2B and subsequent B2A conversions. We pre-compute |𝑥 | and
use its value in both polyGeLU and ReLU. Specifically, we modify

the CrypTen implementation by computing ReLU as ReLU(𝑥) =
(𝑥 + |𝑥 |)/2, instead of ReLU(𝑥) = 𝑥 · sign(𝑥). This saves one A2B
and B2A conversion, as |𝑥 | is computed only once. We formalize

the GeLUMPC MPC protocol in Alg. 10 (App. E).

Security of SPRINT. SPRINT inherits its security guarantees

from the underlying CrypTen framework. Specifically, CrypTen

protocols are secure against information leakage from any static

passive adversary corrupting up to |𝑃 | − 1 of the |𝑃 | parties in-
volved in the computation [36, Lemma 1]. The primitives used by

CrypTen are detailed in [36, Tab. 2, App. D], with security proofs

for arithmetic multiplication [6, Thm. 1], binary AND operations

[12, Sec. III.B], A2B conversions [11, Sec. 3], B2A conversions and

truncation protocols [36, App. 1.2, App. A.1.1]. We prove the se-

curity of SPRINT in the semi-honest model using the simulation

paradigm [21] (App. E). We provide formal security proofs for each

novel protocol introduced in SPRINT (Tab. 8) in App. E. The security
of SPRINT follows from the sequential composition theorem [8].

5 Experiments
This section provides a comprehensive evaluation of SPRINT, struc-
tured in two phases (as in Fig. 3): (I) MPC-aware DP fine-tuning

(Sec. 5.1) to evaluate the cleartext accuracy (onM𝐴
FT
), and (II) MPC

inference (Sec. 5.2) to evaluate inference runtime, communication

cost and the accuracy of the MPC model (M𝐴
MPC

). We split the

evaluation to isolate the impact of DP fine-tuning and MPC in-

ference on final accuracy (Tab. 6). Notably, SPRINT is the first

end-to-end framework for both DP fine-tuning and MPC inference.

We compare the DP fine-tuning accuracy with works covering only

DP fine-tuning [41, 70], and the MPC inference performance with

works performing only MPC inference (with non-DP fine-tuning)

[31, 45, 54]. First, we introducemodel and datasets and then describe

the frameworks used for DP fine-tuning and MPC inference.

Model and Datasets. We fine-tune the RoBERTa-base [44]

model on GLUE benchmark tasks [66] with over 10k training ex-

amples, i.e., SST2 (67.3k examples), QNLI (105k), MNLI (393k), and

QQP (364k), following DP fine-tuning baselines [41, 70].

Frameworks. We implement DP fine-tuning with PyTorch [56]

due to its flexibility and large availability of pre-trained models. We

use Opacus [69] for Poisson subsampling, Gaussian noise sampling

and DP accounting, and integrate it with the PrivateTransformers

library [41] to support GhostClipping [41]. For MPC inference, we

use CrypTen [36] since it has PyTorch-like APIs and data structures.

5.1 MPC-Aware DP Fine-Tuning
Next, we evaluate the cleartext accuracy of MPC-aware DP fine-

tuning (onM𝐴
FT
) and provide details on our hyperparameter search.

State-of-the-Art Baselines. Several works [7, 41, 68, 70] ex-
plore DP fine-tuning for RoBERTa or BERT models. Among these,

we use as baselines the two works achieving the highest accuracy:

Yu et al. [70] fine-tune the full RoBERTa model, while Li et al. [41]

apply various parameter efficient fine-tuning techniques, including
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LoRA. However, none uses DP-specific optimizers. Furthermore,

they do not employ theoretically sound Poisson subsampling, using

shuffling instead, which can impact formal DP guarantees [3].

Privacy Accounting. We use Gaussian noise Ψ ∼ N(0, 𝜎2𝐶2)
and set 𝜖 = 8 and 𝛿 ≈ 0.1/|𝐷FT | as typical in related works [41, 70].

Specifically, 𝛿 = 1 × 10
−5

for SST2 and QNLI, and 𝛿 = 1 × 10
−6

for

MNLI and QQP. We track the privacy budget across epochs using

the Rényi Differential Privacy (RDP) [50] accounting tool provided

by Opacus [69]. The noise variance 𝜎2
for each training step is

numerically computed by Opacus from 𝜖 , 𝛿 , the sampling rate 𝑞,

the batch size 𝐵, and the number of training epochs 𝐸.

Hyperparameters Discussion. To achieve the best accuracy,
we explore a comprehensive set of hyperparameters, including not

only ML parameters, but also DP parameters (e.g., C), SoftCap K,
and FALoRA A initialization. We report the set of hyperparameters

tested for each dataset in Tab. 9 (App. F.1). Due to the large number

of hyperparameters, and the high resources needed to test different

MPC approximations, we set a compute-bound of 10 epochs. In

DP fine-tuning, small batch sizes (e.g., 𝐵 = 128) with small learn-

ing rates (e.g., 𝜂 = 5 × 10
−5
) perform considerably worse than in

non-DP fine-tuning, since the DP noise scales with 1/𝐵 [41]. Hence,

we test large batch sizes (i.e., 𝐵 ∈ {1024, 2048}) for Poisson sub-

sampling to reduce the effective noise in gradient updates [41, 57].

Similar to [41], we found that 𝐵 = 2048 consistently performs bet-

ter across all learning rates by reducing noise variance, despite

less frequent parameter updates. We test different learning rates
𝜂 and weigh decay from related works [41, 70]. SPRINT performs

best with higher 𝜂 = 5 × 10
−4

for smaller datasets (SST2, QNLI) to

compensate for fewer samples per epoch, and smaller 𝜂 = 5 × 10
−5

for larger datasets (MNLI, QQP). A small weight decay of 0.001

performs best across all dataset. The clipping threshold C is criti-

cal in balancing gradient magnitude and noise variance. From our

experiments, 𝐶 = 1 performs best across all tested learning rates

and datasets, providing an optimal balance between noise vari-

ance and gradient updates magnitude. A larger threshold 𝐶 = 10

(as in [70]) performs better with low 𝜂 = 5 × 10
−5

but does not

achieve the best accuracy, likely due to excessive noise variance

preventing optimal convergence [41]. Instead, a smaller 𝐶 = 0.1

(as in [41]), which clips almost all gradients, performs well with

higher learning rates (𝜂 > 1 × 10
−4
), achieving 3 pp lower accu-

racy than the best values (Tab. 1). This may stem from FALoRA
updating only ≈ 0.5% of parameters, requiring larger updates to

converge. For FALoRA, the optimal setup varies by dataset. We eval-

uate applying LoRA to different set of Linear layers, with different

ranks (𝑟 = {8, 16, 32}) setting 𝛼 = {𝑟, 2𝑟 } following LoRA litera-

ture [28, 61, 70]. For all datasets, applying FALoRA to all Linear
layers yields the best results, except for QNLI, where restricting

FALoRA to LinearQ, LinearV, and LinearAtt is more effective. The

best rank is 𝑟 = 16, with 𝛼 = 16 for SST2, QNLI, and 𝛼 = 32 for

MNLI, QQP, indicating that larger datasets benefit from a higher 𝛼 .

Since matrix A is not updated during fine-tuning, its initialization

impacts final accuracy. We evaluate different initialization methods

(detailed in App. F.2) expanding on the research direction proposed

by FFA-LoRA [61]. We find that the best initialization is dataset-

dependent. For example, Kaiming performs best on SST2, while

Orthogonal is better on QNLI. We test also the effect of different

DP fine-tuning type (𝜖 = 8) SST2 MNLI QNLI QQP

Full [41] 92.1 83.2 87.9 86.1

LoRA [70] 92.2 83.5 87.3 85.7

SPRINT 92.2 78.6 85.2 82.7

SPRINT (KFT = 50) 92.3 78.6 84.8 82.7

SPRINT (KFT = 10) 90.7 77.2 81.5 81.3

Table 1: Cleartext accuracy (in %) on GLUE with RoBERTa.

capping thresholds KFT in fine-tuning: KFT = 50 following [63], and

KFT = 10 to reduce the probability of numerical error in inference.

Consistent with Gemma [63], KFT = 50 generally preserves model

accuracy. Contrarily, a smaller KFT = 10 leads to an accuracy drop

of, e.g., up to 3.7 pp compared to non-capped training on QNLI.

Fine-Tuning Accuracy.We evaluate the fine-tuning accuracy

using DPAdamBC and DPAdamW on the SST2 dataset across dif-

ferent capping thresholds (Tab. 7, App. A). Our results show that

DPAdamBC consistently outperforms DPAdamW in accuracy for

any capping threshold, with an average of ≈ 2 pp accuracy improve-

ment confirming its effectiveness in DP fine-tuning. Tab. 1 compares

the cleartext accuracy (onM𝐴
FT
) with related works [7, 41], and ap-

plying different capping thresholds in fine-tuning (KFT). Compared

to DP baselines, i.e., full fine-tuning [41] and LoRA [70], SPRINT is

more parameter-efficient, using only 50% of LoRA parameters and

0.52% of the parameters for full fine-tuning. Despite training fewer

parameters and leveraging MPC-aware approximations, SPRINT
fine-tuning achieves comparable accuracy on the SST2 dataset.

On average, SPRINT achieves accuracy within 2.5 pp compared to

LoRA [70], with at most 5 pp accuracy drop on MNLI (Tab. 1). The

accuracy drop may stem from the compute-bound constraint of

10 epochs, since Tab. 1 shows that the accuracy gap widens with

increasing dataset size and larger datasets generally need more

iterations for convergence. Notably, the accuracy drop is not due to

Poisson subsampling, as it performs similarly to shuffling; e.g., on

MNLI, Poisson achieves 0.2 pp higher accuracy. Similarly, the MPC

approximation integrated during fine-tuning do not significantly

impact accuracy due to their integration in fine-tuning.

Finally, to assess practical deployment we evaluate the impact of

random seeds on accuracy across different LoRA A initializations

(App. F.3). Tab. 10 (App. F.3) shows that fixed-seed accuracy can be

misleading, with up to 1.1 pp variation between fixed and random

seeds on SST2. However, with random seeds, most initialization

techniques achieve similar performance within a 0.4 pp range.

5.2 MPC Inference
Here, we evaluate and compare SPRINT’s inference runtime and

communication with state-of-the-art MPC inference works. We

also evaluate GPU acceleration and batched inference. Finally, we

evaluate the accuracy drop from the cleartext evaluation (Tab. 1,

Sec. 5.1) due to MPC approximations, and perform ablation studies

on the impact of MPC-aware fine-tuning on model accuracy.

Evaluation Setup. We evaluate latency and communication

cost with 2 AWS c6.xlarge machines (as BOLT [54]). We simulate

network conditions via Linux traffic control in 3 scenarios: LAN

(3Gbps bandwidth, 0.8ms delay), regional WANR (200Mbps, 40ms),

and global WANG (100Mbps, 80ms). Communication is measured in

bytes exchanged and number of rounds. All reported numbers are

averaged over 10 runs. Following DP fine-tuning works (Sec. 5.1),
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Framework Runtime (s) Communication
LAN WANR WANG GB Rounds

Iron [24] 475.0 6453.0 12996.0 280.99 13663

BOLT [54] 91.0 913.0 1744.0 25.74 10901

BumbleBee [45] 135.8 650.7 1161.8 6.81 -

SHAFT [31] 51.2 385.6 736.1 10.46 1495

SPRINT 32.6 310.8 613.4 6.55 1813

Table 2: End-to-end runtime and communication for
RoBERTa MPC inference.

we fine-tune and perform MPC inference on RoBERTa [44] instead

of BERT used in MPC inference works [24, 31, 45, 54]. However,

the two models share the same architecture and number of param-

eters, the important aspects to evaluate MPC inference.
3
For the

GPU evaluations (Tab. 5), we use 2 AWS g5.xlarge instances with 1

NVIDIA A10G GPU. Finally, we compare the accuracy drop from

cleartext (i.e., onM𝐴
FT

with cleartext 𝜃DP, Tab. 1) to MPC inference

(i.e., onM𝐴
MPC

with secret-shared ⟨𝜃DP⟩).
State-of-the-art MPC Inference Baselines.We compare with

BOLT [54], SHAFT [31], BumbleBee [45], and Iron [24], which

perform MPC inference without DP fine-tuning. These solutions

can be categorized based on used cryptographic primitives: BOLT,
BumbleBee, and Iron are hybrid solutions combining homomor-

phic encryption (HE) for matrix multiplications and secret shar-

ing (SS) for non-linear layers, while SHAFT relies only on SS and

it is built on CrypTen[36] like SPRINT. The goal of HE matrix

multiplications is to reduce the communication cost compared to

SS, however, this requires additional communication to convert

shares to HE ciphertexts. Hybrid solutions BOLT, BumbleBee, and
Iron propose optimizations for Linear layers leveraging HE. Specif-

ically, Iron and BOLT use compact packing of HE ciphertexts to

reduce communication, while BumbleBee uses ciphertext interleav-
ing and matrix oblivious linear evaluation. For GeLU, BumbleBee
leverages a 4-segment polynomial approximation, while BOLT and

SHAFT propose different approximations for the function 𝜁 (𝑥) =
GeLU(𝑥) − ReLU(𝑥), and use ReLU elsewhere. Specifically, BOLT
uses a polynomial approximation, while SHAFT uses a sinusoidal

function with Fourier approximation. Iron uses the Tanh approxi-

mation (App. D.2) with an optimized protocol for squaring and Tanh.
For Softmax, BOLT uses the integer-only exponential function from
I-BERT [34]. BumbleBee and Iron normalize the argument of the

exponential function (Sec. 4.2). SHAFT combines input clipping

and an iterative approximation (i.e., ordinary differential equation)

to avoid computing the maximum and reciprocal. Notably, BOLT
integrates word elimination to reduce the input size of non-linear

layers by discarding words with low attention scores. From BOLT’s
evaluation, this technique allows to reduce the end-to-end com-

munication by 2.3× and the runtime by up to 2×. However, this
requires an oblivious protocol to rank and discard tokens with

low attention scores. Next, we empirically compare the end-to-end

performance of SPRINT with these baselines.

Performance: End-to-End. Tab. 2 compares the end-to-end

MPC inference performance of SPRINTwithBOLT [54], SHAFT [31],
BumbleBee [45], and Iron [24] in three network conditions. SPRINT
is the fastest in all networking settings, followed by SHAFT. SPRINT

3
RoBERTa and BERT differs for the pre-training strategy and have different vocabulary

sizes in the embeddings, which are not computed in MPC during inference.

Framework Layer Runtime (s) Communication
LAN WANR WANG GB Rounds

BOLT [54]

Linear 63.8 75.0 89.0 2.75 122

Softmax 6.0 164.0 315.0 5.28 2748

GeLU 3.6 205.0 423.0 9.1 1056

LayerNorm 11.5 312.0 626.0 3.4 2640

SHAFT [31]

Linear 10.84 54.21 100.3 1.52 98

Softmax 16.97 137.1 266.1 4.28 492

GeLU 17.4 123.5 233.9 4.18 228

LayerNorm 2.7 56.21 109.92 0.11 650

SPRINT

Linear 2.67 10.84 22.2 0.03 97

SoftmaxK 3.35 54.09 106.02 0.33 564

SoftCap 6.94 58.56 113.6 1.65 276

GeLUMPC 16.1 118.6 242.0 4.36 240

LayerNorm 2.85 58.9 121.8 0.07 696

Table 3: Per-layer runtime and communication for BOLT,
SHAFT, and SPRINT for RoBERTa MPC inference.

Linear optimization None LoRA (𝑟 = 16) FALoRA (𝑟 = 16)

Runtime 10.4 s 4.0 s 2.3 s

Rounds 74 144 72

GB 1.43 0.2 0.02

Table 4: Linear layers runtime and communication for MPC
inference per fine-tuning method (excluding Classifier).

is 1.6× faster than SHAFT in LAN, and 1.2× faster in WANR and

WANG. The best hybrid solution in LAN is BOLT, yet, SPRINT is

3× faster than BOLT on average across all network settings. While

BumbleBee is the best hybrid solution in WANR and WANG, it

is still 2× slower on average than SPRINT in those settings. In

terms of total communication, SPRINT is the best solution, closely

followed by BumbleBee. SHAFT requires 1.6× more communica-

tion than SPRINT, while BOLT 3× and Iron 43× more. Regarding

number of communication rounds, SHAFT is the most efficient

solution, followed by SPRINT which requires 1.2× more rounds.

This explains why SHAFT performance are closer to SPRINT in

WANR and WANG, despite requiring more communication. BOLT
and Iron require 10× more rounds than SPRINT and SHAFT, likely
due to HE-to-secret sharing conversions.

4
In App. F.5, we show how

SPRINT scales to larger models, specifically to RoBERTa-large (with

2×more Encoder layers than RoBERTa-base) while remaining 1.4×
faster than SHAFT. CrypTen is optimized for 2-party setting [36],

as most MPC inference works [24, 31, 45, 54]. Still, we also evaluate

SPRINTwith 3 and 4 parties. Overall, runtime increases by 2.6× and
3.6× respectively (details in App. F.5). Next, we evaluate per-layer

runtime and communication costs to assess the impact of different

optimizations, comparing with BOLT [54] and SHAFT [31], whose

implementations provide such a breakdown.

Performance: Linear Layers. SPRINT outperforms BOLT [54]

and SHAFT [31] in terms of runtime and communication cost for

Linear layers (Tab. 3). Specifically, SPRINT is 5× faster than SHAFT
across all network settings, 2.5× faster than BOLT in LAN and

1.3× in WANG. BOLT is less sensitive to networking conditions for

Linear layers, since it leverages homomorphic encryption to mini-

mize interactions. Despite this, BOLT is the most communication-

intensive solution, requiring 90×more communication than SPRINT
and 1.2× more rounds. This is mostly due to the HE ciphertext con-

version. SPRINT, unlike related works [24, 31, 45, 54], does not

4BumbleBee is implemented with SPU [48] which does not compute rounds.
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Framework Batch Size Runtime (s) Communication
LAN WANR WANG GB Rounds

SPRINT

1 20.4 298.6 606.6 6.55 1909

8 13.0 180.8 368.82 6.53 238.6

16 12.5 175.1 341.12 6.53 119.3

32 12.3 168.50 327.64 6.52 59.6

SHAFT [31] 1 29.59 358.70 723.89 10.46 1495

Table 5: E2E per-sample (amortized) cost for RoBERTa MPC
inference on GPUs and batched inference.

secret share all parameters but only a small subset (i.e., FALoRA B).
Next, we also investigate SPRINT’s performance without FALoRA.
Specifically, we compare the MPC runtime of Linear layers in

LAN across three configurations based on the fine-tuning strat-

egy (Tab. 4). With full fine-tuning the entire model is secret shared.

With LoRA, only the LoRA A and B matrices are secret shared,

whereas FALoRA secret shares only B matrices. During inference,

FALoRA reduces runtime by 5× compared to full fine-tuning and

1.7× compared to LoRA. Also, FALoRA fine-tuning significantly

reduces communication costs of Linear layers, i.e., by 70× and 10×
compared to full fine-tuning and LoRA (Tab. 4), respectively. Un-

like FALoRA and full fine-tuning, which require one secret-shared

matrix multiplication per layer, LoRA needs two rounds for its se-

quential A and B multiplications. Notably, even without FALoRA,
SPRINT is faster than SHAFT and BOLT, since encrypting all linear
layer increases runtime by 1.3× (Tab 4, Tab. 2).

Performance: Non-Linear Layers. SoftmaxK is the most effi-

cient solution across the proposed approximations (Tab. 3). Com-

bined with SoftCap (required to optimize SoftmaxK), SPRINT re-

duces Softmax runtime by up to 1.4× compared to BOLT in WANR

and 1.6× compared to SHAFT in LAN.While BOLT’s Softmax is the
fastest in LAN, its performance drops in WANR and WANG, since

it requires 2.7× more communication and 3.3× more rounds than

SPRINT. Instead, SHAFT’s Softmax runtime gets closer to SPRINT
in WANR and WANG, since it requires 1.7× less communication

rounds. For GeLU, SPRINT adapts BOLT’s solution to CrypTen.

Despite this, BOLT is the fastest implementation in LAN, while

SPRINT is 1.7× faster inWANR andWANG, sinceBOLT’s implemen-

tation requires 2.1× more communication and 7.3× more rounds.

SHAFT’s approximation has comparable performance to SPRINT
in terms of runtime and communication, i.e., SHAFT GeLU is 1.1×
slower than SPRINT in LAN, but 1.03× faster inWANG. LayerNorm
performance are comparable for SPRINT and SHAFT, since they
both use CrypTen. However, SPRINT uses a piecewise approxima-

tion for InvSqrt in LayerNorm to reduce the approximation error

(Sec. 4.2). Compared to BOLT, our LayerNorm is faster across all

settings with up to a 10× speedup in WANG. Across all layers in

SPRINT, GeLU makes up the largest part of the runtime (up to 50%

in LAN) and communication (over 20%). SoftCap has the second-

highest cost, i.e., 17% of the total.

GPU and Batched Inference. We evaluate the performance of

SPRINTwith GPUs and batching, comparing against SHAFTwhere

possible (Tab. 5).
5
While we tested batched inference on CPU and

GPU, we found it only beneficial on GPUs. Batching on CPU leads

up to 1.4× slower per-sample runtime. For a single inference, using

5SHAFT [31] does not report results for batched inference, and their implementations

leads to out-of-memory errors with batch size of 8.

Dataset KFT /KINF

None/50 None/10 50/50 50/10 10/10

SST2 91.4 (0.8) 89.8 (0.2) 91.4 (0.9) 89.5 (0.5) 90.0 (0.3)
MNLI 78.2 (0.4) 70.6 (0.5) 78.3 (0.3) 71.3 (0.4) 76.6 (0.6)
QNLI 85.0 (0.2) 73.6 (0.6) 84.8 (0) 70.1 (0.5) 80.7 (0.8)
QQP 82.6 (0.1) 75.1 (0) 82.6 (0.1) 75.9 (0) 79.4 (0.2)

Table 6: MPC inference accuracy (M𝐴
MPC with ⟨𝜃DP⟩) with

different KFT/KINF. Parentheses show accuracy gap (in pp)
vs. cleartext (M𝐴

FT with 𝜃DP) with the same KFT/KINF.

a GPU is most effective in a LAN, providing a 1.6× speedup over

CPU (Tab. 2). This advantage diminishes in high-latency networks,

reducing to a 1.04× speedup in WANR, and comparable runtimes

in WANG. However, enabling batched inference provides a signif-

icant speedup in all scenarios. As the batch size increases to 32,

the amortized, per-sample communication rounds decrease by 32×,
and the runtime improves significantly. Specifically, in LAN, 𝐵 = 32

leads to a 1.7× speedup over the non-batched GPU baseline and

a 2.6× speedup over the non-batched CPU baseline. More impor-

tantly, batching effectively mitigates the network bottleneck, with

speedups reaching 1.8× in WANR and 1.9× in WANG. Compared

to SHAFT, SPRINT is up to 1.4× faster in LAN. We expect similar

trends with batched inference, since both leverage CrypTen.

MPC Inference Accuracy. Tab. 6 reports the MPC inference

accuracy of SPRINT on SST2, QNLI, MNLI, and QQP datasets using

inference capping thresholds KINF ∈ {10, 50}, where KINF ≤ KFT

from fine-tuning. We compare the accuracy gap between cleartext

(M𝐴
FT
) and MPC inference (M𝐴

MPC
) for matching KFT and KINF com-

binations. SPRINT achieves highMPC inference accuracy with gaps

under 0.9 pp compared to cleartext. Across all datasets and settings,

the average accuracy gap is at most 0.5 pp. The optimal setting is

KFT = KINF = 50 with only 0.3 pp gap, demonstrating that K = 50

provides the best trade-off between cleartext and MPC accuracy.

All MPC related works [31, 45, 54] show accuracy drops < 1.0 pp.

However, they evaluate on small datasets (e.g., SHAFT validates on

QNLI with 5k samples), whereas we include larger datasets like

QQP (over 40k validation samples) for a comprehensive assessment

of SPRINT’s accuracy and stability. Fine-tuning on large datasets

(e.g., QQP and MNLI) produces model weights with broader value

ranges due to more training updates, increasing risk of numerical

error in inference. The InvSqrt protocol in LayerNorm causes over-

flows with these datasets, leading to near-random accuracy. We

mitigate this with the piecewise approximation InvSqrtMPC (Eq. (5)),

ensuring numerical stability while prioritizing accuracy over perfor-

mance (Sec. 4.2). Notably, SPRINT achieves MPC accuracy within

0.1 pp of its best cleartext accuracy on QQP, highlighting its scala-

bility and robustness with large datasets. Next, we evaluate how our

MPC-aware fine-tuning strategy impacts MPC inference accuracy.

Impact of MPC-aware Fine-tuning. To quantify the benefit

of MPC-aware fine-tuning, we conducted ablation studies on the

impact of SoftCap, which enables SoftmaxK, and GeLU approxima-

tion. For SoftCap, Tab. 6 shows that applying it during fine-tuning

can reduce the cleartext-to-MPC accuracy gap (in parentheses)

but does not always yield the best final MPC accuracy. For in-

stance, on QNLI, the highest MPC accuracy is achieved without

SoftCap during fine-tuning, while the lowest accuracy gap is with

KFT = KINF = 50 (0 pp). This suggests fine-tuning with SoftCap is
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not always necessary, though SoftCap enables SoftmaxK by avoid-

ing the max computation. For GeLU approximation, we evaluate:

(I) using non MPC-aware GeLU (Eq. (3)) during fine-tuning and

inference, (II) performing a naive post-hoc conversion from GeLU
to MPC-aware GeLUMPC (Eq. (6)) for inference. We observe that

using the non MPC-aware GeLU also during inference (I) leads

to random guessing accuracy and causes overflows. The failure

occurs since CrypTen’s MPC approximation for the erf function
in GeLU is only numerically stable for a small input range (i.e.,

[-5, 5]). Additionally, not performing MPC-aware fine-tuning with

GeLUMPC (II) widens the accuracy gap between cleartext and MPC

inference, especially with low capping thresholds. Specifically, with

KINF = 10, the MPC accuracy drops from 0.2 pp to 3 pp from the

cleartext baseline. With KINF = 50, the accuracy drops from 0.8 pp

to 1.7 pp. Overall, these results show that MPC-aware fine-tuning

on cleartext provides clear benefits for MPC inference on secret

shares, alleviating overflow and accuracy issues.

6 Related Works
SPRINT is the first solution to integrate DP fine-tuning and MPC

inference for transformer-based models. Existing works focus on

either DP fine-tuning [41, 70] (Sec. 5.1) or MPC inference [24, 31,

45, 54] (Sec. 5.2). Next, we discuss additional MPC inference works.

MPC Inference for Transformers. Several approaches have
been proposed for MPC inference on transformers [2, 15, 23, 38, 47,

49, 54, 58, 59]. Distillation-based approaches [15, 38, 47, 49] reduce

model size and use aggressive approximations for non-linear layers,

such as quadratic Softmax and GeLU [38] or replacing Softmax
with a neural network [49]. Akimoto et al. [2] replace Softmaxwith
ReLU using a kernelized version of Attention. PUMA [15] uses

piecewise polynomial approximations for GeLU and normalization

in Softmax. Gupta et al. [23] use function secret sharing (FSS) for

efficient comparisons and LUTs for non-linear functions. However,

FSS differs from standard MPC, relying on large evaluation keys

with large generation and transfer overheads (e.g., ≈ 16 GB key size

and transfer runtime 10× larger than inference for BERT). Concur-

rent work [58] applies LoRA to GPT-based models, fine-tuning only

a fraction of the decoder layers, without relying on any non-linear

function approximations, but on heads merging. Recently, Curl [59]

considers LUTs for non-linear functions in CrypTen. Curl inference

is 10s faster than SPRINT in LAN. However, its accuracy evaluation

is limited to LAN and small models (BERT-tiny, 𝑧 = 4). Furthermore,

LUTs have inherent limitations, requiring predefined input ranges

and larger table sizes for higher accuracy and larger models.

7 Discussion & Future Works
Next, we discuss limitations and future research directions.

Expand Evaluation. SPRINT can be extended to more complex

models, such as Llama [64], and tasks like table-to-text genera-

tion [52] and summarization. Despite our computational constraints

limiting fine-tuning to 10 epochs, SPRINT achieves strong accuracy:
matching state-of-the-art on SST2 and an average accuracy within

2.5 pp of LoRA-based fine-tuning [70]. Extended training would

likely improve accuracy and close this gap. We focus on encoder-

only models since, due to resource constraints, we cannot perform a

full hyperparameter search also for encoder-decoder architectures.

However, SPRINT can be easily extended to encoder-decoder mod-

els (e.g., GPT-2) thanks to its modularity and scalability. We expect

SPRINT to perform similarly to encoder-only models by keeping

the encoder in cleartext and applying FALoRA in the decoder.

Consumption of privacy budget from hyperparameter
search. Like prior works [41, 70], we do not account for hyperpa-

rameter search costs in the privacy budget. Existing approaches [55]

for tracking the privacy budget during hyperparameter search as-

sume a fixed set of public hyperparameters and a non-adaptive

search. These assumptions do not align with SPRINT’s adaptive
hyperparameter search. And, more importantly, since SPRINT guar-
antees model parameters confidentiality, also hyperparameters and

potentially the hyperparameter search space itself are not assumed

to be public in a deployment scenario, e.g., to guarantee a competi-

tive advantage by keeping proprietary information on the model.

Malicious Security. SPRINT assumes two semi-honest servers,

a common setting in private inference [15, 23, 31, 45, 47, 54]. To

detect malicious behavior with a certain probability (covert secu-

rity), SPRINT can use the Mix-and-Match technique [14] without

server-side changes. Users mix 𝑁 private samples with 𝑇 public,

labelled samples. Malicious servers succeed only if they correctly

identify and tamper with private samples only. Cheating probability

decreases with increasing𝑇 [14, Sec. IV.B] at the cost of𝑇 additional

samples per query. Alternatively, CrypTen can be enhanced with

cryptographic protocols, such as MASCOT [33] or zero-knowledge

proofs [43]. However, cryptographic protocols introduce significant

overhead, e.g., up to 10× slowdown for logistic regression [32].

Advanced Privacy Accounting for DP-LoRA. Another di-
rection is to improve the privacy-utility trade-off for the original

DP-LoRA setting. The core challenge in DP-LoRA arises from the

quadratic noise term created when adding noise to both A and

B matrices (Sec. 4.1). FALoRA and recent works in DP federated

learning [22, 67] sidestep this issue by freezing matrix A or modify-

ing the training protocol. Therefore, developing advanced privacy

accounting methods for DP-LoRA that can manage the quadratic

noise term remains an open research question.

8 Conclusion
We introduced SPRINT, the first scalable solution integrating DP

fine-tuning and MPC inference for transformers, ensuring privacy,

scalability, and efficiency for secure LLM outsourcing. SPRINT guar-
antees privacy for fine-tuning data and confidentiality for model

parameters, user queries, and predictions. SPRINT achieves high

fine-tuning accuracy in cleartext, matching state-of-the-art clear-

text DP performance on SST2 [70], and maintains MPC accuracy

within 1 pp of its cleartext accuracy. Additionally, SPRINT achieves

up to 1.6× faster MPC inference than the state-of-the-art non-DP

solution (SHAFT) [31], reducing communication by 1.6×. SPRINT
achieves these results through integrated optimizations for DP fine-

tuning andMPC inference. For DP fine-tuning, we used noise-aware

optimizers to minimize DP noise amplification. For MPC inference,

SPRINT introduced accurate approximations for non-linear func-

tions (e.g., GeLU, Softmax) and mitigates numerical instability with

logits capping. A key optimization in SPRINT is FALoRA which re-

duces trainable parameters to minimize DP noise amplification and

lowers inference overhead by reducing secret-shared computations.
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A Adam BC
In Adam, computing the second moment on noisy gradients intro-

duces a statistical bias, since the DP noise has a variance greater

than 0. Following Alg. 4, the first moment𝑚𝑡 depends on the noise

gradient 𝑔𝜏 , whereas the second moment 𝑣𝑡 depends on the square

of the noisy gradient.

Computation of the bias term. Next, we compute the expecta-

tion of 𝑔𝜏 and 𝑔𝜏
2
showing why only 𝑣𝑡 is biased. We recall that the

noise𝜓𝜏 ∼ N(0, 𝜎2𝐶2) is statistically independent of the gradient

𝑔𝜏 , and for each training iteration is averaged over the batch size 𝐵.

For the first moment𝑚𝑡 :

𝐸

[(
𝑔𝜏 +

𝜓𝜏

𝐵

)]
= 𝐸 [𝑔𝜏 ] +

1

𝐵
𝐸 [𝜓𝜏 ] = 𝐸 [𝑔𝜏 ] .

Instead, for the second moment 𝑣𝑡 :

𝐸

[(
𝑔𝜏 +

𝜓𝜏

𝐵

)
2

]
= 𝐸

[
𝑔2

𝜏

]
+ 2𝐸

[
𝑔𝜏
𝜓𝜏

𝐵

]
+ 1

𝐵2
𝐸
[
𝜓 2

𝜏

]
= 𝐸

[
𝑔2

𝜏

]
+ 2

𝐵
𝐸 [𝑔𝜏 ] 𝐸 [𝜓𝜏 ] +

1

𝐵2
𝐸
[
𝜓 2

𝜏

]

No KFT KFT = 50 KFT = 10

FA-LoRA & AdamW 90.5 90.4 88.5

FA-LoRA & AdamBC 92.3 92.3 90.7

Table 7: Comparison of DPAdamBC and DPAdamW accuracies
on SST2 dataset with different capping thresholds.

Input: Batch of samples B ∈ R𝐵×𝑚×𝑑
, weight matrixW ∈ R𝑝×𝑑

, gradient

of the batched loss L w.r.t output G ∈ R𝐵×𝑚×𝑝
.

Output: Clipped gradient𝐺 .

Function GhostClipping(B,W,G):
foreach X𝑖 ∈ B do
∥∇WL𝑖 ∥2𝐹 = vec(X𝑖X𝑖

⊤ )⊤vec(G𝑖G𝑖
⊤ )

/* Compute the per-example scaling factor Γ𝑖 */

Γ𝑖 = max(1,𝐶/∥∇WL𝑖 ∥2 )
/* Scale each loss and compute clipped gradient */

𝐺 ← ∇W
∑

X𝑖 ∈B Γ𝑖L𝑖

return𝐺

Algorithm 5: Ghost clipping for Linear layers [41].

Input: Fine-tuning dataset 𝐷FT , total dataset size 𝑁 , batch size 𝐵.

Output: Random subsampled batch B.
Function PoissonSampling (𝐷FT, 𝑃 = 𝐵/𝑁 ):

/* Initialize the subsampled batch */

B ← {}
/* Sample each data point independently with probability 𝑃

using a Uniform distribution */

foreach 𝑥𝑖 ∈ 𝐷FT do
if Uniform(0, 1) < 𝑃 then
B ← B ∪ {𝑥𝑖 }

return B
Algorithm 6: Poisson Subsampling for DP Fine-tuning

= 𝐸
[
𝑔2

𝜏

]
+ 1

𝐵2

(
𝐸 [𝜓𝜏 ]2 +𝑉𝑎𝑟 [𝜓𝜏 ]

)
= 𝐸

[
𝑔2

𝜏

]
+ 𝜎2𝐶2

𝐵2
.

which results in the bias term
𝜎2𝐶2

𝐵2
corrected in Alg. 4.

Evaluation.We compare the cleartext accuracy of fine-tuning

with DPAdamBC and DPAdamW on the SST2 dataset with differ-

ent capping thresholds. Tab. 7 shows that DPAdamBC consistently

outperformsDPAdamW across all thresholds, achieving an average

improvement of 2 pp in accuracy. This demonstrates the effective-

ness of bias correction in DPAdamW’s second moment estimation.

B Ghost Clipping
GhostClipping (Alg. 5) enables batched gradient computation and

reduces memory overhead by avoiding the need to explicitly com-

pute or store individual gradients. For a Linear layer with W ∈
R𝑝×𝑑

, given an input X ∈ R𝐵×𝑚×𝑑
, GhostClipping computes the

squared Frobenius norm of the per-example gradient as ∥∇𝑊L𝑖 ∥2𝐹 =

vec(X𝑖X⊤𝑖 )⊤vec(G𝑖G𝑖
⊤), whereG𝑖 ∈ R𝐵×𝑚×𝑝

is the gradient of the

loss with respect to the output, and vec(·) denotes the vectorization
of a matrix. This approach reduces memory complexity to O(𝐵𝑚2),
compared to the naive method O(𝐵𝑝𝑑) [41].

C Poisson Subsampling
Alg. 6 outlines the Poisson subsampling algorithm used in our

experiments. Each data point in the fine-tuning dataset 𝐷FT (size

𝑁 ) is independently sampled into the batch B with probability
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𝑃 = 𝐵/𝑁 . The resulting batch size follows a Poisson distribution

with mean 𝑃 · 𝑁 = 𝐵.

D Non-Linear functions
Next, we discuss the MPC approximations for Softmax and GeLU
evaluated on our preliminary experiments on SST2 to select the

best-performing approximations balancing accuracy and efficiency.

D.1 Softmax Approximations
We evaluated various Softmax approximations to improve compu-

tational efficiency and numerical stability in MPC inference, testing

them alongside GeLU from PyTorch [56] to isolate the impact of

the Softmax approximation on the overall model accuracy.

Neural Network Approximation. Ming et al. [49] propose

a neural network-based approximation for Softmax, which con-

sists of two Linear layers with a ReLU activation in between. This

method is computationally efficient, requiring only two matrix mul-

tiplications between secret shared inputs and cleartext weights

of the network, along with a ReLU activation. However, this ap-

proximation yielded random accuracy results in our fine-tuning,

likely because the neural network weights were tailored for model

distillation and not fine-tuned for our specific use case.

Quadratic Approximation.MPCFormer [38] introduces a qua-

dratic transformation of the Attention logits, followed by a normal-

ization. Formally, for an input vector x ∈ R𝑛 :

𝑓 (𝑥) = (𝑥 + 𝑐)2∑
𝑖 (𝑥𝑖 + 𝑐)2

,

where 𝑐 is a constant, set to 5 in the original work. Even though

this approximation is computationally efficient, it differs signifi-

cantly from the original Softmax function in terms of numerical

values. This discrepancy leads to random accuracy results in our

fine-tuning experiments, as the approximation was designed for

model distillation and not fine-tuning.

Double ReLU Approximation. Proposed in [38], this method

uses the ReLU activation to retain positive logits while discarding

negative values, with normalization to ensure a valid probability

distribution:

𝑓 (𝑥) = ReLU(𝑥) + 𝜄/𝑑∑
𝑖 ReLU(𝑥𝑖 ) + 𝜄

,

where 𝜄 is a small constant, and 𝑑 is the input dimension. This

approximation is more accurate than the quadratic approximation,

but still not suitable for fine-tuning, since it was designed to be

used in a model distillation scenario for inference.

D.2 GeLU Approximations
We tested several approximations of GeLU to balance accuracy

and efficiency in MPC inference. First, we report the coefficients of

the polynomial approximation in GeLUMPC, and then we discuss

the other approximations tested. We tested all the approximations

alongside Softmax from PyTorch [56], to isolate the impact of the

GeLU approximation on the overall model accuracy.

Coefficients for polyGeLU in GeLUMPC. SPRINT leverages

an optimized version of GeLUMPC [54] for GeLU approximation,

which is the best performing approximation in our experiments,

not only in terms of computational efficiency, but also in terms of

accuracy and numerical stability. Here, we provide the polynomial

coefficients used in GeLUMPC:

𝑔0 = 0.1444,

𝑔1 = −0.7077,

𝑔2 = 4.5703,

𝑔3 = −8.1544,

𝑔4 = 16.3823.

Quadratic Approximation. MPCFormer [38] leverages a qua-

dratic approximation (as for Softmax), also for GeLU, which was

proposed to approximate the ReLU function by Chou et al. [10].

The approximation is computed as:

𝑓 (𝑥) = 0.125𝑥2 + 0.5𝑥 + 0.25.

However, despite being computationally efficient, this approxima-

tion is too aggressive for fine-tuning, leading to random accuracy.

Tanh Approximation. Proposed by Google [27], this approxi-

mation is computed as:

𝑓 (𝑥) = 0.5𝑥
(
1 + Tanh

(
𝜋
(
𝑥 + 0.044715𝑥3

) ) )
,

where Tanh is defined as:

Tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 .

This approximation of GeLU provides reliable accuracy results.

However, during MPC inference, it causes numerical instability

due to the Tanh approximation implemented in CrypTen, which is

numerically stable only for values in the range [−250, 250].
HardTanh Approximation. To enhance numerical stability of

the GeLU approximation based on Tanh [27], we replaced Tanh
with HardTanh, resulting in the following approximation:

𝑓 (𝑥) = 0.5𝑥
(
1 + HardTanh

(
𝜋
(
𝑥 + 0.044715𝑥3

) ) )
.

where HardTanh is defined as:

HardTanh(𝑥) =

−1, if 𝑥 ≤ −1,

𝑥, if − 1 < 𝑥 < 1,

1, if 𝑥 ≥ 1.

HardTanh, implemented as a piecewise function, ensures numerical

stability for all inputs and is more efficient than the Tanh-based ap-

proximation. However, it results in a 10 pp accuracy drop compared

to the GeLUMPC approximation adopted in SPRINT.

E Security Analysis
Weprove the security of SPRINT using the simulation paradigm [21],

which ensures that each server learns nothing from the proto-

col execution beyond its own inputs and outputs. Specifically, for

any adversary corrupting a server, there exists a simulator that

can generate a view indistinguishable from the real protocol ex-

ecution, given only the server’s input and output. Thus, a cor-

rupted server cannot distinguish between a real execution and

a simulated one, guaranteeing security of the computation. We

start by introducing notation for the simulation paradigm. Let

𝑓 = (𝑓1, 𝑓2) be a probabilistic time functionality and let Π be a

two-party protocol to realize 𝑓 . The view of server 𝑆𝑖 during an

execution of 𝜋 on inputs 𝑥 = (𝑥1, 𝑥2) is denoted view𝜋
𝑖 (𝑥1, 𝑥2). This

view contains the party’s input, its internal random tape, and all
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Ideal Functionality Input/Output Description Proof

Multiplication 𝑓× ⟨X⟩, ⟨Y⟩ → ⟨XY⟩ [36, App. A]

Less-than 𝑓< ⟨𝑥 ⟩, ⟨𝑦⟩ or 𝑦 → ⟨1𝑥<𝑦 (𝑥, 𝑦) ⟩ [36, App. A]

InvSqrt 𝑓InvSqrt ⟨𝑥 ⟩ → ⟨1/
√
𝑥 ⟩ [36, App. A]

Tanh 𝑓Tanh ⟨𝑥 ⟩ → ⟨Tanh(𝑥 ) ⟩ [36, App. A]

Exponential 𝑓exp ⟨𝑥 ⟩ → ⟨exp(𝑥 ) ⟩ [36, App. A]

Reciprocal 𝑓Reciprocal ⟨𝑥 ⟩ → ⟨1/𝑥 ⟩ [36, App. A]

MUX 𝑓MUX ⟨𝑐 ⟩, ⟨𝑥0 ⟩, ⟨𝑥1 ⟩ → ⟨𝑐 (𝑥1 − 𝑥0 ) + 𝑥0 ⟩ [36, App. A]
FALoRA 𝑓FALoRA ⟨x⟩, ⟨B⟩ → ⟨FALoRA(x) ⟩ Sec. E.1

SoftmaxK 𝑓SoftmaxK ⟨x⟩ → ⟨SoftmaxK(x) ⟩ Sec. E.3

GeLUMPC 𝑓GeLUMPC ⟨𝑥 ⟩ → ⟨GeLUMPC (𝑥 ) ⟩ Sec. E.4

SoftCap 𝑓SoftCap ⟨𝑥 ⟩,K→ ⟨K · Tanh(𝑥/K) ⟩ Sec. E.2

LayerNormMPC 𝑓LayerNormMPC ⟨x⟩ → ⟨LayerNormMPC (x) ⟩ Sec. E.5

Table 8: Definitions of ideal functionalities from CrypTen
(first half) and newly introduced by SPRINT.

Input: Servers hold shares of input ⟨X⟩. Public parametersW0,A. Servers
hold shares of fine-tuned matrix ⟨B⟩.

Output: Servers hold shares of output ⟨Y⟩.
Protocol ΠFALoRA(⟨X⟩,W0,A, ⟨B⟩):

/* Local, non-interactive computations */

⟨Y0 ⟩𝑖 ← ⟨X⟩𝑖 ·W0

⟨X𝐴 ⟩𝑖 ← ⟨X⟩𝑖 · A
/* Interactive MPC multiplication */

⟨Y𝐷𝑃 ⟩ ← Π× (⟨X𝐴 ⟩, ⟨B⟩)
/* Final local addition */

⟨Y⟩𝑖 ← ⟨Y0 ⟩𝑖 + ⟨Y𝐷𝑃 ⟩𝑖
return ⟨Y⟩

Algorithm 7: FALoRA Linear Layer Protocol, ΠFALoRA

messages it received. The joint output of both parties is denoted

by out𝜋 (𝑥1, 𝑥2) = (out𝜋
1
(𝑥1, 𝑥2), out𝜋

2
(𝑥1, 𝑥2)). Tab. 8 provides the

ideal functionality for existing building blocks in CrypTen [36] and

SPRINT protocols in the second half of the table. Note that all func-

tionalities in Tab. 8 are deterministic, so we can use the following

definition of security [42].

Definition E.1 ([42]). Let 𝑓 = (𝑓1, 𝑓2) be functionality. We say

that Π securely realizes 𝑓 in the presence of a static semi-honest

adversary if there exist probabilistic polynomial time simulators

S1,S2 such that for any input (𝑥,𝑦):

{(S1 (𝑥1, 𝑓1 (𝑥)))}𝑥1
≡ {(view𝜋

1
(𝑥))}𝑥1

, and

{(S2 (𝑥2, 𝑓2 (𝑥)))}𝑥 ≡ {(view𝜋
2
(𝑥))}𝑥 ,

where 𝑥1, 𝑥2 ∈ {0, 1}∗ such that |𝑥1 | = |𝑥2 |.

All functionalities in Tab. 8 introduced by SPRINT (i.e., FALoRA,
SoftmaxK,GeLUMPC, SoftCap, LayerNormMPC) are defined to com-

pute the approximated version of the functions. Next, we provide

the security proofs for the protocols introduced in SPRINT.

E.1 Security of FALoRA Linear Layer
Theorem E.2. Suppose Π× securely realizes 𝑓× . Then ΠFALoRA

(Algorithm 7) securely realizes the functionality 𝑓FALoRA against static
semi-honest adversaries.

Proof. Let 𝑥 be an arbitrary input and Π× securely realize

the multiplication functionality 𝑓× . By definition 𝑓FALoRA (𝑥)
𝑐≡

outΠFALoRA (𝑥 ) . Since ΠFALoRA (Alg. 7) sequentially invokes local com-

putations and calls Π× , by the sequential composition theorem [8],

Input: Servers hold shares of input ⟨𝑥 ⟩. Public capping threshold is K.
Output: Servers hold shares of capped output ⟨𝑦⟩.
Protocol ΠSoftCap(⟨𝑥 ⟩,K):

/* Local, non-interactive scaling */

⟨𝑥 ′ ⟩𝑖 ← ⟨𝑥 ⟩𝑖/K
/* Interactive MPC Tanh computation */

⟨𝑦′ ⟩ ← ΠTanh (⟨𝑥 ′ ⟩)
/* Final local, non-interactive scaling */

⟨𝑦⟩𝑖 ← K · ⟨𝑦′ ⟩𝑖
return ⟨𝑦⟩

Algorithm 8: SoftCap Protocol, ΠSoftCap

Input: Servers hold shares of input vector ⟨x⟩, guaranteed to be in [−K,K].
Public capping constant K.

Output: Servers hold shares of softmax output ⟨y⟩.
Protocol ΠSoftmaxK(⟨x⟩,K):

/* Local, non-interactive normalization */

⟨xnorm ⟩𝑖 ← ⟨x⟩𝑖 − K
/* Interactive MPC exponentiation */

⟨ynum ⟩ ← Πexp (⟨xnorm ⟩)
/* Summation and interactive MPC reciprocal */

⟨sum⟩𝑖 ←
∑

𝑗 ⟨ynum ⟩𝑖,𝑗
⟨yden ⟩ ← ΠReciprocal (⟨sum⟩)
/* Final local multiplication */

⟨y⟩𝑖 ← ⟨ynum ⟩𝑖 · ⟨yden ⟩𝑖
return ⟨y⟩

Algorithm 9: SoftmaxK Protocol, ΠSoftmaxK

the security of the protocol follows from the security of the un-

derlying multiplication protocol Π× . Hence, {(S𝑖 (𝑥𝑖 , 𝑓𝑖 (𝑥)))}𝑥
𝑐≡

{(viewΠFALoRA
𝑖

(𝑥))}𝑥 for 𝑖 ∈ {1, 2}. □

E.2 Security of SoftCap
Theorem E.3. SupposeΠTanh securely realizes 𝑓Tanh. ThenΠSoftCap

(Algorithm 8) securely realizes the functionality 𝑓SoftCap against static
semi-honest adversaries.

Proof. Let 𝑥 be an arbitrary input and ΠTanh securely realize the

hyperbolic tangent functionality 𝑓Tanh. By definition 𝑓SoftCap (𝑥)
𝑐≡

outΠSoftCap (𝑥 )
. The protocol ΠSoftCap (Alg. 8) consists of local com-

putations and a single call to the secure sub-protocol ΠTanh, which

computes the hyperbolic tangent. Since the local computations are

secure, the security of the overall protocol follows from the security

of the underlying ΠTanh protocol by the sequential composition

theorem [8]. Hence, {(S𝑖 (𝑥𝑖 , 𝑓𝑖 (𝑥)))}𝑥
𝑐≡ {(viewΠSoftCap

𝑖
(𝑥))}𝑥 for

𝑖 ∈ {1, 2}. □

E.3 Security of SoftmaxK
Theorem E.4. Suppose Πexp, and ΠReciprocal securely realize 𝑓exp

and 𝑓Reciprocal, respectively. Then ΠSoftmaxK (Algorithm 9) securely real-
izes the functionality 𝑓SoftmaxK against static semi-honest adversaries.

Proof. Let x be an arbitrary input vector and the protocols

{Πexp,ΠReciprocal} securely realizes {𝑓exp, 𝑓Reciprocal}. By definition,

𝑓SoftmaxK (x)
𝑐≡ outΠSoftmaxK (x) . Since the protocol ΠSoftmaxK (Alg. 9)

consists of local computations and calls to secure sub-protocolsΠexp

and ΠReciprocal, by sequential composition theorem [8], the security

of the protocol follows from the security of the underlying protocols.

Hence, {(S𝑖 (𝑥𝑖 , 𝑓𝑖 (𝑥)))}𝑥
𝑐≡ {(viewΠSoftmaxK

𝑖
(𝑥))}𝑥 for 𝑖 ∈ {1, 2}. □
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Input: Servers hold shares of input ⟨𝑥 ⟩. Public threshold is 2.7.

Output: Servers hold shares of GeLUMPC output ⟨𝑦⟩.
Protocol ΠGeLUMPC(⟨𝑥 ⟩):

/* Pre-compute absolute value */

⟨ |𝑥 | ⟩ ← Π× (⟨𝑥 ⟩, 1 − 2 · Π< (⟨𝑥 ⟩, 0) )
// Requires A2B/B2A conversions

/* Compute polynomial approximation and ReLU */

⟨𝑦poly ⟩ ← ΠpolyGeLU (⟨𝑥 ⟩, ⟨ |𝑥 | ⟩ )
Each server 𝑆𝑖 locally computes ⟨𝑦relu ⟩𝑖 ← (⟨𝑥 ⟩𝑖 + ⟨ |𝑥 | ⟩𝑖 )/2
/* Select the correct output based on input range */

⟨𝑏comp ⟩ ← Π> (⟨ |𝑥 | ⟩, 2.7)
⟨𝑦⟩ ← ΠMUX (⟨𝑏comp ⟩, ⟨𝑦poly ⟩, ⟨𝑦relu ⟩) ;
return ⟨𝑦⟩
Algorithm 10: GeLUMPC Protocol, ΠGeLUMPC

Input: Servers hold shares of input ⟨x⟩, weights ⟨𝑊 ⟩, bias ⟨𝑏 ⟩. Public
threshold𝑇 , scaling factor 𝛽 .

Output: Servers hold shares of normalized output ⟨𝑦⟩.
Protocol ΠLayerNormMPC(⟨x⟩, ⟨𝑊 ⟩, ⟨𝑏 ⟩,𝑇 , 𝛽):

/* Compute Mean and Variance */

⟨𝜇⟩𝑖 ← 1

|⟨x⟩𝑖 |
∑
⟨𝑥⟩𝑖 ∈⟨x⟩𝑖 ⟨𝑥 ⟩𝑖

⟨x𝑐 ⟩𝑖 ← ⟨x⟩𝑖 − ⟨𝜇⟩𝑖
⟨x2

𝑐 ⟩ ← Π× (⟨x𝑐 ⟩, ⟨x𝑐 ⟩)
⟨𝜈 ⟩𝑖 ← 1

|⟨x⟩𝑖 |
∑
⟨𝑥2

𝑐 ⟩𝑖 ∈⟨x2

𝑐 ⟩𝑖
⟨𝑥2

𝑐 ⟩𝑖
/* Piecewise Inverse Square Root */

⟨𝑏comp ⟩ ← Π≤ (⟨𝜈 ⟩,𝑇 )
⟨𝜈unscaled_inv ⟩ ← ΠInvSqrt (⟨𝜈 ⟩)
⟨𝜈scaled_in ⟩ ← ⟨𝜈 ⟩/𝛽
⟨𝜈scaled_out ⟩ ← ΠInvSqrt (⟨𝜈scaled_in ⟩)
⟨𝜈 ′

scaled_out
⟩ ← ⟨𝜈scaled_out ⟩/

√︁
𝛽

⟨𝜈 ′ ⟩ ← ΠMUX (⟨𝑏comp ⟩, ⟨𝜈 ′
scaled_out

⟩, ⟨𝜈unscaled_inv ⟩)
/* Final Normalization */

⟨xnorm ⟩ ← Π× (⟨x𝑐 ⟩, ⟨𝜈 ′ ⟩)
⟨𝑦temp ⟩ ← Π× (⟨xnorm ⟩, ⟨𝑊 ⟩)
⟨𝑦⟩𝑖 ← ⟨𝑦temp ⟩𝑖 + ⟨𝑏 ⟩𝑖
return ⟨𝑦⟩

Algorithm 11: LayerNormMPC Protocol, ΠLayerNormMPC

E.4 Security of GeLU
Theorem E.5. Suppose the protocols for absolute value (Π | · | ), poly-

nomial evaluation (ΠpolyGeLU), greater-than (Π>), and MUX (ΠMUX)
securely realize their respective ideal functionalities, i.e., 𝑓 | · | , 𝑓polyGeLU,
𝑓> , and 𝑓MUX. ThenΠGeLUMPC (Algorithm 10) securely realizes 𝑓GeLUMPC

against static semi-honest adversaries.

Proof. Let 𝑥 be an arbitrary input, and {ΠpolyGeLU,Π>,ΠMUX}
securely realize {𝑓polyGeLU, 𝑓>, 𝑓MUX}. By definition, 𝑓GeLUMPC (𝑥)

𝑐≡
outΠGeLUMPC (𝑥 ) . Since the protocol ΠGeLUMPC (Alg. 10) consists of

local computations and sequential calls to secure sub-protocols

{ΠpolyGeLU,Π>,ΠMUX}, the security of ΠGeLUMPC follows from the

security of the underlying protocols by the sequential composition

theorem [8]. Thus, {(S𝑖 (𝑥𝑖 , 𝑓𝑖 (𝑥)))}𝑥
𝑐≡ {(viewΠGeLUMPC

𝑖
(𝑥))}𝑥 for

𝑖 ∈ {1, 2}. □

E.5 Security of LayerNorm
Theorem E.6. Suppose Π× , Π≤ , ΠInvSqrt, and ΠMUX securely re-

alize {𝑓×, 𝑓≤ , 𝑓InvSqrt, 𝑓MUX}. Then ΠLayerNormMPC (Algorithm 11) se-
curely realizes 𝑓LayerNormMPC against static semi-honest adversaries.

Proof. Let 𝑥 be an arbitrary input, and {Π×,Π≤ ,ΠInvSqrt,ΠMUX}
securely realize {𝑓×, 𝑓≤ , 𝑓InvSqrt, 𝑓MUX}. By definition, 𝑓LayerNormMPC (𝑥)
𝑐≡ outΠLayerNormMPC (𝑥 ) . The protocol ΠLayerNormMPC (Alg. 11) consists

of local computations and calls to secure sub-protocols Π× , Π≤ ,
ΠInvSqrt, and ΠMUX. By the sequential composition theorem [8], the

security of the protocol follows from the security of the underlying

protocols. Hence, {(S𝑖 (𝑥𝑖 , 𝑓𝑖 (𝑥)))}𝑥
𝑐≡ {(viewΠLayerNormMPC

𝑖
(𝑥))}𝑥

for 𝑖 ∈ {1, 2}. □

F Evaluation
This section expands our evaluation (Sec. 5) by providing the com-

plete list of hyperparameters, an evaluating the impact of different

LoRA A initialization techniques on the accuracy, the effect of

random seeds and SoftCap on cleartext inference accuracy, and

a detailed comparison of SPRINT and BOLT in terms of runtime

and communication for decomposed Linear layers. Furhtrmore, we

evaluate how SPRINT scales to larger models (i.e., RoBERTa-large)

and more than two parties, a setting not explored by related works.

F.1 Hyperparameters Search
Tab. 9 reports the hyperparameters values tested for each dataset

for DP fine-tuning.

F.2 LoRA A initialization techniques
Next, we detail the initialization techniques tested for LoRA A.

Initialization techniques. The Kaiming initialization is de-

signed for layers with ReLU activations. It initializes weights from

a distribution with zero mean and a variance of 2/𝑛 (either Uniform
or Normal), where 𝑛 is the number of input units [26]. This ap-

proach compensates for the ReLU behavior of outputting zero for

negative inputs, which effectively reduces the number of active

neurons. By using a higher variance, Kaiming initialization ensures

that the variance of activations remains consistent across layers,

preventing vanishing activations. In our case, the GeLU activa-

tion function is used, which behaves similarly to ReLU since it

also outputs values close to zero for sufficiently negative inputs

(approximately those less than −2.7 based on our approximation).

The Xavier initialization aims to maintain the scale of gradients

across layers by initializing weights from a distribution with zero

mean and a variance of 2/(𝑛in + 𝑛out) (either Uniform or Normal),
where 𝑛in and 𝑛out are the number of input and output units, respec-

tively [20]. The Normal initialization is more suited for layers with

Sigmoid or Tanh activations and initializes weights from a normal

distribution with zero mean and a variance of 1/𝑛, where 𝑛 is the

number of input units [37]. The Orthogonal initialization, on the

other hand, initializes weight matrices as orthogonal matrices, en-

suring uncorrelated weights with unit variance. This property can

help preserve the variance of activations across layers, potentially

improving stability during training [60].

Impact on accuracy. We found that the initialization of the

frozenAmatrix directly affects SPRINT accuracy, with variations of
up to 2.1 pp. To evaluate the effect ofA initialization on accuracy, we

tested several techniques: Kaiming [26], Xavier [20], Normal [37],
and Orthogonal [60], using uniform and normal distributions for

Kaiming and Xavier. Tab. 10 reports our evaluation on SST2. Here,
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Parameter Component / Phase Description Tested Values

Batch size (𝐵) DP fine-tuning Number of samples per training step out of 𝑁 samples 1024, 2048

Subsampling rate (𝑞) DP PoissonSampling Probability of a sample being included in a batch. 𝐵/𝑁
Learning rate (𝜂) DP fine-tuning Step size for the optimizer. 5 × 10

−3, 1 × 10
−3, 5 × 10

−4, 1 × 10
−4, 5 × 10

−5

Epochs (𝐸) DP fine-tuning Total number of steps over the training dataset size. 10

Clipping threshold (C) DP fine-tuning L2 norm limit for per-sample gradients. 0.1, 1, 10

Weight decay DP fine-tuning L2 regularization coefficient to prevent overfitting. 0.1, 0.01, 0.001

Privacy budget (𝜖) DP Definition Target epsilon (𝜖) for the privacy guarantee. 8

Failure probability (𝛿 ) DP Definition Target delta (𝛿 ) for approximate DP. 10
−5

(SST,QNLI), 10
−6

(QQP,MNLI)

Noise variance (𝜎2
) DP Mechanism DP noise variance for Gaussian noise Analytically computed from 𝜖, 𝛿, 𝐸,𝑞 by Opacus [69]

FALoRA rank (𝑟 ) FALoRA Rank 𝑟 of the low-rank adapter matrices. 8, 16, 32

FALoRA alpha (𝛼 ) FALoRA Scaling factor 𝛼 for the FALoRA update (𝛼/𝑟 ). 𝑟, 2𝑟

FALoRA layers FALoRA Specific linear layers where FA-LoRA adapters are applied.

All Linear, all Linear except LinearK ,
{LinearQ , LinearV , LinearAtt }

A Initializations FALoRA Initialization method for the FALoRA𝐴 matrix.

Kaiming Uniform/Normal, Xavier Uniform/Normal,
Orthogonal, Normal

Capping (KFT) SoftCap Capping threshold for Attention logits. None, 50, 10

Table 9: Set of hyperparameters tested in fine-tuning for each dataset.

Seed Kaiming
Uniform

Kaiming
Normal

Xavier
Uniform

Xavier
Normal Normal Orthogonal

0 92.2 92.1 90.7 90.2 92.1 91.9

Rnd 91.1 ± 0.3 91.3 ± 0.2 90.1 ± 0.2 90.5 ± 0.2 91.2 ± 0.2 91.5 ± 0.2

Table 10: Cleartext accuracy (in %) on SST2 for different
FALoRA A initialization, comparing fine-tuning with fixed
seed (0) and the average over 10 random seeds (rnd).

we discuss the results with fixed seed (seed = 0), and consider ran-

dom seeds later. Kaiming Uniform performs best, followed closely

by Kaiming Normal and Normal (both within 0.2 pp). In contrast,

Xavier shows the worst performance, with accuracy drops of up

to 2.1 pp. We extended this evaluation (with seed=0) also on QQP,

QNLI, MNLI, finding that the best initializations are either Normal
or Orthogonal. For example, on QNLI, Orthogonal performs best

with 0.5 pp accuracy improvement over Kaiming Uniform. These

results confirm the impact of FALoRA A initialization, and shows

the best initialization is dataset-dependent.

F.3 Practical Deployment Considerations
A common practice in literature [41, 71] is to replace Poisson sub-

sampling with shuffling for computational efficiency. However,

shuffling processes all samples and lacks Poisson’s theoretical guar-

antees [3]. Specifically, shuffling ensures each sample in the dataset

is processed exactly once per epoch. In contrast, with Poisson sub-

sampling, a sample might be selected multiple times or not at all

within a single epochwhich is essential for DP guarantees. Addition-

ally, existing works [41, 71] fix the PRNG seed for reproducibility.

However, the seed influences parameter initialization, DP noise,

and subsampling, which affect model convergence leading to dif-

ferent local minima [30]. To address these limitations, we perform

fine-tuning with Poisson subsampling (Sec. 5.1) and evaluate the

impact of different random seeds on model accuracy.

Evaluation. We assess the impact of Poisson subsampling with

random seeds on model accuracy using the SST2 dataset. Poisson

subsampling offers stricter privacy guarantees than shuffling, but

random seeds may introduce accuracy variability, since the seed

alters the data sampled during fine-tuning. Furthermore, the seed

is also responsible for the initialization of the A matrix and the

Dataset KFT /KINF

None/None None/50 None/10 50/50 50/10 10/10

SST2 92.2 92.2 (0) 90.0 (2.2) 92.3 90.0 (2.3) 90.3

MNLI 78.6 78.5 (0.1) 71.1 (7.5) 78.6 71.7 (6.9) 77.2

QNLI 85.2 85.1 (0.1) 74.2 (11) 84.8 70.6 (14.2) 81.5

QQP 82.7 82.8 (+0.1) 75.1 (7.6) 82.7 75.9 (6.8) 79.6

Table 11: Cleartext accuracy (M𝐴
FT with 𝜃DP) with differ-

ent combinations of KFT/KINF for fine-tuning and infer-
ence. In parentheses, the accuracy gap (in pp) compared to
KFT = KINF (Tab. 1, Sec. 5.1).

DP noise. To evaluate SPRINT under these conditions, we fine-

tuned RoBERTa with 10 random seeds, and tested different LoRA
A initializations. Tab. 10 shows an accuracy drop between fixed

and random seeds ranging from 0.4 pp to 2.1 pp across initializa-

tions. While Kaiming Uniform achieves the highest fixed-seed ac-

curacy (92.2%), its accuracy drops by 1.1 pp under random seeds.

Instead, Orthogonal performs best with random seeds, showing

only a 0.4 pp drop compared to its fixed-seed counterpart. These

results suggest that relying on the best-performing initialization

with fixed seeds may not yield optimal performance under random

seeds and the best initialization for practical deployment should be

selected based on its resistance to seed variability.

F.4 Cleartext Inference Capping
Tab. 11 presents the cleartext accuracy ofM𝐴

FT
under various SoftCap

configurations during fine-tuning (KFT) and inference (KINF). Ap-

plying KINF = 50 during inference only results in, at most, a 0.1 pp

accuracy drop compared to non-capped fine-tuning. Additionally,

fine-tuning with KFT = 50 achieves similar accuracy to non-capped

fine-tuning when combined with KINF = 50 during inference. In

contrast, using KINF = 10 during inference only results in a signifi-

cant accuracy degradation (up to 14.2 pp on QNLI) when combined

with KFT = 50 or non-capped fine-tuning. However, fine-tuning

with KFT = 10 reduces the accuracy gap to a smaller margin (up to

3.8 pp on QNLI) compared to non-capped fine-tuning.
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Framework Runtime (s) Communication
LAN WANR WANG GB Rounds

SHAFT [31] 140.88 970.15 1836.88 28.46 2935

SPRINT 95.90 735.22 1438.22 17.4 3649

Table 12: E2E cost of private inference on RoBERTa-large in
different network settings.

N parties Runtime (s) Communication
LAN WANR WANG GB Rounds

3 85.79 875.50 1710.94 14.54 5728

4 118.91 1285.96 2563.94 20.8 14320

Table 13: SPRINT E2E per-sample cost of private inference on
RoBERTa-base for more than 2 parties.

F.5 Scaling SPRINT
To evaluate how SPRINT scales to larger models and more than two

parties, we conduct two additional experiments. First, we evaluate

SPRINT on RoBERTa-large, which has 2× more Encoder layers
than RoBERTa-base. Second, we evaluate SPRINT with more than

two parties, a setting not explored by related works [24, 31, 45, 54].

Scaling SPRINT to RoBERTa-large. For the first experiment,

we evaluate SPRINT’s performance on RoBERTa-large and compare

it with SHAFT. As shown in Tab. 12, scaling from RoBERTa-base

to RoBERTa-large increases communication by 2.7× and rounds by

1.6×. SPRINT’s runtime increases by 2.9× in LAN, 2.4× in WANR,

and 2.3× in WANG compared to the RoBERTa-base baseline. De-

spite this expected overhead, SPRINT remains faster than SHAFT,
i.e., from 1.3× in WANG to 1.4× in LAN, and reduces communica-

tion by 1.6× despite requiring 1.2× more rounds. This shows that

SPRINT’s optimizations scale effectively to larger models, main-

taining a performance advantage over SHAFT.

Scaling SPRINT to more than 2 parties. For the second ex-

periment, we evaluate SPRINT’s performance with 3 and 4 parties

on RoBERTa-base. As shown in Tab. 13, the runtime increases sig-

nificantly, i.e., from 2.6× in LAN to 2.8× in WANG for 3 parties,

and from 3.6× in LAN to 4.2× in WANG for 4 parties compared to

the 2-party baseline. The communication also increases, i.e., from

2.2× for 3 parties to 3.2× for 4 parties. Notably, also the number of

communication rounds increases significantly, i.e., from 3.1× for 3

parties to 7.9× for 4 parties. These results confirm the effectiveness

of CrypTen in 2-party settings, but also highlight the scalability

challenges of MPC protocols in multi-party settings. The focus of

this work is on the two-party setting, but we note that custom

protocols for 3 and 4 parties also exist, e.g., [15, 25].
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