
𝑑X-Privacy for Text and the Curse of Dimensionality
Hassan Jameel Asghar

hassan.asghar@mq.edu.au

Macquarie University

Sydney, Australia

Robin Carpentier

robin.carpentier@mq.edu.au

Macquarie University

Sydney, Australia

Benjamin Zi Hao Zhao

ben_zi.zhao@mq.edu.au

Macquarie University

Sydney, Australia

Dali Kaafar

dali.kaafar@mq.edu.au

Macquarie University

Sydney, Australia

Abstract
Awidely used method to ensure privacy of unstructured text data is

the multidimensional Laplace mechanism for 𝑑X-privacy, which is

a relaxation of differential privacy for metric spaces. We identify an

intriguing peculiarity of this mechanism. When applied on a word-

by-word basis, the mechanism either outputs the original word, or

completely dissimilar words, and very rarely outputs semantically

similar words. We investigate this observation in detail, and tie it

to the fact that the distance of the nearest neighbor of a word in

any word embedding model (which are high-dimensional) is much

larger than the relative difference in distances to any of its two

consecutive neighbors. We also show that the dot product of the

multidimensional Laplace noise vector with any word embedding

plays a crucial role in designating the nearest neighbor. We derive

the distribution, moments and tail bounds of this dot product. We

further propose a fix as a post-processing step, which satisfactorily

removes the above-mentioned issue.

Keywords
Differential privacy, word embeddings, multidimensional Laplace

mechanism

1 Introduction
Unstructured text is the most common method of communication

in the real-world, in the form of emails, sharing reports, and en-

tering prompts to generative artificial intelligence (AI) models to

quote a more contemporary example. In many scenarios, part of the

text needs to be sanitized due to privacy reasons. Examples include

authorship anonymization to protect identities of whistleblowers,

redacting sensitive information before releasing documents as part

of freedom of information requests, and ensuring that user submit-

ted prompts to a third-party generative AI model do not contain

sensitive company information.

With the increasing use of differential privacy [14] as a principled

way of releasing data with privacy in many real-world applications,

it has also been proposed as an automated way to achieve privacy

in the text domain. More specifically, a generalization of differential
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privacy to metric spaces, called 𝑑X-privacy [11], has been proposed

as a method to sanitize sensitive text [15, 16, 22, 23, 31, 35].
1
Infor-

mally 𝑑X-privacy ensures that it is harder to distinguish objects in

a metric space that are closer to one another under the distance

metric of the metric space than objects further away. This promises

better utility than ordinary differential privacy as in many use cases

it suffices to provide privacy up to a certain granularity. An analogy

is location data; disclosing the city or postcode one resides in is less

of a concern than the exact street address.

There are a number of ways in which 𝑑X-privacy can be used to

santize text data. One common method is word-by-word sanitiza-

tion through the word-level multidimensional Laplace mechanism

for 𝑑X-privacy, applied in the following manner [15, 16, 22, 31, 35].

We assume a pre-trained machine learning model is available which

vectorizes words, i.e., converts them into embeddings in a high-

dimensional space. This pre-trained model is public information.

The words form the vocabulary, and their corresponding embed-

dings define the embedding space. Given a word in a sentence to

be sanitized, a noise vector is generated calibrated according to

the privacy parameter 𝜖 , and then added to the word embedding

resulting in a vector in the embedding space. Almost always, this

does not correspond to the embedding of any word in the vocab-

ulary of the embedding model. We can instead find the nearest

neighbor (e.g., with respect to the Euclidean distance) to this noisy

embedding in the embedding space, and output the resulting word.

This method can be applied independently to each word, and the

complete sentence can then be used as the sanitized text.
2

When sanitizing text through this method we encountered a con-

founding observation [8]. If this method is applied several times on

the same word, one expects to see the original word, followed by its

closest neighbors as the most frequent words output by the mecha-

nism, with the frequency dropping smoothly but exponentially as

we move away from the original word. However, we observed that

through the entire spectrum of values of 𝜖 , the mechanism almost

always outputs either the original word or words which are very

far off in distance and semantic similarity to the original word. The

nearest neighbors of the original word are seldom output by the

mechanism [8].

One may hasten to attribute this phenomenon to the high dimen-

sional nature of the embedding space, since the Euclidean distance

1𝑑X -privacy is also commonly known as metric privacy.
2
Apart from this use case, this mechanism has also been used for author obfusca-

tion [15], and to provide privacy where each user’s input is a set of one or more

words [16].
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metric is known to suffer from the so-called curse of dimensional-
ity [2, 5]. However, this is not true in this instance, or not true in the

way we may think, since the word embedding models are trained to

ensure that the Euclidean distance is an effective metric to identify

similar words in the embedding space [24, 29]. See Section 8 for a

detailed discussion on this topic.

In this paper, we investigate this observation in detail and iden-

tify the post-processing step of the nearest neighbor search of the

perturbed embedding in a high dimensional space as the culprit.

Along the way, we unravel a number of other contributions which

we believe will prove useful to construct better 𝑑X-privacy mecha-

nisms for text data. The multidimensional Laplace mechanism is

fundamental to 𝑑X-privacy due to its ease of implementation, and

hence wide-spread use, akin to the Laplace mechanism [14] for

ordinary differential privacy.

• We highlight the above-mentioned issue in a very commonly

used 𝑑X-privacy mechanism for text data [15, 16, 22, 23, 31, 35],

whereby across different values of 𝜖 and different word embed-

ding models, almost always either the word is not replaced, or is

replaced by a completely dissimilar word.

• While analyzing the above phenomenon it turns out that the dot

product of the noise vector against any word embedding plays a

crucial role. This distribution, which we call the noisy dot product
distribution, has a length component, which is known to follow

the gamma distribution [16], and an angular component. We

derive the probability density function of the angular component

and its moments.

• We show that the angular component is sub-Gaussian with vari-

ance 1/𝑛, where 𝑛 is the number of dimensions. This means that

the cosine of the angle of the noise vector with any embedding

is within O(1/
√
𝑛), and hence the noise vector is increasingly

orthogonal to any embedding regardless of the distribution of

words in the embedding model. We further prove tail-bounds

on the noisy dot product distribution showing that its mass is

concentrated within O(
√
𝑛/𝜖).

• Through our analysis, we show that the aforementioned obser-

vation is related to the fact that in high dimensions the nearest

neighbor of a word is more distant than the relative difference of

the distances of its two nearest neighbors. We prove necessary

conditions on the initial word to be output by the mechanism as

opposed to its close neighbors by relating it to the noisy dot prod-

uct distribution. Previous works [6, 9, 12, 34] have highlighted

the vulnerability of outliers in 𝑑X-privacy. However, their obser-
vation is related to the data distribution containing some isolated

points. In contrast, our work shows that in high-dimensional

settings the outlier issue is the norm rather than the exception.

• We propose a possible mitigation as a further post-processing

step, and show that the resulting mechanism gives better utility

and behaves as expected. The advantage of our proposed fix is

that it does not amend the original mechanism, and only adds

an extra step. We have released the code of our experiments,

including this fix, to promote reproducibility.
3

3
https://github.com/r-carpentier/dx-privacy-curse

2 The Unusual Behavior of Word-Level
𝑑X-Privacy

The Observation. We first show an example of applying 𝑑X-privacy
on text data with the algorithm outlined in the introduction. Formal

introduction to 𝑑X-privacy and concrete details of this algorithm

are presented in Section 3.2. Consider the following text:

Maria Gonzalez, a patient at Riverside Clinic, was

diagnosed with depression on March 5, 2023. She cur-

rently lives at 789 Oak Drive, San Francisco. Maria

has been prescribed medication and is undergoing

weekly therapy sessions.

To sanitize this text we first choose an embedding model. Let us

say we use the GloVe embedding model [29] with 𝑛 = 100 dimen-

sions. We then take the first word of the text, pass it through the

embedding model to obtain its embedding w. We then sample a

noise vector 𝜼 according to a distribution scaled to 𝜖 and 𝑛. For this

example, we choose 𝜖 = 10. We thus obtain the noisy embedding

w∗ = w+𝜼. This does not correspond to any word in the vocabulary
of GloVe. We therefore, search the nearest neighbor in the embed-

ding space of GloVe to w∗
and output the corresponding word as

the replacement to the original word. This process is repeated for

each word
4
resulting in the following sanitized text:

maria carvalho, full patient raised bottomland clinic,

was diagnosed with evanston on 8 4, 2028 . she repre-

sent lives ‘ 789 poplar drive, st. antonio. maria deeply

were prescribed medication deadlock subject under-

gone quiz therapy approaches.

In most cases, as above, the sentence is ill-structured and grammat-

ically incorrect. This can be corrected by another post-processing

step, for example by leveraging a generative AI model. The follow-

ing text is obtained by asking ChatGPT 4o5 to correct the grammar

of the previous text:

Maria Carvalho, a full-time patient at Bottomland

Clinic, was diagnosed in Evanston on August 4, 2028.

She resides at 789 Poplar Drive, St. Antonio. Maria

was prescribed medication and has undergone various

therapeutic approaches, including cognitive therapy.

As we can see after this step, the sentence is coherent with some of

the exact names and dates replaced, which is desirable for privacy.

Now, if we use smaller values of 𝜖 (more privacy) we expect the

original words to be replaced by their distant neighbors, i.e., words

that have little to no similarity with the original word. However, as

we increase 𝜖 (less privacy), we would expect most words to either

remain unchanged or replaced by synonyms. At least this is what

we expect if we apply the usual Laplace mechanism [14] of differen-

tial privacy to one-dimensional data. Figure 1 shows an example of

one-dimensional data, in which we plot the result of applying the

Laplace mechanism with different values of 𝜖 (assuming sensitivity

one) with the universe of values confined to the set of positive

integers. The true value is 𝑎 = 400, 000, and after adding noise we

round it to the nearest integer. Any integer value within 𝑎 ± 100 is

4
Commas and periods in the original text were excluded from the sanitization for

readability

5
See https://chatgpt.com.
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considered a close neighbor of 𝑎 and all other values considered dis-

tant neighbors. For each value of 𝜖 we sample 10, 000 noisy answers

and report the proportion of times the original, close neighbors

and distant neighbors are output by the mechanism. Initially with

𝜖 = 0.001, distant neighbors are output more frequently (Figure 1,

left). This trend is quickly flipped as we increase 𝜖 . With 𝜖 > 1 we

see that it is either the original value or the close neighbors that are

output by the mechanism and very rarely any distant neighbors

(Figure 1, right).
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Figure 1: The proportion of times the original value, its close
neighbors and distant neighbors are output by the Laplace
mechanism of differential privacy. The original value is 𝑎 =

400, 000, close neighbors are all integers within 𝑎 ± 100, and
all other integer values are distant neighbors.

However, we observed that through the text counterpart of this

algorithm, i.e., the multidimensional Laplace mechanism, either the

initial word is output by the mechanism, or very far off words, and

the nearest neighbors are seldom encountered. This is visualized in

Figure 2 where we show the proportion of times the original word

is output by the mechanism, against its close neighbors, the first

100 nearest neighbors, and distant neighbors, which constitute the

rest of the words in the vocabulary. These plots were obtained by

randomly sampling 5,000 words.

At lower values of 𝜖 only far off words are selected, but as we

increase 𝜖 , the original word dominates at the expense of its close

neighbors. The end-result of course is bad privacy-utility tradeoff.

The figure shows the pattern for the GloVe-Wiki and fastText
embedding models, both with 300 dimensions. The result is similar

for other embedding models which are detailed in Section 3.1. For

a more detailed description of this observation please see [8].

These results are also consistent with the results shown in [16,

31], where the authors show the rather high frequency of unmodi-

fied words but no commentary is provided as to why this may be

the case other than attributing it to the behavior of the mechanism

for higher values of 𝜖 . Indeed, the trend is more peculiar at smaller

values of 𝜖 .

An Illustrative Two-Dimensional Example. The issueswith𝑑X-privacy
over high-dimensional word embeddings can be illustrated through

an analogy of 𝑑X-privacy for location data.
6
Assume that we have

a dataset containing the resident states of the inhabitants of the

United States of America (USA). We exclude the state of Alaska in

this example. We wish to release this dataset with privacy, mean-

ing that an individual can plausibly deny that he/she resides in a

6𝑑X -privacy for location data is studied in detail in [3] where the authors term the

notion, geo-indistinguishability.
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Figure 2: The proportion of times the original word, its
close neighbors and distant neighbors are output by the
multidimensional Laplace mechanism of 𝑑X-privacy on the
Glove-Wiki (left) and Word2Vec (right) word embedding mod-
els. Close neighbors are the first 100 nearest neighbors, and
all other words are distant neighbors.

particular state in the released dataset. To do so, we perturb each

individual’s location using 𝑑X-privacy. Assume each person’s lo-

cation is given as a point on the real plane (latitude and longitude,

if you like). One way to satisfy 𝑑X-privacy is to sample a noise

vector, add it to the original location, and then find the nearest state

to the perturbed location. The last step is a post-processing step,

and maintains 𝑑X-privacy. The noise is a two-dimensional vector

sampled from a particular distribution [3] scaled by the privacy

parameter 𝜖 and the distance metric is the Euclidean distance in

practice which we describe in detail in Section 3. This is exactly

the mechanism commonly used to provide (word-level) 𝑑X-privacy
in text data [15, 16, 22, 31, 35], except that location coordinates are

replaced by word embeddings and states are replaced by words in

the vocabulary.

Now consider a resident of the state of Hawaii. For values of 𝜖

within a certain range, the sampled perturbed location will fall in

the North Pacific Ocean with overwhelming probability. Since our

universe of locations is the set of states in USA, the nearest location

is Hawaii again. Compare this to a resident of Kansas. For the same

value of 𝜖 , the noisy location in this case is likely to land on the

neighboring states and beyond. Figure 3 illustrates this point. This

observation has both privacy and utility implications.

Figure 3: An analogy of the issues of applying 𝑑X-privacy to
high-dimensional word embeddings using location data. The
nearest neighbor of the perturbed location of the residents
of Hawaii tends to be Hawaii itself, unlike the states in main-
land USA. The circles indicate the probability density of the
noise vector. The map is extracted from Google Maps.
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From the privacy point-of-view, the residents of mainland USA

get more protection than the residents of Hawaii for the same value

of 𝜖 . In other words, the level of privacy provided depends on the

structure of the dataset. Datasets with with irregularly scattered

points will end up providing less privacy for isolated points. This

issue has already been highlighted in previous works [9, 34]. Here,

we would like to point out that this privacy issue does not arise

if we scale the noise according to the sensitivity of the distance

function which makes the resulting privacy notion equivalent to

ordinary 𝜖-differential privacy [14]. However, applications of this

𝑑X-privacymechanism to text domain do not use sensitivity to scale

noise [15, 16, 22, 31, 35]; the idea being that we only need to make

it hard to distinguish between nearby points. For location based

applications, one specifies a radius, which serves as a proxy for

sensitivity, and we say that the corresponding mechanism provides

𝑑X-privacy for locations within this radius [3, 21].

One may also dismiss the above observation as an outlier; an

issue that relates only to a few isolated points in the dataset. How-

ever, as we shall demonstrate, in higher dimensions the nearest

neighbor of any word is at a considerable distance away from it,

and the distance increases as we increase the size of dimension.

Thus, in higher dimensions, this is more the norm than an anomaly.

The above observation also creates issues from a utility perspec-

tive. With higher values of 𝜖 (less privacy), the original word is

returned by the nearest neighbor search most of the times. As we

decrease 𝜖 to provide more privacy, one expects the frequency of

the nearest neighbors of the original word to be selected more than

distant words. However, since the variance of the noise is now

larger, this happens less often than expected. The undesired result

is that either the word is not changed at all, or if it is changed, it

is replaced by a distant word with little to no semantic similarity

with the original word. Again this issue is exacerbated in higher

dimensions, as the distance between a word and its nearest neigh-

bor is higher than the relative difference in the distances to its two

successive neighbors.

3 Background and Notation
Notations. The 𝑛-dimensional real space is denoted by R𝑛 . A vector

from R𝑛 will be denoted in bold face, e.g., x. Let ∥x∥ =
√︃∑𝑛

𝑖=1
|𝑥2

𝑖
|

denote the Euclidean norm of x, where 𝑥𝑖 is the 𝑖th element of x.
The dot product between two vectors x and y is denoted as ⟨x, y⟩.
The following is an elementary fact:

⟨x, y⟩ = ∥x∥∥y∥ cos𝜃x,y,

where 0 ≤ 𝜃x,y ≤ 𝜋 , is the angle between x and y.7 We can inter-

pret ∥y∥ cos𝜃x,y as the length of the projection of y on x. For any
two vectors x, y ∈ R𝑛 the Euclidean distance between x and y is

∥x − y∥. The Euclidean distance is a metric as it satisfies the follow-

ing properties of (1) (positivity) ∥x − y∥ ≥ 0 with equality if and

only if x = y, (2) (symmetry) ∥x − y∥ = ∥y − z∥, and (3) (triangle

inequality) ∥x − y∥ ≤ ∥x − z∥ + ∥z − y∥, for any x, y, z ∈ R𝑛 [27].

7
Keeping x fixed, if the direction of y is chosen randomly in the plane containing

the two vectors, then 𝜃x,y is the smallest of the two possible angles. This is well-

defined. To see this let 𝜃1 and 𝜃2 denote the two possible angles, and let 𝜃1 > 𝜋 . Then

𝜃2 = 2𝜋 − 𝜃1 < 𝜋 , and note that cos𝜃1 = cos(2𝜋 − 𝜃2 ) = cos𝜃2 .

3.1 Vector Representation of Words
In recent years, a number of machine learning models have sprung

up which produce vector representations of words, which we call

word embeddings for short. These pre-trainedword embeddings can

be downloaded and used for natural language processing tasks. No-

table examples include Word2Vec [24], GloVe [29], and fastText [20].
These word embeddings lie on a high-dimensional real vector space

with dimensions ranging from 50 to 300, and even higher. Some em-

beddings, such as GloVe, come in different dimensions. Despite the

high-dimensional space the word embeddings maintain distance-

based semantic similarities. In other words, the Euclidean distance

is an effective method to obtain nearest neighbors of a word in terms

of semantic similarity to the target word.
8
Furthermore, these em-

beddings maintain linear relationships between words, e.g., king

minus queen equals man minus woman [29]. For a more detailed in-

troduction to vector representation of words and models producing

word embeddings, see [36, §15]. The pre-trained word embeddings

used in this paper are shown in Table 1. We will use the terms

‘embedding model’ and ‘vocabulary’ interchangeably.

Vocabulary Dimensions Words

GloVe-Twitter 25, 50, 100, 200 1,193,514

GloVe-Wiki 50, 100, 200, 300 400,000

Word2Vec 300 3,000,000

fastText 300 2,519,370

Table 1: Word embedding models used in this work.

3.2 𝑑X-Privacy and Applications to Text Data
Let D ⊆ R𝑛 be the input domain, which for our purpose is the

embedding space. Let x ∈ D denote a word.

Definition 1 (Differential Privacy [14]). An algorithmM : D → 𝑅

satisfies 𝜖-(local) differential privacy if for all words x, y ∈ D and

for all possible subsets 𝑆 ⊆ 𝑅 we have

Pr[M(x) ∈ 𝑆] ≤ 𝑒𝜖 Pr[M(y) ∈ 𝑆]

Definition 2 (𝑑X-privacy [11]). Let 𝑑 be a metric on D. An algo-

rithmM : D → 𝑅 satisfies 𝜖𝑑X-privacy for the metric 𝑑 if for all

words x, y ∈ D and for all possible subsets 𝑆 ⊆ 𝑅 we have

Pr[M(x) ∈ 𝑆] ≤ 𝑒𝜖𝑑 (x,y) Pr[M(y) ∈ 𝑆]

Note that if 𝑑 is the Hamming distance 𝑑H then we recover

the original definition of 𝜖-differential privacy, since 𝑑H (x, y) = 1,

whenever x ≠ y. A key advantage of 𝑑X-privacy over ordinary

differential privacy is in terms of utility: the former treats all in-

puts equally, and indistinguishability is with respect to all inputs,

whereas the latter provides more privacy with respect to similar in-

puts than far away inputs, whenmeasured according to the distance

metric. Like 𝜖-DP, 𝑑X-privacy enjoys the properties of immunity

to post-processing, and composition of privacy guarantees [11].

In particular, applying a 𝑑X-privacy mechanism independently to

each of the words in a sequence (sentence) of𝑚 words, makes the

resulting composition of these mechanisms𝑚𝜖𝑑X-private [21].

8
See https://nlp.stanford.edu/projects/glove/.
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Finally, we would like to point out a particular (simplified) result

from the original paper by Dwork et al [14] on 𝜖-DP, which relates

to general metric spaces. Let 𝑑 be a metric on the domain D, and

let the sensitivity of the distance metric 𝑑 be defined as Δ𝑑 =

maxx,y∈D 𝑑 (x, y), then the mechanism M which on input x ∈ D
outputs a y ∈ D with probability proportional to

Pr[M(x) = y] ∝ exp

(
−𝜖𝑑 (x, y)

2Δ𝑑

)
,

is 𝜖-differentially private, provided such a probability density func-

tion exists [14, §3.3]. We remark that the result in [14] does not

contain the negative sign in the proportionality above, but it is

easy to verify that the result still holds. As we shall see next, the

𝑑X-private mechanism samples a word embedding proportional to

above except that there is no scaling according to sensitivity.

𝑑X-Private Noise. In order to add multidimensional Laplace noise to

a word embedding w ∈ R𝑛 , the method is to add a noise vector 𝜼 ∈
R𝑛 from a distribution with probability density ∝ exp(−𝜖 ∥𝜼∥) [14,
16].

9
To sample from this distribution, one first samples 𝑛 zero-

mean, unit-variance Gaussians to produce an 𝑛-dimentional vector

u whose resulting probability density is

1

2𝜋𝑛/2

𝑒 (−
∥u∥
2

)
(1)

The vector is then normalized to produce the unit vector û = u
∥u∥ .

This means that û is distributed uniformly at random on the surface

of a hypersphere of 𝑛-dimensions with unit radius (see for exam-

ple [7, §2.5]). Next we find the “length” of the noise vector. The

number of points on an 𝑛-dimensional hypersphere with radius 𝑟 is

proportional to 𝑟𝑛−1
, with each point having density proportional

to exp(−𝜖 ∥𝜼∥) (the requirement above). Thus, we need a probabil-

ity density function proportional to 𝑟𝑛−1
exp(−𝜖 ∥𝜼∥). This means

that we should sample the noise as 𝜼 = 𝑟 û, where 𝑟 has the Gamma

distribution [16], with probability density

𝑓G (𝑟 ) =
1

Γ(𝑛)𝜖−𝑛 𝑟
𝑛−1𝑒−𝜖𝑟 . (2)

Note that ∥𝜼∥ = ∥𝑟 û∥ = 𝑟 , and hence this is the required distribu-

tion. For completeness, we provide a proof in Appendix B. Figure 4

illustrates the distribution for 𝑛 = 2.

Nearest Neighbor Search. Almost always, the perturbed embedding

w∗ = w + 𝜼 is not a member of D. Thus, a nearest neighbor search

is performed to find an embedding x∗ ∈ D which is closest to w∗

in the Euclidean distance [16]. That is, we find the embedding:

x∗ = arg min

x∈D
∥w∗ − x∥. (3)

This vector is then the output of the 𝑑X-private mechanism.

Proof of Privacy. The above mechanism is 𝑑X-private since the re-
sulting noise word embedding w∗

is output from the distribution

proportional to exp(−𝜖 ∥𝜼∥) = exp(−𝜖𝑑 (w∗,w)), where 𝑑 is the Eu-

clidean distance. The nearest neighbor search is a post-processing

step, and the result can be extended to a sequence (sentence) of

multiple words by applying the mechanism independently on each

word, and then combining the results, invoking the composition

9
As mentioned above, the result from [14] is for ordinary 𝜖-differential privacy as

opposed to 𝑑X -privacy.
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Figure 4: The noise distribution for 𝑛 = 2 with 10,000 sampled
points. Subfigure a shows the distribution of the length of
noise vector, i.e., 𝑟 through Eq. (2). Subfigure b is the unit vec-
tor produced by normalizing the 2D GaussianN(0, 𝐼 ) (Eq. (1)),
where 𝐼 is the identity matrix. Subfigure c shows the distri-
bution of the resulting noise vector 𝜼.

property of 𝑑X-privacy. Feyisetan et al also provide a direct proof

of this result in [16]. We note that, while most commonly em-

ployed, this is not the only method of applying differential pri-

vacy for text sanitization. Other methods include other word-level

𝑑X-privacy mechanisms [9, 17], sentence-level differential privacy

mechanisms [19, 23], and mechanisms for more advanced natural

language processing tasks [32]. We describe them in more detail in

Section 8.

4 Conditions for Nearest Neighbor Selection
and the Noisy Dot Product Distribution

We are first interested in the conditions when the perturbed em-

bedding w∗
is closer to w, i.e., the original word, than any of the

neighbors of w. When this is the case, the original word will be

chosen as output by the mechanism. Formalizing these conditions is

necessary to understand why the original word is overwhelmingly

chosen over its close neighbors (Figure 2). To this end, we have the

following result.

Theorem 1. Let 𝜼 be a noise vector. Let w ∈ D be a word embed-
ding, and let w∗ = w + 𝜼 be the perturbed embedding. Let x ∈ D be
any embedding different from w. Then w∗ is closer to w than any of
its neighbors if for all neighbors x of w, we have

𝑟 cos𝜃𝜼,x−w <
1

2

∥w − x∥

Proof. Let x ∈ D be any neighbor of w. We have:

∥w∗ −w∥2 < ∥w∗ − x∥2

⇒ ∥𝜼∥2 < ∥w − x + 𝜼∥2

⇒ ∥𝜼∥2 < ∥w − x∥2 + ∥𝜼∥2 + 2⟨w − x,𝜼⟩
⇒ −2⟨w − x,𝜼⟩ < ∥w − x∥2

⇒ ⟨𝜼, x −w⟩ < 1

2

∥w − x∥2

⇒ 𝑟 ∥x −w∥ cos𝜃𝜼,x−w <
1

2

∥w − x∥2

⇒ 𝑟 cos𝜃𝜼,x−w <
1

2

∥w − x∥,

where in the second last step, we have used Theorem 3. □
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An interpretation of the above is as follows: The noisy embedding

will be closer to the original vector w than its nearest neigbour

x if the length of the projection of the noise vector on x − w is

less than half the length of x −w. Figure 5a illustrates Theorem 1.

This can also be explained easily via a nice geometric illustration.

Suppose 0 ≤ 𝜃𝜼,x−w ≤ 𝜋
2
, as shown in Figure 5b, where we denote

the vectors by their end-points in the real space. It is easy to see

that if 𝐴 < 𝐵, then 𝐶2 = 𝐴2 − 𝐸2 < 𝐵2 − 𝐸2 = 𝐷2
, and when

𝐶 < 𝐷 then 𝐴2 = 𝐶2 − 𝐸2 < 𝐷2 − 𝐸2 = 𝐵2
. The line segment 𝐶 is

precisely the length of the projection of the noise vector on x −w.

If
𝜋
2
≤ 𝜃𝜼,x−w ≤ 𝜋 then clearly 𝐴 < 𝐵, which is supported by the

fact that the projection of the noise vector on x −w is negative.

Next we are interested in knowing when the nearest neighbor x
of the original word w is closer to the noisy embedding w∗

than

any other neighbor y of w.

Theorem 2. Let 𝜼 be a noise vector. Let w ∈ D be a word embed-
ding, and let w∗ = w + 𝜼 be the perturbed embedding. Let x ∈ D
be the nearest neighbor of w. Let y ∈ D be any other embedding
different from w and x. Then w∗ is closer to x than y if

∥w − x∥ cos𝜃w−x,y+x + 𝑟 cos𝜃𝜼,y−x <
1

2

∥y − x∥

Proof. See Appendix A. □

An interpretation of the above is as follows: If the sum of pro-

jections of the noise vector and that of w − x on y − x is less than

half its length, then x will be closer to the noisy embedding than y.
Figure 5c shows a graphical illustration of this result. The result of

the theorem can also be explained in a manner similar to Figure 5b.

We will revisit these results in Section 6 to see how often they are

true for word embeddings. For now we notice that both the results

of Theorem 1 and 2 involve the product of the length 𝑟 of the noise

vector and the cosine of its angle with a vector in R𝑛 . The following
theorem characterizes this distribution.

Theorem 3. Let 𝑛 ≥ 2. Let 𝜼 be a noise vector. Let w ∈ R𝑛 be a
non-zero vector. Then

⟨𝜼,w⟩ = 𝑟 ∥w∥ cos𝜃𝜼,w, (4)

where 𝑟 ∼ 𝑓G given in Eq. (2) and 𝑘 = cos𝜃𝜼,w ∼ 𝑓B given as

𝑓B (𝑘) =
1

𝐵( 𝑛−1

2
, 1

2
)
(1 − 𝑘2) 𝑛−1

2
−1, 𝑘 ∈ [−1, 1], (5)

where 𝐵(·, ·) is the beta function defined as:

𝐵(𝑎, 𝑏) = Γ(𝑎)Γ(𝑏)
Γ(𝑎 + 𝑏) ,

for all real numbers 𝑎, 𝑏 > 0.

Proof. From the definition of the dot product ⟨𝜼,w⟩ equals

∥𝜼∥∥w∥ cos𝜃𝜼,w = ∥𝑟 û∥∥w∥ cos𝜃𝜼,w = 𝑟 ∥w∥ cos𝜃𝜼,w .

Assuming ∥w∥ ≠ 0, expanding the left hand side, we have:

𝑛∑︁
𝑖=1

𝜂𝑖𝑤𝑖 = 𝑟 ∥w∥ cos𝜃𝜼,w

𝑛∑︁
𝑖=1

𝑟𝑢𝑖𝑤𝑖 = 𝑟 ∥w∥ cos𝜃𝜼,w

𝑛∑︁
𝑖=1

𝑢𝑖
𝑤𝑖

∥w∥ = cos𝜃𝜼,w

⟨û, ŵ⟩ = cos𝜃𝜼,w,

where ŵ is a unit vector obtained fromw by dividing it by its norm.

Being unit vectors, the two vectors are on the surface of the 𝑛-

dimensional hypersphere of radius one. Furthermore, û is uniformly

distributed on the surface of this hypersphere by construction. Since

the dot product is rotationally invariant, we can align ŵ to align

with the unit vector ê1 whose first coordinate is 1 and all other

coordinates are 0. Since û is uniformly distributed on the surface

of the hypersphere, the rotated vector is still uniformly distributed.

Thus, without fear of ambiguity, let us also call this vector û. Then
we see that:

cos𝜃𝜼,w = ⟨û, ê1⟩ = 𝑢1 =
𝑢1

∥u∥ , (6)

where𝑢1 ∼ N(0, 1) and ∥u∥ is the norm of an 𝑛-dimensional vector

each element of which is independently distributed as N(0, 1). We

now find the PDF of the distribution in Eq. (6).
10

Let 𝑈𝑖 be random variables distributed as N(0, 1), for 1 ≤ 𝑖 ≤ 𝑛.
We are interested in the distribution of

𝐾 =
𝑈1√︃

𝑈 2

1
+𝑈 2

2
+ · · · +𝑈 2

𝑛

The range of this variable is in the interval [-1, 1]. Let −1 < 𝑘 < 0.

Then we see that

Pr


𝑈1√︃

𝑈 2

1
+𝑈 2

2
+ · · · +𝑈 2

𝑛

≤ 𝑘


= Pr

[
𝑈 2

1
≥ 𝑘2 (𝑈 2

1
+𝑈 2

2
+ · · · +𝑈 2

𝑛 ) | 𝑈1 < 0

]
= Pr

[
𝑈 2

1

𝑈 2

2
+ · · · +𝑈 2

𝑛

≥ 𝑘2

1 − 𝑘2
| 𝑈1 < 0

]
= Pr

[ (𝑛 − 1)𝑈 2

1

𝑈 2

2
+ · · · +𝑈 2

𝑛

≥ (𝑛 − 1)𝑘2

1 − 𝑘2
| 𝑈1 < 0

]
=

1

2

Pr

[ (𝑛 − 1)𝑈 2

1

𝑈 2

2
+ · · · +𝑈 2

𝑛

≥ (𝑛 − 1)𝑘2

1 − 𝑘2

]
, (7)

where in the last step we have used the fact that𝑈1 is symmetric.

Now𝑈 2

1
is a chi-squared variable with 1 degree of freedom and𝑈 2

2
+

· · · +𝑈 2

𝑛 is a chi-squared variable with 𝑛 − 1 degrees of freedom [26,

§4.3]. Thus, the ratio

(𝑛−1)𝑈 2

1

𝑈 2

2
+···+𝑈 2

𝑛
is an 𝐹 -distributed random variable

with degrees of freedom 1 and 𝑛 − 1 [26, §4.4]. The CDF of the 𝐹 -

distributed random variable 𝑋 with 1 and 𝑛 − 1 degrees of freedom

is given by:
11

𝐹𝑋 (𝑥 ; 1, 𝑛 − 1) = 𝐼 𝑥
𝑛−1+𝑥

(
1

2

,
𝑛 − 1

2

)
, (8)

where 𝐼𝑦 (𝑎, 𝑏) is the regularized incomplete beta function given as

𝐼𝑦 (𝑎, 𝑏) =
𝐵𝑦 (𝑎, 𝑏)
𝐵(𝑎, 𝑏) =

1

𝐵(𝑎, 𝑏)

∫ 𝑦

0

𝑡𝑎−1 (1 − 𝑡)𝑏−1 𝑑𝑡,

10
The derivation is taken from https://math.stackexchange.com/questions/185298/

random-point-uniform-on-a-sphere. We reproduce it here to add missing details.

11
See for example: https://mathworld.wolfram.com/F-Distribution.html
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Figure 5: Illustrations of Theorems 1 and 2. Subfigure a illustrates Theorem 1, Subfigure b shows a geometric interpretation of
the result of Theorem 1, and Subfigure c illustrates Theorem 2.

for 𝑎, 𝑏 > 0. The function satisfies the relation [30, §6.4]:

𝐼1−𝑦 (𝑏, 𝑎) = 1 − 𝐼𝑦 (𝑎, 𝑏). (9)

Now, substituting 𝑥 = ((𝑛 − 1)𝑘2)/(1 − 𝑘2) in 𝑥/(𝑛 − 1 + 𝑥) we get
𝑥

𝑛 − 1 + 𝑥 =
(𝑛 − 1)𝑘2

1 − 𝑘2

1 − 𝑘2

(𝑛 − 1) (1 − 𝑘2) + (𝑛 − 1)𝑘2
= 𝑘2

Thus, combining this result and using Eqs. (8) and (9), we get for

−1 < 𝑘 < 0

Pr [𝐾 ≤ 𝑘] = Pr


𝑈1√︃

𝑈 2

1
+𝑈 2

2
+ · · · +𝑈 2

𝑛

≤ 𝑘


=
1

2

Pr

[ (𝑛 − 1)𝑈 2

1

𝑈 2

2
+ · · · +𝑈 2

𝑛

≥ (𝑛 − 1)𝑘2

1 − 𝑘2

]
=

1

2

(
1 − Pr

[ (𝑛 − 1)𝑈 2

1

𝑈 2

2
+ · · · +𝑈 2

𝑛

≤ (𝑛 − 1)𝑘2

1 − 𝑘2

] )
=

1

2

(1 − 𝐹𝑋 (𝑥 ; 1, 𝑛 − 1))

=
1

2

(
1 − 𝐼𝑘2

(
1

2

,
𝑛 − 1

2

))
=

1

2

𝐼
1−𝑘2

(
𝑛 − 1

2

,
1

2

)
(10)

Now taking the derivative of the integrand in 𝐼
1−𝑘2 ((𝑛 − 1)/2, 1/2)

with respect to 𝑘 with −1 < 𝑘 < 0, we get:

𝑑

𝑑𝑘

∫
1−𝑘2

0

𝑡 (𝑛−1)/2−1 (1 − 𝑡)1/2−1 𝑑𝑡

= (1 − 𝑘2) 𝑛−1

2
−1 (1 − (1 − 𝑘2))1/2 (−2𝑘)

= −2(1 − 𝑘2) 𝑛−1

2
−1

𝑘
√
𝑘2

= −2(1 − 𝑘2) 𝑛−1

2
−1
𝑘

|𝑘 |
= 2(1 − 𝑘2) 𝑛−1

2
−1

Thus, from Eq. (10), if we denote the PDF of 𝐾 by 𝑓B, we get for

−1 < 𝑘 < 0,

𝑓𝐵 (𝑘) =
1

2

2(1 − 𝑘2) 𝑛−1

2
−1

𝐵( 𝑛−1

2
, 1

2
)

=
1

𝐵( 𝑛−1

2
, 1

2
)
(1 − 𝑘2) 𝑛−1

2
−1 .

Finally, since 𝐾 is symmetric, the above is the PDF for 𝑘 ∈ [−1, 1].
□

Remark. We call the above, the noisy dot product distribution. In
light of the above theorem, we call the random variable 𝑅 dis-

tributed as 𝑓G the length component of this distribution and the

random variable 𝐾 = cos𝜃𝜼,w distributed as 𝑓B with respect to any
word embedding or vector in R𝑛 as the angular component of the
distribution, with 𝑍 = 𝑅𝐾 denoting the overall distribution.

5 Moments and Tail Bounds of the Noisy Dot
Product Distribution

In order to rule out any unusual behavior of the noisy dot product

distribution 𝑍 = 𝑅𝐾 in higher dimensions, we explore its properties

in detail. These properties include its probability density function

(PDF), cumulative distribution function (CDF), expectation, vari-

ance, and tail bounds of its components, i.e., 𝑅 and𝐾 . In the process,

we also find an expression for all moments of the component 𝐾 .

5.1 CDF and PDF of the Distribution
We are interested in:

𝐹𝑍 (𝑧) = Pr(𝑍 ≤ 𝑧) = Pr(𝑅𝐾 ≤ 𝑧)

Now, 𝑅 and 𝐾 are independent. Also, the density function of 𝑅

is non-zero on positive values of 𝑟 and that of 𝐾 is non-zero on

−1 ≤ 𝑘 ≤ 1. Furthermore, if 𝐾 = 𝑧/𝑟 , then 𝑟 ≥ |𝑧 |, for 𝐾 to be less

than or equal to 1. Therefore, we get:

𝐹𝑍 (𝑧) = Pr[𝑅𝐾 ≤ 𝑧]

=

∫ ∞

−∞
Pr[𝐾 ≤ 𝑧/𝑅 | 𝑅 = 𝑟 ] 𝑓𝐺 (𝑟 )𝑑𝑟

=

∫ ∞

|𝑧 |
Pr[𝐾 ≤ 𝑧/𝑅 | 𝑅 = 𝑟 ] 𝑓𝐺 (𝑟 )𝑑𝑟

=

∫ ∞

|𝑧 |
Pr[𝐾 ≤ 𝑧/𝑟 ] 𝑓𝐺 (𝑟 )𝑑𝑟

=

∫ ∞

|𝑧 |

(∫ 𝑧/𝑟

−1

𝑓𝐵 (𝑘)𝑑𝑘
)
𝑓𝐺 (𝑟 )𝑑𝑟

=

∫ ∞

|𝑧 |
𝑓𝐺 (𝑟 )

(∫ 𝑧/𝑟

−1

𝑓𝐵 (𝑘)𝑑𝑘
)
𝑑𝑟
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=
1

Γ(𝑛)𝜖−𝑛𝐵( 𝑛−1

2
, 1

2
)

∫ ∞

|𝑧 |
𝑟𝑛−1𝑒−𝜖𝑟

×
(∫ 𝑧/𝑟

−1

(
1 − 𝑘2

) 𝑛−1

2
−1

𝑑𝑘

)
𝑑𝑟 (11)

Taking the derivative of the above with respect to 𝑧 using the fun-

damental theorem of calculus gives us the PDF of this distribution:

𝑓𝑍 (𝑧) =
𝑑

𝑑𝑧

∫ ∞

|𝑧 |
𝑓𝐺 (𝑟 )

(∫ 𝑧/𝑟

−1

𝑓𝐵 (𝑘)𝑑𝑘
)
𝑑𝑟

=
𝑑

𝑑𝑧

∫ ∞

0

𝑓𝐺 (𝑟 )
(∫ 𝑧/𝑟

−1

𝑓𝐵 (𝑘)𝑑𝑘
)
𝑑𝑟

=

∫ ∞

0

𝑓𝐺 (𝑟 ) 𝑓𝐵 (𝑧/𝑟 )
1

𝑟
𝑑𝑟 (12)

=

∫ ∞

|𝑧 |
𝑓𝐺 (𝑟 ) 𝑓𝐵 (𝑧/𝑟 )

1

𝑟
𝑑𝑟 (13)

The last equality follows since 𝑓B (𝑧/𝑟 ) = 0 for 𝑟 < |𝑧 |. Now, for any
𝛿 > 0, we have that

𝑓𝑍 (𝛿) =
∫ ∞

|𝛿 |
𝑓𝐺 (𝑟 ) 𝑓𝐵 (𝛿/𝑟 )

1

𝑟
𝑑𝑟

=

∫ ∞

|−𝛿 |
𝑓𝐺 (𝑟 ) 𝑓𝐵 (−𝛿/𝑟 )

1

𝑟
𝑑𝑟 = 𝑓𝑍 (−𝛿),

where the second step follows since 𝑓B is symmetric around 0. Thus,

the distribution is symmetric around 0. Aswe shall see in Section 5.2,

the expected value of 𝑍 is 0. Thus, the distribution is symmetric

around its mean. Unfortunately, the integral above does not have

an easy analytical solution. We can, however, numerically evaluate

it or through Monte Carlo simulations by repeatedly sampling the

noise vector.

5.2 Moments of the Angular Component
Let 𝐾 denote the random variable distributed as Eq. (5). We are

interested in the moment E[𝐾 𝑗 ] of this distribution with 𝑗 ≥ 0. We

parameterize this distribution by using 𝐾𝑛 to denote the random

variable 𝐾 with a given value of 𝑛 ≥ 2.

Theorem 4. Let 𝐾 ∼ 𝑓B as defined in Eq. (5). Let 𝐾𝑛 denote 𝐾 for
a particular value of 𝑛. Let 𝜇 ( 𝑗, 𝑛) denote the 𝑗 th moment of 𝐾𝑛 . Then,
for all 𝑛 ≥ 2

𝜇 ( 𝑗, 𝑛) =


1, if 𝑗 = 0,

0, if 𝑗 is odd,
(𝑛−2)!!( 𝑗−1)!!

(𝑛−2+𝑗 )!! , if 𝑗 is even
(14)

In particular, E[𝐾] = 0 and Var[𝐾] = 1

𝑛
.

Proof. See Appendix A. □

5.3 Tail Bounds, Expectation and Variance
The following definition and the follow-up theorem are taken

from [33, §2].

Definition 3 (Sub-Gaussian Random Variable). A random variable

𝑋 with mean 𝜇 = E[𝑋 ] is sub-Gaussian if there is a positive number

𝜎 such that

E
[
𝑒𝜆 (𝑋−𝜇 ) ] ≤ 𝑒𝜎2𝜆2/2, for all 𝜆 ∈ R.

Here 𝜎 is called the sub-Gaussian parameter.

Theorem 5 (Sub-Gaussian Tail Bound). A sub-Gaussian ran-
dom variable 𝑋 with mean 𝜇 = E[𝑋 ] and sub-Gaussian parameter 𝜎
satisfies

Pr [𝑋 − 𝜇 ≥ 𝑡] ≤ 𝑒−
𝑡2

2𝜎2 , and Pr [𝑋 − 𝜇 ≤ −𝑡] ≤ 𝑒−
𝑡2

2𝜎2 ,

and combining the two

Pr [|𝑋 − 𝜇 | ≥ 𝑡] ≤ 2𝑒
− 𝑡2

2𝜎2 , for all 𝑡 ∈ R.

We prove the following result to be used for the next theorem.

Lemma 1. Let 𝐾 ∼ 𝑓𝐵 . Then for any 𝜆 ∈ R we have

E

[ ∞∑︁
𝑗=0

(𝜆𝐾) 𝑗
𝑗 !

]
=

∞∑︁
𝑗=0

𝜆 𝑗E[𝐾 𝑗 ]
𝑗 !

Proof. Since −1 ≤ 𝐾 ≤ 1, we have |𝐾 | ≤ 1. Therefore E[|𝐾 | 𝑗 ] ≤
1. We have, for any 𝑗 ≥ 0:

E
[
𝜆 𝑗 |𝐾 | 𝑗
𝑗 !

]
=
𝜆 𝑗

𝑗 !
E[|𝐾 | 𝑗 ] ≤ 𝜆 𝑗

𝑗 !
.

For any integer𝑚, let

𝑆𝑚 = E

[
𝑚∑︁
𝑗=0

𝜆 𝑗 |𝐾 | 𝑗
𝑗 !

]
=

𝑚∑︁
𝑗=0

𝜆 𝑗

𝑗 !
E[|𝐾 | 𝑗 ] ≤

𝑚∑︁
𝑗=0

𝜆 𝑗

𝑗 !
,

where the last inequality follows from the result above. Further-

more, the sequence 𝑆𝑚 is monotonically increasing if 𝜆 ≥ 0 or

monotonically decreasing if 𝜆 < 0, since E[|𝐾 | 𝑗 ] ≥ 0 as |𝐾 | ≥ 0.

Thus, 𝑆𝑚 is a monotone sequence. From the Taylor series expansion

of the exponential function, we have for any 𝜆 ∈ R

𝑒 |𝜆 | =
∞∑︁
𝑗=0

|𝜆 | 𝑗
𝑗 !

≥
𝑚∑︁
𝑗=0

|𝜆 | 𝑗
𝑗 !

≥
𝑚∑︁
𝑗=0

𝜆 𝑗

𝑗 !
≥ 𝑆𝑚 .

Thus, 𝑆𝑚 is bounded. From the monotone convergence theorem [1,

§2.4], 𝑆𝑚 converges. Therefore, the statement of the theorem follows

as expectation is linear in this case [25, §2.1.1]. □

Theorem 6. Let 𝐾 ∼ 𝑓𝐵 where 𝑓𝐵 is as defined in Eq. 5. Then 𝐾 is
sub-Gaussian with parameter 𝜎 = 1√

𝑛
.

Proof. See Appendix A. □

Corollary 1. Let 𝐾 ∼ 𝑓𝐵 . Then for any 𝑐 ∈ R,

Pr

[
|𝐾 | ≥ 𝑐

√
𝑛

]
≤ 2𝑒−

𝑐2

2 .

Next we prove generic lower and upper tail bounds for the

gamma distributed random variable 𝑅.12

Theorem 7. Let 𝑅 ∼ 𝑓𝐺 . Then for any real number 𝑐 > 1,

Pr

[
𝑅 ≥ 𝑐𝑛

𝜖

]
≤
( 𝑐

𝑒𝑐−1

)𝑛
, and Pr

[
𝑅 ≤ 𝑛

𝑐𝜖

]
≤ 1

(𝑐𝑒 (1−𝑐 )/𝑐 )𝑛

Proof. See Appendix A. □

Combining the result from Corollary 1 and Theorem 7, we have

the following bound on the overall noise distribution.

12
These results are generalizations of the result for the upper tail bound with

𝑐 = 2 in https://math.hawaii.edu/~grw/Classes/2013-2014/2014Spring/Math472_1/

Solutions01.pdf.
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Theorem 8. Let 𝑍 = 𝑅𝐾 . Then, for all 𝑐1, 𝑐2 ∈ R, where 𝑐2 > 1,
we have

Pr

[
|𝑍 | ≤ 𝑐1𝑐2

√
𝑛

𝜖

]
≥ 2

(
1 − 𝑒

−𝑐2

1

2

) (
1 −

( 𝑐2

𝑒𝑐2−1

)𝑛)
− 1

Proof. We have

Pr

[
𝑍 ≤ 𝑐1𝑐2

√
𝑛

𝜖

]
= Pr

[
𝑅𝐾 ≤ 𝑐1𝑐2

√
𝑛

𝜖

]
= Pr

[
𝑅𝐾 ≤ 𝑐1√

𝑛

𝑐2𝑛

𝜖

]
≥ Pr

[
𝐾 ≤ 𝑐1√

𝑛

]
Pr

[
𝑅 ≤ 𝑐2𝑛

𝜖

]
≥
(
1 − 𝑒

−𝑐2

1

2

) (
1 −

( 𝑐2

𝑒𝑐2−1

)𝑛)
,

where the last inequality follows from Corollary 1 and Theorem 7.

From Section 5.1, 𝑍 is symmetric, and hence the above bound is

also true for Pr[𝑍 ≥ −𝑐1𝑐2

√
𝑛/𝜖]. Through Bonferroni’s inequality

Pr

[
|𝑍 | ≤ 𝑐1𝑐2

√
𝑛

𝜖

]
= Pr

[
𝑍 ≤ 𝑐1𝑐2

√
𝑛

𝜖
and 𝑍 ≥ −𝑐1𝑐2

√
𝑛

𝜖

]
≥ Pr

[
𝑍 ≤ 𝑐1𝑐2

√
𝑛

𝜖

]
+ Pr

[
𝑍 ≥ −𝑐1𝑐2

√
𝑛

𝜖

]
− 1

≥ 2

(
1 − 𝑒

−𝑐2

1

2

) (
1 −

( 𝑐2

𝑒𝑐2−1

)𝑛)
− 1,

as required. □

As an illustration of this inequality, with 𝑛 = 100 and 𝜖 = 10,

more than 99 percent of the probability mass of 𝑍 lies within the

interval ±4.8
√
𝑛/𝜖 = 4.8 (with 𝑐1 ≈ 3.46 and 𝑐 + 2 ≈ 1.39). On the

other hand, with 𝑛 = 10, more than 99 percent of the probability

mass of 𝑍 lies within the interval ±8.74

√
𝑛/𝜖 ≈ 2.76 (put for exam-

ple 𝑐1 ≈ 3.46 and 𝑐2 ≈ 2.53).
13
Thus, the majority of the mass of 𝑍

is concentrated within O(
√
𝑛/𝜖).

Finally we have the following theorem on the expected value

and variance of 𝑍 , together with the convergence to the expected

value if we sample a large number of instances of 𝑍 .

Theorem 9. Let 𝑍 = 𝑅𝐾 . Then E[𝑍 ] = 0 and Var[𝑍 ] = 𝑛+1

𝜖2
.

Proof. We know that the gamma distributed random variable 𝑅

has E[𝑅] = 𝑛/𝜖 and Var[𝑅] = 𝑛/𝜖2
Since 𝑅 and 𝐾 are independent,

we have E[𝑍 ] = E[𝑅𝐾] = E[𝑅]E[𝐾] = 𝑛
𝜖
· 0 = 0. Now using this

result, and again because 𝑅 and 𝐾 are independent, we have:

Var[𝑍 ] = E[𝑍 2] − (E[𝑍 ])2 = E[𝑍 2]
= E[𝑅2𝐾2] = E[𝑅2]E[𝐾2]
= (Var[𝑅] + (E[𝑅])2)Var[𝐾]

=

(
𝑛

𝜖2
+ 𝑛2

𝜖2

) (
1

𝑛

)
=
𝑛 + 1

𝜖2

□
13
These values were obtained by fixing the bound from Theorem 8 at 0.99 and numer-

ically finding the constants 𝑐1 and 𝑐2 by keeping the two terms in the product equal

to each other.

Corollary 2. Let 𝑍1, 𝑍2, . . . , 𝑍𝑚 be𝑚 independent samples of the
random variable 𝑍 = 𝑅𝐾 . Let 𝑍 = 1

𝑚

∑𝑚
𝑖=1
𝑍𝑖 . Then for any 𝛿 > 0

Pr

[
|𝑍 | > 𝛿

]
≤ 𝑛 + 1

𝑚𝜖2𝛿2
(15)

Proof. The result is obtained by putting the expected value and

variance of 𝑍 in Chebyshev’s inequality [33, §2]. □

The above result shows that the higher the dimension and/or

the lower the values of 𝜖 the slower will be the convergence of the

average of 𝑍 to 0, the expectation. Thus, the behaviour of the noisy

dot product distribution is as we would expect: it is symmetric with

mean 0, and it converges to this expectation inversely proportional

to 𝜖 , the privacy parameter.

6 The Loss Function and Consequences
Equipped with the results of the last section, we can now explore in

depth how the nearest neighbor is obtained via the post-processing

step. Recall the objective function from Eq. (3). Taking its square,

we get

∥w∗ − x∥2 = ∥w + 𝜼 − x∥2

= ∥w − x∥2 + ∥𝜼∥2 + 2⟨w − x,𝜼⟩
= ∥w − x∥2 + 𝑟 2 + 2⟨w − x,𝜼⟩
= ∥w − x∥2 + 𝑟 2 + 2⟨w,𝜼⟩ − 2⟨x,𝜼⟩

Now, the terms ⟨w,𝜼⟩ and 𝑟 2
are the same for all x ∈ D, and

therefore we can ignore them when finding the minimum. Let us

define the loss function containing the remaining terms for all x ∈ D
as

𝐿(x) = ∥w − x∥2 − 2⟨x,𝜼⟩ = ∥w − x∥2 + 2∥x∥𝑟 cos𝜃𝜼,x (16)

Indeed, using partial derivatives we can see that the solution that

minimizes the loss function 𝐿 is x = w + 𝜼 = w∗
, but we know

that with overwhelming probability this vector is not part of the

embedding space. We have the following result.

Theorem 10. Let 𝐿 be defined as in Eq. (16). Then for any x ∈ D

E[𝐿(x)] = ∥w − x∥2 .

In particular, E[𝐿(w)] = 0, and E[𝐿(x)] > 0 iff x ≠ w. Furthermore,
for any x, y ∈ D with x ≠ y and ∥w − x∥ < ∥w − y∥, we have

Pr [𝐿(x) < 𝐿(y)] > 1/2.

Proof. From Eq. (16) and Theorem 9, we see that

E[𝐿(x)] = E
[
∥w − x∥2 + 2∥x∥𝑟 cos𝜃𝜼,x

]
= ∥w − x∥2 + 2∥x∥E[𝑟 cos𝜃𝜼,x]
= ∥w − x∥2,

from which it follows that the expectation is 0 only if x =w, and

otherwise it is greater than 0. For the second part of the theorem,

we see that

𝐿(y) − 𝐿(x) = ∥w − y∥2 − 2⟨y,𝜼⟩ − ∥w − x∥2 + 2⟨x,𝜼⟩
= ∥w − y∥2 − ∥w − x∥2 + 2⟨x − y,𝜼⟩
= ∥w − y∥2 − ∥w − x∥2 + 2∥x − y∥𝑟 cos𝜃𝜼,x−y
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Define the random variable 𝑆 as

𝑆 = ∥w − y∥2 − ∥w − x∥2 + 2∥x − y∥𝑍,
which follows from the fact that 𝑟 cos𝜃𝜼,x−y is distributed as𝑍 . Note
that from the analysis above, we have E[𝑆] = ∥w − y∥2 − ∥w − x∥2

.

Now, since ∥w − x∥ < ∥w − y∥, from Eq. (11), we have that

Pr[𝐿(x) < 𝐿(y)] = Pr[𝑆 > 0]

= Pr

[
𝑍 >

∥w − x∥2 − ∥w − y∥2

2∥x − y∥

]
(17)

> Pr[𝑍 ≥ 0]

=
1

Γ(𝑛)𝜖−𝑛𝐵( 𝑛−1

2
, 1

2
)

∫ ∞

|0 |
𝑟𝑛−1𝑒−𝜖𝑟

×
(∫

0/𝑟

−1

(
1 − 𝑘2

) 𝑛−1

2
−1

𝑑𝑘

)
𝑑𝑟

=
1

2

1

Γ(𝑛)𝜖−𝑛
∫ ∞

0

𝑟𝑛−1𝑒−𝜖𝑟𝑑𝑟 =
1

2

,

as required. The second-to-last equality follows because the distri-

bution 𝑓B is symmetric around 0. □

This theorem shows that, ignoring the actual difference in prob-

abilities, there is nothing unusual in the nearest neighbor search

for any value of 𝜖 and 𝑛: the original word is expected to be output

more often, followed by its nearest neighbor, and so on. However,

the issue is with the exact values of these probabilities, as we shall

see next.

Eq. (17) gives us another insight. Suppose x1 and x2 are the first

two neighbors of w. Then first we see that for 𝑖 = 1, 2

Pr[𝐿(w) < 𝐿(x𝑖 )] = Pr

[
𝑍 >

∥w −w∥2 − ∥w − x𝑖 ∥2

2∥w − x𝑖 ∥

]
= Pr

[
𝑍 > − ∥w − x𝑖 ∥

2

]
= Pr

[
𝑍 ≤ ∥w − x𝑖 ∥

2

]
, (18)

where the last equality follows from the fact that 𝑍 is symmetric

around 0 (see Section 5.1). Compare this to the following where we

also use symmetry of the distribution:

Pr[𝐿(x1) < 𝐿(x2)] = Pr

[
𝑍 >

∥w − x1∥2 − ∥w − x2∥2

2∥x1 − x2∥

]
= Pr

[
𝑍 ≤ ∥w − x2∥2 − ∥w − x1∥2

2∥x1 − x2∥

]
(19)

Eqs (18) and (19) are the same equations we derived in Theorem 1

and Eq. (22) in Theorem 2, but this time with the loss function

formulation.

6.1 Probabilistic Interpretation
Eqs (18) and (19) can be interpreted as upper bounds on the proba-

bility that a particular word will be chosen as the nearest neighbor.

To see this let 𝑁 denote the size of the vocabulary. Given a word w,

we index the vocabulary, as follows: x0 = w and x𝑖 denotes the 𝑖th
nearest neighbor of w where ties are broken arbitrarily. Let 𝐶𝑖, 𝑗 be

the event that word embedding x𝑖 is closer to the noisy embedding

w∗
than word embedding x𝑗 . Furthermore, let 𝐶𝑖 be the event that

word embedding x𝑖 is the nearest neighbor of w∗
. From Eq. (18),

we have the following condition:

Pr[𝐶𝑖 ] = 1 − Pr[𝐶𝑖 ]

= 1 − Pr

[
𝑁⋃

𝑗=0, 𝑗≠𝑖

𝐶𝑖, 𝑗

]
≤ 1 − Pr[𝐶𝑖,0]
= 1 − Pr[𝐿(w) < 𝐿(x𝑖 )]

= 1 − Pr

[
𝑍 ≤ ∥w − x𝑖 ∥

2

]
≤ 1 − Pr

[
𝑍 ≤ ∥w − x1∥

2

]
, (20)

where we have used the fact that 𝐶𝑖,0 ⊆ ∪𝑁𝑗=0, 𝑗≠𝑖𝐶𝑖, 𝑗 , and therefore

the probability of former is less than or equal to the probability of

the latter. Likewise, we have

Pr[𝐶𝑖 ] ≤ 1 − Pr[𝐶𝑖, 𝑗 ] = Pr[𝐶𝑖, 𝑗 ] = Pr[𝐿(x𝑖 ) < 𝐿(x𝑗 )]

= Pr

[
𝑍 ≤

∥w − x𝑗 ∥2 − ∥w − x𝑖 ∥2

2∥x𝑖 − x𝑗 ∥

]
, (21)

for 𝑖 ≠ 0. The probabilities in Eq. (20) and (21) are upper bounds on

the necessary condition for a word x𝑖 to be chosen as the nearest

neighbor to the noisy embedding.

6.2 Results on Word Embeddings
To show how likely the original word w is chosen over its nearest

neighbor x1, and contrast it with how likely the nearest neighbor

x1 is chosen over the second nearest neighbor x2, we take the

right hand quantities bounding the probability mass of the random

variable 𝑍 in Eqs (18) and (19). To ease notation, we denote these

quantities by 𝑧w,x1
and 𝑧x1,x2

, respectively. For each vocabulary, i.e.,

embedding model, we take the average of these quantities by taking

5,000 random words. The results are shown in Table 2. The quantity

𝑧x1,x101
is the right hand quantity in Eq (19) for the nearest neighbor

and 101th neighbor of w.

Vocabulary 𝑛 𝑧w,x1
𝑧x1,x2

𝑧x1,x101

GloVe-Twitter 25 1.078 0.132 0.692

50 1.571 0.169 0.747

100 2.166 0.197 0.764

200 2.708 0.220 0.683

GloVe-Wiki 50 1.369 0.172 0.757

100 1.403 0.152 0.616

200 2.15 0.243 0.823

300 2.896 0.282 0.999

Word2Vec 300 0.763 0.058 0.253

fastText 300 1.493 0.239 0.912

Table 2: The right hand side terms 𝑧w,x1
, 𝑧x1,x2

and 𝑧x1,x101
as

they appear in Eqs. (18) and (19) for different vocabularies.

The first thing to notice is that for any given dimension 𝑧w,x1
is

considerably greater than 𝑧x1,x2
. This is because the distance of any

word to its first neighbor in high dimensions is considerably higher

than the (relative) difference in distances to its first two neighbors.
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The other observation is more of an illusion. The value of 𝑧w,x1
is

increasing as we increase the dimensions, by looking at the GloVe
vocabularies. Thus it may appear that the problem is exacerbated as

we increase the dimensions from say 25 to 200. However, this is not

exactly correct. Recall from Theorem 8 that the bulk of the mass of

𝑍 is within O(
√
𝑛/𝜖). Thus, under two different dimensions 𝑛1 and

𝑛2, we expect 𝐹𝑍 (𝑧1) ≈ 𝐹𝑍 (𝑧2) if 𝑧1

𝑧2

≈
√︃
𝑛1

𝑛2

. By looking at the table,

we see that this ratio across the two types of GloVe is more or less

obeyed by the quantities 𝑧w,x1
as we cycle through the dimensions,

and slightly less so by the quantities 𝑧x1,x2
. Thus, we might see the

problem as being slightly more worsened in higher dimensions but

not by much.

This is more obvious as we plot the probabilities 𝐹𝑍 (𝑧w,x1
) and

𝐹𝑍 (𝑧x1,x2
) in Figure 6. Although the CDF can be obtained by nu-

merically integrating the integral in Eq. (11), however, we found

the integration to be slow using for example SymPy.14 We therefore

obtained the CDF of 𝑍 using Monte Carlo simulations by randomly

sampling the noise vector 10, 000 times and then finding the pro-

portion of times it falls below 𝑧w,x1
or 𝑧x1,x2

. This can be done by

sampling 𝑅 via the Gamma distribution 𝑓G, and then sampling 𝐾

by checking the cosine of the angle of the noise vector against a

fixed vector, e.g., ê1 = (1, 0, 0, . . . , 0).
As is evident from the figure, 𝐹𝑍 (𝑧w,x1

) dominates when 𝜖 > 1.

This means, that the probability of choosing the original word in-

creases, and from Eq. (20), the probability that the nearest neighbor

would be output decreases. Furthermore, around 𝜖 = 10, where the

original word is still not entirely certain to be output, the probabil-

ity 𝐹𝑍 (𝑧x1,x101
) is not overwhelming enough (not plotted) to ensure

that the nearest neighbor would be output more than the 101th

neighbor. Hence far away neighbors are still being output at these 𝜖

values, until the original word completely dominates as we further

increase 𝜖 .

7 Proposed Fix
In light of the discussion in the previous section, if we can some-

how make the distance of the original word to its nearest neigh-

bor similar to distances between its consecutive neighbors, the

issue could be resolved. To do so, one may be tempted to employ

the following mechanism. Let w be the original word. We find all

nearest neighbors of w according to the Euclidean distance, and

assign the function 𝑑NN (w, x) = 𝑖 if x is the 𝑖th nearest neigh-

bor of w. We have 𝑑NN (w,w) = 0. We can then sample a word x
proportional to exp(−𝜖𝑑NN (w, x)). However, 𝑑NN is not a metric

as it does not satisfy the properties of symmetry and triangle in-

equality as illustrated in Figure 7. In the figure we consider R2
. We

have 𝑑NN (x1, x2) = 2, however, 𝑑NN (x2, x1) = 4, violating symme-

try. Furthermore, 𝑑NN (x2,w) = 1 and 𝑑NN (w, x1) = 2, implying

that 𝑑NN (x2, x1) > 𝑑NN (x2,w) + 𝑑NN (w, x1), violating the triangle
inequality.

15
Thus, the resulting mechanism cannot be 𝑑X-private.

Theorem 10 says that on average the nearest neighbor of the

noisy embeddingw∗
is the original wordw, followed byw’s nearest

neighbor, then its second nearest neighbor, and so on. Due to large

probability differences, as shown in Figure 6, the original word is

14
See https://www.sympy.org/.

15
The triangle inequality seems less of an issue, as we might be okay with𝑑NN (x2, x1 )

being bounded by a function of 𝑑NN (x2,w) and 𝑑NN (w, x1 ) . See [11, 15].
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Figure 6: The probabilities 𝐹𝑍 (𝑧w,x1
) (solid) and 𝐹𝑍 (𝑧x1,x2

)
(dashed) where 𝑧w,x1

and 𝑧x1,x2
are as given in Table 2 for

the two GloVe vocabularies.
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Figure 7: Example used to illustrate the fact that 𝑑NN is not a
metric. The numbers show the distance of the corresponding
segments.

chosen overwhelmingly. Tomitigate this, our idea is to not select the
nearest neighbor ofw∗

every time, and instead occasionally sample

other neighbors. This could be used as a post-processing step after
we have found the nearest word x∗ to the noisy embedding w∗

through Eq. (3). In other words, we sort the nearest neighbors of

x∗ and output a neighbor proportional to exp(−𝜖𝑑NN (x∗, x)). More

specifically any word x ∈ D is output with probability:

exp(−𝑐𝜖𝑑NN (x∗, x))∑
x∈D exp(−𝑐𝜖𝑑NN (x∗, x))

,

where 𝑐 is a constant to control how many neighbors are likely

to be selected. Note that 𝜖 is not used here for privacy protection

but rather to ensure that the mechanism behaves as expected, e.g.,

only the original word output with very high values of 𝜖 . A higher

value such as 𝑐 > 1 means that the mechanism will output the

first few neighbors with high probability, and a lower value such
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Figure 8: The proportion of times the original word, its close
neighbors and distant neighbors are output by the fixed
mechanism on the GloVe-Wiki (300 dimensions) with 𝑐 = 0.04

(left) and Word2Vec with 𝑐 = 0.007 (right). Close neighbors
are the first 100 nearest neighbors, and all other words are
distant neighbors.
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Figure 9: The proportion of times the original word, its close
neighbors and distant neighbors are output by the exponen-
tial mechanism of [35] on the GloVe-Wiki (300 dimensions)
(left) and Word2Vec (right). Close neighbors are the first 100
nearest neighbors, and all other words are distant neighbors.

as 𝑐 = 0.01 means that more neighbors will likely to be output, of

course, with probability exponentially decreasing as we move away

from the original word. This is the same as the temperature variable

in the softmax function. Note that we cannot use the original word

w in the above expression in place of x∗, as the resulting fix will

no longer be a post-processing step (it uses the knowledge of the

original word w).

Figure 8 shows the result of applying this fix to the GloVe-Wiki
and Word2Vec vocabularies. The value of 𝑐 is chosen by trying dif-

ferent values and choosing the one that gives the best result in

terms of the proportion of the times the original word, its 100 near-

est neighbors and distant neighbors are output by the mechanism.

This value can be pre-computed for each vocabulary. Compare this

to Figure 2, where between 𝜖 = 10 and 20 for GloVe-Wiki and

between 𝜖 = 50 and 60 for Word2Vec, either the original word or

its distant neighbors are output by the original mechanism. Our

mechanism in comparison ensures a more equitable proportion

for the original word, its close and distant neighbors, in line with

the one-dimensional case shown in Figure 1. A drawback of this

mechanism, of course, is that the value of 𝑐 needs to be empirically

determined for each vocabulary.

Comparison with the Exponential Mechanism. Our fix looks similar

to the exponential mechanism proposed by Yue et al. [35, Algorithm

1]. They pre-compute a matrix containing the probability that each

token of the vocabulary is replaced by any other token. The proba-

bilities are computed as an exponential of the Euclidean distance.

More precisely, the probability that a tokenw is replaced by a token

x is proportional to exp(− 1

2
𝜖 · ∥w − x∥)). The authors argue that the

mechanism has better performance by avoiding the nearest neigh-

bor search in an 𝑛-dimensional space during sanitization. However,

in Figure 9 we show that it still suffers from the problem exposed

by us, namely that close neighbors are almost never sampled. The

main difference between this mechanism and our fix is that we

use the rank instead of a distance metric to compute probabilities.

We leave it as an open problem to construct a distance metric that

“flattens out” the distance between an embedding and its nearest

neighbor, and distances between its consecutive neighbors. That

is, it should behave similarly to the nearest neighbor function 𝑑NN,

while still satisfying the properties of a distance metric.

8 Related Work
In addition to the multidimensional Laplace mechanism for word-

level 𝑑X-privacy from [15, 16, 22, 31, 35] detailed in this paper,

a few other word-level 𝑑X-privacy methods have also been pro-

posed in the literature. In [17], the authors propose a 𝑑X-private
mechanism using a distance metric in the hyperbolic space, which

according to the authors, better preserves hierarchical relation-

ships between words. For instance, the hierarchical relationship

of the city of London to England. Xu et al [34] propose the Maha-

lanobis mechanism, which instead of the spherical noise via the

multidimensional Laplace mechanism, samples elliptical noise. The

authors note that this mechanism provides better privacy for iso-

lated points (see Section 2) since the elliptical nature of the noise

results in sampling points other than the original word with higher

probability. Another mechanism for word-level 𝑑X-privacy is the

truncated exponential mechanism (TEM) [9], proposed to remove

the drawback of the multidimensional Laplace mechanism which

adds the same amount of noise regardless of whether a word is in

a dense or sparse region of space. Applying their mechanism to a

data domain would add more noise to points in low density areas.

Although the mechanisms from [9] and [34] may solve the issue

with isolated embeddings, they are unlikely to resolve the issue

raised by us. As we show in Section 6, the problem stems from the

large difference in probabilities of sampling the same word versus

its nearest neighbors in the nearest neighbor search. The Maha-

lanobis mechanism [34] also contains nearest neighbor search as a

post-processing step, and the TEM from [9] uses a distance metric

to sample a word. Thus the problem is likely to persist in these

mechanisms.

Instead of word-level differential privacy, several works focus on

providing differential privacy at the sentence level [19, 23]. More

specifically, these works calculate the conditional probabilities of

the next word, given a sequence of previous words. We note that

both the mechanisms in [23] and [19] are for ordinary differential

privacy and not 𝑑X-privacy. Finally, differential privacy mecha-

nisms for more advanced downstream tasks such as paraphrasing

have also been proposed [32], but again using ordinary differential

privacy. The exponential mechanism in [23] and [32] is similar to

our fix for multidimensional Laplace mechanism for 𝑑X-privacy
with the difference being that our fix is a post-processing step.
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There have been some prior works showing the weaknesses of

word-level 𝑑X-privacy. The aforementioned work in [23] criticizes

several aspects of word-level 𝑑X-privacy, including introduction of

grammatical errors and only making changes to individual words,

rather than changing lengths of sentences. The work in [28] demon-

strates attacks on word and sentence-level differential privacy on

text data, by reconstructing santized prompts where the original

prompts are taken from the training data of the language model.

The issues and attacks mentioned in these two works are tangential

to the problem addressed in our paper.

The fact that 𝑑X-privacy, in particular, the multidimensional

Laplace mechanism does not provide adequate protection for iso-

lated points in the input domain has also been highlighted in the

case of location privacy [6, 12]. We discuss here why we think

these solutions are not readily applicable to fix our issue in a high-

dimensional space. The works in [6, 12] use the concept of elastic
distinguishability introduced in [12]. The idea is that in addition

to the usual requirement in 𝑑X-privacy that nearby points should

have higher probability of being sampled than far away points, the

mechanism should also sample a point proportional to its proba-
bility mass or density. For instance, an isolated location such as

an island has a lower probability mass than a location in a dense

urban area [12]. The mechanisms in [6, 12] are essentially weighted

versions of the exponential mechanism, where the probability of

sampling a point is also weighted by its probability mass. Location

has a natural candidate for assigning a probability mass to points

in space: the number of people at a given location.

First, we emphasize that their observation is related to the (loca-

tion) data distribution, with the assumption that the bulk of data

is concentrated with only a few isolated points. This is unlike our

finding where we show that in essence every embedding in high

dimensions is isolated. Second, in the context of location data, even

isolated points have a non-zero probability of being output by the

mechanism, as they are valid locations. Consequently, there is no

need for a nearest neighbor search. Indeed themechanisms in [6, 12]

do not use it. This is unlike the word embedding space, where a

random vector is overwhelmingly not an actual word embedding,

and hence the need to perform the nearest neighbor search which,

as we saw, is what causes the issue identified in this paper. Third,

if we were to apply a similar mechanism to our setting, we need to

determine how to assign probability mass to regions in the embed-

ding space. One way to do this is to divide the embedding space into

equal-volume hypercubes, count the number of embeddings falling

in each hypercube and assign the fractional count as the probability

mass. This is analogous to how the two-dimensional location map

is divided into a grid in [6, 12]. However, dividing the embedding

space in hypercubes is not trivial. On the one hand, dividing each

of the 𝑛 dimensions into𝑚 shares results in𝑚𝑛
hypercubes which

is unfit for storage (e.g., 𝑛 = 300 in some of our vocabularies). On

the other hand, choosing a subset of the 𝑛 dimensions to be divided

requires an analysis of which dimension to divide or not. Thus it

is unclear whether the notion of elastic distinguishability offers a

solution let alone a feasible one.

The work in [4] also looks at the distinguishability of isolated

points in the shuffle model of differential privacy. In the shuffle

model, an intermediate shuffler permutes (local) differentially pri-

vate inputs of end users before submitting them to the central ag-

gregator. This amplifies privacy compared to the local model as the

server cannot tie an output to a particular user. In the 𝑑X-privacy
equivalent version of the shuffle model, the server can still identify

isolated inputs (even when perturbed) as they stand out from the

rest. To remove this drawback, one of the techniques proposed

in [4] is to encode an input in unary and then apply differentially

private noise (randomized response) to each bit before sending it to

the shuffler. It is not clear how these techniques can be applied to

the case of text embeddings. We would need to convert embeddings

into bit vectors and then combine multiple embeddings together.

Moreover, once again, the isolated point issue is endemic in high

dimensional embeddings as opposed to being just a few bad apples.

Lastly, researchers have identified issues with Euclidean distance

in high dimensions. Beyer et al [5] show that the distance of the

nearest neighbor approaches that of the farthest neighbor as the

number of dimensions increases, thus making nearest neighbor

search using the Euclidean distance meaningless, a result known as

concentration of distances [13]. The authors in [13], expand on this

to show that the concentration of distances is not applicable as long

as the number of ‘relevant’ dimensions are on par with the actual

data dimensions, and hence in these cases nearest neighbor search

is still meaningful. This seems to be the case with word embedding

models as is backed up by the empirical results in this paper and

the fact that word embedding models are trained to ensure that

Euclidean distance can be used to find similar words even with high

dimensions [24, 29]. For more information on this topic, we refer

the reader to the survey [37].

9 Conclusion
The multidimensional Laplace mechanism for 𝑑X-privacy is widely

used as a method to provide privacy for sensitive text data due to

its ease of implementation. We have shown that the method be-

haves unexpectedly under common word embedding models. More

specifically, it almost never outputs semantically related words,

as it is expected to do for utility. We have extensively analyzed

the noise generated through this mechanism and ruled out any

issues with the original mechanism. Instead, we have identified

the post-processing step of the nearest neighbor search as the cul-

prit, causing each word embedding to behave as an outlier in high

dimensions. We have provided an easy-to-use fix which makes

the mechanism behave more expectedly. The reader is invited to

investigate alternative remedies.
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A Proofs
Proof of Theorem 2.

Proof.

∥w∗ − y∥2 > ∥w∗ − x∥2

⇒ ∥w − y + 𝜼∥2 > ∥w − x + 𝜼∥2

⇒ ∥w − y∥2 + ∥𝜼∥2 + 2⟨w − y,𝜼⟩
> ∥w − x∥2 + ∥𝜼∥2 + 2⟨w − x,𝜼⟩

⇒ 1

2

(∥w − y∥2 − ∥w − x∥2) > ⟨w − x,𝜼⟩ − ⟨w − y,𝜼⟩

= ⟨w,𝜼⟩ − ⟨x,𝜼⟩ − ⟨w,𝜼⟩ + ⟨y,𝜼⟩
= ⟨y − x,𝜼⟩
= 𝑟 ∥y − x∥ cos𝜃𝜂,y−x (22)

⇒ 1

2

(∥w − y + x − x∥2 − ∥w − x∥2) > 𝑟 ∥y − x∥ cos𝜃𝜂,y−x

⇒ 1

2

(∥w − x∥2 + ∥y − x∥2 − 2⟨w − x, y − x)⟩ − ∥w − x∥2)

> 𝑟 ∥y − x∥ cos𝜃𝜂,y−x

⇒ 1

2

(∥y − x∥2 − 2⟨w − x, y − x)⟩) > 𝑟 ∥y − x∥ cos𝜃𝜂,y−x

⇒ 1

2

(∥y − x∥2 − 2∥w − x∥∥y − x)∥ cos𝜃w−x,y−x)

> 𝑟 ∥y − x∥ cos𝜃𝜂,y−x

⇒ 1

2

∥y − x∥ > ∥w − x∥ cos𝜃w−x,y−x + 𝑟 cos𝜃𝜼,y−x

as required. □

Proof of Theorem 4.

Proof. Let 𝐵𝑛 = 𝐵((𝑛 − 1)/2, 1/2). For any 𝑛 ≥ 4, we note that:

𝐵𝑛−2

𝐵𝑛
=

Γ( 𝑛−3

2
)Γ( 1

2
)

Γ( 𝑛−3

2
+ 1

2
)
Γ( 𝑛−1

2
+ 1

2
)

Γ( 𝑛−1

2
)Γ( 1

2
)
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=
Γ( 𝑛−3

2
)

Γ( 𝑛
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− 1)
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2
)

Γ( 𝑛−1

2
)

=
Γ( 𝑛−3

2
)

Γ( 𝑛
2
− 1)
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2
− 1 + 1)

Γ( 𝑛−1

2
− 1 + 1)

=
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2
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2
− 1)Γ( 𝑛

2
− 1)

( 𝑛−3

2
)Γ( 𝑛−3

2
)

=
𝑛 − 2

𝑛 − 3

, (23)

where we have used the fact that Γ(𝑥 + 1) = 𝑥Γ(𝑥) for any real

number 𝑥 > 0. We first consider the cases of 𝑛 = 2 and 3. When

𝑛 = 2, we have:

𝜇 ( 𝑗, 2) =
∫ +1

−1

𝑘 𝑗
1

𝐵2

(1 − 𝑘2) 0

2
−1𝑑𝑘

=
1

𝜋

∫ +1

−1

𝑘 𝑗
√

1 − 𝑘2

𝑑𝑘,

wherewe have used the fact that𝐵2 = 𝐵(1/2, 1/2) = Γ(1/2)Γ(1/2)/Γ(1) =√
𝜋 ·

√
𝜋/(1) = 𝜋 . Let 𝑘 = sin 𝑡 . Then 𝑑𝑘 = cos 𝑡 𝑑𝑡 . Therefore,

𝜇 ( 𝑗, 2) = 1

𝜋

∫ 𝜋/2

−𝜋/2

sin
𝑗 𝑡

√
1 − sin

2 𝑡
cos 𝑡 𝑑𝑡

=
1

𝜋

∫ 𝜋/2

−𝜋/2

sin
𝑗 𝑡

| cos 𝑡 | cos 𝑡 𝑑𝑡

=
1

𝜋

∫ 𝜋/2

−𝜋/2

sin
𝑗 𝑡 𝑑𝑡,

where we have used the fact that cos 𝑡 is positive in the interval

(−𝜋/2, 𝜋/2). With 𝑗 = 0, it is easy to see that 𝜇 (0, 2) = 1. And for

𝑗 = 1, we see that 𝜇 (1, 2) = 0 since the integral of sin 𝑡 is − cos 𝑡 .

Consider therefore 𝑗 ≥ 2. Integrating by parts, we have

𝜇 ( 𝑗, 2) = 1

𝜋

∫ 𝜋/2

−𝜋/2

sin 𝑡 sin
𝑗−1 𝑡 𝑑𝑡,

= − 1
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𝜋
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− cos 𝑡 ( 𝑗 − 1) sin
𝑗−2 𝑡 cos 𝑡 𝑑𝑡,

=
𝑗 − 1

𝜋

∫ 𝜋/2

−𝜋/2

cos
2 𝑡 sin

𝑗−2 𝑡 𝑑𝑡

=
𝑗 − 1

𝜋

∫ 𝜋/2

−𝜋/2

(1 − sin
2 𝑡) sin

𝑗−2 𝑡 𝑑𝑡

=
𝑗 − 1

𝜋

∫ 𝜋/2

−𝜋/2

sin
𝑗−2 𝑡 𝑑𝑡 − 𝑗 − 1

𝜋

∫ 𝜋/2

−𝜋/2

sin
𝑗 𝑡 𝑑𝑡

= ( 𝑗 − 1)𝜇 ( 𝑗 − 2, 2) − ( 𝑗 − 1)𝜇 ( 𝑗, 2)

⇒ 𝜇 ( 𝑗, 2) = 𝑗 − 1

𝑗
𝜇 ( 𝑗 − 2, 2) (24)

From this recurrence relation, we see that for odd 𝑗 wehave 𝜇 ( 𝑗, 2) =
0, since 𝜇 (1, 2) = 0. And for even 𝑗 , by using 𝜇 (0, 2) = 1 in the re-

currence relation, it is easy to show that

𝜇 ( 𝑗, 2) = ( 𝑗 − 1)!!
𝑗 !!

,

where 𝑥 !! = 𝑥 (𝑥 − 2) (𝑥 − 4) · · · 4 · 2 is the double factorial. Thus,

𝜇 ( 𝑗, 2) =


1, if 𝑗 = 0,

0, if 𝑗 is odd,
( 𝑗−1)!!
𝑗 !!

, if 𝑗 is even

(25)

Next consider 𝑛 = 3. We have

𝜇 ( 𝑗, 3) =
∫ +1

−1

𝑘 𝑗
1

𝐵3

(1 − 𝑘2) 2

2
−1 𝑑𝑘

=
1

2

∫ +1

−1

𝑘 𝑗 𝑑𝑘,

=
1

2

𝑘 𝑗+1

𝑗 + 1

���+1

−1

=
1 − (−1) 𝑗+1

2( 𝑗 + 1) ,

where we have used the fact that 𝐵3 = 𝐵(2/2, 1/2) = 𝐵(1, 1/2) =
Γ(1)Γ(1/2)/Γ(1 + 1/2) = Γ(1/2)/((1/2) (Γ(1/2)) = 2. Thus,

𝜇 ( 𝑗, 3) =


1, if 𝑗 = 0,

0, if 𝑗 is odd,
1

𝑗+1
, if 𝑗 is even

(26)

Finally, consider 𝑛 ≥ 4. We have through integration by parts:

𝜇 ( 𝑗, 𝑛) =
∫ +1

−1

𝑘 𝑗
1

𝐵𝑛
(1 − 𝑘2) 𝑛−1

2
−1 𝑑𝑘

=
1

𝐵𝑛

∫ +1

−1

𝑘 𝑗 (1 − 𝑘2) 𝑛−1

2
−1 𝑑𝑘

=
1

𝐵𝑛

𝑘 𝑗+1

𝑗 + 1

(1 − 𝑘2) 𝑛−1

2
−1

���+1

−1

− 1

𝐵𝑛

∫ +1

−1

𝑘 𝑗+1

𝑗 + 1

(
𝑛 − 3

2

)
(1 − 𝑘2) 𝑛−1

2
−2 (−2𝑘) 𝑑𝑘

=
𝑛 − 3

𝐵𝑛

1

𝑗 + 1

∫ +1

−1

𝑘 𝑗+2 (1 − 𝑘2) 𝑛−1

2
−2 𝑑𝑘

=
𝑛 − 3

𝐵𝑛

1

𝑗 + 1

∫ +1

−1

𝑘 𝑗 (1 − (1 − 𝑘2)) (1 − 𝑘2) 𝑛−1

2
−2 𝑑𝑘

=
𝑛 − 3

𝐵𝑛

1

𝑗 + 1

∫ +1

−1

𝑘 𝑗 (1 − 𝑘2) 𝑛−1

2
−2 𝑑𝑘

− 𝑛 − 2

𝐵𝑛

1

𝑗 + 1

∫ +1

−1

𝑘 𝑗 (1 − 𝑘2) 𝑛−1

2
−1 𝑑𝑘

=
𝑛 − 2

𝐵𝑛−2

1

𝑗 + 1

∫ +1

−1

𝑘 𝑗 (1 − 𝑘2) 𝑛−1

2
−2 𝑑𝑘

− 𝑛 − 3

𝐵𝑛

1

𝑗 + 1

∫ +1

−1

𝑘 𝑗 (1 − 𝑘2) 𝑛−1

2
−1 𝑑𝑘

=
(𝑛 − 2)
( 𝑗 + 1) 𝜇 ( 𝑗, 𝑛 − 2) − (𝑛 − 3)

( 𝑗 + 1) 𝜇 ( 𝑗, 𝑛)

where we have used Eq. (23). Thus,

𝜇 ( 𝑗, 𝑛) = 𝑛 − 2

𝑛 + 𝑗 − 2

𝜇 ( 𝑗, 𝑛 − 2) (27)

If 𝑗 = 0, then 𝜇 (0, 𝑛) is the integral of the PDF of the distribution,
and hence 𝜇 (0, 𝑛) = 1, for all 𝑛 ≥ 2. Consider now, odd 𝑗 . From

Eqs. (25), (26) and (27) we see that 𝜇 ( 𝑗, 𝑛) = 0, for all 𝑛 ≥ 2. Thus,

consider even 𝑗 . First consider even 𝑛, starting from 𝑛 = 4. We have
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𝜇 ( 𝑗, 𝑛 − 2) = 𝜇 ( 𝑗, 2), for 𝑛 = 4. Putting the result from Eq. (25) into

Eq. (27), we get

𝜇 ( 𝑗, 𝑛) = 𝑛 − 2

𝑛 + 𝑗 − 2

𝑛 − 4

𝑛 + 𝑗 − 4

𝑛 − 6

𝑛 + 𝑗 − 6

· · · 4 − 2

4 + 𝑗 − 2

( 𝑗 − 1)!!
𝑗 !!

=
𝑛 − 2

𝑛 + 𝑗 − 2

𝑛 − 4

𝑛 + 𝑗 − 4

𝑛 − 6

𝑛 + 𝑗 − 6

· · · 2

𝑗 + 2

( 𝑗 − 1)!!
𝑗 !!

=
(𝑛 − 2)!!( 𝑗 − 1)!!
(𝑛 − 2 + 𝑗)!! .

Lastly, consider odd 𝑛 starting from 𝑛 = 5. We have 𝜇 ( 𝑗, 𝑛 − 2) =
𝜇 ( 𝑗, 3), for 𝑛 = 5. Putting the result from Eq. (26) into Eq. (27), we

get

𝜇 ( 𝑗, 𝑛) = 𝑛 − 2

𝑛 + 𝑗 − 2

𝑛 − 4

𝑛 + 𝑗 − 4

𝑛 − 6

𝑛 + 𝑗 − 6

· · · 5 − 2

5 + 𝑗 − 2

1

𝑗 + 1

=
𝑛 − 2

𝑛 + 𝑗 − 2

𝑛 − 4

𝑛 + 𝑗 − 4

𝑛 − 6

𝑛 + 𝑗 − 6

· · · 3

𝑗 + 3

1

𝑗 + 1

=
𝑛 − 2

𝑛 + 𝑗 − 2

𝑛 − 4

𝑛 + 𝑗 − 4

𝑛 − 6

𝑛 + 𝑗 − 6

· · · 3

𝑗 + 3

1

𝑗 + 1

( 𝑗 − 1)!!
( 𝑗 − 1)!!

=
(𝑛 − 2)!!( 𝑗 − 1)!!
(𝑛 − 2 + 𝑗)!!

Putting the results together, we get for 𝑛 ≥ 2

𝜇 ( 𝑗, 𝑛) =


1, if 𝑗 = 0,

0, if 𝑗 is odd,
(𝑛−2)!!( 𝑗−1)!!

(𝑛−2+𝑗 )!! , if 𝑗 is even

From the above equation we see that E[𝐾] = 𝜇 (1, 𝑛) = 0 and

Var[𝐾] = E[𝐾2] − (E[𝐾])2 = E[𝐾2] = 𝜇 (2, 𝑛) = 1

𝑛
. □

Proof of Theorem 6.

Proof. First note that 𝜇 = 𝜇 (1, 𝑛) = 0 from Eq. (14). There-

fore, using the Taylor series expansion of the exponential function,

Lemma 1 and Eq. (14), we have:

E[𝑒𝜆 (𝐾−𝜇 ) ] = E[𝑒𝜆𝐾 ]

= E

[ ∞∑︁
𝑗=0

(𝜆𝐾) 𝑗
𝑗 !

]
=

∞∑︁
𝑗=0

𝜆 𝑗

𝑗 !
E[𝐾 𝑗 ]

=

∞∑︁
𝑗=0, 𝑗 even

𝜆 𝑗

𝑗 !
E[𝐾 𝑗 ]

=

∞∑︁
𝑗=0

(𝜆2) 𝑗
(2 𝑗)! E[𝐾

2𝑗 ]

= 1 +
∞∑︁
𝑗=1

(𝜆2) 𝑗
(2 𝑗)! E[𝐾

2𝑗 ]

= 1 +
∞∑︁
𝑗=1

(𝜆2) 𝑗
(2 𝑗)!

(𝑛 − 2)!!(2 𝑗 − 1)!!
(𝑛 − 2 + 2 𝑗)!!

Now, note that

(2 𝑗 − 1)!!
2 𝑗 !

=
(2 𝑗 − 1) (2 𝑗 − 3) (2 𝑗 − 5) · · · 3 · 1

2 𝑗 (2 𝑗 − 1) (2 𝑗 − 2) (2 𝑗 − 3) · · · 3 · 2 · 1

=
1

2 𝑗 !!

=
1

2 𝑗 (2 𝑗 − 2) (2 𝑗 − 4) · · · 4 · 2

=
1

2
𝑗 · 𝑗 ( 𝑗 − 1) ( 𝑗 − 2) · · · 2 · 1

=
1

2
𝑗 𝑗 !

Therefore, the above becomes,

E[𝑒𝜆 (𝐾−𝜇 ) ]

= 1 +
∞∑︁
𝑗=1

(𝜆2) 𝑗
2
𝑗 𝑗 !

(𝑛 − 2)!!
(𝑛 − 2 + 2 𝑗)!!

= 1 +
∞∑︁
𝑗=1

(𝜆2) 𝑗
2
𝑗 𝑗 !

1

(𝑛 + 2 𝑗 − 2) (𝑛 + 2 𝑗 − 4) · · · (𝑛 + 2) (𝑛)

≤ 1 +
∞∑︁
𝑗=1

(𝜆2) 𝑗
2
𝑗 𝑗 !

1

𝑛 𝑗

= 1 +
∞∑︁
𝑗=1

1

𝑗 !

(
𝜆2

2𝑛

) 𝑗
=

∞∑︁
𝑗=0

1

𝑗 !

(
𝜆2

2𝑛

) 𝑗
= 𝑒−𝜎

2𝜆2/2,

where 𝜎2 = 1

𝑛
= Var[𝐾]. □

Proof of Theorem 7
Proof. Recall first that Markov’s inequality states that if 𝑋 is a

non-negative random variable and 𝑎 > 0, then

Pr[𝑋 ≥ 𝑎] ≤ E[𝑋 ]
𝑎

Also, let𝑀𝑋 (𝑡) = E[𝑒𝑡𝑋 ] be the moment generating function of 𝑋 ,

where we assume the expectation to exist within −ℎ < 𝑡 < ℎ, for

some real number ℎ > 0 [10, §2.3].

Let us define another random variable 𝑌 = 𝑒𝑡𝑋 . Since 𝑒𝑡𝑥 is an

increasing function of 𝑥 if 𝑡 > 0, we have that

Pr[𝑋 ≥ 𝑎] = Pr[𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎] ≤ E[𝑒𝑡𝑋 ]
𝑒𝑡𝑎

= 𝑒−𝑡𝑎𝑀𝑋 (𝑡), (28)

where we have used Markov’s inequality on the random variable

𝑌 with 0 < 𝑡 < ℎ. Next 𝑒𝑡𝑥 is a decreasing function of 𝑥 if 𝑡 < 0.

Therefore

Pr[𝑋 ≤ 𝑎] = Pr[𝑒𝑡𝑋 ≥ 𝑒𝑡𝑎] ≤ E[𝑒𝑡𝑋 ]
𝑒𝑡𝑎

= 𝑒−𝑡𝑎𝑀𝑋 (𝑡), (29)

with −ℎ < 𝑡 < 0. The moment generating function𝑀G of 𝑅 is [10,

§2.3]

𝑀G (𝑡) = (1 − 𝑡/𝜖)−𝑛, 𝑡 < 𝜖. (30)

Let 𝑐 > 1, 𝑎 = 𝑐𝑛/𝜖 and 𝑅 = 𝑋 , then for 0 < 𝑡 < 𝜖 through Eqs. (30)

and (28) we get

Pr

[
𝑅 ≥ 𝑐𝑛

𝜖

]
≤ 𝑒−𝑐𝑛𝑡/𝜖

(
1 − 𝑡

𝜖

)−𝑛
= 𝑦.
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To find the minimum value of 𝑦 in the interval 0 < 𝑡 < 𝜖 , we take

the derivative of 𝑦, which gives

𝑦′ = −𝑐𝑛
𝜖
𝑒−𝑐𝑛𝑡/𝜖

(
1 − 𝑡

𝜖

)−𝑛
+ 𝑒−𝑐𝑛𝑡/𝜖 (−𝑛)

(
1 − 𝑡

𝜖

)−𝑛−1

(
−1

𝜖

)
= −𝑐𝑛

𝜖
𝑒−𝑐𝑛𝑡/𝜖

(
1 − 𝑡

𝜖

)−𝑛
+ 𝑛

𝜖
𝑒−𝑐𝑛𝑡/𝑛𝜖

(
1 − 𝑡

𝜖

)−𝑛−1

=
𝑛

𝜖
𝑒−𝑐𝑛𝑡/𝜖

(
1 − 𝑡

𝜖

)−𝑛−1 (
−𝑐

(
1 − 𝑡

𝜖

)
+ 1

)
=
𝑛

𝜖
𝑒−𝑐𝑛𝑡/𝜖

(
1 − 𝑡

𝜖

)−𝑛−1 (𝑐𝑡
𝜖

− 𝑐 + 1

)
.

We see that the derivative is 0 if 𝑡 =
(𝑐−1)𝜖
𝑐

, which is in the interval

(0, 𝜖) if 𝑐 > 1. If we take the second derivative of 𝑦, we get

𝑦′′ =− 𝑐𝑛2

𝜖2
𝑒−𝑐𝑛𝑡/𝜖

(
1 − 𝑡

𝜖

)−𝑛−1 (𝑐𝑡
𝜖

− 𝑐 + 1

)
+ 𝑐𝑛

𝜖
𝑒−𝑐𝑛𝑡/𝜖

(
1 − 𝑡

𝜖

)−𝑛−1

+ 𝑛(𝑛 + 1)
𝜖2

𝑒−𝑐𝑛𝑡/𝜖
(
1 − 𝑡

𝜖

)−𝑛−2 (𝑐𝑡
𝜖

− 𝑐 + 1

)
.

At 𝑡 =
(𝑐−1)𝜖
𝑐

, the first and the last term in the above expression is

0. The remaining term is positive since the exponential function is

greater than 0 for any value of 𝑡 , and 1 − 𝑡/𝜖 is also greater than

0 if 0 < 𝑡 < 𝜖 . Thus, 𝑦′′ > 0. Hence the function 𝑦 is minimized at

this value of 𝑡 . Putting this value of 𝑡 into the expression for 𝑦, we

get the first statement of the theorem.

For the second statement, again let 𝑐 > 1, 𝑎 = 𝑛/𝑐𝜖 and 𝑅 = 𝑋 ,

then for −ℎ < 𝑡 < 0 through Eqs. (30) and (29) we get

Pr

[
𝑅 ≤ 𝑛

𝑐𝜖

]
≤ 𝑒−𝑛𝑡/𝑐𝜖

(
1 − 𝑡

𝜖

)−𝑛
= 𝑦.

Again, taking the derivative of𝑦 to find the value of 𝑡 that minimizes

𝑦 in the intervale −ℎ < 𝑡 < 0, we get

𝑦′ =
𝑛

𝜖
𝑒−𝑛𝑡/𝑐𝜖

(
1 − 𝑡

𝜖

)−𝑛−1

(
𝑡

𝑐𝜖
− 1

𝑐
+ 1

)
.

We see that 𝑦′ = 0 if 𝑡 = (1 − 𝑐)𝜖 , which indeed satisfies 𝑡 < 0 < 𝜖 ,

with 𝑐 > 1. Taking the second derivative of 𝑦, we get:

𝑦′′ =− 𝑛2

𝑐𝜖2
𝑒−𝑛𝑡/𝑐𝜖

(
1 − 𝑡

𝜖

)−𝑛−1

(
𝑡

𝑐𝜖
− 1

𝑐
+ 1

)
+ 𝑛

𝑐𝜖
𝑒−𝑛𝑡/𝑐𝜖

(
1 − 𝑡

𝜖

)−𝑛−1

+ 𝑛(𝑛 + 1)
𝜖2

𝑒−𝑛𝑡/𝑐𝜖
(
1 − 𝑡

𝜖

)−𝑛−2

(
𝑡

𝑐𝜖
− 1

𝑐
+ 1

)
.

Once again at 𝑡 = (1 − 𝑐)𝜖 , the first and the last term in the above

expression vanishes. The middle term is positive since the expo-

nential function is positive for any value of 𝑡 and 1 − 𝑡/𝜖 = 𝑐 > 1

for this value of 𝑡 . Thus, 𝑦′′ > 0, meaning that 𝑦 is minimized at

this value of 𝑡 . Putting this value of 𝑡 in the expression for 𝑦 gives

us the second statement of the theorem. □

B Noise Length Follows the Gamma
Distribution

Let 𝑓 (𝑟, 𝑆) denote the joint probability density function of the noise

distribution, which samples a noise vector 𝜼 = 𝑟 û where û is sam-

pled uniformly over the surface of the 𝑛-dimensional hypersphere

of unit radius, and where 𝑟 = ∥𝜼∥, whose distribution we seek to

determine. Let 𝑓𝑅 (𝑟 ) denote the probability density function of this

distribution. This is given by the marginal PDF

𝑓𝑅 (𝑟 ) =
∫
𝑆 (𝑟 )

𝑓 (𝑟, 𝑆) 𝑑𝑆, (31)

where the integration is over 𝑆 (𝑟 ), i.e., the surface area of the 𝑛-
dimensional hypersphere of radius 𝑟 . Now, 𝑆 (𝑟 ) ∝ 𝑟𝑛−1

andwewant

the distribution at 𝑟 to be proportional to exp(−𝜖 ∥𝜼∥) = exp(−𝜖𝑟 ).
Therefore, 𝑓𝑅 (𝑟 ) ∝ 𝑟𝑛−1

exp(−𝜖𝑟 ). To make this into a probability

density function, we must have:∫ ∞

0

𝑐𝑟𝑛−1𝑒−𝜖𝑟 𝑑𝑟 = 𝑐

∫ ∞

0

𝑟𝑛−1𝑒−𝜖𝑟 𝑑𝑟 = 1

Let 𝐼𝑛−1 =
∫ ∞

0
𝑟𝑛−1𝑒−𝜖𝑟 𝑑𝑟 . Then

𝐼𝑛−1 =

∫ ∞

0

𝑟𝑛−1𝑒−𝜖𝑟 𝑑𝑟

=
𝑒−𝜖𝑟

−𝜖 𝑟
𝑛−1

���∞
0

−
∫ ∞

0

𝑒−𝜖𝑟

−𝜖 (𝑛 − 1)𝑟𝑛−2 𝑑𝑟

=
𝑛 − 1

𝜖

∫ ∞

0

𝑒−𝜖𝑟𝑟𝑛−2 𝑑𝑟

=
𝑛 − 1

𝜖
𝐼𝑛−2 .

Now,

𝐼1 =

∫ ∞

0

𝑒−𝜖𝑟 𝑑𝑟 =
𝑒−𝜖𝑟

−𝜖

���∞
0

= −1

𝜖
(0 − 1) = 1

𝜖
.

Therefore,

𝐼𝑛−1 =
(𝑛 − 1)
𝜖

(𝑛 − 2)
𝜖

· · · (𝑛 − (𝑛 − 1))
𝜖

1

𝜖

=
(𝑛 − 1)!
𝜖𝑛

=
Γ(𝑛)
𝜖𝑛

Thus, 𝑐 = 𝜖𝑛/Γ(𝑛), and 𝑓𝑅 (𝑟 ) = 𝑓G (𝑟 ), i.e., the gamma distribution

given in Eq. (2).

As an illustration of this, suppose we want to sample a point

uniformly at random on and inside a circle with radius 𝜌 . We first

sample a point uniformly at random on the circumference of the

circle (e.g., via the method of zero mean, unit variance Gaussians as

explained in Section 3). To now select a point uniformly at random

within the circle (including its circumference), we need to find the

length 𝑟 of the point, where 0 ≤ 𝑟 ≤ 𝜌 . From Eq. (31) we see that at

radius 𝑟 the marginal PDF of the random variable 𝑅 representing

the length of the point is given by

𝑓𝑅 (𝑟 ) =
∫

2𝜋𝑟

0

𝑓 (𝑟, 𝑆)𝑑𝑆,

where 2𝜋𝑟 is the circumference of the circle with radius 𝑟 . See

Figure 10.

Since the point needs to have a uniform distribution, we have

that 𝑓𝑅 (𝑟 ) ∝ 2𝜋𝑟 . To make it into a probability density function, we
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𝜌
𝑟

Figure 10: Sampling a point uniformly at random on and
inside a circle of radius 𝜌 . At radius 𝑟 we need to integrate
over the circumference of the inner circle of length 2𝜋𝑟 .

get ∫ 𝜌

0

𝑐2𝜋𝑟 𝑑𝑟 = 1 ⇒ 𝑐 =
1

𝜋𝜌2
.

Thus 𝑓𝑅 (𝑟 ) = 2𝜋𝑟

𝜋𝜌2
= 2𝑟

𝜌2
. Indeed, we see that if we let 𝑓𝑍 (z) denote

the PDF of a point z inside or on the circle of radius 𝜌 , i.e., ∥z∥2 ≤ 𝜌2
,

and let 𝑓𝑈 (u) denote the uniform distribution on the circumference

of the unit circle which is 1/2𝜋 if u is on the circumference of the

unit circle, and 0 otherwise, we get from Eq. (12):

𝑓𝑍 (z) =
∫ 𝜌

0

𝑓𝑅 (𝑟 ) 𝑓𝑈 (z/𝑟 )
1

𝑟
𝑑𝑟

=

∫ 𝜌

0

2𝑟

𝜌2
𝑓𝑈 (z/𝑟 )

1

𝑟
𝑑𝑟

=
2

𝜌2

∫ 𝜌

0

𝑓𝑈 (z/𝑟 ) 𝑑𝑟

=
2

𝜌2

∫ 𝜌

0

1

2𝜋
𝛿 (𝑟 − ∥z∥) 𝑑𝑟

=
1

𝜋𝜌2

∫ 𝜌

0

𝛿 (𝑟 − ∥z∥) 𝑑𝑟

where 𝛿 is the Dirac delta function [18, §9.4]. Define 𝑡 = 𝑟 − ∥z∥,
which gives 𝑑𝑡 = 𝑑𝑟 . Therefore, the above becomes

𝑓𝑍 (z) =
1

𝜋𝜌2

∫ 𝜌−∥z∥

−∥z∥
𝛿 (𝑡) 𝑑𝑡 = 1

𝜋𝜌2
· 1 =

1

𝜋𝜌2
,

where the integral is 1 because 0 ∈ [−∥z∥, 𝜌 − ∥z∥] [18, §9.4]. This
is precisely the area of the circle with radius 𝜌 , and hence the

distribution is uniform as required.
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