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Abstract

Fully Homomorphic Encryption (FHE) is a promising solution to en-
able privacy-preserving inference and training of machine learning
models over encrypted data. Among the machine learning methods
used in practice, Extreme Gradient Boosting (XGBoost) is one tech-
nique that shines in many applications. While previous works have
tackled the problem of training tree-based models over FHE, these
works either rely on interaction with the client, which adds the ex-
tra burden of communication, or consume a typically unreasonable
amount of time to train a large model. In this work, we present an
efficient system for a non-interactive XGBoost training over FHE
that achieves up to 360× speedup compared to the state of the art.

The argmax operation is a basic building block invoked repeat-
edly during the XGBoost training as well as other machine learning
algorithms, but computing it over FHE is time consuming. When
utilizing the Single Instruction Multiple Data (SIMD) parallelism
capability offered by most FHE schemes and using a configuration
with 𝑠 slots, the state of the art methods compute argmax on 𝑛 ≤ 𝑠
values using either O(log2 𝑛) SIMD-comparisons in tournament-
style comparison or ⌈𝑛2

𝑠
⌉ SIMD-comparisons using all pairs com-

parison.
As a second contribution of this work, we propose an efficient

argmax algorithm that is based on a novel technique to maximize
SIMD-utilization, and computes the argmax of 𝑛 ≤ 𝑠 values using
only O(log2 log2 𝑛) SIMD-comparisons. The method extends to
𝑛 > 𝑠 with complexity O( 𝑛

𝑠
+log2 log2 𝑠), compared to O( 𝑛

𝑠
+log2 𝑠)

for state of the art methods. We conduct empirical experiments to
compare ourmethodwith other existing argmaxmethods, and show
that when using the HEaaN FHE scheme with a configuration of
𝑠 = 215 to compute the argmax of 𝑛 = 𝑠 values, our implementation
is about 1.6× faster than the state of the art.
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1 Introduction

Fully Homomorphic Encryption (FHE) schemes allow computations
to be performed on encrypted data without the need for decryp-
tion. A user who has confidential data may encrypt the data using
FHE and deploy it to a cloud service for further computations. The
entire computation process in the cloud is applied while the data
is encrypted, which enables taking advantage of the cloud’s high
computation power while preserving the privacy of the sensitive
data. Among the most promising applications of FHE is its inte-
gration with machine learning (ML), enabling privacy-preserving
model inference and training.

Among the machine learning methods used in practice, Extreme
Gradient Boosting (XGBoost) [19] is one technique that shines in
many applications. XGBoost is an efficient and scalable gradient
boosting algorithm that constructs multiple decision trees sequen-
tially, optimizing each tree based on the errors of the previous
ones. It achieves state-of-the-art performance on various machine
learning tasks and has been dominating applied machine learning
competitions as well as real-world applications (e.g. [55], [10], [56],
[1], [44]).

While previous works (e.g. [6], [51]) have tackled the problem
of training tree-based models over FHE, these works either rely
on interaction with the client, which adds the extra burden of
communication, or consume a typically unreasonable amount of
time to train a large model. For instance, the current fastest work
implementing a non-interactive XGBoost training over FHE [51]
reported that it took them about 7 hours to train a single tree of
depth 4 on the sepsis dataset [23]. By extrapolating this information
we estimate that it would take more than 100 days to train a typical
model of 100 trees of depth 6.

One operation that is repeatedly invoked during the XGBoost
training algorithm, and which is of an independent interest in this
work, is the argmax operation. Given an input vector of real values,
the argmax operation locates the index of the maximal value of the
input vector. While trivially computed over cleartext data, argmax
becomes latency-intensive when operating over FHE. The argmax
component is a basic building block in XGBoost training as well as
in many other machine learning applications and hence enhancing
its performance is of high importance.

There are two common approaches to compute argmax in the
state of the art: the tournament method and the league method. The
tournament method (e.g. [18, 24, 36, 60, 61]) finds the maximum
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of 𝑛 values using log2 𝑛 tournament rounds. In each round, the
remaining values are divided into pairs. The maximal value within
each pair proceeds to the next round while the other value gets
eliminated. The algorithm stops when only one element is left,
representing the maximum of the array. The league method (e.g.
[30, 32, 36, 52]), on the other hand, relies on performing all possible
pairs of comparisons to obtain the maximum.

To reduce the latency of argmax (and FHE computations more
generally), schemes supporting Single Instruction Multiple Data
(SIMD) operations are often used. These schemes support cipher-
texts that have multiple slots, such that each slot encrypts a separate
value, and basic operations, such as multiplication, rotation and
addition, are applied on all slots of a ciphertext concurrently. Maxi-
mizing the utilization of the ciphertexts’ slots is crucial in the design
of algorithms that operate over FHE.

Since comparisons are usually the bottle-neck of argmax algo-
rithms (see Table 2), wemeasure their complexity in the terms of the
number of SIMD-comparisons they apply. Assuming a SIMD FHE
scheme that packs 𝑠 slots in each ciphertext is used, the tournament
method takes log2 𝑛 SIMD-comparisons if 𝑛 ≤ 𝑠 and 𝑛

𝑠
+ log2 (𝑠)

SIMD-comparisons if 𝑛 > 𝑠 (see Section 2.1.1), while the league
method takes 𝑛2

𝑠
SIMD-comparisons for both cases of 𝑛 > 𝑠 and

𝑛 ≤ 𝑠 (see Section 2.1.2). Moreover, a variant of the tournament
algorithm that is explained in Section 2.1.1 takes log4 𝑛 SIMD-
comparisons when 𝑛 ≤ 2𝑠

3 .
These observations raise two research questions addressed in

this work:
(1) Can the SIMD capability be leveraged to develop an argmax

algorithm over FHE that requires less than min( 𝑛
𝑠
+ log2 𝑛,

⌈𝑛2
𝑠
⌉) SIMD comparisons?

(2) To what extent may the state of the art method for XGBoost
training over FHE be improved, both by speed-up of the
argmax component and by other optimizations?

This work answers the first question affirmatively, and shows a
substantial improvement in the topic of the second question.

1.1 Our Contribution

This paper presents two key contributions. First, we present a
novel argmax algorithm that reduces the number of required SIMD-
comparisons by a better utilization of the SIMD capability. Second,
we introduce a system for XGBoost training over FHE. Our im-
plementation incorporates the optimized argmax method along
with additional system-level enhancements, achieving up to a 360×
speedup compared to the state of the art [51]. More specifically, our
contributions may be summarized as follows.
• In the case 𝑛 ≤ 𝑠 , our argmax algorithm reduces the num-
ber of required SIMD-comparisons from𝑚𝑖𝑛(log4 𝑛, ⌈𝑛

2
𝑠
⌉)

to log2 log2 𝑛.
• In the case 𝑛 > 𝑠 , our algorithm reduces the number of
required SIMD-comparisons from O( 𝑛

𝑠
+ log2 𝑠) to O( 𝑛𝑠 +

log2 log2 𝑠) (see also Table 1).
• We show empirically that when using a common HEaaN
CKKS [20] configuration with 𝑠 = 215 slots and computing
the argmax of 𝑛 = 215 values, our argmax algorithm is faster
than the state of the art by a factor of 1.6×.

• We introduce a system for a non-interactive XGBoost train-
ing over FHE. Our XGBoost training method incorporates
the optimized argmaxmethod alongwith additional enhance-
ments, achieving up to 360× speedup compared to the state
of the art.
• Within the 360× overall speedup, the contribution of our
new argmax component is as follows. In the datasets we
evaluated, our argmax algorithm achieves up to 1.7 hours of
runtime reduction (about 16%) from the total training time
of an XGBoost model of 100 trees of depth 6, compared to
an XGBoost training system that uses the prior best argmax
algorithm.

Follow-up Work. While this work demonstrates the usefulness
of our argmax algorithm by integrating it in a system for XGBoost
training over FHE, our argmax algorithm is a standalone contribu-
tion that can be used in a variety of FHE applications. For example,
in a follow-up work [7], Akavia et al. present a similarity based
retrieval system over FHE that supports finding the most similar
vector to an encrypted query from a dataset of half a million en-
crypted vectors, while reducing the communication bandwidth by
8× compared to common previous solutions. Their system strongly
relies on our argmax component, which demonstrates an additional
immediate application of our argmax algorithm.

Paper Organization. The rest of this paper is organized as follows.
In Section 2, we compare our work to prior research on argmax and
XGBoost training over FHE. In Section 3, we provide an overview of
the preliminary material. In Section 4, we introduce our proposed
argmax algorithm. In Section 5, we present a system for XGBoost
training over FHE that uses our argmax algorithm and in Section 6
we present experimental results.

2 Related Work

This section reviews prior methods for performing argmax over
FHE and previous work on training tree-based models over FHE.
The former is addressed in Section 2.1, and the latter in Section 2.2.
In both parts, we demonstrate that our approach yields a clear
improvement over the state of the art.

2.1 Prior Max and Argmax Methods over FHE

Let X = {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} be a vector of real values. In this section,
we discuss state of the art FHE-friendlymethods to compute themax
and argmax ofX. If 𝑖 is the index of the maximal value inX, then the
required output of the max operation is 𝑥𝑖 and the required output
of the argmax operation is 𝑖 . However, in the argmax algorithms
explained below, the output is an indicator vector of length 𝑛 that
contains 1 in its 𝑖-th element and 0 in all other elements. The index
𝑖 of the maximal element can easily be extracted from this indicator
vector.

Table 1 compares the number of SIMD-comparisons required by
our algorithm vs. state of the art argmax algorithms explained in
this section. Note that the numerical argmax [22] (Section 2.1.4)
algorithm is not included in Table 1 because it is not based on
comparisons.

2.1.1 TournamentMethod. The tournamentmethod is awell-known
method to select a “winner" among a set of values. This winner
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Table 1: Comparison of our argmax algorithm vs. existing argmax algorithms that rely on comparisons to compute the argmax

of 𝑛 values, assuming a SIMD FHE configuration with 𝑠 slots is used. See a detailed description of the compared works in Section

2.1.

Algorithm Complexity (𝑛 > 𝑠) Complexity (𝑛 ≤ 𝑠)
Tournament [18, 24, 36, 60, 61] ⌈𝑛

𝑠
⌉ − 1 + log2 𝑠 log2 𝑛

Four-way-tournament [51] N/A (not applicable)1 log4 𝑛

League [30, 32, 36, 52] ⌈𝑛2
𝑠
⌉ ⌈𝑛2

𝑠
⌉

Approximate argmax [42]2 ⌈𝑛
𝑠
⌉ log2 𝑛 log2 𝑛

Hierarchical argmax (ours) ⌈ 𝒏𝒔 ⌉ − 1 + log2 log2 𝒔 log2 log2 𝒏
1 [51] is not applicable in this parameter regime because it requires that 𝑛 ≤ 2

3 𝑠 .
2Assuming their parameter, 𝑘 , equals log2 𝑛 so the approximate argmax becomes accurate argmax.

may represent, for example, the maximal value in the set. Using
this method to compute max and argmax over FHE was discussed,
for example, in [24], [18], [36], [61] and [60].

The tournament method finds the maximum of 𝑛 values
{𝑥0, 𝑥1, . . . , 𝑥𝑛−1} using log2 𝑛 tournament rounds. In each round,
the remaining values are divided into pairs. The maximal value
within each pair proceeds to the next round while the other value
gets eliminated. The algorithm stops when only one element is left.
The remaining element represents the maximum of the array. The
argmax indicator vector may be extracted from the comparison
results as well. This may be done, for example, by creating after
each tournament round a temporary indicator vector that contains
1 in the indexes of the winning values and 0 in the indexes of the
losing values. The required final argmax indicator vector can be
computed as the product of all temporary indicator vectors.

When𝑛 is not greater than the number of slots, 𝑠 , the tournament
method takes log2 𝑛 SIMD-comparisons: The first round involves
𝑛
2 independent comparisons which can be done concurrently using
one SIMD comparison. The second round involves 𝑛4 independent
comparisons which again can be done concurrently using one SIMD
comparison. In the same manner, after log2 𝑛 rounds, the tourna-
ment is finished while taking log2 𝑛 SIMD-comparisons in total.
When 𝑛 > 𝑠 , ⌈𝑛

𝑠
⌉ − 1 SIMD-comparisons are needed to reduce the

number of candidate values to 𝑠 values that fit into one ciphertext,
and then log2 𝑠 other SIMD-comparisons are needed to find the
final maximal value among the remaining 𝑠 candidates, thus taking
O( 𝑛

𝑠
+ log2 𝑠) SIMD-comparisons in total.

Shin et al. [51] presented an argmax algorithm which is similar
to the tournament algorithm, but compares sets of four elements
instead of pairs of elements in each round of the tournament. Their
algorithm operates under the assumption 𝑛 ≤ 2

3𝑠 and requires
log4 𝑛 SIMD-comparisons instead of log2 𝑛 SIMD-comparisons that
are needed when using the usual tournament algorithm. Their
algorithm utilizes the SIMD capability to perform all 6 pairs of
comparisons needed to find the maximum in a set of 4 values while
using only one SIMD-comparison.

2.1.2 League Method. The league method relies on performing
all possible pairs of comparisons to obtain the maximum of X =

{𝑥0, . . . , 𝑥𝑛−1}. To this end, the league algorithm starts by creating a
matrix,𝐴𝑛×𝑛 , whose 𝑖-th row contains 𝑛 copies of 𝑥𝑖 . The transpose,

𝐴𝑡𝑛×𝑛 , of 𝐴𝑛×𝑛 is also computed. Next, element-wise comparison
between 𝐴 and 𝐴𝑡 is performed. The comparison result is a matrix
𝐼𝑛×𝑛 such that 𝐼𝑖, 𝑗 is 1 if 𝐴𝑖, 𝑗 > 𝐴𝑡𝑖, 𝑗 and 0 otherwise. The columns
of 𝐼𝑛×𝑛 are then multiplied to obtain a column vector 𝑉𝑛×1 that
contains 1 in the index of the maximal element of X and 0 in all
other places. The vector 𝑉𝑛×1 is returned as the argmax result.

Assuming again that a SIMD-supporting FHE scheme with a
configuration of 𝑠 slots is used, the league method takes O( 𝑛2

𝑠
)

SIMD-comparisons. Hence, the drawback of this method is the
huge number of comparisons needed for big values of 𝑛. Using the
league method in FHE was discussed, for example, in [52], [36],
[32] and [30].

2.1.3 Combined Tournament and League. Iliashenko and Zucca
[36] suggested combining the tournament and the league methods
as follows. They start with 𝑇 iterations of the tournament method
to reduce the number of remaining values from 𝑛 to 𝑛

2𝑇 . Then,
they proceed with a league to compute the maximum of the re-
maining 𝑛

2𝑇 values. Given an FHE configuration with 𝑠 slots, the
combined tournament and league argmax takes𝑇 + 1

𝑠
·
(
𝑛

2𝑇
)2 SIMD-

comparisons. If 𝑛 = 𝑠 , this expression is minimized when𝑇 =
log2 𝑛

2 ,
resulting with log2 𝑛

2 + 1 SIMD-comparisons. If 𝑛 > 𝑠 , then we can
apply tournament rounds until reducing the candidate values into
𝑠 candidates and then continue as in the case 𝑛 = 𝑠 , thus taking
⌈𝑛
𝑠
⌉ − 1 + log2 𝑠

2 = O( 𝑛
𝑠
+ log2 𝑠) SIMD-comparisons in total.

2.1.4 Numerical Method. Cheon et al. [22] suggested approximat-
ing the 𝑖-th bit of the argmax indicator vector corresponding to
𝑎𝑟𝑔𝑚𝑎𝑥 (𝑥0, 𝑥1, . . . 𝑥𝑛−1) as

𝑥𝑘
𝑖∑𝑛−1

𝑗=0 𝑥
𝑘
𝑗

. Since this formula converges
to the argmax as 𝑘 →∞, using a large enough 𝑘 gives an approx-
imation of argmax. This formula is difficult to compute directly
using FHE because it involves values that are too small, assuming
all inputs are in the range (0, 1). In FHE schemes that encrypt real
numbers and use approximate computations (such as CKKS), the
inherent FHE noise may ruin the computation results if the en-
crypted values are too small. To tackle this problem, [22] presented
an iterative process that computes 𝑥𝑘

𝑖∑𝑛−1
𝑗=0 𝑥

𝑘
𝑗

in a gradual manner.
Even when using the gradual approach of [22], due to FHE noise,
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this numerical argmax algorithm fails to find the correct argmax
result if the input values are too close to each other.

More precisely, the inverse operation applied in the numerical
method is difficult to compute over FHE. While inverse polynomial
approximations, such as the Goldschmidt approximation [33], may
be used, these approximations become less precise when inverting
too small values. The accuracy of the Goldschmidt approxima-
tion may be increased to a certain level by increasing the number
of iterations in the Goldschmidt algorithm, but this comes at the
expense of making the inverse operation too slow and requiring
additional costly bootstrap operations. Moreover, our experiments
showed that when using 15 Goldschmidt iterations in the inverse
polynomial approximation, the numeric argmax algorithm of [22]
produces a wrong output when the input consists of 256 or more
values where the minimal distance between two consecutive val-
ues in the input is 2−15. In contrast, in Section 6, we show that
our argmax algorithm successfully handles 215 values where the
minimal distance between two consecutive values is 2−15.

2.1.5 Approximate Argmax. Lee et al. [42] proposed an approxi-
mate argmax algorithm. Given an integer parameter 𝑘 > 0, the
input of this algorithm is a vector X = {𝑥0, 𝑥1, . . . , 𝑥𝑛−1}, and its
output is an indicator vector 𝐼 of length 𝑛, whose 𝑖-th value is 1 if
and only if 𝑥𝑖 agrees with the maximum of X on its first 𝑘 bits. The
algorithm uses ⌈𝑛

𝑠
⌉ · 𝑘 SIMD-comparisons. The smaller 𝑘 is, the

faster the 𝑘-approximate argmax algorithm becomes. If we assume
the number of bits of the input values has a known limit, then using
a large enough 𝑘 converts this approximate argmax algorithm to an
exact argmax algorithm. If we assume that the 𝑛 input values are
different values in the range (0, 1), then at least log2 𝑛 bits of accu-
racy are needed to find the exact argmax, meaning that 𝑘 must be
equal to log2 𝑛 and therefore at least ⌈𝑛

𝑠
⌉ log2 𝑛 SIMD-comparisons

are needed.

2.2 Prior Work on XGBoost Training over FHE

The problem of privacy preserving training and prediction over tree-
based models have been widely investigated. Below is an overview
of the existing prior art in this topic and an explanation of the
advantages our work has compared to these prior works.

2.2.1 Partially Secure Training and Prediction. Some works offered
solutions that compromise privacy by using techniques that expose
some of the information on the data. These methods include, for
example, order preserving encryption [49], searchable symmetric
encryption [45] and applying perturbation on the data to limit the
amount of information that can be deduced on specific samples [3],
[48]. Our solution uses FHE to enable the data-owner to train an
XGBoost model on his data using the cloud, where the data remains
encrypted during the whole training process. FHE prevents the
(semi-honest) server to deduce any information on the encrypted
data, thus offering complete privacy.

2.2.2 Interactive Training using Multi-Party Computation. Some
works (e.g. [11], [14], [17], [25], [39], [40], [53], [54], [58], [26], [27],
[28], [59], [47], [62], [37], [46], [13]) have tackled the problem of
training and prediction of tree-based models using interactive se-
cure multiparty computation and secret sharing protocols. These

protocols have the disadvantage of requiring multiple communi-
cation rounds and requiring the user to stay active for a longer
period. In practical deployment scenarios, the server has a machine
with strong computation power and the client’s device has weak
computation power. Requiring the client to stay active for multiple
communication rounds, apply local computations and pass heavy
data over the network is expected to be too much of a burden on
such typical clients. For example, in one of the most recent works
that perform interactive decision tree training, Lin et al. [46] report
performing 61, 000 communication rounds involving 51 GB to train
a single tree of depth 6 on the adult dataset. Training a typical
model of 100 trees of depth 6 is thus not feasible with this approach.
Lu et al. [37] report training a single tree of depth 6 using 500MB
of communication (i.e. 50GB for a model of 100 trees by extrapo-
lation), but their model discloses the split points of decision tree
nodes to a specific party, so that some comparisons between the
samples and the split thresholds can be performed locally to speed
up the training process. Zhu et al. [63] show that disclosing this
information can be exploited to infer training data. Our XGBoost
training algorithm performs all computations of the server side in
ciphertext space using FHE, thus requiring no intermediate rounds
of interaction.

2.2.3 Training with FHE. While many papers dealt with the prob-
lem of performing predictionwith tree-based models over FHE, only
few papers have researched training algorithms of such models over
FHE. Louis et al. [9] presented an algorithm for training a model
called Completely Random Forest (CRF). In this model, several bi-
nary trees with a fixed depth are constructed. In the training phase,
random features and thresholds are assigned to the internal nodes of
the trees. Then, the training samples are passed through the random
trees until they reach their corresponding leaves. Finally, the output
values of the leaves are determined depending on the number of
positive and negative training samples that reached them. While
this model is quite simple to train over FHE, its completely random
nature may make it less accurate than more advanced models, such
as XGBoost. [6] discussed an FHE-friendly algorithm for training
and prediction with decision trees. However, their training algo-
rithm relies on the client to compute the argmin of impurity scores
of candidate splits. This client-aided approach has the disadvan-
tages of putting extra-work on the client, increasing communication
bandwidth and a security risk imposed due to possible attacks [8]
against CKKS scheme when it is used in client-aided algorithms.

Lee and Clark [43] discussed a method for non-interactive train-
ing of decision trees over FHE, but they only demonstrate the
feasibility of their solution on small usecases consisting of one tree
of depth 3 on a binary dataset, where our method can support XG-
Boost models as large as 100 trees of depth 6 on datasets including
real values. More recently, [51] presented a non-interactive random
forest training algorithm over FHE and demonstrated its feasibility
on 64 trees of depth 4. Our algorithm for XGBoost training over
FHE differs from [43] and [51] in two ways. First, we improve the
efficiency of the training algorithm by a factor of up to 360×, by
using more efficient building blocks such as a faster argmax algo-
rithm, novel packing techniques and the tile tensor data structure
[4]. Second, our algorithm deals with XGBoost training while [43],
[51] deal with decision tree and random forest training. Since the
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XGBoost model is a widely used model which proved to be among
the most useful models for various machine learning tasks ([55],
[10], [56], [1], [44]), we expect that providing an efficient algorithm
to perform XGBoost training over FHE will prove highly beneficial.

3 Preliminaries

3.1 Fully Homomorphic Encryption

FHE is a cryptographic primitive which supports computation over
encrypted data. In this paper, we focus on FHE schemes that sup-
port SIMD-operations. These schemes encrypt multiple values in
one ciphertext, and support operations that are applied on all val-
ues of the ciphertexts concurrently. Our experiments use the CKKS
scheme [20], which supports approximate arithmetic over real num-
bers using polynomial operations. Non-polynomial functions, such
as comparisons, can be approximated via polynomial expressions.
The algorithms presented in this paper are compatible with any
FHE scheme that supports SIMD operations. A formal definition of
FHE is provided in Appendix A.

3.2 XGBoost in Cleartext

XGBoost is a widely used machine learning model which was in-
troduced in [19]. In this section, we briefly summarize some of the
ideas presented in [19].

3.2.1 Model Definition. Given a dataset of 𝑛 samples and𝑚 fea-
tures, D = {(x𝑖 , 𝑦𝑖 )}, where |D| = 𝑛, x𝑖 ∈ R𝑚 and 𝑦𝑖 ∈ R, an
XGBoost model consists of 𝐾 trees. Tree 𝑘 is associated with 𝑇𝑘
leaves, a function 𝑞 that maps samples to leaves and a vector of
weights w ∈ R𝑇𝑘 . The prediction of the 𝑘-th tree is defined by a
function 𝑝𝑘 : R𝑚 → R s.t. 𝑝𝑘 (x) = w𝑞 (x) . That is, given a sample
x, 𝑝𝑘 returns the weight of the leaf which x reaches. The XGBoost
prediction on a sample x ∈ R𝑚 , which we denote by 𝜙 (x), is the
sum of the predictions of the trees: 𝜙 (x) =∑𝐾−1

𝑘=0 𝑝𝑘 (x)
A tree that is represented by the function 𝑝 (x) = w𝑞 (x) consists

of leaves and decision nodes. Each decision node has a split condi-
tion of the shape 𝑓𝑗 < 𝑡 , for an index 0 ≤ 𝑗 < 𝑚, a feature 𝑓𝑗 and a
threshold 𝑡 ∈ R. Let 𝑢 be a node with a split condition 𝑓𝑗 < 𝑡 and let
x𝑖 be a sample that reaches the node 𝑢. The sample x𝑖 goes to the
left child of 𝑢 if x𝑖, 𝑗 < 𝑡 and it goes to the right child of 𝑢 otherwise.
This tree traversal is continued recursively until x𝑖 reaches the leaf
𝑞(x𝑖 ). The output value, w𝑞 (x𝑖 ) , is returned as the prediction result
of the tree.

3.2.2 Training objective function. Let 𝑙 (𝑦𝑖 , 𝑦𝑖 ) be a loss function,
where 𝑦𝑖 is the prediction of the model on the input sample x𝑖 and
𝑦𝑖 is the original label associated with x𝑖 . The XGBoost training
algorithm builds a model that minimizes the following objective:

L(𝜙) =
∑︁
𝑖

𝑙 (𝑦𝑖 , 𝑦𝑖 ) +
∑︁
𝑘

Ω(𝑝𝑘 ), (1)

where Ω(𝑝𝑘 ) = 𝛾𝑇𝑘 +
1
2𝜆 | |w| |

2,

for fixed parameters 𝛾 and 𝜆. The XGBoost training algorithm
operates in a greedy iterative process in which the 𝑡-th tree is
built during the 𝑡-th iteration in order to correct the results of the
previous trees. Denote by 𝑦𝑡−1𝑖 the prediction of the trees built until
iteration 𝑡−1 (inclusive) on the input sample x𝑖 . In the 𝑡-th iteration,

we grow a tree that minimizes the following objective:

L (𝑡 ) =
𝑛∑︁
𝑖=1

𝑙 (𝑦 (𝑡−1)
𝑖

+ 𝑝𝑡 (x𝑖 ), 𝑦𝑖 ) + Ω(𝑝𝑡 ). (2)

The XGBoost algorithm uses a second order approximation of L (𝑡 ) :

L (𝑡 ) ≈
𝑛∑︁
𝑖=1

𝑙 (𝑦 (𝑡−1)
𝑖

, 𝑦𝑖 ) + 𝑔𝑖𝑝𝑡 (x𝑖 ) +
1
2ℎ𝑖𝑝

2
𝑡 (x𝑖 ) + Ω(𝑝𝑡 ), (3)

where 𝑔𝑖 = 𝜕𝑦̂ (𝑡−1) 𝑙 (𝑦 (𝑡−1) , 𝑦𝑖 ) and ℎ𝑖 = 𝜕2
𝑦̂ (𝑡−1)

𝑙 (𝑦𝑖 , 𝑦 (𝑡−1) ) are the
gradient and Hessian of the loss function, respectively.

3.2.3 Growing the Trees. Growing the trees is done recursively.
We start from a root node, choose a split that maximizes a score
called gain (see Definition 3.1) for the root and then split the root to
two children using the chosen split. Then, we proceed by splitting
the two newly created children recursively. Growing the tree is
stopped when reaching a pre-specified maximum depth.

Definition 3.1. Gain Value. Let 𝑢 be a node, let 𝑓𝑖 < 𝑡 be a split
condition, let 𝐼𝐿, 𝐼𝑅 be the samples that are sent to the left and right
children of 𝑢 following the split 𝑓𝑖 < 𝑡 and denote 𝐼 = 𝐼𝐿 ∪ 𝐼𝑅 . The
gain value associated with the split 𝑓𝑖 < 𝑡 is defined as

1
2 [
(∑𝑖∈𝐼𝐿 𝑔𝑖 )

2∑
𝑖∈𝐼𝐿 ℎ𝑖 + 𝜆

+
(∑𝑖∈𝐼𝑅 𝑔𝑖 )

2∑
𝑖∈𝐼𝑅 ℎ𝑖 + 𝜆

− (
∑
𝑖∈𝐼 𝑔𝑖 )2∑

𝑖∈𝐼 ℎ𝑖 + 𝜆
] . (4)

3.2.4 Splitting Nodes. There are several training algorithms for the
XGBoost model. In the basic exact greedy algorithm, there is a set of
candidate splits that is fixed throughout the entire training process.
This fixed set consists of all possible splits on all features. More
precisely, letU𝑗 = (𝑢 𝑗,1, 𝑢 𝑗,2, . . . , 𝑢 𝑗,𝑘𝑖 ) be the sorted and unique-d
set of the values associated with the 𝑗-th feature in the training
dataset, D. The candidate splits corresponding to feature 𝑗 that
will be used during the training are the mid-points between each
two consecutive values ofU𝑗 , i.e. 𝑓𝑗 <

𝑢 𝑗,1+𝑢 𝑗,2
2 , 𝑓𝑗 <

𝑢 𝑗,2+𝑢 𝑗,3
2 , . . .,

𝑓𝑗 <
𝑢 𝑗,𝑘𝑖 −1+𝑢 𝑗,𝑘

2 (see Figure 5). Upon splitting a node, we choose
the split condition that achieves the highest gain among the set of
all candidate splits.

When reaching a pre-specified maximum depth, we stop the
splitting process and declare the reached nodes as leaves. We then
compute output values to be associated with these leaves. Let 𝐼 𝑗 be
the set of samples that have reached the 𝑗-th leaf. The output value
of the 𝑗-th leaf is given by the following equation:

𝑤∗𝑗 = −
∑
𝑖∈𝐼 𝑗 𝑔𝑖∑

𝑖∈𝐼 𝑗 ℎ𝑖 + Λ
, (5)

where Λ is a fixed parameter.

3.3 Tile Tensors

Many FHE schemes (e.g. 𝐵𝐺𝑉 [16], 𝐵/𝐹𝑉 [15], [29] and𝐶𝐾𝐾𝑆 [20])
work in a 𝑆𝐼𝑀𝐷 fashion. Leveraging the 𝑆𝐼𝑀𝐷 capabilities of such
FHE schemes often requires the use of complex packing method.
The choice of the data packing method can dramatically affect
run-time and memory costs.

HeLayers [4] framework proposes a data structure called tile
tensor that simplifies the packing decision for the user. In this
section, we briefly summarize some of the basic tile tensor notation
defined in [4], the reader is referred to [4] for further details.
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3.3.1 Tensors. We use the term tensor as synonymous with multi-
dimensional array. A rank-𝑘 tensor has a shape [𝑛1, 𝑛2, . . . , 𝑛𝑘 ],
where 0 < 𝑛𝑖 is the size of the 𝑖’th dimension. For example, a matrix
𝑀 with 5 rows and 6 columns is a rank-2 tensor of shape [5, 6].

3.3.2 Tile Tensors. A tile tensor is a data structure that stores a
tensor packed into one or more ciphertexts. Given a tensor 𝐴 of
shape [𝑛1, 𝑛2, . . . , 𝑛𝑘 ] we first break it into equal-size blocks of
some shape [𝑡1, 𝑡2, . . . , 𝑡𝑘 ]. These blocks are called tiles. Each tile is
flattened in row-major order, and stored in a separate ciphertext.

The notation [ 𝑛1
𝑡1
,
𝑛2
𝑡2
, . . . ,

𝑛𝑘
𝑡𝑘
], called the tile tensor shape, is used

to denote a tile tensor structure that contains a tensor of shape
[𝑛1, . . . , 𝑛𝑘 ] divided into tiles of shape [𝑡1, . . . , 𝑡𝑘 ], each stored flat-
tened in a ciphertext with

∏
𝑡𝑖 slots. For example storing a matrix

𝑀 of shape [8, 8] in a tile tensor of shape [ 82 ,
8
4 ] means we first break

𝑀 into sub-matrices of shape [2, 4], and store each one flattened in
a ciphertext with 8 slots. The row-major order convention means
each such sub-matrix is flattened row by row, i.e., the ciphertext
will contain the 4 elements of the first row contiguously, then the 4
elements of the second row.

If a tensor’s size along some dimension is not divisible by the
tile size along this dimension, we add zero padding in the unused
slots.

Duplicates. Tile tensor shapes have further notation to indicate
slots with duplicated values. An element ∗

𝑡𝑖
in the tile tensor shape

indicates values are duplicated along the 𝑖’th dimension.
Consider as an example a column vector 𝑉 of shape [5, 1] as

shown in Figure 1a. We can pack it into a tile tensor 𝑇𝑉 of shape
𝑇𝑉 [ 52 ,

1
4 ], as in Figure 1b. This is similar to the previous example,

where we break 𝑉 into sub-matrices of size [2, 4]. Since it only has
one column, we pad it with 3 zero columns. Similarly, since 5 is not
divisible by 2 the last tile at the bottom has a zero padding row.

An alternative option is to pack it into a tile tensor 𝑇𝑉 of shape
𝑇𝑉 [ 52 ,

∗
4 ] as in Figure 1c. The ∗4 element indicates the tensor’s size

along this dimension is 1, but instead of padding it with zeroes, we
duplicate it along the size of the tile, which in this example means
duplicating each value 4 times.

(a)𝑉 [5, 1] (b)𝑇𝑉 [ 52 ,
1
4 ] (c)𝑇 ′

𝑉
[ 52 ,

∗
4 ] (d)𝑇 ′′

𝑉
[ 52 ,

1?
4 ]

Figure 1: Packing 𝑉 [5, 1] into tile tensors using different tile

tensor shapes. Every rectangle represents a tile. Panel (c)

demonstrates tiling with replication. Panel (d) demonstrates

unknown values along the second dimension using question

mark symbols.

Sum Operator. The operator 𝑠𝑢𝑚(𝑇𝐴, 𝑖) refers to summing the
values of 𝑇𝐴 along the 𝑖-th dimension. It works by summing the
different tiles along the 𝑖-th dimension to get one tile, and then
summing inside this resulting tile. The latter summation is done
using the rotate and sum algorithm [34], and it requires using log 𝑡𝑖
rotations and log 𝑡𝑖 additions over FHE, where 𝑡𝑖 is the size of the
𝑖-th dimension in the tile shape of 𝑇𝐴 .

For example, the operation 𝑠𝑢𝑚(𝑇𝑉 , 1) over the example in Fig-
ure 1b, will first add the 3 tiles together. Then it will add the two
rows of the remaining single tile by adding it to itself with a rotation
offset of 4. This will result with a single tile containing the sum of
𝑉 in the first slot.

Binary Operators on Tile Tensors. Let 𝑇𝐴,𝑇𝐵 be two tile tensors
of the shapes 𝑠1, 𝑠2, respectively.
Definition 3.2. 𝑠1 and 𝑠2 are said to be compatible shapes if they
have the same number of dimensions, and for each dimension 𝑖 , 𝑠1
and 𝑠2 either agree on the 𝑖-th dimension, or one is ∗

𝑡𝑖
while the

other is 𝑛𝑖
𝑡𝑖
.

If 𝑠1 and 𝑠2 are compatible, then binary operators between 𝑇𝐴
and𝑇𝐵 are supported. In this case, binary operators between𝑇𝐴 and
𝑇𝐵 translate to binary operators between their tiles. If 𝑠1 = 𝑠2, then
the binary operator is applied between each pair of matching tiles
of 𝑇𝐴 and 𝑇𝐵 . Otherwise, for each dimension 𝑖 which is denoted by
∗
𝑡𝑖
in one of the shapes and by 𝑛𝑖

𝑡𝑖
in the other shape, the tiles in

the replicated shape are further replicated 𝑛𝑖 times along the 𝑖-th
dimension. The replications result with two tile tensors of identical
shapes. We then apply the operation on the two tile tensors of
identical shape, tile-wise.

Matrix-vector Multiplication. Let𝑀 [𝑎, 𝑏] be a matrix and𝑉 [𝑏] be
a vector. Following [4], to compute the product𝑀 · 𝑣 , we first pack
the transpose,𝑀𝑇 , of𝑀 , and 𝑉 in the two tile tensors 𝑇𝑀𝑇 [ 𝑏𝑡1 ,

𝑎
𝑡2 ]

and 𝑇𝑉 [ 𝑏𝑡1 ,
∗
𝑡2 ]. Then, we compute the matrix-vector multiplication

using 𝑠𝑢𝑚(𝑇𝑀𝑇 [ 𝑏𝑡1 ,
𝑎
𝑡2
] ∗𝑇𝑉 [ 𝑏𝑡1 ,

∗
𝑡2
], 1), where 𝑡1, 𝑡2 are two integers

whose product is equal to the number of slots in the used FHE
configuration, and the operation ∗ stands for element-wise product
between 𝑇𝑀𝑇 and 𝑇𝑉 .

4 Our Hierarchical Argmax Algorithm

4.1 Handling the Case of 𝑛 ≤ 𝑠
Recall that the league method computes the argmax of 𝑛 values
using O(𝑛2) comparisons and hence it requires too many compar-
isons if 𝑛 is large. To tackle this problem, we split the league method
into multiple hierarchical league iterations. After each league itera-
tion, the number of remaining candidate maximum values becomes
smaller, allowing us to further utilize SIMD-computations and per-
form larger concurrent leagues on several subsets of the remaining
values.

Our algorithm relies on the following distinction: when using
𝑑2 slots, we can compute the max and argmax of 𝑑 values us-
ing the league method (i.e. all-pairs comparison) with one SIMD-
comparison. This all-pairs comparison is denoted by 𝐿𝑒𝑎𝑔𝑢𝑒𝑑×𝑑 ,
and it requires each of the 𝑑 values to be duplicated 𝑑 times, thus
utilizing the 𝑑2 available slots. The more redundant slots we have,
the larger the leagues we can support. We will gradually decrease
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Figure 2: A tournament round that computes the maximum

of each two consecutive slots using one SIMD comparison.

In 𝐶𝑟𝑒𝑠 , we duplicate the result among each two consecutive

slots, using plaintext multiplications, rotations and addi-

tions.

the number of candidate maximum values and increase the number
of redundant slots, thus supporting larger league sizes each time.

Let 𝑠 be the number of slots and assume for simplicity the number
of input values, 𝑛, is equal to 𝑠 . At the beginning of the algorithm,
our input does not have any redundant slots and there is no place
to duplicate any of the 𝑛 values. Thus, our algorithm consists of
two parts: the first part, which we call the preparation part, applies
special initial comparisons to eliminate some of the maximum can-
didates and bring the input to a state where its values are duplicated
𝑑 times each for some 𝑑 > 1. The second part, which we call the
hierarchical part, uses hierarchical league iterations, such that the
league sizes increase each time, depending on the number of du-
plicates in the input of each league iteration. That is, assuming we
have 𝑑 duplicates for some 𝑑 > 1, we apply 𝐿𝑒𝑎𝑔𝑢𝑒𝑑×𝑑 .

In the beginning of the preparation part, since we do not have any
redundant slots, we start with a tournament round that computes
the maximum of every two consecutive slots (see Figure 2). After
this tournament round, we are left with 𝑛

2 candidate maximum
values, duplicated two times each. Theoretically we could now
proceed to the second stage of the algorithm (the hierarchical part)
and start the hierarchical part with a 𝐿𝑒𝑎𝑔𝑢𝑒2×2 operation. However,
we designed an additional preparation step that will allow us to start
the hierarchical part with 𝑑 = 8 duplicates instead of 𝑑 = 2, at the
cost of merely one SIMD-comparison. To this end, we apply a special
operation which we call 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2. This operation is illustrated
in Figure 3, and it computes the maximum of every 4 consecutive
values that are duplicated two times each. This operation is special
since it requires only 2 duplications but can compute the maximum
of 4 values. The output of 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 contains

𝑛
8 candidatemaximum

values. See Figure 3 for implementation details of 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2.
Now we are ready to proceed to the hierarchical part. Since we

have 𝑠 = 𝑛 slots and only 𝑛
8 candidate maximum values left, we can

duplicate each candidate maximum value 8 times inside the input
ciphertext, 𝐶 (using the rotate-and-sum algorithm [34]), to get 𝑛8
different values duplicated 8 times each. Utilizing the duplicates, we
can apply simultaneous leagues (all-pairs comparisons) on each set
of 8×8 = 64 consecutive slots of𝐶 , using a 𝐿𝑒𝑎𝑔𝑢𝑒8×8 operation (see
Figure 4). The 𝐿𝑒𝑎𝑔𝑢𝑒8×8 operation divides the number of maximum
candidate values by 8, which leaves us with 𝑛

64 candidate maximum
values.

Figure 3: Implementation of 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 using one SIMD-

comparison. The argmax result of the four values in the

input ciphertext, 𝐶, end up in slots of indexes 0, 2, 4 and 6 of
the result.

Figure 4: 𝐿𝑒𝑎𝑔𝑢𝑒8×8 example. Note that we add 0.5 to the values
in the main diagonal of𝐶 so we will get 1 in these slots when

computing 𝐶 > 𝐶𝑡 .

Now we are left with even more redundant slots, as we have
𝑠 = 𝑛 slots with 𝑛

64 different candidate maximum values left. We
duplicate each candidate value 64 times and apply leagues on sets
of 64 × 64 blocks (i.e. 𝐿𝑒𝑎𝑔𝑢𝑒64×64), to be left with 𝑛

642 candidate
maximum values. We continue applying leagues on blocks of 𝑑 × 𝑑
slots where 𝑑 is squared each time, and we stop when we have only
one candidate value left, which is equivalent to having 𝑑 ≥ 𝑛.

A more formal description of our argmax algorithm, showing the
implementation details of how to compute the hierarchical leagues,
is provided in Appendix B.

4.1.1 Number of SIMDComparisons. Let us compute the number of
SIMD comparisons required by our algorithm. Our algorithm starts
with a tournament round and then a 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 operation, which
together cost two SIMD comparisons. After that, we apply leagues
on 8 values, then 82 = 64 values and keep squaring the league size
each time. We stop when having (((82)2) ...)2 ≥ 𝑛. This inequality
is satisfied after log2 log2 𝑛 operations. Thus, a total of O(log log𝑛)
SIMD-comparisons are required to compute the argmax.

4.2 Handling the Case of More Values than Slots

To support the case in where 𝑛 > 𝑠 , we start with tournament-like
comparisons until reducing the number of candidate maximum
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values to 𝑠 . Then, we proceed with our hierarchical algorithm ex-
plained above to find the maximum among the remaining 𝑠 values,
which is also the maximum of the 𝑛 input values. The number of
SIMD comparisons needed for this process is ⌈𝑛−𝑠

𝑠
⌉ + log2 log2 𝑠 .

In the first stage of the algorithm that consists of tournament-like
comparisons, each SIMD-comparison compares a pair of cipher-
texts containing 𝑠 slots each, thus eliminating 𝑠 candidates while
sending the other 𝑠 candidates to the next tournament-round. A
total of ⌈𝑛−𝑠

𝑠
⌉ SIMD comparisons will eliminate 𝑛 − 𝑠 candidates

and leave us with 𝑠 maximum candidates. Then, our hierarchical
argmax algorithm computes the maximum of the remaining 𝑠 val-
ues using log2 log2 𝑠 SIMD-comparisons. Overall, computing the
argmax on 𝑛 values takes ⌈𝑛−𝑠

𝑠
⌉ + log2 log2 𝑠 SIMD-comparisons (c.f

⌈𝑛−𝑠
𝑠
⌉ + log2 𝑠 SIMD-comparisons when using tournament method

alone).

5 XGBoost Training over FHE

5.1 Optimizing Matrix-vector Multiplication

Our algorithm for XGBoost training over FHE applies many matrix-
vector multiplications in which the same encrypted matrix is mul-
tiplied by various encrypted vectors. In this section, we explain
a method which speeds-up the matrix-vector multiplication ex-
plained in Section 3.3.2 at the cost of some extra processing on the
multiplied matrix. Since we use the same matrix for many differ-
ent multiplications, we get reduction in the overall runtime even
though we spend some extra time processing the matrix.

As in Section 3.3.2, let𝑀 [𝑎, 𝑏] be a matrix whose transpose𝑀𝑇

is packed in the tile tensor 𝑇𝑀𝑇 [ 𝑏𝑡1 ,
𝑎
𝑡2 ], and let 𝑉 [𝑏] be a vector

packed in the tile tensor 𝑇𝑉 [ 𝑏𝑡1 ,
∗
𝑡2 ]. The matrix-vector multipli-

cation process explained in Section 3.3.2 can be divided to two
steps. In the first step, we perform the element-wise multiplication
𝑇𝑚𝑢𝑙 := 𝑇𝑀𝑇 [ 𝑏𝑡1 ,

𝑎
𝑡2
] ∗ 𝑇𝑉 [ 𝑏𝑡1 ,

∗
𝑡2
]. In the second step, we sum the

result along the first dimension, using 𝑠𝑢𝑚(𝑇𝑚𝑢𝑙 , 1). The first step
requires ⌈ 𝑏

𝑡1
⌉ ∗ ⌈ 𝑎

𝑡2
⌉ multiplications, while the second step requires

⌈ 𝑏
𝑡1
⌉ additions to sum the different tiles in the first dimension and

then log(𝑡1) rotations and additions to sum the values inside the
tiles, using the rotate and sum algorithm [34]. Since additions are
cheap in the Fully Homomorphic Encryption (FHE) context, our
main goal is minimizing the time of multiplications and rotations.

Assuming we use ciphertexts with 𝑠 slots, the tile tensor data
structure requires that 𝑡1 ∗ 𝑡2 = 𝑠 . The number of required ro-
tations in the matrix-vector multiplication is log(𝑡1) = log( 𝑠

𝑡2
).

Therefore, using a larger 𝑡2 and a smaller 𝑡1 has the benefit of
reducing the number of required rotations. We will show now
that a larger 𝑡2 also has a positive impact on the multiplication
time. Generally, multiplication operations over 𝐹𝐻𝐸 in the CKKS
scheme should be followed by costly 𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒 and 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 oper-
ations, but in the special case in which we have multiple products
summed together, we can save relinearize and rescale operations
by applying relinearize and rescale on the summed result once,
instead of applying relinearize and rescale on each product. That
is, given two sets of ciphertexts {𝑎𝑖 } and {𝑏𝑖 }, we can compute the
sum of their products as 𝑟𝑒𝑠𝑐𝑎𝑙𝑒 (𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒 (∑𝑎𝑖 ∗ 𝑏𝑖 )) instead of∑
𝑟𝑒𝑠𝑐𝑎𝑙𝑒 (𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒 (𝑎𝑖 ∗𝑏𝑖 )). Using this optimization in the above

matrix-vector multiplication method, we need ⌈ 𝑎
𝑡2
⌉ 𝑟𝑒𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒 and

Figure 5: Encryption of training data and split points using

ciphertexts with 𝑠 = 4 slots.

𝑟𝑒𝑠𝑐𝑎𝑙𝑒 operations to compute the matrix-vector multiplication. In
other words, a larger 𝑡2 also has the benefit of reducing the number
of required relinearize and rescale operations.

Our algorithm for XGBoost training over FHE applies many
matrix-vectormultiplications and thus it can benefit from the idea of
using a large 𝑡2 to reduce the runtime of themultiplication. However,
in most other operations that happen during our algorithm, the
encrypted data is required to be packed using one-dimensional tile
shapes having 𝑡2 = 1. Therefore, our algorithm includes a novel step
of replacing the tile-tensor shape in the middle of the computation,
only to reshape back to the original shape after the matrix-vector
multiplication ends. Since reshaping is done once per many matrix-
vector multiplications, we get a reduction in the total runtime even
though we spend extra processing time on the reshape process. The
implementation details of the suggested reshaped step are explained
in Appendix C.

5.2 Input Packing and Encryption

As in Section 3.2, we perform the training over a dataset of𝑛 samples
and𝑚 features,D = {(x𝑖 , 𝑦𝑖 )}(|D| = 𝑛, x𝑖 ∈ R𝑚, 𝑦𝑖 ∈ R). The data-
owner starts by encrypting D column-wise (see Figure 5), using
the tile tensor data-structure explained in Section 3.3. Assuming
we use ciphertexts with 𝑠 slots, the features are encrypted using a
tile tensor of shape [ 𝑛

𝑠
,𝑚], and the labels, y, are encrypted using a

tile tensor of the shape [ 𝑛
𝑠
, 1]. The data-owner also computes (in

the clear) a fixed set of candidate split points to be used during the
training, by following the process explained in Section 3.2.4. For
𝑗 < 𝑚, Let 𝑘 𝑗 be the number of split points associated with the
𝑗-th feature. In our implementation, we assume that 𝑘0, 𝑘1, . . . , 𝑘𝑚−1
are public parameters so they are exposed to the server. Let 𝑓𝑗 <
𝑡 𝑗,0, 𝑓𝑗 < 𝑡 𝑗,1, . . . , 𝑓𝑗 < 𝑡 𝑗,𝑘 𝑗 −1 be the split-points associated with the
𝑗-th feature, let
T = {𝑡0,0, . . . , 𝑡0,𝑘0−1, 𝑡1,0, . . . , 𝑡1,𝑘1−1, . . . , 𝑡𝑚−1,0, . . . , 𝑡𝑚−1,𝑘𝑚−1−1}
be the set of all thresholds of all candidate split-points and denote
𝑃 = ∥T ∥. The data-owner encrypts T with a tile tensor of the
shape [ 𝑃

𝑠
, 1]. Figure 5 shows an example of input data packing and

encryption. The data-owner sends the encrypted training data and
the encryption of T to the server, which in turn starts the training
process over FHE.
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Algorithm 1: 𝑡𝑟𝑎𝑖𝑛_𝑋𝐺𝐵𝑜𝑜𝑠𝑡
Input: 𝑛 (num. samples),𝑚 (num. features), 𝑃 (num. split

pts.), an integer 𝑡2, 𝐸𝑛𝑐 (D) (encrypted database),
𝐸𝑛𝑐 (T ) (encrypted split pts.), an integer 𝑡2 and
XGBoost-specific hyperparams (e.g.𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ,
𝑛𝑢𝑚_𝑡𝑟𝑒𝑒𝑠)

1 𝑇𝐶 [ 𝑛𝑠 , 𝑃] ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑠 ()
2 𝑇𝐶 .𝑟𝑒𝑠ℎ𝑎𝑝𝑒 ( [ 𝑛

𝑠/𝑡2 ,
𝑃
𝑡2
])

3 for 𝑖 ← 0 to 𝑛𝑢𝑚_𝑡𝑟𝑒𝑒𝑠 do
4 𝑇𝐺 [ 𝑛𝑠 , 1],𝑇𝐻 [

𝑛
𝑠
, 1] ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑟𝑎𝑑_ℎ𝑒𝑠𝑠 ()

5 𝑏𝑢𝑖𝑙𝑑_𝑛𝑒𝑥𝑡_𝑡𝑟𝑒𝑒 (𝐸𝑛𝑐 (D),𝑇𝐶 ,𝑇𝐺 ,𝑇𝐻 )// Sec.

5.3.1-5.3.2

6 end

5.3 Training in Server Side

Algorithm 1 presents the high-level process of the XGBoost model
building. In Line 1, the server starts the training process by com-
puting the compare conditions associated with all features. Each
comparison 𝑓𝑗 < 𝑡 results with an encrypted vector of length 𝑛,
which contains 1 in the indexes of the samples that satisfy the
condition 𝑓𝑗 < 𝑡 and 0 in all other places. These comparisons are
stored and will be re-used upon splitting every node during the
tree growing process. Since the encrypted input data is represented
by tile-tensors with the tile tensor shape of [ 𝑛

𝑠
, 𝑃], the compare

results will be initially held with the tile tensor shape [ 𝑛
𝑠
, 𝑃] as

well. However, in Line 2, we apply a reshape operation on the
compare results to make them be represented with tile-tensors of
the shape [ 𝑛

𝑠/𝑡2 ,
𝑃
𝑡2
] for an integer 𝑡2 > 1 (in our experiments we

used 𝑡2 ∈ {4, 8}). Recall from Section 5.1 that this reshape step can
speed-up matrix-vector multiplication operations, which will prove
useful when growing the XGBoost trees.

Once the pre-computation of the comparisons is done, the server
starts an iterative process of growing the XGBoost trees (Lines 3−5).
The next sections deep-dive into this tree-growing functionality.

5.3.1 Tree Growing over FHE. As explained above, the XGBoost
training algorithm relies on starting from a root node and splitting
recursively until a pre-specified max depth is reached. Algorithm 2
explains this node-splitting process. The algorithm starts by com-
puting the gain values corresponding to all candidate splits, as
will be explained in Section 5.3.2 and then applies our hierarchical
argmax algorithm (Section 4) on the computed gain values. The
resulting one-hot argmax indicator is used to compute two other
encrypted indicators, 𝑇𝐼𝑙 and 𝑇𝐼𝑟 . 𝑇𝐼𝑙 contains 1s in the indexes of
the samples that will traverse to the left child while 𝑇𝐼𝑟 contains 1s
in the indexes of the samples that will traverse to the right child.

The recursive node-splitting ends when reaching a pre-specified
maximum depth. At this stage, we declare the reached nodes as
leaves and compute their output values following Equation 5. The di-
vision in Equation 5 is approximated using the Goldschmidt method
[33].

5.3.2 Gain Computation. In this section, we explain how the gain
values associated with the split candidates are efficiently computed.

Algorithm 2: 𝑠𝑝𝑙𝑖𝑡_𝑛𝑜𝑑𝑒
Input: 𝐸𝑛𝑐 (D) (encrypted database), 𝐸𝑛𝑐 (T ) (encrypted

split pts.), 𝑇𝐼 (input indicator), 𝑇𝐺 (gradients), 𝑇𝐻
(Hessians), 𝑇𝐶 (precomputed comparisons).

Output: 𝑇𝐼𝑙 ,𝑇𝐼𝑟 (input indicators for left and right children).
1 𝑇𝐺𝑎𝑖𝑛 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑎𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠 (𝑇𝐼 ,𝑇𝐺 ,𝑇𝐻 ,𝑇𝐶 )// Alg. 4

2 𝑇𝑖𝑛𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑇𝐺𝑎𝑖𝑛)// Section 4

3 𝑇𝑓 ,𝑇𝑡 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑠𝑝𝑙𝑖𝑡 (𝐸𝑛𝑐 (D), 𝐸𝑛𝑐 (T ),𝑇𝑖𝑛𝑑 )// Get

chosen split point from argmax indicator

4 Store 𝑇𝑓 , 𝑇𝑡 as the split for the current node.
5 𝑇𝐼𝑙 ,𝑇𝐼𝑟 := 𝑔𝑒𝑡_𝑐ℎ𝑖𝑙𝑑_𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 (D,𝑇𝑖𝑛𝑑 ,𝑇𝐶 )// Use

precomputed comparisons and chosen split to get
input indicators of children.

6 return 𝑇𝐼𝑙 ,𝑇𝐼𝑟

This gain computation is repeated once for each node of the XG-
Boost and thus it is executed up to thousands of times, meaning that
improving the efficiency of the gain compuatation step is crucial.
The explanation below shows how by utilizing the matrix-vector
multiplication optimization explained in Section 5.1, we can reduce
the runtime of the gain computation step.

Let 𝑢 be a node and let 𝑃 be the number of candidate splits.
For 𝑗 < 𝑃 , denote by 𝐼𝐿𝑗 , 𝐼𝑅 𝑗 the sets of samples that are sent to
the left and right children of 𝑢 following the 𝑗-th split and denote
𝐼 = 𝐼𝐿𝑗 ∪ 𝐼𝑅 𝑗 . Note that 𝐼 is the set of all samples that have reached𝑢
and thus it does not depend on a specific split (i.e. it is the same set
for each 𝑗 ). Recall from Equation 4 that the gain value associated
with the 𝑗-th split is defined as:

1
2 [
(∑𝑖∈𝐼𝐿𝑗

𝑔𝑖 )2∑
𝑖∈𝐼𝐿𝑗

ℎ𝑖 + 𝜆
+
(∑𝑖∈𝐼𝑅𝑗

𝑔𝑖 )2∑
𝑖∈𝐼𝑅𝑗

ℎ𝑖 + 𝜆
− (

∑
𝑖∈𝐼 𝑔𝑖 )2∑

𝑖∈𝐼 ℎ𝑖 + 𝜆
] .

Since the term (∑𝑖∈𝐼 𝑔𝑖 )2∑
𝑖∈𝐼 ℎ𝑖+𝜆 is not dependent on the split index 𝑗 , we

can omit it from the gain expression without changing the order
of the gain values associated with the different splits. Hence, the
expression we aim to compute in this section is

(∑𝑖∈𝐼𝐿𝑗
𝑔𝑖 )2∑

𝑖∈𝐼𝐿𝑗
ℎ𝑖 + 𝜆

+
(∑𝑖∈𝐼𝑅𝑗

𝑔𝑖 )2∑
𝑖∈𝐼𝑅𝑗

ℎ𝑖 + 𝜆
. (6)

It holds that ∑︁
𝑖∈𝐼𝑅𝑗

𝑔𝑖 =
∑︁
𝑖∈𝐼

𝑔𝑖 −
∑︁
𝑖∈𝐼𝐿𝑗

𝑔𝑖 , (7)

and ∑︁
𝑖∈𝐼𝑅𝑗

ℎ𝑖 =
∑︁
𝑖∈𝐼

ℎ𝑖 −
∑︁
𝑖∈𝐼𝐿𝑗

ℎ𝑖 . (8)

Thus, we can compute the gain expression from the values
∑
𝑖∈𝐼 𝑔𝑖 ,∑

𝑖∈𝐼𝐿𝑗
𝑔𝑖 ,

∑
𝑖∈𝐼 ℎ𝑖 and

∑
𝑖∈𝐼𝐿𝑗

ℎ𝑖 .
Let 𝑆𝑔,𝑙 [1, 𝑃] and 𝑆ℎ,𝑙 [1, 𝑃] be tensors whose 𝑗-th value rep-

resents the sum of gradients and sum of Hessians of the sam-
ples that go to the left child of 𝑢 following the 𝑗-th split. That
is, 𝑆𝑔,𝑙 (0, 𝑗) =

∑
𝑖∈𝐼𝐿𝑗

𝑔𝑖 and 𝑆ℎ,𝑙 (0, 𝑗) =
∑
𝑖∈𝐼𝐿𝑗

ℎ𝑖 . Similarly, let
𝑆𝑔,𝑝 [1, 1] and 𝑆ℎ,𝑝 [1, 1] be the sum of gradients and sum of Hes-
sians of the samples that have reached 𝑢. Because 𝑆𝑔,𝑝 and 𝑆ℎ,𝑝
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are not dependent on a specific split, they consists of merely one
value. That is, 𝑆𝑔,𝑝 (0, 0) =

∑
𝑖∈𝐼 𝑔𝑖 and 𝑆ℎ,𝑝 (0, 0) =

∑
𝑖∈𝐼 ℎ𝑖 . We next

explain how to compute the gradient tensors 𝑆𝑔,𝑝 and 𝑆𝑔,𝑙 , while
the hessian tensors 𝑆ℎ,𝑝 and 𝑆ℎ,𝑙 can be similarly computed.

Let 𝐼 [𝑛, 1] be a tensor containing 1 in the indexes of the samples
that have reached the node 𝑢 and 0 in all other places and let
𝐶 [𝑛, 𝑃] be the tensor of the pre-computed comparison results. That
is, 𝐶 (𝑖, 𝑗) contains 1 if the 𝑖-th sample should go left following
the 𝑗-th split condition and it contains 0 otherwise. Recall that
𝐺 [𝑛, 1] is the tensor of the gradients of the training samples and
let 𝐺𝐼 [𝑛, 1] = 𝐺 [𝑛, 1] ∗ 𝐼 [𝑛, 1] be the element-wise multiplication
of 𝐼 and 𝐺 . The following equations hold:

𝑆𝑔,𝑝 [1, 1] = 𝑠𝑢𝑚(𝐺𝐼 [𝑛, 1], 1), (9)

𝑆𝑔,𝑙 [1, 𝑃] = 𝑠𝑢𝑚(𝐶 [𝑛, 𝑃] ∗𝐺𝐼 [𝑛, 1], 1), (10)
where in Equation 10, the tensor𝐺𝐼 [𝑛, 1] is broadcast by duplicating
it 𝑃 times along the second-dimension, and then an element-wise
multiplication is performed between 𝐶 [𝑛, 𝑝] and the broadcast ten-
sor.

Algorithm 3 utilizes the above equations to compute the sum
of gradients corresponding to the left child of the node 𝑢 for each
candidate split. The algorithm receives a tile tensor 𝑇𝐼 [ 𝑛𝑠 , 1] which
contains 1s in the indexes of the samples that have reached 𝑢 and
0 in all other places. The algorithm also receives the tile tensors
𝑇𝐺 [ 𝑛𝑠 , 1], 𝑇𝐶 [

𝑛
𝑠/𝑡2 ,

𝑃
𝑡2
] holding the gradients and the comparison

results, respectively, that were computed in Algorithm 1. Recall
from Section 5.1 that matrix-vector multiplication becomes faster
when using a two-dimensional tile shape whose second dimension,
𝑡2, is greater than 1. Hence, in Line 3 of Algorithm 3, we reshape the
gradients vector to have a tile shape of [ 𝑠

𝑡2
, 𝑡2], while the comparison

results, 𝑇𝐶 were already reshaped in Algorithm 1. The specific
reshaping method is explained in Appendix C.

Algorithm 3: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑢𝑚_𝑔𝑟𝑎𝑑
Input: 𝑇𝐼 [ 𝑛𝑠 , 1] (input indicator), 𝑇𝐺 [

𝑛
𝑠
, 1] (gradients),

𝑇𝐶 [ 𝑛
𝑠/𝑡2 ,

𝑃
𝑡2
] (compare results).

Output: 𝑇𝑆𝑔,𝑙 [ 𝑃𝑠 , 1]: The sum of gradients in the left child
for each possible split point.

1 𝑇𝐺𝐼
[ 𝑛
𝑠
, 1] =𝑇𝐺 [ 𝑛𝑠 , 1] ∗𝑇𝐼 [

𝑛
𝑠
, 1]

2 𝑇𝑆𝑔,𝑝 [ 1𝑠 , 1] = 𝑠𝑢𝑚(𝑇𝐺𝐼
, 1)// Parent sum grads.

3 𝑇𝐺𝐼 ,2𝐷 [ 𝑛
𝑠/𝑡2 ,

∗
𝑡2
] =𝑇𝐺𝐼

.𝑟𝑒𝑠ℎ𝑎𝑝𝑒 ( [ 𝑛
𝑠/𝑡2 ,

∗
𝑡2
])

4 𝑇𝑔,𝑙 [ 𝑛
𝑠/𝑡2 ,

𝑃
𝑡2
] =𝑇𝐺𝐼 ,2𝐷 [ 𝑛

𝑠/𝑡2 ,
∗
𝑡2
] ∗𝑇𝐶 [ 𝑛

𝑠/𝑡2 ,
𝑃
𝑡2
] // left child

grads

5 𝑇𝑆𝑔,𝑙 [ 1
𝑠/𝑡2 ,

𝑃
𝑡2
] = 𝑠𝑢𝑚(𝑇𝑔,𝑙 , 1) // left child sum grads.

6 return 𝑇𝑆𝑔,𝑙 .𝑟𝑒𝑠ℎ𝑎𝑝𝑒 ( [ 𝑃𝑠 , 1])

After computing the sums of gradients and sums of Hessians, we
can proceed with computing the gain values. To this end, Algorithm
4 uses Algorithm 3 to compute the gain values associated with each
split, as they appear in Equation 6.

After computing the sums of gradients and sums of Hessians in
Lines 1 − 2, Lines 3 − 6 of Algorithm 4 compute the numerators
and denominators of the expressions that construct the gain values,

(∑𝑖∈𝐼𝐿𝑗
𝑔𝑖 )2∑

𝑖∈𝐼𝐿𝑗
ℎ𝑖+𝜆 and

(∑𝑖∈𝐼𝑅𝑗
𝑔𝑖 )2∑

𝑖∈𝐼𝑅𝑗
ℎ𝑖+𝜆 . Because division is costly over FHE,

instead of applying two divisions and summing two fractions, Line
7 merges the two fractions into one fraction with a common denom-
inator. This fraction is then computed by one approximate division
using the Goldschmidt inverse approximation [33], in Line 8. The
optimization of combining two fractions into one saves one divi-
sion for each node of the XGBoost model, and because the inverse
operation is costly over FHE, the total saved runtime is significant.

Algorithm 4: 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑔𝑎𝑖𝑛_𝑣𝑎𝑙𝑢𝑒𝑠
Input: 𝑇𝐼 [𝑛, 1] (input mask), 𝑇𝐺 [ 𝑛𝑠 , 1] (gradients), 𝑇𝐻 [

𝑛
𝑠
, 1]

(Hessians), 𝑇𝐶 [ 𝑛
𝑠/𝑡2 ,

𝑃
𝑡2
] (compare results).

1 𝑇𝑆𝑔,𝑙 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑢𝑚_𝑔𝑟𝑎𝑑 (𝑇𝐼 ,𝑇𝐺 ,𝑇𝐶 )// Alg. 3

2 𝑇𝑆ℎ,𝑙 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑠𝑢𝑚_ℎ𝑒𝑠𝑠 (𝑇𝐼 ,𝑇𝐺 ,𝑇𝐶 )
3 𝑇𝑆𝑔,𝑟 =𝑇𝑆𝑔,𝑝 −𝑇𝑆𝑔,𝑙 // right gradients

4 𝑇𝑆ℎ,𝑟 =𝑇𝑆ℎ,𝑝 −𝑇𝑆ℎ,𝑙 // right Hessians

5 𝑇𝑁,𝑙 ,𝑇𝑁,𝑟 =𝑇
2
𝑆𝑔,𝑙
,𝑇 2
𝑆𝑔,𝑟

// numerators of Eqn. 6

6 𝑇𝐷,𝑙 ,𝑇𝐷,𝑟 =𝑇𝑆ℎ,𝑙 + Λ, 𝑇𝑆ℎ,𝑟 + Λ // denominators of Eqn.

6

7 𝑇𝑁 =𝑇𝑁,𝑙 ∗𝑇𝐷,𝑟 +𝑇𝑁,𝑟 ∗𝑇𝐷,𝑙
8 𝑇𝐷 =𝑇𝐷,𝑙 ∗𝑇𝐷,𝑟
9 return 𝑇𝑁 ∗ 𝑎𝑝𝑝𝑟𝑜𝑥𝐼𝑛𝑣𝑒𝑟𝑠𝑒 (𝑇𝐷 )

5.4 Optimizations of the Basic Algorithm

Three categories of optimizations are used to further optimize the
efficiency of our algorithm for XGBoost training over FHE as it was
presented in Section 5.3: compressed packing, utilizing the complex
part of the ciphertexts and reducing time spent on bootstrapping.
We briefly describe these optimizations in this section, while more
in-depth description is provided in Appendix D.

5.4.1 Compressed Packing. In the compressed packing optimiza-
tion, we utilize the idea that nodes of the same level of an XGBoost
tree are not dependent on each other and thus we can parallelize
computations corresponding to such nodes by using the SIMD ca-
pability. Whenever we are processing tensors whose size is smaller
than the number of slots, we compress tensors relating to nodes
of the same level in the tree together in the same ciphertext. This
optimization explains why in our reported runtime results (see
Section 6.3.1), the runtime growth with respect to the depth of
the trained tree is not exponential. Even though the number of
nodes of the trees grows exponentially with the tree’s depth, the
compressed packing of multiple nodes together mitigates the expo-
nential growth in run time.

5.4.2 Utilizing Complex Part. Ciphertexts in CKKS scheme [20]
encrypt complex values. We can store two real values 𝑎, 𝑏 together
as 𝑎 + 𝑖𝑏 in one slot of a ciphertext. This allows us to perform twice
the number of operations at the same cost as performing operations
on only one value. While not all operations are supported by this
complex-packed form, the gain computation step of Algorithm 3
can be sped up almost by a factor of 2 (see Appendix D for more
details).
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5.4.3 Reducing Bootstrap Time. In the CKKS scheme, ciphertexts
are encrypted at a specific chain index which gets smaller following
each multiplication. If the chain index reaches a certain threshold, a
costly bootstrap operation must be applied to restore the ciphertext
to have a higher chain index. Reducing the total time spent on
bootstrapping is achieved by careful planning of the bootstrapping
points and by utilizing complex-packing to bootstrap two values at
once. See more details on recommended bootstrapping locations
for our algorithm in Appendix D.

6 Experimental Results

6.1 Experimental Setup

All experiments were conducted on AMD EPYC 7763 64-Core Pro-
cessor, 1 CPU, 900𝐺𝐵 RAM, 1 GPU NVIDIA A100-SXM4-80𝐺𝐵. We
used HELayers SDK [4] which is a software tool designed to ef-
ficiently execute analytical algorithms over encrypted data using
FHE, leveraging different open and closed source FHE libraries.
In the reported experiments, we used HELayers’ wrapper of the
HEaaN [20] implementation of the CKKS scheme. HEaaN library
provides a GPU support, which was used in all of the experiments
reported herein.

6.1.1 FHE Parameters. We used the 𝐹𝐺𝑏 preset context imple-
mented in the HEaaN library. This context is a bootstrappable
context with 215 slots, a multiplication depth of 12, a quantization
bit size of 42 bits and an integer precision of 18 bits. The 𝐹𝐺𝑏
context supports both “normal" bootstrapping and “extended" boot-
strapping. The normal bootstrapping supports ciphertexts whose
encrypted values fall in the range (−1, 1), while the extended boot-
strapping supports ciphertexts whose encrypted values fall in the
range (−220, 220). The normal bootstrapping raises the ciphertexts
from level 3 to level 12 and consumes 15 levels in total: it reduces
the level from 3 to 0, then raises the level from 0 to 25 and then
reduces it from 25 to 12. The extended bootstrapping, on the other
hand raises the ciphertexts from level 4 to level 12 and consumes
16 levels in total. Table 2 shows the runtime of several operations
when using the HEaaN FGb context and the machine described
above.

6.2 Argmax Experiments

We compared the performance of several argmax algorithms on
randomly generated inputs consisting of different values. The inputs
were all in the range (0, 1) and the distance between each two values
in the input was 2−15 or more.

All implemented argmax algorithms relied on the comparison
approximation of [21]. This version of comparison was used be-
cause it easily supports tuning the approximation accuracy to any
desired level. We used a compare polynomial approximation which
supports inputs whose distance from each other is 2−15 or more, and
its output error is no more than 10−5. To this end, 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑎, 𝑏) is
implemented as 𝑠𝑔𝑛(𝑎−𝑏), where 𝑠𝑔𝑛(𝑥) is implemented by compos-
ing the polynomial𝑔(𝑥) = − 12860

210 𝑥
7+ 25614

210 𝑥
5− 16577

210 𝑥
3+ 4589

210 𝑥 seven
times and then the polynomial 𝑓 (𝑥) = − 5

16𝑥
7 + 21

16𝑥
5 − 35

16𝑥
3 + 35

16𝑥
two times - i.e. 𝑠𝑔𝑛(𝑥) = 𝑓 (𝑓 (𝑔(𝑔(𝑔(𝑔(𝑔(𝑔(𝑔(𝑥))))))))). Both poly-
nomials are taken from [21]. For the sake of a fair comparison,
we configured all the implemented argmax algorithms to result

in similar approximation errors. To this end, we added an extra
noise-cleaning step to the outputs of some of the algorithms (in-
cluding ours). The reported runtimes include the runtime of this
noise-cleaning step.

Figure 6 shows the experimental results of running several argmax
algorithms on an encrypted input of 𝑛 different values,
{𝑥0, 𝑥1, . . . , 𝑥𝑛−1}, where 𝑛 is smaller or equal than the number
of slots, 215. The experimental results show that our argmax al-
gorithm outperforms all other compared algorithms. Specifically,
Figure 6 shows that when computing argmax on 𝑛 = 215 values,
our argmax algorithm is 1.6× times faster than the state of the
art. It can also be seen from from the graph that the runtime of
our algorithm increases at slower rate than other algorithms when
𝑛 increases. This is due to the fact that other algorithms require
O(log𝑛) SIMD-comparisons, while our algorithm requires only
O(log log𝑛) SIMD-comparisons (as long as 𝑛 is not greater than
the number of slots of the used FHE configuration). The graph in
Figure 6b shows the maximal absolute difference between any two
entries of the computed argmax one-hot indicator vector, 𝐼 , and the
expected argmax one-hot indicator vector.

The argmax algorithms we implemented and compared may be
summarized as follows. The tournament method ([24], [18], [61],
[60]) applies a tournament-like process to compute the max and
argmax in log2 𝑛 comparison rounds. The four-way tournament
method [51] uses a tournament-like process in which sets of four
elements are compared in each round, resulting with the final max
and argmax result after log4 𝑛 comparison rounds. The implemen-
tation of [51] requires a third of the ciphertext slots to be empty at
the beginning of the algorithm, which is why the largest number
of values the algorithm can be applied on is smaller than 215.

The method described in [36] relies on applying 𝑇 tournament
rounds and then one final league round. In our specific implemen-
tation of the argmax of [36], we chose 𝑇 to be the smallest integer
such that 𝑛

2𝑇 <
√
215. This is in order to make sure that the ( 𝑛2𝑇 )

2

comparisons needed for the last league round can be carried out
with one SIMD-comparison that uses 215 slots.

The𝑘-approximate argmax of [42] relies on𝑘 SIMD-comparisons
to find all values that agree with the argmax on the first 𝑘 most
significant bits. In our implementation, we used 𝑘 = 15 to ensure
the argmax result is accurate when the input values have distance
of 2−15 or more from each other. It should be noted that the al-
gorithm of [42] becomes faster when it operates on input values
whose distance from each other is greater, thus allowing to reduce
𝑘 without harming the correctness of the argmax result. However,
our test has 215 unique values scaled to the range (0, 1), so there
must be two elements whose distance from each other is 2−15 or
less, requiring us to use 𝑘 = 15.

In addition to the reported methods, we implemented the nu-
meric argmax method of [22], which approximates the 𝑖-th bit of
the argmax indicator as 𝑥𝑙

𝑖∑
𝑗 𝑥

𝑙
𝑗

. However, this method produced
wrong results on values of 𝑛 larger than 128, because it involves
computations with very small values, which are difficult to handle
over FHE (see Section 2.1.4 for more details). Finally, note that the
k-approximate argmax method is not shown in Figure 6b of the
argmax indicator error, because it resulted with errors that are an
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(a) Runtime comparison

(b) Error comparison of argmax result. This

error represents the maximal absolute differ-

ence between any two entries of the resulting

argmax one-hot indicator vector and the ex-

pected argmax one-hot indicator vector.

Figure 6: Comparing performance of argmax algorithms.

Ours vs. Tournament ([24], [18], [61], [60]) vs. 4-way tour-

nament (([51]) vs. 𝑇 -tournaments then one league ([36]) vs.

𝑘-approximate argmax ([42]).

Operation Runtime (ms)

add 0.036
mult (level 12) 1.174
mult (level 4) 0.600
rotate 0.655
bootstrap (normal) 74.000
bootstrap (extended) 173.820
isGreater 233.860

Table 2: Runtime for basic CKKS operations

order of magnitude larger than the other methods and hence its
error graph is far above the graphs of the other methods.

6.3 XGBoost Experiments

We evaluated our XGBoost training algorithm over FHE using the
machine and FHE parameters described in the beginning of Section
6. Section 6.3.1 reports the runtime and accuracy of our algorithm
when it is evaluated on 1 tree and Section 6.3.2 reports the runtime
and accuracy of our algorithm when it is evaluated on 100 trees.
Additional experiments, such as runtime breakdown for different

Table 3: Dataset descriptions including training and test set

shapes.

Dataset Training set shape Test set shape

iris [31] (120, 4) (30, 4)
wine [2] (144, 13) (36, 13)
cancer [57] (380, 30) (269, 30)
sepsis [23] (110341, 3) (19051, 3)
adult [12] (22793, 6) (16281, 6)

steps of our algorithm and memory consumption, are included in
Appendix E.

Table 3 describes the datasets that were used for the evaluation of
our algorithm. These datasets consist of three small-sized datasets
(iris [31], wine [2] and cancer [57]) containing hundreds of samples
and two medium-sized datasets containing tens of thousands (adult
[12]) or a about a hundred thousand samples (sepsis [23]).

6.3.1 Evaluation of One Tree. Figure 7 compares the runtime of
our XGBoost training algorithm with the runtime of the state of the
art training algorithm [51]. We chose to compare with [51] because
to the best of our knowledge it is the fastest prior solution that
performs non-interactive XGBoost training over FHE. See Section
2.2.2 and Appendix E.3 for comparisons with works that apply
interactive solutions using MPC and secret sharing.

The experiments of [51] used the same FHE parameters as we
did (see Section 6.1.1). The machines used in our work and in [51]
have similar performance. We deduced this by comparing Table
2 in our work and Table 4 in [51]. These two tables report the
runtime of basic CKKS operations, such as multiplication, addition
and bootstrapping, on the corresponding machines.

Our algorithm contains a preprocessing step which computes en-
crypted one-hot comparison results for each candidate split of the
encrypted training data (Lines 1, 2 of Algorithm 1). The algorithm
of [51], however, computes this step in the client side over cleartext
data. For the sake of clear and fair comparison, we reported both
the runtime of our algorithm with and without this preprocessing
step. It should be noted that the time spent on this preprocessing
step does not depend on the number of trees in the XGBoost model.
Consequently, while it represents a significant portion of the run-
time for a single-tree model, its relative cost becomes negligible in
typical scenarios involving 100 trees or more.

Figure 7 show that our algorithm clearly outperforms the algo-
rithm of [51]. When training a tree of depth 4 on the sepsis dataset,
our algorithm is 360× faster than [51]. This figure also shows that
while the runtime of [51] grows exponentially with the depth of the
trees, our algorithm grows in a slower manner. We estimate that
this happens because we have a better utilization of the SIMD slots,
allowing us to parallelize computations in each level of an XGBoost
tree. Due to this parallelization, the time we spend on training the
𝑙-th tree-level which contains 2𝑙 nodes is not much larger than the
time spent on the first level which contains only the root node (as
long as 𝑙 is small enough so the data of all 2𝑙 nodes can fit in one
ciphertext).

Table 4 shows that our runtime improvement does not compro-
mise accuracy. The accuracy we achieve on all reported datasets
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(a) Iris dataset

(b) Wine dataset

(c) Sepsis dataset. Note that [51] reported run-

time only up to depth 4 for this dataset.

(d) Cancer dataset

Figure 7: Runtime comparisons across different datasets for

a single tree. Each graph compares our runtime (with and

without preprocessing) against the state of the art [51]

is comparable to the accuracy of the XGBoost python library [19]
when it is run on cleartext data.

6.3.2 Evaluation of 100 Trees. To prove that our algorithm scales
well when working with larger models, we report the runtime and
accuracy metrics of our algorithm when it is ran on the medium-
sized datasets adult and sepsis. Table 5, shows that our algorithm
takes about 5 hours to train a model of 100 trees of depth 6 on

Table 4: Accuracy comparison between our FHE-based algo-

rithm and the cleartext XGBoost python library [19] (1 tree,

depth 6).

Dataset our accuracy cleartext accuracy

iris 𝑓1 = 1 𝑓1 = 1
wine 𝑓1 = 1 𝑓1 = 1
cancer 𝑓1 = 0.96 𝑓1 = 0.92
sepsis 𝑓1 = 0.9 𝑓1 = 0.9

these datasets. This runtime is practical in many settings, as model
training can be performed offline—the client can submit a request
to the cloud and receive the trained model within a single night. We
also show in Table 5 that the accuracy achieved by our algorithm
is very similar to the accuracy achieved by the cleartext XGBoost
python library.

Table 5: Runtime results for running our FHE XGBoost train-

ing algorithm with 100 trees of depth 6, as well as accuracy

comparison between our FHE training and cleartext training

using XGBoost python library.

Dataset Runtime

(FHE)

Accuracy (FHE / Cleartext)

sepsis 5.5 FHE: 𝑓1 = 0.89
Cleartext: 𝑓1 = 0.89

adult 5.1 FHE: 𝑓1 = 0.78
Cleartext: 𝑓1 = 0.78

6.3.3 Memory Consumption and Communication. We write a sum-
mary of our memory consumption details here and the reader is
referred to Appendix E.2 fore more details. Our experiments con-
sume up to 80GB of GPU memory and up to 900GB of CPU memory.
However, this RAM consumption happens solely in the server side
which is assumed to have high computation power. The commu-
nication size is about 100𝑀𝐵 from the client to the server (to send
the encrypted database) and less than 10𝑀𝐵 from the server to the
client (to send the resulting model). This does not include the setup
stage in which the public FHE keys (encryption key, rotation keys
and evaluation keys) should be sent from the client to the server,
costing 4GB of communication. The communication of the setup
stage happens offline and it is one time only, meaning that the
same keys can be used for multiple FHE tasks, including training
of several XGBoost models or other FHE computations.

6.3.4 Impact of our Argmax Algorithm on Overall Training Time.
Among the datasets we used, the Wine dataset is the one where the
argmax step required the highest percentage of the run time. We
use our hierarchical argmax algorithm for this dataset, and by doing
so we save about 1.7 hours (about 16%) from the total training time
of a model of 100 trees of depth 6, compared to a training algorithm
which would use the prior best argmax algorithm. When running
on datasets with more candidate split points, the impact of our
argmax algorithm will be larger. The reader is referred to Appendix
E.4 for more details.
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A Fully Homomorphic Encryption Definition

HE and FHE schemes may be defined as follows:
Definition A.1. A homomorphic (public-key) encryption scheme
𝜀 = (Gen, Enc,Dec, Eval) with message spaceM is a quadruple of
Probabilistic Polynomial Time (PPT) algorithms as follows:
• Gen (key generation) takes as input the security parameter
1𝜆 , and outputs a pair (𝑝𝑘, 𝑠𝑘) consisting of a public key 𝑝𝑘
and a secret key 𝑠𝑘 ; denoted: (𝑝𝑘, 𝑠𝑘) ← Gen(1𝜆).
• Enc (encryption) takes as input a public key 𝑝𝑘 and amessage
𝑚 ∈ M, and outputs a ciphertext 𝑐 ; denoted: 𝑐 ← Enc𝑝𝑘 (𝑚).
• Dec (decryption) takes as input a secret key 𝑠𝑘 and a ci-
phertext 𝑐 , and outputs a decrypted message𝑚′; denoted:
𝑚′ ← Dec𝑠𝑘 (𝑐).
• Eval (homomorphic evaluation) takes as input the public key
𝑝𝑘 , a circuit 𝐶 : M𝑙 → 𝑀 and ciphertexts 𝑐1, . . . , 𝑐𝑙 , and
outputs a ciphertext 𝑐; denoted 𝑐 ← Eval𝑝𝑘 (𝐶, 𝑐1, . . . , 𝑐𝑙 ).

Correctness. The scheme is correct if for every (𝑝𝑘, 𝑠𝑘) in the
range of Gen(1𝜆) and every message𝑚 ∈ M,

𝑃𝑟 [Dec𝑠𝑘 (Enc𝑝𝑘 (𝑚)) =𝑚] ≥ 1 − neg(𝜆),
where the probability is taken over the random coins of the encryp-
tion algorithm.
C-homomorphism. A homomorphic encryption scheme is C-

homomorphic for a circuit family C if for all 𝐶 ∈ C and for any
set of inputs 𝑥1, . . . , 𝑥𝑙 to 𝐶 , letting (𝑝𝑘, 𝑠𝑘) ← Gen(1𝜆) and 𝑐𝑖 ←
Enc(𝑝𝑘, 𝑥𝑖 ) it holds that:

𝑃𝑟 [Dec𝑠𝑘 (Eval𝑝𝑘 (𝐶, 𝑐1, . . . , 𝑐𝑙 )) ≠ 𝐶 (𝑥1, . . . , 𝑥𝑙 )] ≤ neg(𝜆),
where the probability is taken over all randomness in the experi-
ment.

Compactness. A homomorphic encryption scheme is compact
if there exists polynomial 𝑝 (·) such that the decryption algorithm
can be expressed as a circuit of size 𝑝 (𝜆).

Fully homomorphic. A homomorphic encryption scheme is fully
homomorphic if it is both compact and C-homomorphic for the
class C of all efficiently computable circuits.

Security. A homomorphic encryption scheme is CPA-secure if no
PPT adversary A can distinguish between the encryption of two
equal length messages 𝑥0, 𝑥1 of his choice. See a formal definition
of CPA-security in [38].

B Implementation Details of our Argmax

Algorithm Over FHE

B.1 Main Algorithm

We start by introducing the 𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 operation, which is defined
as follows.
Definition B.1. Let s be the number of slots in the used FHE
configuration and let 𝑚 ≤ 𝑑 be two integers such that 𝑚𝑑 ≤ 𝑠 .
𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 is an operation that receives a ciphertext 𝐶 encrypting
𝑠
𝑑
different values, that are duplicated 𝑑 times each. That is, for

each 0 ≤ 𝑖 < 𝑠
𝑑
, slots 𝑖𝑑, 𝑖𝑑 + 1, . . . 𝑖𝑑 + 𝑑 − 1 of𝐶 have equal values.

The operation applies a separate league on each block of𝑚𝑑 con-
secutive slots of 𝐶 (these𝑚𝑑 consecutive slots contain𝑚 different
values). As a result, two ciphertexts,𝐶𝑚𝑎𝑥 and 𝐼 , are returned.𝐶𝑚𝑎𝑥
is a ciphertext containing the maximum of each block of𝑚𝑑 slots,
duplicated along these𝑚𝑑 slots. The second returned ciphertext, 𝐼 ,

is the argmax indicator ciphertext. 𝐼 contains 1 in the slots whose
corresponding value in 𝐶 is equal to the chosen maximum and 0 in
all other slots.

(a) An example of 𝐿𝑒𝑎𝑔𝑢𝑒4×4 operation.𝐶 is the input of

𝐿𝑒𝑎𝑔𝑢𝑒4×4.𝐶𝑚𝑎𝑥 contains themaximal value in the league,

duplicated along the 4 × 4 league’s slots. 𝐼 is the argmax

indicator ciphertext.

(b) Implementation of 𝐿𝑒𝑎𝑔𝑢𝑒4×4 using one SIMD-

comparison. Note that we actually add 𝜀 > 0 to the el-

ements of the main diagonal of𝐶 before comparison so

the comparison result of𝐶 + 𝜀 > 𝐶𝑡
will contain 1s in the

main diagonal.

Figure 8: 𝐿𝑒𝑎𝑔𝑢𝑒4×4 example.

See Figure 8a for an example of 𝐿𝑒𝑎𝑔𝑢𝑒4×4 operation on a cipher-
text with 16 slots. Usually we will have𝑚 = 𝑑 , but we also support
the case 𝑑 > 𝑚 in our definition to deal with a possible edge case
which will become clear when we will present our argmax algo-
rithm (for example, the last iteration of Example B.1 is such an edge
case). Figure 8b shows how 𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 may be implemented using
one SIMD-comparison (in Figure 8b,𝑚 = 𝑑 = 4). First, we consider
each block of𝑚𝑑 slots of 𝐶 as representing an𝑚 × 𝑑 matrix (slots
0, . . . , 𝑑 − 1 represent the first row, slots 𝑑, . . . , 2𝑑 − 1 represent the
second row, etc.). Then, we construct a second ciphertext,𝐶𝑡 , which
is defined as follows. Each block of𝑚𝑑 consecutive slots of𝐶𝑡 again
represents an 𝑚 × 𝑑 matrix. If 𝑚 = 𝑑 , then 𝐶𝑡 is obtained from
transposing every𝑚 ×𝑚 matrix of 𝐶 . That is, the𝑚 ×𝑚 matrices
composing 𝐶𝑡 are simply the transpose of the𝑚 ×𝑚 matrices that
compose𝐶 . If𝑚 < 𝑑 , then each𝑚 ×𝑑 matrix of𝐶𝑡 is obtained from
transposing the The leftmost𝑚×𝑚 sub-matrix of the corresponding
𝑚 × 𝑑 matrix of 𝐶 , and then putting zeros in the other𝑚 × (𝑑 −𝑚)
entries. Specific methods to construct𝐶𝑡 are discussed in Appendix
B.2.
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Once we constructed 𝐶𝑡 , we use an approximate 𝑖𝑠𝐺𝑟𝑒𝑎𝑡𝑒𝑟 op-
eration to apply one element-wise SIMD-comparison between 𝐶
and 𝐶𝑡 (we actually add 𝜀 > 0 to the values in the main diagonal
of 𝐶 so they will be considered as greater than their counterparts
of 𝐶𝑡 ). Denote the comparison result by 𝐶𝑐𝑚𝑝 . By multiplying the
left-most𝑚 columns of the matrices represented by 𝐶𝑐𝑚𝑝 and then
duplicating the product result along the matrices rows, we obtain
the desired argmax indicator, 𝐼 (see Figure 8b). The max result,𝐶𝑚𝑎𝑥 ,
is obtained bymultiplying 𝐼 with𝐶 and duplicating the results along
each block of consecutive𝑚𝑑 slots of 𝐶𝑚𝑎𝑥 .
𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 (𝑚 ≤ 𝑑) relies on comparing at least𝑚𝑑 ≥𝑚2 pairs of

slots to find the maximum of𝑚 values. These comparisons contain
some redundancy as one could theoretically deduce the maximum
from

(𝑚
2
)
comparisons of slots of indexes 𝑖, 𝑗 s.t. 𝑖 < 𝑗 , without the

need for all of the 𝑚𝑑 comparisons. However, properly aligning
these

(𝑚
2
)
pairs of slots in two different ciphertexts requires many

rotations, which are costly to perform over FHE. Hence, and to
utilize the matrix representation shown in Figure 8b, we perform
𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 using𝑚𝑑 comparisons, even at the expense of having
some redundant comparisons.

In the special cases𝑚 ∈ {2, 4}, there are easy methods to perform
leagues of size 𝑚 with less than 𝑚2 comparisons, thus reducing
redundancy and improving SIMD utilization. To this end, we define
the operations 𝐿𝑒𝑎𝑔𝑢𝑒∗2×1 and 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2.
Definition B.2. 𝐿𝑒𝑎𝑔𝑢𝑒∗2×1 is an operation that receives a cipher-
text𝐶 with 𝑠 slots encrypting 𝑠 different values (i.e.𝐶 does not have
any duplicated values). The operation computes the maximum of
each two consecutive slots of 𝐶 and returns two ciphertexts, 𝐶𝑚𝑎𝑥
and 𝐼 . 𝐶𝑚𝑎𝑥 encrypts the maximum of each two consecutive slots,
duplicated along these two slots. 𝐼 is an indicator ciphertext that
encrypts 1 in the indexes of the maximum slots and 0 in the indexes
of the other slots.
𝐿𝑒𝑎𝑔𝑢𝑒∗2×1 can be simply implemented by rotating 𝐶 by 1, com-

paring 𝐶 with its rotation, and then extracting 𝐶𝑚𝑎𝑥 and 𝐼 from
the comparison result using few rotations and multiplications with
plaintext indicator vectors. 𝐿𝑒𝑎𝑔𝑢𝑒∗2×1 is basically identical to a
tournament round.
Definition B.3. 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 is an operation that receives a cipher-
text𝐶 with 𝑠 slots, duplicated two times each. That is, for each 𝑖 < 𝑠

2 ,
slots 2𝑖, 2𝑖 + 1 of 𝐶 encrypt the same value. 𝐿𝑒𝑎𝑔𝑢𝑒∗4 computes the
maximum of every block of 8 slots (that encrypts 4 different values)
concurrently. The operation again returns two ciphertexts 𝐶𝑚𝑎𝑥
and 𝐼 that are defined as in previous operations.

Figure 9 shows how to compute 𝐼 in 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 using one SIMD-
comparison. The basic idea is that by rotating the input ciphertext,
𝐶 , three slots to the left, and then comparing𝐶 with 𝑟𝑜𝑡 (𝐶, 3), we get
all

(4
2
)
= 6 pairs of comparisons needed to deduce the maximum of

four input values of𝐶 . Denote𝐶𝑐𝑚𝑝 := 𝑖𝑠𝐺𝑟𝑒𝑎𝑡𝑒𝑟 (𝐶, 𝑟𝑜𝑡 (𝐶, 3)). Fig-
ure 9 shows that the product𝐶𝑐𝑚𝑝 ∗𝑟𝑜𝑡 (𝐶𝑐𝑚𝑝 , 1) ∗ (1−𝑟𝑜𝑡 (𝐶𝐶𝑚𝑝 , 6))
results in the argmax of the four input values in the first, third, fifth
and seventh slots of the product. These slots will then be duplicated
to the second, fourth, sixth and eighth slots, respectively, to get the
argmax indicator, 𝐼 . Note that while in Figure 9 we compute the
argmax on a block of eight slots that contains four different values,
in practice we apply 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 on a ciphertext with more than 8
slots and we perform a separate league on each block of 8 slots.

Thus, some extra ciphertext-plaintext multiplications and rotations
may be needed to make sure that after rotations the values that
fall off from the left edge of each eight slots block of the rotated
ciphertext cycle back to the right edge of the same block. After
computing 𝐼 as described in Figure 9, computing 𝐶𝑚𝑎𝑥 from 𝐼 can
be easily done by multiplying 𝐼 with𝐶 , summing each 8 consecutive
slots of the result to get the maximum in the first slot and then
duplicating this first slot to the entire block of 8 consecutive slots.

We now proceed with describing our argmax algorithm. Let
𝑠 = 2𝑘 for some integer 𝑘 > 0, and let 𝐶 = 𝐸𝑛𝑐 (𝑥0, ..., 𝑥𝑠−1) be a
ciphertext with 𝑠 = 2𝑘 slots. We assume that all values are unique
values in the range [0, 1]. To support other ranges, one can multiply
all values by a proper scale that brings them to the range [0, 1].
Appendix B.3 discusses a method to deal with cases in which the
input values are not unique.

Our argmax algorithm relies on a hierarchical iterative process,
in which each iteration applies a 𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 operation with in-
creasingly larger values of 𝑚. Since we start with an input of 𝑠
candidate values without any duplicates, in the first iteration we
apply 𝐿𝑒𝑎𝑔𝑢𝑒∗2×1 to get an output ciphertext with 𝑠

2 different val-
ues whose values are duplicated 2 times each. Since these are ex-
actly the requirements of the input of the 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 operation, we
then apply the 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 operation on the output of 𝐿𝑒𝑎𝑔𝑢𝑒∗2×1,
to get a new output with 𝑠

8 different values that are duplicated
8 times each. Because the output values are duplicated 8 times,
we can now apply a 𝐿𝑒𝑎𝑔𝑢𝑒8×8 operation to be left with 𝑠

64 can-
didate values, duplicated 64 times each. We then continue with
applying 𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑚 operations such that𝑚 is squared each time
(𝐿𝑒𝑎𝑔𝑢𝑒64×64, 𝐿𝑒𝑎𝑔𝑢𝑒4096×4096, etc). When the number of remaining
different values becomes smaller or equal to the number of dupli-
cates, we apply a final 𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 round where𝑚 is the number
of remaining different values and 𝑑 is the number of duplicates
(possibly𝑚 < 𝑑). The output, 𝐶𝑚𝑎𝑥 , of the last league contains the
maximal value duplicated along all slots. The argmax indicator is
computed by multiplying the output indicators of all league rounds.

Example B.1. Let 𝐶 = 𝐸𝑛𝑐 (𝑥0, ..., 𝑥215−1) be a ciphertext encrypt-
ing 𝑠 = 215 different values. The hierarchical argmax algorithm will
proceed as follows.

(1) Apply 𝐿𝑒𝑎𝑔𝑢𝑒∗2×1 and get an output ciphertext encrypting
215
2 = 214 values, duplicated 2 times each.

(2) Apply 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 and get an output ciphertext encrypting
214
4 = 212 values, duplicated 8 times each.

(3) Apply 𝐿𝑒𝑎𝑔𝑢𝑒8×8 and get an output ciphertext encrypting
212
8 = 29 values, duplicated 64 times each.

(4) Apply 𝐿𝑒𝑎𝑔𝑢𝑒64×64 and get an output ciphertext encrypting
29
64 = 23 values, duplicated 642 = 4096 times each.

(5) Apply 𝐿𝑒𝑎𝑔𝑢𝑒8×4096 and get the an output ciphertext encrypt-
ing 1 value duplicated along all slots. This value is the maxi-
mal value of the input.

The above iterative process starts from a league size of 2, then
8 and then it squares the league size on each iteration. We stop
when having (((82)2) ...)2 ≥ 𝑠 . Thus, a total of O(log log 𝑠) SIMD-
comparisons are required to compute the argmax. On the other
hand, most other methods that are discussed in Section 2.1 require
O(log 𝑠) SIMD-comparisons or more.
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Figure 9: Implementation of 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 using one SIMD-comparison. The argmax result of the four values in the input ciphertext,

𝐶, end up in slots of indexes 0, 2, 4 and 6 of the result.

Note that our hierarchical algorithm has the expense of extra
rotations and ciphertext-plaintext multiplications needed to com-
pute the transpose, 𝐶𝑡 , of 𝐶 , on each league round. However, since
comparisons are usually the bottleneck of argmax algorithms (see
Table 2), the trade-off of reducing the number of comparison rounds
at the expense of adding rotations and ciphertext-plaintext multipli-
cations is beneficial in terms of runtime. See Section 6 for empirical
comparison of our method against other argmax methods.

The algorithm above computes the argmax of 𝑠 values encrypted
in a ciphertext having 𝑠 slots. Using SIMD operations, the algorithm
can be easily extended to compute 𝑙 different argmax operations
concurrently on 𝑙 vectors each having 𝑘 values, such that 𝑘 ∗ 𝑙 ≤ 𝑠
and all vectors are encrypted in the same ciphertext.

Algorithm 5: ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙_𝑎𝑟𝑔𝑚𝑎𝑥
Input: A ciphertext 𝐶 = 𝐸𝑛𝑐 (𝑥0, 𝑥1, . . . , 𝑥𝑠 ) with 𝑠 slots,

encrypting 𝑠 unique values.
Output: Two ciphertexts, 𝐶𝑚𝑎𝑥 and 𝐼 , containing the

maximum result (duplicated along all slots) and the
argmax indicator vector, respectively.

1 𝐶𝑚𝑎𝑥 , 𝐼1 ← 𝐿𝑒𝑎𝑔𝑢𝑒∗2×1 (𝐶) // Def. B.2

2 𝐶𝑚𝑎𝑥 , 𝐼2 ← 𝐿𝑒𝑎𝑔𝑢𝑒∗4×2 (𝐶𝑚𝑎𝑥 )// Def. B.3

3 𝐼 ← 𝐼1 · 𝐼2// Homomorphic mul.

4 𝑑 ← 8, 𝑛 ← 𝑠
8

5 while 𝑛 > 1 do
6 𝑚 ←𝑚𝑖𝑛(𝑛,𝑑)
7 𝐶𝑚𝑎𝑥 , 𝐼𝑡𝑚𝑝 ← 𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 (𝐶𝑚𝑎𝑥 )
8 𝐼 ← 𝐼 · 𝐼𝑡𝑚𝑝// Homomorphic mul.

9 𝑑 ← 𝑑2, 𝑛 ← 𝑛
𝑚

10 end

11 return 𝐶𝑚𝑎𝑥 , 𝐼

B.2 Transpose Computation

Recall that the 𝐿𝑒𝑎𝑔𝑢𝑒𝑚×𝑑 operation for 𝑑 ≥ 𝑚 (Definition B.1)
relies on transposing the leftmost𝑚 ×𝑚 sub-matrix of an𝑚 × 𝑑

encrypted matrix whose columns are duplicated. This appendix
discusses two possible implementations for this transpose operation.
For simplicity, we assume𝑚 = 𝑑 . The case 𝑑 > 𝑚 can be dealt with
by transposing the leftmost𝑚 ×𝑚 sub-matrix and putting zeros in
the other𝑚 × (𝑑 −𝑚) entries.

Let 𝐶 be a ciphertext encrypting an 𝑚 ×𝑚 matrix which we
aim to transpose (slots 0, . . . ,𝑚 − 1 represent the first row, slots
𝑚, . . . , 2𝑚 − 1 represent the second row, etc.). The columns of the
matrix are duplicated, meaning that slots 𝑖 ∗𝑚, 𝑖 ∗𝑚 + 1, . . . 𝑖 ∗𝑚 +
(𝑚 − 1) of 𝐶 all encrypt the same value.

A trivial approach to perform the transpose operation requires
O(𝑚) rotations, O(𝑚) ciphertext-plaintext multiplications and a
multiplication depth of 1. This is achieved by transposing the first
column of 𝐶 to a row and then duplicating the resulting row along
the columns of the matrix. The transpose of one column can be
easily done by𝑚 ciphertext-plaintext multiplications,𝑚 rotations
and a multiplication depth of 1, while duplicating one row along
the matrix columns can be done using log2𝑚 rotations and log2𝑚
additions.

As rotations may be costly to perform in FHE, we discuss a sec-
ond transposemethod that requiresO(log𝑚) rotations, 2 ciphertext-
plaintext multiplications and a multiplication depth of 2. In this
method, we extract the main diagonal of the matrix by multiply-
ing it element-wise with the plaintext unity𝑚 ×𝑚 matrix. Then,
we sum the rows of the resulting product matrix, using the rotate
and sum algorithm [34], which requires log𝑚 rotations and log𝑚
additions. The first row of the summation result contains the trans-
pose of the first column of the input matrix (See Figure 10b). We
extract the first row of the summation result using element-wise
multiplication with a plaintext matrix of zeros and ones, only to
duplicate the extracted row along the columns of the matrix, using
log𝑚 rotations and log𝑚 additions. To illustrate this transpose pro-
cess, in Figure 10, we simultaneously transpose two 4 × 4 matrices
that are packed in the same ciphertext. That is, slots 0, 1, . . . , 15
contain the first matrix, while slots 16, 17, . . . , 31 contain the second
matrix. When summing the rows of the matrices using the rotate
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(a)

(b)

(c)

Figure 10: Transposing two matrices whose columns are

duplicated. The two matrices are encrypted in the same ci-

phertext: slots 0, 1, . . . , 15 contain the same matrix and slots

16, 17, . . . , 31 contain the second matrix.

and sum algorithm (see Figure 10b), the summation result will be
located in the first row of each matrix, but the other rows (second,
third and fourth) may contain a value from the other matrix. This
happens because when rotating the ciphertext upwards during the
𝑠𝑢𝑚𝑅𝑜𝑤𝑠 operation, values can move from one matrix to the other.
The second, third and fourth row are then cleared using element-
wise multiplication with a plaintext matrix which extracts the first
row of each matrix. The extracted first rows are duplicated to get
the final transpose result (Figure 10c).

The two suggested transpose approaches offer a trade-off be-
tween the number of operations and multiplication depth. The

trivial approach uses O(𝑚) rotations, O(𝑚) products and a mul-
tiplicative depth of 1. The second approach, on the other hand,
uses O(log𝑚) rotations, 2 products and a multiplicative depth of
2. Empirically, we found that the second approach is faster than
the trivial approach, but if the added depth ends up requiring an
additional bootstrap operation, then the question of which method
is faster depends on the specific value of𝑚.

B.3 Handling Inputs with a Non-unique

Maximum Value

This section is relevant to argmax implementations that rely on a
polynomial approximation of the compare function as a building
block. Polynomial approximations of the compare function (e.g.
[21], [41]) usually support comparing two values whose distance
from each other is at least 𝜀, for some 𝜀 > 0. If the polynomially
approximated compare function is applied on two inputs 𝑎, 𝑏, s.t.
|𝑎 − 𝑏 | < 𝜀, the result can be anywhere in the range (0, 1), and it is
usually close to 0.5 if 𝑎 = 𝑏.

Our hierarchical argmax algorithm and most of the algorithms
explained in Section 2.1 compute an argmax one-hot indicator
vector as a product of temporary indicator vectors resulting from
the compare function. Thus, if the output of the compare function
is not very close to 0 or 1, the resulting argmax one-hot indicator
will contain values that are not close to 0 or 1. More precisely, if we
apply our argmax algorithm on an input vector X whose maximum
value appears 𝑡 times, then the argmax one-hot indicator result will
contain a value close to 0 in the places of non-maximal values, and
it will contain a value close to 0.5𝑡 in the places of the maximal
values.

In many use cases, the argmax indicator output is required to
be a one-hot vector containing only one value of 1 and zeros in
all other places. This may be desired, for example, when using the
argmax one-hot indicator result as a selector to select exactly one
value from a set of candidates. Thus, some post-processing on the
argmax output is required in order to ensure the output of the
argmax is a one-hot indicator vector, when the maximal value in
the input vector X is not known to be unique.

Assume the maximal value of the input vector X appears at
most 𝑡 times. In this section, we offer a method to convert the
argmax output to a one-hot indicator vector. The larger 𝑡 is, the
harder it becomes to maintain the correct argmax result. Thus, we
suggest adding a small random noise to the input vector X before
starting the argmax algorithm. This random noise should be small
enough so it does not alter the order of the values within X. If we
know that different values in X are far from each other by at least
𝜀 > 0, then adding random noise in the range (0, 𝜀) mitigates the
problem of a repeated maximum value. This still does not solve
the problem completely, because even after adding random noise,
some of the previously equal values of X may become so close so
their distance from each other is smaller than the sensitivity of the
compare approximation being used, meaning that comparing them
to each other would produce an output value close to 0.5.

After adding random-noise to the input, we apply the argmax al-
gorithm as usual and then proceedwith the following post-processing
step. Let 𝐼 be the argmax output that we want to post-process. 𝐼
contains a positive value in the indexes of the maximal values of X
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and 0 in all other places. We apply the idea of SPiRiT [5] to keep one
of the positive values in a vector while zeroing all other positive
values. While the SPiRiT algorithm uses the BGV [16] FHE scheme
and works in a scenario in which each element of the input vector is
encrypted in a separate ciphertext, we extend the idea of SPiRiT to
support the CKKS scheme and to deal with an input vector whose
inputs are all encrypted in the same ciphertext.

Our post-processing step of the argmax output is summarized by
Algorithm 6. First, we execute the operation𝐶 := 𝑖𝑠𝐺𝑟𝑒𝑎𝑡𝑒𝑟 (𝐼 , 𝛿) for
some fixed parameter 𝛿 > 0 (for example, we may chose 𝛿 = 0.5𝑡+1).
This comparison converts all values of 𝐼 that are greater than 𝛿 to 1,
while zeroing all other values. Then, we compute a new ciphertext,
𝐶𝑆𝑃 , containing the sums of prefixes of the slots of 𝐶 . That is, the
𝑖-th slot of 𝐶𝑆𝑃 contains the sum of the slots 0, 1, . . . , 𝑖 of 𝐶 . 𝐶𝑆𝑃
is computed using the algorithm of [35], which is summarized
by Algorithm 7 and requires log2 𝑠 rotations, log2 𝑠 additions and
log2 𝑠 ciphertext-plaintext multiplications. After computing 𝐶𝑆𝑃 ,
the post-processed one-hot argmax indicator can be computed
as 𝐶 ∗ 𝑖𝑠𝐸𝑞𝑢𝑎𝑙 (𝐶𝑆𝑃 , 1), where the 𝑖𝑠𝐸𝑞𝑢𝑎𝑙 operation is performed
slotwise and it returns 1 for each slot that is equal to 1 and 0 to
all other slots. 𝑖𝑠𝐸𝑞𝑢𝑎𝑙 (𝑎, 𝑏) can be computed as 1 − 𝑠𝑖𝑔𝑛(𝑎 − 𝑏)2,
where the 𝑠𝑖𝑔𝑛 function is defined to output 1 for a positive, −1 for
a negative input and 0 for the zero input, and it can be computed
following the methods discussed in [21]. The result of the product
𝐶 ∗ 𝑖𝑠𝐸𝑞𝑢𝑎𝑙 (𝐶𝑆𝑃 , 1) is a one-hot vector containing 1 in the first slot
of 𝐼 which is greater than 𝛿 , and containing 0 in all other places.
Figure 11 illustrates this post-processing algorithm.

Algorithm 6: 𝑝𝑜𝑠𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑎𝑟𝑔𝑚𝑎𝑥
Input: A ciphertext 𝐼 = 𝐸𝑛𝑐 (𝑖0, 𝑖1, . . . , 𝑖𝑠−1), which is the

output indicator vector of our argmax Algorithm
and a parameter 𝛿 > 0.

Output: The post-processed argmax one-hot indicator.
1 𝐶 ← 𝑖𝑠𝐺𝑟𝑒𝑎𝑡𝑒𝑟 (𝐼 , 𝛿) // element-wise 𝑖𝑠𝐺𝑟𝑒𝑎𝑡𝑒𝑟.

2 𝐶𝑆𝑃 ← 𝑠𝑢𝑚_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠 (𝐼 ) // Algorithm 7.

3 return 𝐶 ∗ 𝑖𝑠𝐸𝑞𝑢𝑎𝑙 (𝐶𝑆𝑃 , 1)

Algorithm 7: 𝑠𝑢𝑚_𝑝𝑟𝑒 𝑓 𝑖𝑥𝑒𝑠
Input: A ciphertext 𝐶 = 𝐸𝑛𝑐 (𝑐0, 𝑐1, . . . , 𝑐𝑠−1) with 𝑠 slots,

where 𝑠 is a power of 2.
Output: A ciphertext, 𝐶𝑆𝑃 whose 𝑖 − 𝑡ℎ slot is equal to

𝑐0 + 𝑐1 + . . . + 𝑐𝑖 .
1 for 𝑖 ← 0 to log2 (𝑠) − 1 do
2 𝐶𝑡𝑚𝑝 ← 𝑟𝑜𝑡 (𝐶,−2𝑖 ) // Rotate right by 2𝑖 slots.

3 𝑚𝑎𝑠𝑘 (𝐶𝑡𝑚𝑝 , 2𝑖 ) // Zero first 2𝑖 slots of 𝐶𝑡𝑚𝑝.

4 𝐶+ =𝐶𝑡𝑚𝑝

5 end

6 return 𝐶

B.4 Experiments on Handling a Non-unique

Maximal Value

In this section we evaluate the post-processing algorithm discussed
in Appendix B.3. We applied our argmax algorithm on an input

vectorX = {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} with varying input sizes. The maximal
value in X was repeated𝑚𝑖𝑛(50, 𝑛10 ) times, and it was located in
random indexes. Table 6 shows the runtime of the post-processing
algorithm (Algorithm 6) on several sizes of the input vector X. Due
to the 𝑠𝑖𝑔𝑛 function being noisy when comparing equal values and
because of FHE inherent noise, there were rare cases in which the
algorithm didn’t produce the correct result. However, even in these
cases, the resulting post-processed argmax one-hot indicator vector
contained 1 in an index of a value of X that is close to the maximum
even though it is not the maximal value itself. To verify that the
success rate of Algorithm 6 is high, we repeated the experiments
tens of times for large inputs (e.g. 𝑛 >= 4096) and up to thousands
of times for smaller inputs (e.g. 𝑛 <= 256), and we counted the
number of successful runs of the algorithm. We considered a run to
be successful if the resulting one-hot indicator vector contained a
value very close to 1 in one of the indexes that contain the maximal
value of X, and if all other values of the resulting one-hot indicator
vector were very close to 0. Table 6 shows that the success rate of
Algorithm 6 is very high and that failures are very rare.

n (input size) runtime (ms) success rate

128 593 99.86%
256 583 99.79%
512 605 99.86%
1024 691 100%
2048 585 99.43%
4096 673 100%
8192 683 97.73%
16384 681 100%
32768 773 100%
Table 6: Runtime of Algorithm 6

C Reshape Operations on Tile Tensors

Let𝑀 [𝑎, 𝑏] be a matrix and𝑉 [𝑏, 1] be a vector. Let 𝑠 be the number
of slots in the used FHE configuration and suppose we are given the
tile tensors 𝑇𝑀𝑇 [ 𝑏𝑠 ,

𝑎
1 ] and 𝑇𝑉 [

𝑏
𝑠
, 1] that encrypt𝑀𝑇 and 𝑉 respec-

tively using one-dimensional tiles. As discussed in Section 3.3.2,
the matrix-vector multiplication of𝑀 and𝑉 can be more efficiently
computed if 𝑇𝑀𝑇 and 𝑇𝑉 were packed with a two-dimensional tile
shape [𝑡1, 𝑡2], where 𝑡2 > 1. To this end, we aim to reshape 𝑇𝑀𝑇

and𝑇𝑉 into two dimensional tile-tensors with the tile shape [𝑡1, 𝑡2],
using as least 𝐹𝐻𝐸 operations as possible. Herein, we assume the in-
dexing of the slots of the tiles follows a last-order convention. That
is, the value at index (𝑖1, 𝑖2) in a tile whose tile shape is [𝑡1, 𝑡2] is
stored in the slot at index 𝑖1 ∗ 𝑡2+ 𝑖2 of the corresponding ciphertext.

Let 1 < 𝑡2 < 𝑠 be a power of 2 and denote 𝑡1 = 𝑠
𝑡2
. We start by

discussing a method to reshape 𝑇𝑉 to a tile tensor 𝑇 ′
𝑉
[ 𝑏
𝑡1
, 1
𝑡2
] that

encrypts a the same content as 𝑇𝑉 . The trivial method of reshaping
𝑇𝑉 would require O(𝑏) rotations and ciphertext-plaintext multipli-
cations to properly rearrange the slots of 𝑇𝑉 , while our proposed
method only requires O( 𝑏

𝑠
∗ 𝑡2) rotations and ciphertext-plaintext

multiplications. Our method relies on the distinction that if we
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Figure 11: Post-processing the argmax result, 𝐼 , to get a one-hot indicator vector.𝐶 is computed as 𝑖𝑠𝐺𝑟𝑒𝑎𝑡𝑒𝑟 (𝐼 , 0.125).𝐶𝑆𝑃 contains
the sum of prefixes of the slots of 𝐶.

Figure 12: Reshaping of a one dimensional tile tensor,𝑇𝑉 [ 88 , 1]
to a two-dimensional tile tensor 𝑇 ′

𝑉
[ 84 ,

1
2 ]. Note that the rows

of 𝑇 ′
𝑉
are a permutation of the rows of 𝑇𝑉 . This permutation

allows a more efficient reshape process.

Figure 13: Reshaping of the tile tensor 𝑇𝑀𝑇 [ 88 , 2], which en-

crypts a 8 × 2 matrix, into the tile tensor 𝑇 ′
𝑀𝑇 [ 84 ,

2
2 ]. Note that

the rows of 𝑇 ′
𝑀𝑇 are a permutation of the rows of 𝑇𝑀𝑇 . This

permutation allows a more efficient reshape process

permute the rows of 𝑉 and the rows of𝑀 using the same permu-
tation, the matrix-vector multiplication result will not be affected.
Therefore, instead of trivially reshaping 𝑇𝑉 and 𝑇𝑀𝑇 , we reshape
them to 𝑇 ′

𝑉
and 𝑇 ′

𝑀𝑇 that encrypt permuted versions of 𝑉 [𝑏, 1] and
𝑀𝑇 [𝑏, 𝑎], respectively.

Let us first consider the case 𝑏 = 𝑠 . That is,𝑇𝑉 [ 𝑏𝑠 , 1] is encrypted
using exactly one ciphertext. In this case, we start by changing the
metadata of 𝑇𝑉 so its shape becomes [ 𝑡1

𝑡1
,
𝑡2
𝑡2
]. This step only alters

the metadata of the tile tensor 𝑇𝑉 , while the encrypted data stays
the same. Following this metadata update, 𝑇𝑉 can be thought of
as one 𝑡1 × 𝑡2 tile, as shown in Figure 12(b). Next, we extract each
column of the 𝑡2 columns of 𝑇𝑉 to a separate ciphertext, using 𝑡2
ciphertext-plaintext multiplications with plaintext vectors of 0s
and 1s. Each extracted column is rotated so it becomes the leftmost
column in a 𝑡1 × 𝑡2 tile, as in Figure 12(c). The 𝑡2 resulting tiles are
concatenated together to form one tile tensor, 𝑇 ′

𝑉
[ 𝑠
𝑡1
, 1
𝑡2
], which

is the final reshaped result, as in Figure 12(d). Since we applied
one rotation and one ciphertext-plaintext multiplication per each
column of 𝑇𝑉 , we used O(𝑡2) rotations and ciphertext-plaintext
multiplications in total.

For the more general case in which 𝑏 is not necessarily equal to 𝑠 ,
we iterate over all ⌈𝑏

𝑠
⌉ one-dimensional tiles of𝑇𝑉 , reshape each tile

individually and concatenate all of the reshaped results along the
first dimension to form the final reshaped tile tensor. This requires
O(𝑡2) operations per tile, or O( 𝑏𝑠 ∗ 𝑡2) operations for reshaping the
entire tile tensor.
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Figure 14: Reshaping the matrix multiplication result

𝑇𝑚𝑢𝑙 [ ∗4 ,
6
2 ] into 𝑇𝑚𝑢𝑙 [

6
8 , 1].

A similar method is conducted to reshape the matrix tile tensor,
𝑇𝑀𝑇 . Since 𝑇𝑀𝑇 [ 𝑏𝑠 ,

𝑎
1 ] can be thought of as 𝑎 different column tile

tensors of the shape [ 𝑏
𝑠
, 1] (see Figure 13(a)), we can reshape each

such a column to the shape [ 𝑏
𝑡1
, 1
𝑡2
] separately as we did with 𝑇𝑉 .

However, this time instead of storing all values in the left-most
column of 𝑡1 × 𝑡2 tiles, when reshaping the 𝑖-th column of 𝑇𝑀𝑇 ,
we store it in the column of index 𝑖 mod 𝑡2 in the reshaped result
(see Figure 13(b)). Each set of 𝑡2 reshaped results are then added
together to form a single tile tensor of the shape [ 𝑏

𝑡1
, 𝑎
𝑡2
] (see Figure

13(c)).
After obtaining the reshaped tile tensors𝑇 ′

𝑉
[ 𝑏
𝑡1
, 1
𝑡2
] and𝑇 ′

𝑀𝑇 [ 𝑏𝑡1 ,
𝑎
𝑡2
],

we duplicate 𝑇 ′
𝑉
along the second dimension, so it will have a tile

tensor shape of [ 𝑏
𝑡1
, ∗
𝑡2
]. Then, the matrix-vector multiplication𝑀𝑉

may be computed as 𝑠𝑢𝑚(𝑇 ′
𝑀𝑇 ∗𝑇 ′𝑉 , 1), where𝑇 ′𝑀𝑇 ∗𝑇 ′𝑉 stands for the

element-wise multiplication between 𝑇 ′
𝑀𝑇 and a broadcast copy of

𝑇 ′
𝑉
, and the 𝑠𝑢𝑚 operation is a summation over the first dimension.

As explained in [4], due to a feature of the tile tensor data-structure,
when summing values over the first dimension, the obtained result
becomes duplicated along the first dimension. Thus, the obtained
matrix-vector multiplication result is represented by a tile tensor
𝑇𝑚𝑢𝑙 [ ∗𝑡1 ,

𝑎
𝑡2
].

C.1 Reshaping Back to a Column Tile Tensor

The above matrix-vector multiplication result, 𝑇𝑚𝑢𝑙 [ ∗𝑡1 ,
𝑎
𝑡2
], is rep-

resented by a tile tensor having two dimensional tiles with a tile
shape of [𝑡1, 𝑡2]. However, to allow further processing, the XGBoost
training algorithm requires the matrix-vector multiplication re-
sult to be packed using a one-dimensional tile tensor of the shape
[ 𝑎
𝑠
, 1]. To this end, we need to reshape the matrix-vector multiplica-

tion result to the desired shape of [ 𝑎
𝑠
, 1]. The fact that 𝑇𝑚𝑢𝑙 [ ∗𝑡1 ,

𝑎
𝑡2
]

is duplicated along the first dimension enables us to reshape it
without any rotations. To do so, We iterate over the ⌈ 𝑎

𝑡2
⌉ tiles of

𝑇𝑚𝑢𝑙 , and we extract the row of index 𝑖 of the 𝑖-th tile, using one

ciphertext-plaintext multiplication (see Figure 14(b)). The extracted
tiles are then added together, resulting with multiple tiles of the tile
shape [𝑡1, 𝑡2]. These tiles are concatenated along the first dimension,
forming a two dimensional tile tensor (see Figure 14(c)). Finally, we
manually update the metadata of the resulting tile tensor to the
one dimensional tile tensor shape of [ 𝑎

𝑠
, 1], without altering the

encrypted data, to get the required reshape result (see Figure 14(d)).

D Optimizations of Our XGBoost Training

Algorithm

In this section, we discuss methods to optimize the efficiency of our
algorithm for XGBoost training over FHE as it was presented in Sec-
tion 5. Three categories of optimizations are presented: compressed
packing methods, utilizing the complex part of the ciphertexts and
reducing time spent on bootstrapping. We will now describe each
of these three categories in more details and explain how they
enhance the efficiency of the XGBoost training over FHE.

Our first optimization relies on the fact that nodes of the same
level of the XGBoost trees are independent and thus can be trained
in the same time using the SIMD capability of FHE schemes. When-
ever we are processing tensors whose size is smaller than the num-
ber of slots, we can compress tensors relating to nodes of the same
level in the tree together in the same ciphertext. Thus, in the 𝑖-
th level of the tree we can pack data relating to up to 2𝑖 nodes.
There are two specific points in our XGBoost training algorithm
where such compression can be useful. First, when computing gain
values corresponding to all candidate splits (Algorithm 4), if the
number of candidate splits is smaller than the number of slots, we
can compress tensors of multiple nodes together. This parallelizes
the division operations that are needed in the gain expression from
Equation 6, as well as the argmax operations that are applied on the
resulting gains. Second, recall from Equation 5 that computing the
output values of the nodes requires a costly division operation. Each
node has two scalars that should be divided to get its output value:∑
𝑖∈𝐼 𝑗 𝑔𝑖 and

∑
𝑖∈𝐼 𝑗 ℎ𝑖 + Λ. Instead of doing the division between

these two scalars once per node, we can compress the numerators
of all nodes from the same level in one ciphertext, compress the
denominators in another ciphertext and perform one division for
all nodes of the same level at once.

The second optimization relates to utilizing the complex part
of the FHE ciphertexts. Ciphertexts in CKKS scheme [20] encrypt
complex values. We can store two real values 𝑎, 𝑏 together as 𝑎 + 𝑖𝑏
in one slot of a ciphertext. The drawback of this complex packing
is that it limits the operations that we are able to perform on the
packed data. For example, multiplying two complex-packed values,
(𝑎+ 𝑖𝑏) ∗ (𝑐 + 𝑖𝑑), does not give us the two multiplications 𝑎 ∗𝑏 and
𝑐 ∗𝑑 and thus we can not multiply two complex-packed ciphertexts.
Summations and multiplying by real values, on the other hand,
are supported on complex packed ciphertexts. For example, when
summing 𝑎 + 𝑖𝑏 with 𝑐 + 𝑖𝑑 , we get 𝑎 +𝑏 + 𝑖 (𝑐 +𝑑), which contains
𝑎 + 𝑏 in the real part and 𝑐 + 𝑑 in the imaginary part.

Even though not all operations can be performed on complex
packed data, complex packing can be used to speed-up the gain
computation step of Algorithm 3 almost by a factor of 2. Recall that
Algorithm 3 receives an encrypted input indicator vector, 𝑇𝐼 [ 𝑛𝑠 , 1],
that contains 1 in the indexes of the samples that have reached
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the current node and 0 in all other places. Using the complex-
packing optimization, we can complex pack different input masks
corresponding to pairs of nodes of the same level of the XGBoost-
tree together. So, two tile tensors, 𝑇𝐼1 and 𝑇𝐼2 , are complex packed
as 𝑇𝐼𝑐 =𝑇𝐼1 + 𝑖 ∗𝑇𝐼2 , while the rest of Algorithm 3 stays the same.
Because Algorithm 3merely consists of multiplying with real values
and summations, it can be performed on complex packed data,
virtually computing the required sums of gradients for two nodes
at once. At the end of the algorithm, we unpack the two complex
packed results using the equations 𝑟𝑒𝑎𝑙 (𝑧) = 0.5 ∗ (𝑧 + 𝑐𝑜𝑛 𝑗 (𝑧))
and 𝑖𝑚𝑎𝑔(𝑧) = 0.5 ∗ (𝑧 − 𝑐𝑜𝑛 𝑗 (𝑧)).

The third optimization we discuss reduces the time spent on
bootstrapping operations. In the CKKS scheme, ciphertexts are
encrypted at a specific chain index which gets smaller following
each multiplication. If the chain index reaches a certain thresh-
old, a costly bootstrap operation must be applied to restore the
ciphertext to have a higher chain index. While bootstrapping is
necessary when a ciphertext reaches a certain chain index, in some
cases, choosing to apply bootstrapping beforehand saves the to-
tal number of required bootstrap operations. For example, if we
want to evaluate a polynomial on an encrypted input 𝑥 which has
only one chain index left, it is more efficient to bootstrap 𝑥 before
evaluating the polynomial and starting the evaluation on a fresh
ciphertext with high chain index, because otherwise we would have
to bootstrap each monomial of the polynomial separately. Choosing
the optimal locations of where bootstrapping should be applied
to minimize the overall number of bootstrap operations is an NP-
hard problem [50]. However, by manual trial and error one can
find specific points where bootstrapping is beneficial. Thus, our
XGBoost training algorithm includes manual optimization of the
bootstrap points to reduce the overall number of required bootstrap
operations. Some examples of recommended points for manual
bootstrapping include:
• Bootstrapping the tile tensor encrypting the gain values
before we apply an argmax operation on it (Algorithm 2,
Line 2) can help reducing the number of bootstrap operations
during the argmax operations.
• Bootstrapping the output one-hot indicator of the argmax
operation mentioned above can reduce the number of boot-
strap operations during later stages that rely on this one-hot
indicator.
• Bootstrapping the input masks of the children obtained at
the end of the node splitting algorithm (Algorithm 2, Line 5)
to start the next recursive splits with fresh input masks can
be beneficial.

Aside from manual planning of bootstrap points, we can reduce
the time spent on bootstrapping in other ways. One way to do this
utilizes complex-packing to bootstrap two ciphertexts on the same
time. The tile tensor data structure offers an automatic optimization
in which if it is bootstrapped while having more than one tile, pairs
of tiles are complex packed together so the number of tiles is halved.
The complex packed tiles are bootstrapped, and the bootstrapped re-
sult is then unpacked. Because complex packing and unpacking are
much less costly than bootstrapping, this optimization is beneficial.

Another way to reduce the bootstrap time relies on specific de-
tails of the HEaaN library implementation [20] of the CKKS scheme,

which we used in our training. There are two kinds of bootstrap-
ping operations implemented in the HEaaN library. The first is the
regular bootstrapping, which supports input ciphertexts whose en-
crypted values fall in the range (−1, 1). The second is the exteneded
bootstrapping, which supports values in the range (−220, 220), but it
is twice slower than the regular bootstrapping. Generally, because
bootstrapping is applied on encrypted values, we can not guarantee
that the bootstrapped values fall in the range (−1, 1), which requires
us to use the slower extended bootstrapping. However, there are
specific points in the XGBoost training algorithm in where we have
an additional knowledge on the values. For example, when com-
paring two values, the compare algorithm naturally produces an
output of 0s and 1s, and thus its output can be bootstrapped using
the regular bootstrapping. Moreover, the input indicator vectors
used during the algorithm also consist of vectors of 0s and 1s, mean-
ing that they can be bootstrapped using the regular bootstrapping
instead of the extended bootstrapping as well. Thus, combining the
two kinds of bootstrapping and using the regular bootstrapping
wherever possible is yet another optimization of our algorithm.

E Further Discussion on XGBoost Training

Experiments

This Appendix includes further experimental results and additional
discussions to the experiments presented in Section 6.3. We discuss
the runtime breakdown of our algorithm, memory consumption
details, runtime comparison with works that use multi-party com-
munication techniques and the impact of our hierarchical argmax
algorithm on the overall XGBoost training runtime.

E.1 Runtime Breakdown of our Algorithm

Figure 15 shows the runtime breakdown of our algorithm. Com-
puting the gain values (Algorithm 2, Line 1) is the slowest step in
the training algorithm. This is due to the fact that we have to com-
pute a separate gain value for each sample of the dataset, and this
process is repeated one time for each node in the XGBoost model.
The argmax step is fast for datasets that include few candidate
splits (for example, the Sepsis dataset contains only 105 candidate
splits) and it is slow for datasets that include many candidate splits
(for example, the Wine dataset contains 1095 candidate splits). The
“other” category includes, for example, bootstrap operations that
happen outside of other reported operations, moving ciphertexts
between GPU and CPU and changing the shape of the tile tensors
as explained in Section 5.1.

E.2 Memory Consumption

Our experiments consume up to 80GB of GPU memory and up
to 900GB of CPU memory. Some of the temporary ciphertexts
computed during the training algorithm add a memory overload
(e.g. Algorithm 1, Line 1). However, this RAM consumption happens
solely in the server side which is assumed to have high computation
power. Before returning the final trained model to the client side,
the model can be compressed in few CKKS ciphertexts. Indeed, to
store an XGBoost model we need two values per internal node (i.e.
the feature index and the comparison threshold used in the split
condition of the corresponding node) and one value per leaf node
(i.e. the output value). A typical XGBoost model of 100 trees of depth
6 contains 6300 internal nodes and 6400 leaf nodes and hence it can198
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Figure 15: Timing breakdown for the experiments of Figure 7. The “other” category includes, for example, bootstrap operations

that happen outside of other reported operations, moving ciphertexts between GPU and CPU and changing the shape of the

tile tensors as explained in Section 5.1.

be stored using one CKKS ciphertext of 32𝐾 slots. The size of one
CKKS ciphertext with 32𝐾 slots at level 1 is about 2MB, meaning
that our XGBoost model can be compressed and returned to the
client using only few megabytes of communication. In contrast,
works that use multi-party communication and rely on interaction
between the server and the client, such as [37], require at least
50GB of interaction to train a model of 100 trees of depth 6 on a
dataset of 105 samples.

To setup the system, the public FHE keys (encryption key, ro-
tation keys and evaluation keys) should be sent from the client to
the server, costing 4GB of communication. However, this commu-
nication happens offline and it is one time only, meaning that the
same keys can be used for multiple FHE tasks, including training
of several XGBoost models or other FHE computations. Deploying
the encrypted input dataset also requires (one round of) communi-
cation between the client and the server. The encrypted datasets
in our experiments have a size of no more than 100MB. Further
examinations and optimizations of the memory consumption of
our XGBoost training algorithm are left as an are for future work.

E.3 Runtime Comparison with Multi-party

Computation Works

As discussed in Section 2.2.2, Multi-Party Computation (MPC) ap-
proaches for the secure training of tree-based models have the
disadvantage of requiring the client to stay active during the com-
putation and inducing a high communication cost, which is less
suitable for clients with weak computation power as common in
typical deployment scenarios. However, we report the runtime of
two of the recently published MPC solutions for completeness and
clarity. Recall from Table 5 that our FHE training algorithm takes
up to 5.5 hours to train a model of 100 trees of depth 6 on a dataset
of up to hundred thousand samples on a GPU machine.

Lu et al. [37] report training a single tree of depth 6 on a dataset
of 105 samples in 18.4 seconds in LAN network settings and 39.3
seconds in WAN network settings. By extrapolation we conclude
that to train a model of 100 trees of depth 6 it would take them 0.5
hour in LAN settings and 1.1 hour in WAN settings. However, their
work discloses the split points of decision tree nodes to a specific
party so that some comparisons between the samples and the split
thresholds can be performed locally to speed up the training process,
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and this disclosure of information was shown by Zhu et al. [63] to
potentially allow an attacker to infer training data.

More recently, Bhardwaj et al. reported using a multi-party com-
munication approach to train a tree of depth 4 on a dataset of 213
samples in 5 seconds in LAN settings and 152 seconds in WAN set-
tings, meaning that training a model of 100 trees of depth 4 would
take them 500 seconds in LAN settings 4.2 hours in WAN settings.

E.4 Impact of our Argmax Algorithm on

Overall Training Time

It can be seen from Figure 15 that the argmax step costs between
6% (for the Sepsis dataset) and 32% (for the Wine dataset) from
the entire training process. In the Sepsis dataset, the number of
candidates split points is only 105, andwe used the leaguemethod to
compute the argmax. In the Wine dataset, there are 1095 candidate
split points, and we used our hierarchical argmax algorithm to

compute the argmax. That is, the argmax step is slower and heavier
to compute for theWine dataset, because it contains more candidate
split values.

For the Wine dataset, the argmax step costed 120 seconds for
each tree of depth 6. When applying argmax on 1095 as in the
Wine dataset, our argmax algorithm is faster than the prior argmax
algorithms by 1.5× (1834 milliseconds for our algorithm vs. 2748
milliseconds for the four-way tournament algorithm [51]). This
means that by using our argmax algorithm we saved 60 seconds
per tree, or about 1.7 hours in total for training a typical model of
100 trees of depth 6. A 1.7 hours reduction is about 16% runtime
reduction from the total training time for 100 trees of depth 6 on the
Wine dataset. In general, when using datasets that contain more
candidate split points, the portion of the argmax step from the
entire training process becomes larger and the runtime saved by
using our argmax algorithm becomes larger.
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