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Abstract

A widely used method to ensure privacy of unstructured text data is
the multidimensional Laplace mechanism for d x-privacy, which is
a relaxation of differential privacy for metric spaces. We identify an
intriguing peculiarity of this mechanism. When applied on a word-
by-word basis, the mechanism either outputs the original word, or
completely dissimilar words, and very rarely outputs semantically
similar words. We investigate this observation in detail, and tie it
to the fact that the distance of the nearest neighbor of a word in
any word embedding model (which are high-dimensional) is much
larger than the relative difference in distances to any of its two
consecutive neighbors. We also show that the dot product of the
multidimensional Laplace noise vector with any word embedding
plays a crucial role in designating the nearest neighbor. We derive
the distribution, moments and tail bounds of this dot product. We
further propose a fix as a post-processing step, which satisfactorily
removes the above-mentioned issue.
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1 Introduction

Unstructured text is the most common method of communication
in the real-world, in the form of emails, sharing reports, and en-
tering prompts to generative artificial intelligence (AI) models to
quote a more contemporary example. In many scenarios, part of the
text needs to be sanitized due to privacy reasons. Examples include
authorship anonymization to protect identities of whistleblowers,
redacting sensitive information before releasing documents as part
of freedom of information requests, and ensuring that user submit-
ted prompts to a third-party generative Al model do not contain
sensitive company information.

With the increasing use of differential privacy [14] as a principled
way of releasing data with privacy in many real-world applications,
it has also been proposed as an automated way to achieve privacy
in the text domain. More specifically, a generalization of differential
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privacy to metric spaces, called dx-privacy [11], has been proposed
as a method to sanitize sensitive text [15, 16, 22, 23, 31, 35].! Infor-
mally dx-privacy ensures that it is harder to distinguish objects in
a metric space that are closer to one another under the distance
metric of the metric space than objects further away. This promises
better utility than ordinary differential privacy as in many use cases
it suffices to provide privacy up to a certain granularity. An analogy
is location data; disclosing the city or postcode one resides in is less
of a concern than the exact street address.

There are a number of ways in which dx-privacy can be used to
santize text data. One common method is word-by-word sanitiza-
tion through the word-level multidimensional Laplace mechanism
for dx-privacy, applied in the following manner [15, 16, 22, 31, 35].
We assume a pre-trained machine learning model is available which
vectorizes words, i.e., converts them into embeddings in a high-
dimensional space. This pre-trained model is public information.
The words form the vocabulary, and their corresponding embed-
dings define the embedding space. Given a word in a sentence to
be sanitized, a noise vector is generated calibrated according to
the privacy parameter €, and then added to the word embedding
resulting in a vector in the embedding space. Almost always, this
does not correspond to the embedding of any word in the vocab-
ulary of the embedding model. We can instead find the nearest
neighbor (e.g., with respect to the Euclidean distance) to this noisy
embedding in the embedding space, and output the resulting word.
This method can be applied independently to each word, and the
complete sentence can then be used as the sanitized text.?

When sanitizing text through this method we encountered a con-
founding observation [8]. If this method is applied several times on
the same word, one expects to see the original word, followed by its
closest neighbors as the most frequent words output by the mecha-
nism, with the frequency dropping smoothly but exponentially as
we move away from the original word. However, we observed that
through the entire spectrum of values of €, the mechanism almost
always outputs either the original word or words which are very
far off in distance and semantic similarity to the original word. The
nearest neighbors of the original word are seldom output by the
mechanism [8].

One may hasten to attribute this phenomenon to the high dimen-
sional nature of the embedding space, since the Euclidean distance

dyx-privacy is also commonly known as metric privacy.

2Apart from this use case, this mechanism has also been used for author obfusca-
tion [15], and to provide privacy where each user’s input is a set of one or more
words [16].
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metric is known to suffer from the so-called curse of dimensional-
ity [2, 5]. However, this is not true in this instance, or not true in the
way we may think, since the word embedding models are trained to
ensure that the Euclidean distance is an effective metric to identify
similar words in the embedding space [24, 29]. See Section 8 for a
detailed discussion on this topic.

In this paper, we investigate this observation in detail and iden-
tify the post-processing step of the nearest neighbor search of the
perturbed embedding in a high dimensional space as the culprit.
Along the way, we unravel a number of other contributions which
we believe will prove useful to construct better dx-privacy mecha-
nisms for text data. The multidimensional Laplace mechanism is
fundamental to d x-privacy due to its ease of implementation, and
hence wide-spread use, akin to the Laplace mechanism [14] for
ordinary differential privacy.

e We highlight the above-mentioned issue in a very commonly
used dx-privacy mechanism for text data [15, 16, 22, 23, 31, 35],
whereby across different values of € and different word embed-
ding models, almost always either the word is not replaced, or is
replaced by a completely dissimilar word.

e While analyzing the above phenomenon it turns out that the dot
product of the noise vector against any word embedding plays a
crucial role. This distribution, which we call the noisy dot product
distribution, has a length component, which is known to follow
the gamma distribution [16], and an angular component. We
derive the probability density function of the angular component
and its moments.

o We show that the angular component is sub-Gaussian with vari-
ance 1/n, where n is the number of dimensions. This means that
the cosine of the angle of the noise vector with any embedding
is within O(1/4/n), and hence the noise vector is increasingly
orthogonal to any embedding regardless of the distribution of
words in the embedding model. We further prove tail-bounds
on the noisy dot product distribution showing that its mass is
concentrated within O(+/n/e).

e Through our analysis, we show that the aforementioned obser-
vation is related to the fact that in high dimensions the nearest
neighbor of a word is more distant than the relative difference of
the distances of its two nearest neighbors. We prove necessary
conditions on the initial word to be output by the mechanism as
opposed to its close neighbors by relating it to the noisy dot prod-
uct distribution. Previous works [6, 9, 12, 34] have highlighted
the vulnerability of outliers in dx-privacy. However, their obser-
vation is related to the data distribution containing some isolated
points. In contrast, our work shows that in high-dimensional
settings the outlier issue is the norm rather than the exception.

e We propose a possible mitigation as a further post-processing
step, and show that the resulting mechanism gives better utility
and behaves as expected. The advantage of our proposed fix is
that it does not amend the original mechanism, and only adds
an extra step. We have released the code of our experiments,
including this fix, to promote reproducibility.®

3https://github.com/r-carpentier/dx-privacy-curse
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2 The Unusual Behavior of Word-Level
dx-Privacy

The Observation. We first show an example of applying d x-privacy

on text data with the algorithm outlined in the introduction. Formal

introduction to dx-privacy and concrete details of this algorithm
are presented in Section 3.2. Consider the following text:

Maria Gonzalez, a patient at Riverside Clinic, was
diagnosed with depression on March 5, 2023. She cur-
rently lives at 789 Oak Drive, San Francisco. Maria
has been prescribed medication and is undergoing
weekly therapy sessions.

To sanitize this text we first choose an embedding model. Let us
say we use the GloVe embedding model [29] with n = 100 dimen-
sions. We then take the first word of the text, pass it through the
embedding model to obtain its embedding w. We then sample a
noise vector 7 according to a distribution scaled to € and n. For this
example, we choose € = 10. We thus obtain the noisy embedding
w* = w+n. This does not correspond to any word in the vocabulary
of GloVe. We therefore, search the nearest neighbor in the embed-
ding space of GloVe to w* and output the corresponding word as
the replacement to the original word. This process is repeated for
each word? resulting in the following sanitized text:

maria carvalho, full patient raised bottomland clinic,
was diagnosed with evanston on 8 4, 2028 . she repre-
sent lives * 789 poplar drive, st. antonio. maria deeply
were prescribed medication deadlock subject under-
gone quiz therapy approaches.

In most cases, as above, the sentence is ill-structured and grammat-
ically incorrect. This can be corrected by another post-processing
step, for example by leveraging a generative Al model. The follow-
ing text is obtained by asking ChatGPT 40 to correct the grammar
of the previous text:

Maria Carvalho, a full-time patient at Bottomland
Clinic, was diagnosed in Evanston on August 4, 2028.
She resides at 789 Poplar Drive, St. Antonio. Maria
was prescribed medication and has undergone various
therapeutic approaches, including cognitive therapy.

As we can see after this step, the sentence is coherent with some of
the exact names and dates replaced, which is desirable for privacy.
Now, if we use smaller values of € (more privacy) we expect the
original words to be replaced by their distant neighbors, i.e., words
that have little to no similarity with the original word. However, as
we increase € (less privacy), we would expect most words to either
remain unchanged or replaced by synonyms. At least this is what
we expect if we apply the usual Laplace mechanism [14] of differen-
tial privacy to one-dimensional data. Figure 1 shows an example of
one-dimensional data, in which we plot the result of applying the
Laplace mechanism with different values of € (assuming sensitivity
one) with the universe of values confined to the set of positive
integers. The true value is a = 400, 000, and after adding noise we
round it to the nearest integer. Any integer value within a + 100 is

4Commas and periods in the original text were excluded from the sanitization for
readability
5See https://chatgpt.com.
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considered a close neighbor of a and all other values considered dis-
tant neighbors. For each value of € we sample 10, 000 noisy answers
and report the proportion of times the original, close neighbors
and distant neighbors are output by the mechanism. Initially with
€ =0.001, distant neighbors are output more frequently (Figure 1,
left). This trend is quickly flipped as we increase €. With € > 1 we
see that it is either the original value or the close neighbors that are
output by the mechanism and very rarely any distant neighbors
(Figure 1, right).

L. 1.0 J
3 0.9+ i
:5; 0.8 1 4
2 gg: —— Original value :
%’ 0:5< Distant neighbors |
S 0.4+ —e— Close neighbors
£ 0.3 4
S 0.2 4
g 0.14 1
0.0 ————"—=——===—————— | 4
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Figure 1: The proportion of times the original value, its close
neighbors and distant neighbors are output by the Laplace
mechanism of differential privacy. The original value is a =
400, 000, close neighbors are all integers within a + 100, and
all other integer values are distant neighbors.

However, we observed that through the text counterpart of this
algorithm, i.e., the multidimensional Laplace mechanism, either the
initial word is output by the mechanism, or very far off words, and
the nearest neighbors are seldom encountered. This is visualized in
Figure 2 where we show the proportion of times the original word
is output by the mechanism, against its close neighbors, the first
100 nearest neighbors, and distant neighbors, which constitute the
rest of the words in the vocabulary. These plots were obtained by
randomly sampling 5,000 words.

At lower values of € only far off words are selected, but as we
increase €, the original word dominates at the expense of its close
neighbors. The end-result of course is bad privacy-utility tradeoff.
The figure shows the pattern for the GloVe-Wiki and fastText
embedding models, both with 300 dimensions. The result is similar
for other embedding models which are detailed in Section 3.1. For
a more detailed description of this observation please see [8].

These results are also consistent with the results shown in [16,
31], where the authors show the rather high frequency of unmodi-
fied words but no commentary is provided as to why this may be
the case other than attributing it to the behavior of the mechanism
for higher values of €. Indeed, the trend is more peculiar at smaller
values of e.

An [llustrative Two-Dimensional Example. The issues with d x-privacy
over high-dimensional word embeddings can be illustrated through
an analogy of dx-privacy for location data.® Assume that we have
a dataset containing the resident states of the inhabitants of the
United States of America (USA). We exclude the state of Alaska in
this example. We wish to release this dataset with privacy, mean-
ing that an individual can plausibly deny that he/she resides in a

®dy-privacy for location data is studied in detail in [3] where the authors term the
notion, geo-indistinguishability.
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Figure 2: The proportion of times the original word, its
close neighbors and distant neighbors are output by the
multidimensional Laplace mechanism of dx-privacy on the
Glove-Wiki (left) and Word2Vec (right) word embedding mod-
els. Close neighbors are the first 100 nearest neighbors, and
all other words are distant neighbors.

particular state in the released dataset. To do so, we perturb each
individual’s location using dx-privacy. Assume each person’s lo-
cation is given as a point on the real plane (latitude and longitude,
if you like). One way to satisfy dx-privacy is to sample a noise
vector, add it to the original location, and then find the nearest state
to the perturbed location. The last step is a post-processing step,
and maintains dx-privacy. The noise is a two-dimensional vector
sampled from a particular distribution [3] scaled by the privacy
parameter € and the distance metric is the Euclidean distance in
practice which we describe in detail in Section 3. This is exactly
the mechanism commonly used to provide (word-level) d x-privacy
in text data [15, 16, 22, 31, 35], except that location coordinates are
replaced by word embeddings and states are replaced by words in
the vocabulary.

Now consider a resident of the state of Hawaii. For values of €
within a certain range, the sampled perturbed location will fall in
the North Pacific Ocean with overwhelming probability. Since our
universe of locations is the set of states in USA, the nearest location
is Hawaii again. Compare this to a resident of Kansas. For the same
value of €, the noisy location in this case is likely to land on the
neighboring states and beyond. Figure 3 illustrates this point. This
observation has both privacy and utility implications.

Figure 3: An analogy of the issues of applying dx-privacy to
high-dimensional word embeddings using location data. The
nearest neighbor of the perturbed location of the residents
of Hawaii tends to be Hawaii itself, unlike the states in main-
land USA. The circles indicate the probability density of the
noise vector. The map is extracted from Google Maps.
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From the privacy point-of-view, the residents of mainland USA
get more protection than the residents of Hawaii for the same value
of €. In other words, the level of privacy provided depends on the
structure of the dataset. Datasets with with irregularly scattered
points will end up providing less privacy for isolated points. This
issue has already been highlighted in previous works [9, 34]. Here,
we would like to point out that this privacy issue does not arise
if we scale the noise according to the sensitivity of the distance
function which makes the resulting privacy notion equivalent to
ordinary e-differential privacy [14]. However, applications of this
dx-privacy mechanism to text domain do not use sensitivity to scale
noise [15, 16, 22, 31, 35]; the idea being that we only need to make
it hard to distinguish between nearby points. For location based
applications, one specifies a radius, which serves as a proxy for
sensitivity, and we say that the corresponding mechanism provides
dx-privacy for locations within this radius [3, 21].

One may also dismiss the above observation as an outlier; an
issue that relates only to a few isolated points in the dataset. How-
ever, as we shall demonstrate, in higher dimensions the nearest
neighbor of any word is at a considerable distance away from it,
and the distance increases as we increase the size of dimension.
Thus, in higher dimensions, this is more the norm than an anomaly.

The above observation also creates issues from a utility perspec-
tive. With higher values of € (less privacy), the original word is
returned by the nearest neighbor search most of the times. As we
decrease € to provide more privacy, one expects the frequency of
the nearest neighbors of the original word to be selected more than
distant words. However, since the variance of the noise is now
larger, this happens less often than expected. The undesired result
is that either the word is not changed at all, or if it is changed, it
is replaced by a distant word with little to no semantic similarity
with the original word. Again this issue is exacerbated in higher
dimensions, as the distance between a word and its nearest neigh-
bor is higher than the relative difference in the distances to its two
successive neighbors.

3 Background and Notation
Notations. The n-dimensional real space is denoted by R". A vector

from R"” will be denoted in bold face, e.g., x. Let ||x|| = " |xl2
denote the Euclidean norm of x, where x; is the ith element of x.
The dot product between two vectors x and y is denoted as (x, y).

The following is an elementary fact:

xy) = lIxllllyll cos Oxy,

where 0 < 6xy < 7, is the angle between x and y.” We can inter-
pret ||y|| cos Oy as the length of the projection of y on x. For any
two vectors x,y € R" the Euclidean distance between x and y is
Ix — y||. The Euclidean distance is a metric as it satisfies the follow-
ing properties of (1) (positivity) ||x — y|| > 0 with equality if and
only if x = y, (2) (symmetry) [lx - yl| = lly - 2, and (3) (triangle
inequality) ||x — y|| < ||x — z|| + ||z — y||, for any x,y,z € R" [27].

"Keeping x fixed, if the direction of y is chosen randomly in the plane containing
the two vectors, then Oy is the smallest of the two possible angles. This is well-
defined. To see this let 1 and 6, denote the two possible angles, and let §; > 7. Then
6, = 2 — 01 < r, and note that cos 67 = cos(2r — 6,) = cos 65.
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3.1 Vector Representation of Words

In recent years, a number of machine learning models have sprung
up which produce vector representations of words, which we call
word embeddings for short. These pre-trained word embeddings can
be downloaded and used for natural language processing tasks. No-
table examples include Word2Vec [24], G1oVe [29], and fastText [20].
These word embeddings lie on a high-dimensional real vector space
with dimensions ranging from 50 to 300, and even higher. Some em-
beddings, such as GloVe, come in different dimensions. Despite the
high-dimensional space the word embeddings maintain distance-
based semantic similarities. In other words, the Euclidean distance
is an effective method to obtain nearest neighbors of a word in terms
of semantic similarity to the target word.? Furthermore, these em-
beddings maintain linear relationships between words, e.g., king
minus queen equals man minus woman [29]. For a more detailed in-
troduction to vector representation of words and models producing
word embeddings, see [36, §15]. The pre-trained word embeddings
used in this paper are shown in Table 1. We will use the terms
‘embedding model’ and ‘vocabulary’ interchangeably.

Vocabulary [ Dimensions [ Words
GloVe-Twitter | 25,50, 100,200 | 1,193,514
GloVe-Wiki 50, 100, 200, 300 | 400,000
Word2Vec 300 3,000,000
fastText 300 2,519,370

Table 1: Word embedding models used in this work.

3.2 dyx-Privacy and Applications to Text Data

Let D C R”" be the input domain, which for our purpose is the
embedding space. Let x € D denote a word.

Definition 1 (Differential Privacy [14]). Analgorithm M : D — R
satisfies e-(local) differential privacy if for all words x,y € D and
for all possible subsets S C R we have

Pr[M(x) € S| < e Pr[M(y) € S]

Definition 2 (dx-privacy [11]). Let d be a metric on D. An algo-
rithm M : D — R satisfies ed x-privacy for the metric d if for all
words x,y € D and for all possible subsets S C R we have

PrM(x) € S] < e“/™Y) Pr[M(y) € §]

Note that if d is the Hamming distance dy then we recover
the original definition of e-differential privacy, since dy(x,y) =1,
whenever x # y. A key advantage of dx-privacy over ordinary
differential privacy is in terms of utility: the former treats all in-
puts equally, and indistinguishability is with respect to all inputs,
whereas the latter provides more privacy with respect to similar in-
puts than far away inputs, when measured according to the distance
metric. Like e-DP, d x-privacy enjoys the properties of immunity
to post-processing, and composition of privacy guarantees [11].
In particular, applying a dx-privacy mechanism independently to
each of the words in a sequence (sentence) of m words, makes the
resulting composition of these mechanisms med x-private [21].

8See https://nlp.stanford.edu/projects/glove/.
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Finally, we would like to point out a particular (simplified) result
from the original paper by Dwork et al [14] on e-DP, which relates
to general metric spaces. Let d be a metric on the domain D, and
let the sensitivity of the distance metric d be defined as Ad =
maxyyep d(X,y), then the mechanism M which on input x € D
outputs ay € D with probability proportional to

ed(x,y)
2Ad |’

is e-differentially private, provided such a probability density func-
tion exists [14, §3.3]. We remark that the result in [14] does not
contain the negative sign in the proportionality above, but it is
easy to verify that the result still holds. As we shall see next, the
d x-private mechanism samples a word embedding proportional to
above except that there is no scaling according to sensitivity.

Pr{M(x) =y] e exp (—

dx -Private Noise. In order to add multidimensional Laplace noise to
a word embedding w € R”, the method is to add a noise vector n €
R™ from a distribution with probability density o exp(—e€||n||) [14,
16].° To sample from this distribution, one first samples n zero-
mean, unit-variance Gaussians to produce an n-dimentional vector
u whose resulting probability density is

27[1”/26(7”%) )
The vector is then normalized to produce the unit vector G = ”—E”
This means that 1 is distributed uniformly at random on the surface
of a hypersphere of n-dimensions with unit radius (see for exam-
ple [7, §2.5]). Next we find the “length” of the noise vector. The
number of points on an n-dimensional hypersphere with radius r is
proportional to r"~!, with each point having density proportional
to exp(—e€||nl|) (the requirement above). Thus, we need a probabil-
ity density function proportional to "1 exp(—e€||n||). This means
that we should sample the noise as f = ri, where r has the Gamma
distribution [16], with probability density
_ 1
Jo(r) = Ty’
Note that ||p|| = ||ri]| = r, and hence this is the required distribu-

tion. For completeness, we provide a proof in Appendix B. Figure 4
illustrates the distribution for n = 2.

n-1_—er

@

Nearest Neighbor Search. Almost always, the perturbed embedding
w* =w + n is not a member of D. Thus, a nearest neighbor search
is performed to find an embedding x* € D which is closest to w*
in the Euclidean distance [16]. That is, we find the embedding:

®)

x" = argmin||lw" — x||.
xeD
This vector is then the output of the d x-private mechanism.

Proof of Privacy. The above mechanism is d x-private since the re-
sulting noise word embedding w* is output from the distribution
proportional to exp(—€||n||) = exp(—ed(w*, w)), where d is the Eu-
clidean distance. The nearest neighbor search is a post-processing
step, and the result can be extended to a sequence (sentence) of
multiple words by applying the mechanism independently on each
word, and then combining the results, invoking the composition

9As mentioned above, the result from [14] is for ordinary e-differential privacy as
opposed to dy-privacy.
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Figure 4: The noise distribution for n = 2 with 10,000 sampled
points. Subfigure a shows the distribution of the length of
noise vector, i.e., r through Eq. (2). Subfigure b is the unit vec-
tor produced by normalizing the 2D Gaussian N (0, I) (Eq. (1)),
where I is the identity matrix. Subfigure ¢ shows the distri-
bution of the resulting noise vector 7.

property of dx-privacy. Feyisetan et al also provide a direct proof
of this result in [16]. We note that, while most commonly em-
ployed, this is not the only method of applying differential pri-
vacy for text sanitization. Other methods include other word-level
d x-privacy mechanisms [9, 17], sentence-level differential privacy
mechanisms [19, 23], and mechanisms for more advanced natural
language processing tasks [32]. We describe them in more detail in
Section 8.

4 Conditions for Nearest Neighbor Selection
and the Noisy Dot Product Distribution

We are first interested in the conditions when the perturbed em-
bedding w* is closer to w, i.e., the original word, than any of the
neighbors of w. When this is the case, the original word will be
chosen as output by the mechanism. Formalizing these conditions is
necessary to understand why the original word is overwhelmingly
chosen over its close neighbors (Figure 2). To this end, we have the
following result.

THEOREM 1. Let n be a noise vector. Let w € D be a word embed-
ding, and let w* = w + n be the perturbed embedding. Let x € D be
any embedding different from w. Then w* is closer to w than any of
its neighbors if for all neighbors x of w, we have

recosfpyw < %Hw —x||
Proor. Let x € D be any neighbor of w. We have:
lw* = wll* < [[w* - x|
= [nl® < llw—x+n|?

= NIl < llw = xII* + [Inll* + 2(w - x, n)

= 2(w-x7) < ||lw—x|?
1 2
= (nx-w) < 5 lw=x]
1 2
= rllx — wl| cos Opx—w < 2 [lw —x||
1
= rcosOpx-w < §||W - x|,

where in the second last step, we have used Theorem 3. O
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An interpretation of the above is as follows: The noisy embedding
will be closer to the original vector w than its nearest neigbour
x if the length of the projection of the noise vector on x — w is
less than half the length of x — w. Figure 5a illustrates Theorem 1.
This can also be explained easily via a nice geometric illustration.
Suppose 0 < Oy x-w < 7, as shown in Figure 5b, where we denote
the vectors by their end-points in the real space. It is easy to see
that if A < B, then C? = A% — F? < B?> — E? = D?, and when
C < D then A% = C? — E? < D? — E? = B%. The line segment C is
precisely the length of the projection of the noise vector on x — w.
If 7 < Opx-w < 7 then clearly A < B, which is supported by the
fact that the projection of the noise vector on x — w is negative.

Next we are interested in knowing when the nearest neighbor x
of the original word w is closer to the noisy embedding w* than
any other neighbor y of w.

THEOREM 2. Let n be a noise vector. Let w € D be a word embed-
ding, and let w* = w + 1 be the perturbed embedding. Let x € D
be the nearest neighbor of w. Lety € D be any other embedding
different from w and x. Then w* is closer to x thany if

1
[lw — x| cos Ow—x,y+x + 7 cos Opy_x < 3 lly —xI|

PRrROOF. See Appendix A. O

An interpretation of the above is as follows: If the sum of pro-
jections of the noise vector and that of w — x on y — x is less than
half its length, then x will be closer to the noisy embedding than y.
Figure 5c shows a graphical illustration of this result. The result of
the theorem can also be explained in a manner similar to Figure 5b.
We will revisit these results in Section 6 to see how often they are
true for word embeddings. For now we notice that both the results
of Theorem 1 and 2 involve the product of the length r of the noise
vector and the cosine of its angle with a vector in R”. The following
theorem characterizes this distribution.

THEOREM 3. Letn > 2. Let  be a noise vector. Let w € R" be a
non-zero vector. Then

(n,w) = rl|lwl| cos bpw, )

wherer ~ fg given in Eq. (2) and k = cos Oy ~ fp given as

fok) = ——(1-K)7 7 kel[-11], ()
B("%57, 5
where B(-, -) is the beta function defined as:
_T@r(®)
Bla.b) = Tavs)

for all real numbers a, b > 0.

Proor. From the definition of the dot product (1, w) equals
Inllllwll cos 0w = lIrall|lwl| cos Opw = rllwl| cos Op,w-

Assuming ||w|| # 0, expanding the left hand side, we have:

n
> niwi = rl[wll cos Oy
i=1
n
Z riyw; = r||wl| cos Opw

i=1
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n
Wi
Z fl;—— = cos Onw
2w
(4, W) = cos Oy w,

where W is a unit vector obtained from w by dividing it by its norm.
Being unit vectors, the two vectors are on the surface of the n-
dimensional hypersphere of radius one. Furthermore, 1 is uniformly
distributed on the surface of this hypersphere by construction. Since
the dot product is rotationally invariant, we can align w to align
with the unit vector é; whose first coordinate is 1 and all other
coordinates are 0. Since 1 is uniformly distributed on the surface
of the hypersphere, the rotated vector is still uniformly distributed.
Thus, without fear of ambiguity, let us also call this vector 6. Then
we see that:
c08 Oy = (0, &1) =y = ()
[[ull

where u; ~ N(0,1) and ||u|| is the norm of an n-dimensional vector
each element of which is independently distributed as NV (0, 1). We
now find the PDF of the distribution in Eq. (6).1°

Let U; be random variables distributed as N(0,1),for 1 <i < n.
We are interested in the distribution of

Ui

NURHUZ +---+ U2

The range of this variable is in the interval [-1, 1]. Let -1 < k < 0.
Then we see that

K =

U;
Pr ! <k

NUE+UE+ -+ U?
=Pr|U} 2 k* (U} +Uf +---+U2) | Uy < 0]
U? K?
> U <0
UZ+---+ Uk 1—k2| ! ]
(n—-1)U? >(n—1)k2
Ui+---+U:~ 1-k?
(n-1)U? , (n- 1)k?
UZ+---+U:~ 1-k% |’

=Pr

=rr |U1<0

1

2

)

where in the last step we have used the fact that U; is symmetric.
Now U is a chi-squared variable with 1 degree of freedom and U7 +
-« + U2 is a chi-squared variable with n — 1 degrees of freedom [26,

. (nfl)Ul2
§4.3]. Thus, the ratio firm—yd
with degrees of freedom 1 and n — 1 [26, §4.4]. The CDF of the F-
distributed random variable X with 1 and n — 1 degrees of freedom

is given by:!!

is an F-distributed random variable

1 n-1
F ;Ln=1)=1_x |-, —|, 8
y(iln—1) (2 . ) @
where I, (a, b) is the regularized incomplete beta function given as

— By(a,b) _ 1 Yo b-1
Iy(a,b)—m —m/o t (1—t) dt,

OThe derivation is taken from https://math.stackexchange.com/questions/185298/
random-point-uniform-on-a-sphere. We reproduce it here to add missing details.
1See for example: https://mathworld.wolfram.com/F-Distribution.html


https://math.stackexchange.com/questions/185298/random-point-uniform-on-a-sphere
https://math.stackexchange.com/questions/185298/random-point-uniform-on-a-sphere
https://mathworld.wolfram.com/F-Distribution.html
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projection of w — x

w-y

3lly —xIl

(©

Figure 5: Illustrations of Theorems 1 and 2. Subfigure a illustrates Theorem 1, Subfigure b shows a geometric interpretation of

the result of Theorem 1, and Subfigure c illustrates Theorem 2.

for a, b > 0. The function satisfies the relation [30, §6.4]:

Ii_y(b,a) =1-1y(ab). 9)
Now, substituting x = ((n — 1)k?)/(1 = k?) in x/(n — 1 + x) we get
x _(n- 1)k? 1-k? 2

n-1+x 1-k2 (n-1)A-k¥)+(n-1k>

Thus, combining this result and using Egs. (8) and (9), we get for
-1<k<0

U
Pr[K <k]=Pr ! <k
UZ+UZ+---+ U
-1)U? —1)k?
Ly [ (D0 ok
2 Ui+ +Us 1-k2
_1, (n—1)U2 <(n—1)k2
T2 +o 4 UE T 1-k2
1
=5( - Fx (x;1,n—1))
U (1t
T2 \2 T2
1 n-11
:—I - 1
21—k2( 2 ,2) (10)

Now taking the derivative of the integrand in I, ;2 ((n —1)/2,1/2)
with respect to k with -1 < k < 0, we get:

d 1-k?
% t(n—l)/Z—l(l _ t)1/2—1 dt
= (1-k)"T (1 - (1 - k) V2 (~2k)
n k
=2(1-k)"7 =
=
n— k
=—2(1-k)"T 1=
k|
=2(1-k®)"7 !

Thus, from Eq. (10), if we denote the PDF of K by fz, we get for
-1<k<0,
1 2(1 )7

PO e D TR

_kZ 7—1
)(1 )2

[T

Finally, since K is symmetric, the above is the PDF for k € [-1,1].
O

Remark. We call the above, the noisy dot product distribution. In
light of the above theorem, we call the random variable R dis-
tributed as f; the length component of this distribution and the
random variable K = cos 0, distributed as fg with respect to any
word embedding or vector in R” as the angular component of the
distribution, with Z = RK denoting the overall distribution.

5 Moments and Tail Bounds of the Noisy Dot
Product Distribution

In order to rule out any unusual behavior of the noisy dot product
distribution Z = RK in higher dimensions, we explore its properties
in detail. These properties include its probability density function
(PDF), cumulative distribution function (CDF), expectation, vari-
ance, and tail bounds of its components, i.e., R and K. In the process,
we also find an expression for all moments of the component K.

5.1 CDF and PDF of the Distribution
We are interested in:
Fz(z) =Pr(Z < z) =Pr(RK < 2)

Now, R and K are independent. Also, the density function of R
is non-zero on positive values of r and that of K is non-zero on
—1 < k < 1. Furthermore, if K = z/r, then r > |z|, for K to be less
than or equal to 1. Therefore, we get:

Fz(z) = Pr[RK < z]
- / " Pr[K < 2/R | R = rlfo(r)dr
_ / " Pe[K < 2/R | R = rlfo(r)dr
|

z|

/ Pr[K < z/r]fc(r)dr
k1

/Iz\ (/ fB(k)dk)fG(r)dr
-, wa(’)(/ k) ar
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(11)

Taking the derivative of the above with respect to z using the fun-
damental theorem of calculus gives us the PDF of this distribution:

d o0 z/r
e =g [0 ([ poi)a

oo z/r
:% /0 fG(r)( /_ 1 fB(k)dk)dr

='/Omfg(r)f3(z/r)%dr (12)

0 1
= /ll fg(r)fB(z/r);dr (13)
The last equality follows since f3(z/r) = 0 for r < |z|. Now, for any
5 > 0, we have that

@)= [ 0o

- [ " 0 f(=8/r) Lar = £,(-0)
|-6] r

where the second step follows since fg is symmetric around 0. Thus,
the distribution is symmetric around 0. As we shall see in Section 5.2,
the expected value of Z is 0. Thus, the distribution is symmetric
around its mean. Unfortunately, the integral above does not have
an easy analytical solution. We can, however, numerically evaluate
it or through Monte Carlo simulations by repeatedly sampling the
noise vector.

5.2 Moments of the Angular Component

Let K denote the random variable distributed as Eq. (5). We are
interested in the moment E[K/] of this distribution with j > 0. We
parameterize this distribution by using K, to denote the random
variable K with a given value of n > 2.

THEOREM 4. Let K ~ fg as defined in Eq. (5). Let K,, denote K for
a particular value of n. Let i(j, n) denote the jth moment of K,,. Then,
foralln > 2

1, ifj=0,
u(j,n) =140, if j is odd, (14)
—("(_nzl;ijj;,l,)” if j is even
. _ _1
In particular, E[K] = 0 and Var[K] = ..
PRrROOF. See Appendix A. O

5.3 Tail Bounds, Expectation and Variance
The following definition and the follow-up theorem are taken
from [33, §2].

Definition 3 (Sub-Gaussian Random Variable). A random variable
X with mean y = E[X] is sub-Gaussian if there is a positive number
o such that

E[*XM] < " ¥/2 forall 1 € R.
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Here o is called the sub-Gaussian parameter.

THEOREM 5 (SUB-GAUSSIAN TAIL BOUND). A sub-Gaussian ran-
dom variable X with mean i = E[X] and sub-Gaussian parameter o
satisfies

2 2

_ 2% 2%
PriX—-p>t]<e 2?2, and Pr[X —p<—t] <e 2?

5

and combining the two
2

_ 1t
Pr[|X —pl >t] <2e 202, forallt € R.
We prove the following result to be used for the next theorem.

LEmMA 1. Let K ~ fg. Then for any A € R we have

> (AK)! o ME[K/]
S D e D M
= =R

ProOF. Since —1 < K < 1, we have |K| < 1. Therefore E[|K|/] <
1. We have, for any j > 0:

MK M : M
E[ K] ]=fE[|K|f] <L
j! Jj! Jj!
For any integer m, let
_ m MK _ LB i moaJ
Sm=E|Y F —ZF]EHKHSZF,
7=0 j=0 j=0

where the last inequality follows from the result above. Further-
more, the sequence Sy, is monotonically increasing if A > 0 or
monotonically decreasing if A < 0, since E[|K]’] > 0 as |K| > 0.
Thus, S, is a monotone sequence. From the Taylor series expansion
of the exponential function, we have for any 1 € R

Jj=0 Jj=0

[A}/ LY
TZZFZS,".

Thus, S, is bounded. From the monotone convergence theorem [1,
§2.4], S, converges. Therefore, the statement of the theorem follows
as expectation is linear in this case [25, §2.1.1]. m]

THEOREM 6. Let K ~ fg where fg is as defined in Eq. 5. Then K is
sub-Gaussian with parameter ¢ = -

Nk
PRrROOF. See Appendix A. O
COROLLARY 1. Let K ~ fg. Then for anyc € R,

1= 5] =2
Pr||K|>—[<2e 7.
\n
Next we prove generic lower and upper tail bounds for the
gamma distributed random variable R.!?

THEOREM 7. Let R ~ fi. Then for any real numberc > 1,

n 1
Pr[RZﬂ]S(L),andPr[Rsl]S—
€ ec—1 ce (ce(l—c)/c)n

ProOF. See Appendix A. O

Combining the result from Corollary 1 and Theorem 7, we have
the following bound on the overall noise distribution.
2These results are generalizations of the result for the upper tail bound with

¢ = 2 in https://math.hawaii.edu/~grw/Classes/2013-2014/2014Spring/Math472_1/
Solutions01.pdf.


https://math.hawaii.edu/~grw/Classes/2013-2014/2014Spring/Math472_1/Solutions01.pdf
https://math.hawaii.edu/~grw/Classes/2013-2014/2014Spring/Math472_1/Solutions01.pdf
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THEOREM 8. Let Z = RK. Then, for all c1,c; € R, wherec; > 1,

we have
cafo-e) - ()

Pr [|Z| < —

Proor. We have

Pr[ Clcﬂ/_] Pr |RK < clcz‘/ﬁ]
€
| ¢, czn
—pr|RK < L 21
w7
> Pr K_C—l]Pr[R_@
n €

> (1—e_76%)(1—(e:22—1)n)’

where the last inequality follows from Corollary 1 and Theorem 7.
From Section 5.1, Z is symmetric, and hence the above bound is
also true for Pr[Z > —c;ca/n/€]. Through Bonferroni’s inequality

Pr||2] < clcz\/_]
:pr[ZSMandZZ_M]
€ €
>Pr[Z< V] p Z>—M]—1
€ €
(1) - ()
eo(i-e ) (- (22)) -
eCz—l
as required. O

As an illustration of this inequality, with n = 100 and € = 10,
more than 99 percent of the probability mass of Z lies within the
interval +4.84/n/e = 4.8 (with ¢; ~ 3.46 and ¢ + 2 ~ 1.39). On the
other hand, with n = 10, more than 99 percent of the probability
mass of Z lies within the interval +8.74+/n/e ~ 2.76 (put for exam-
ple ¢; ~ 3.46 and ¢, ~ 2.53).!3 Thus, the majority of the mass of Z
is concentrated within O (\/n/e).

Finally we have the following theorem on the expected value
and variance of Z, together with the convergence to the expected
value if we sample a large number of instances of Z.

THEOREM 9. Let Z = RK. Then E[Z] = 0 and Var[Z] = 2L,

€

Proor. We know that the gamma distributed random variable R
has E[R] = n/e and Var[R] = n/e? Since R and K are independent,
we have E[Z] = E[RK] = E[R]E[K] = Z - 0 = 0. Now using this
result, and again because R and K are independent, we have:

Var[Z] =E[Z°] - (E[Z])* =E[Z’]
= E[R’K?] = E[R?]E[K?]
= (Var[R] + (E[R])?)Var[K]

(55 (-

3These values were obtained by fixing the bound from Theorem 8 at 0.99 and numer-
ically finding the constants c¢; and c; by keeping the two terms in the product equal
to each other.

n+1

€2
O
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COROLLARY 2. LetZy,2,,. ..,
random variable Z = RK. Let Z = -

Zm bem independent samples of the
. Z;. Then for any § > 0
n+1

me25?

ProoF. The result is obtained by putting the expected value and

variance of Z in Chebyshev’s inequality [33, §2]. O

Pr(|Z] > ¢] < (15)

The above result shows that the higher the dimension and/or
the lower the values of € the slower will be the convergence of the
average of Z to 0, the expectation. Thus, the behaviour of the noisy
dot product distribution is as we would expect: it is symmetric with
mean 0, and it converges to this expectation inversely proportional
to €, the privacy parameter.

6 The Loss Function and Consequences

Equipped with the results of the last section, we can now explore in
depth how the nearest neighbor is obtained via the post-processing
step. Recall the objective function from Eq. (3). Taking its square,
we get

llw* = x|I? = [lw +n - x|
= llw = x|* + [Inll* + 2(w - x, n)
=|lw=x|?+rf+2(w-x1n)
= llw x| +r® + 2(w, ) = 2(x, )
Now, the terms (w, i) and r2 are the same for all x € D, and
therefore we can ignore them when finding the minimum. Let us

define the loss function containing the remaining terms for allx € D

as
L(x) = [w=x|* = 2(x, ) = [lw = x||* + 2[Ix||Ir cos b (16)

Indeed, using partial derivatives we can see that the solution that
minimizes the loss function L is x = w + ) = w*, but we know
that with overwhelming probability this vector is not part of the
embedding space. We have the following result.

THEOREM 10. Let L be defined as in Eq. (16). Then for anyx € D
E[L(x)]

In particular, E[L(w)] = 0, and E[L(x)] > 0 iff x # w. Furthermore,
foranyx,y € D withx #y and ||w — x|| < ||w —yl|, we have

Pr[L(x) < L(y)] > 1/2.

2
= [lw —x||°.

Proor. From Eq. (16) and Theorem 9, we see that

E[L(x)] =E

=||lw - x||2 + 2||x||E[r cos Opx]

[”W —x||? + 2||x||r cos 9,,,,(]

= [lw - x|,

from which it follows that the expectation is 0 only if x = w, and
otherwise it is greater than 0. For the second part of the theorem,
we see that

L(y) - L(®) = lw = ylI* = 2¢y. ) = llw = x|I* + 2(x, )
= lw = yllI* = lw = x| + 2(x ~y, )

2 2
= [lw —ylI” = lw = x||" + 2||x = y[Ir cos Op.x-y
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Define the random variable S as
S=llw-yl* - llw-x|* +2[x-y|Z,

which follows from the fact that r cos 0, x—y is distributed as Z. Note
that from the analysis above, we have E[S] = ||w — y||? - ||w — x]|2.
Now, since ||w — x|| < ||w — y||, from Eq. (11), we have that

Pr[L(x) < L(y)] =Pr[S > 0]

17)

_ 2 _ _ 2
:pr[z>”‘” x| — [ yu]

2[lx—yll
> Pr(Z > 0]

-1 -
n-1,-€r

l (o)
= - n—-1 1 / r
T(n)eB(", 3) Jlo|

[

1 1 *©
=—— / e dr = -,
2T (n)e ™™ J, 2
as required. The second-to-last equality follows because the distri-
bution fg is symmetric around 0. O

(1 -kz)%’ldk) dr

1

This theorem shows that, ignoring the actual difference in prob-
abilities, there is nothing unusual in the nearest neighbor search
for any value of € and n: the original word is expected to be output
more often, followed by its nearest neighbor, and so on. However,
the issue is with the exact values of these probabilities, as we shall
see next.

Eq. (17) gives us another insight. Suppose x; and x; are the first
two neighbors of w. Then first we see that for i = 1,2

— 2 _ _x.|12
PrlL(w) < L(x)] = Pr |z > I¥=WI" Zllw =il ]
I 2||lw — x|
—pr|z > Mol
, 2
=Pr|Z= M} (18)

where the last equality follows from the fact that Z is symmetric
around 0 (see Section 5.1). Compare this to the following where we
also use symmetry of the distribution:

Pr[L(xi) < L(x)] =P [z L Ilw—xZnZ]

2|lx1 = xz|

lw — x> — llw — x|

=Pr [Z < J (19)
Eqgs (18) and (19) are the same equations we derived in Theorem 1
and Eq. (22) in Theorem 2, but this time with the loss function
formulation.

2|lx1 = xz|

6.1 Probabilistic Interpretation

Eqs (18) and (19) can be interpreted as upper bounds on the proba-
bility that a particular word will be chosen as the nearest neighbor.
To see this let N denote the size of the vocabulary. Given a word w,
we index the vocabulary, as follows: xg = w and x; denotes the ith
nearest neighbor of w where ties are broken arbitrarily. Let C; j be
the event that word embedding x; is closer to the noisy embedding
w”* than word embedding x;. Furthermore, let C; be the event that
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word embedding x; is the nearest neighbor of w*. From Eq. (18),
we have the following condition:

PI‘[C,’] =1- Pr[Cl]

N

=1-Pr C_i!j

Lj=0,j#i
<1 —Pr[C_’l—!O]
=1-Pr[L(w) < L(x;)]
_ [ llw = xl
=1-Pr{Z < ——

| 2
<1-pe|z < 2l (20)

where we have used the fact that ;o C U?’:O’ jiiC_i, j» and therefore
the probability of former is less than or equal to the probability of

the latter. Likewise, we have

Pr[C] <1- Pr[C_','J] = Pr[Ci,j] =Pr[L(x;) < L(Xj)]

=Pr|Z < (21)

Iw = x,[* = llw = xi]|? ]
2|lx; — x| |
for i # 0. The probabilities in Eq. (20) and (21) are upper bounds on

the necessary condition for a word x; to be chosen as the nearest
neighbor to the noisy embedding.

6.2 Results on Word Embeddings

To show how likely the original word w is chosen over its nearest
neighbor x;, and contrast it with how likely the nearest neighbor
x; is chosen over the second nearest neighbor x;, we take the
right hand quantities bounding the probability mass of the random
variable Z in Eqgs (18) and (19). To ease notation, we denote these
quantities by zy x, and zx, x,, respectively. For each vocabulary, i.e.,
embedding model, we take the average of these quantities by taking
5,000 random words. The results are shown in Table 2. The quantity
Zx, xqp; 18 the right hand quantity in Eq (19) for the nearest neighbor
and 101th neighbor of w.

Vocabulary [ n [ Zwx, [ Zxy x; [ Zx; x101
GloVe-Twitter | 25 1.078 | 0.132 0.692
50 1.571 | 0.169 | 0.747

100 | 2.166 | 0.197 | 0.764

200 | 2.708 | 0.220 | 0.683

GloVe-Wiki 50 | 1.369 | 0.172 | 0.757
100 | 1.403 | 0.152 0.616

200 | 2.15 | 0.243 0.823

300 | 2.896 | 0.282 | 0.999

Word2Vec 300 | 0.763 | 0.058 | 0.253
fastText 300 | 1.493 | 0.239 | 0.912

Table 2: The right hand side terms zy x,, zx, x, and zy, x,,, as
they appear in Eqs. (18) and (19) for different vocabularies.

The first thing to notice is that for any given dimension zyx, is
considerably greater than zy, x,. This is because the distance of any
word to its first neighbor in high dimensions is considerably higher
than the (relative) difference in distances to its first two neighbors.



Proceedings on Privacy Enhancing Technologies 2026(1)

The other observation is more of an illusion. The value of zy ., is
increasing as we increase the dimensions, by looking at the GloVe
vocabularies. Thus it may appear that the problem is exacerbated as
we increase the dimensions from say 25 to 200. However, this is not
exactly correct. Recall from Theorem 8 that the bulk of the mass of
Z is within O (y/n/€). Thus, under two different dimensions n; and

ny, we expect Fz(z1) = Fz(z2) if z—; = \/Zr; By looking at the table,
we see that this ratio across the two types of GloVe is more or less
obeyed by the quantities zy x, as we cycle through the dimensions,
and slightly less so by the quantities zy, x,. Thus, we might see the
problem as being slightly more worsened in higher dimensions but
not by much.

This is more obvious as we plot the probabilities Fz (zwx, ) and
Fz(zx,x,) in Figure 6. Although the CDF can be obtained by nu-
merically integrating the integral in Eq. (11), however, we found
the integration to be slow using for example SymPy.!* We therefore
obtained the CDF of Z using Monte Carlo simulations by randomly
sampling the noise vector 10, 000 times and then finding the pro-
portion of times it falls below zy x, Or zy, x,. This can be done by
sampling R via the Gamma distribution f;, and then sampling K
by checking the cosine of the angle of the noise vector against a
fixed vector, e.g., & = (1,0,0,...,0).

As is evident from the figure, Fz(zw,x, ) dominates when € > 1.
This means, that the probability of choosing the original word in-
creases, and from Eq. (20), the probability that the nearest neighbor
would be output decreases. Furthermore, around € = 10, where the
original word is still not entirely certain to be output, the probabil-
ity Fz(zx, x,,) is not overwhelming enough (not plotted) to ensure
that the nearest neighbor would be output more than the 101th
neighbor. Hence far away neighbors are still being output at these e
values, until the original word completely dominates as we further
increase €.

7 Proposed Fix

In light of the discussion in the previous section, if we can some-
how make the distance of the original word to its nearest neigh-
bor similar to distances between its consecutive neighbors, the
issue could be resolved. To do so, one may be tempted to employ
the following mechanism. Let w be the original word. We find all
nearest neighbors of w according to the Euclidean distance, and
assign the function dnn(w,x) = i if x is the ith nearest neigh-
bor of w. We have dyn(w, w) = 0. We can then sample a word x
proportional to exp(—ednn(w, x)). However, dyy is not a metric
as it does not satisfy the properties of symmetry and triangle in-
equality as illustrated in Figure 7. In the figure we consider R%. We
have dnn (%1, x2) = 2, however, dun (%2, x1) = 4, violating symme-
try. Furthermore, dyn(x2, w) = 1 and dyn(W, x1) = 2, implying
that dan(x2, X1) > dnn (X2, W) + dan (W, X7), violating the triangle
inequality.’® Thus, the resulting mechanism cannot be d x-private.

Theorem 10 says that on average the nearest neighbor of the
noisy embedding w* is the original word w, followed by w’s nearest
neighbor, then its second nearest neighbor, and so on. Due to large
probability differences, as shown in Figure 6, the original word is

14See https://www.sympy.org/.
5The triangle inequality seems less of an issue, as we might be okay with dxn (X2, X1 )
being bounded by a function of dnn (X2, W) and dnn (W, X1 ). See [11, 15].
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Figure 6: The probabilities Fz(zyy,) (solid) and Fz(zy, x,)
(dashed) where zyy, and zy, 4, are as given in Table 2 for
the two GloVe vocabularies.
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Figure 7: Example used to illustrate the fact that dyy is not a
metric. The numbers show the distance of the corresponding
segments.

chosen overwhelmingly. To mitigate this, our idea is to not select the
nearest neighbor of w* every time, and instead occasionally sample
other neighbors. This could be used as a post-processing step after
we have found the nearest word x* to the noisy embedding w*
through Eq. (3). In other words, we sort the nearest neighbors of
x* and output a neighbor proportional to exp(—ednn(x*, x)). More
specifically any word x € D is output with probability:

exp(—cednn (X", X))
Yxen exp(—cednn (x*, %))’
where c is a constant to control how many neighbors are likely
to be selected. Note that € is not used here for privacy protection
but rather to ensure that the mechanism behaves as expected, e.g.,
only the original word output with very high values of . A higher
value such as ¢ > 1 means that the mechanism will output the
first few neighbors with high probability, and a lower value such
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mechanism on the GloVe-Wiki (300 dimensions) with ¢ = 0.04
(left) and Word2Vec with ¢ = 0.007 (right). Close neighbors
are the first 100 nearest neighbors, and all other words are
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Figure 9: The proportion of times the original word, its close
neighbors and distant neighbors are output by the exponen-
tial mechanism of [35] on the GloVe-Wiki (300 dimensions)
(left) and Word2Vec (right). Close neighbors are the first 100
nearest neighbors, and all other words are distant neighbors.

as ¢ = 0.01 means that more neighbors will likely to be output, of
course, with probability exponentially decreasing as we move away
from the original word. This is the same as the temperature variable
in the softmax function. Note that we cannot use the original word
w in the above expression in place of x*, as the resulting fix will
no longer be a post-processing step (it uses the knowledge of the
original word w).

Figure 8 shows the result of applying this fix to the GloVe-Wiki
and Word2Vec vocabularies. The value of ¢ is chosen by trying dif-
ferent values and choosing the one that gives the best result in
terms of the proportion of the times the original word, its 100 near-
est neighbors and distant neighbors are output by the mechanism.
This value can be pre-computed for each vocabulary. Compare this
to Figure 2, where between € = 10 and 20 for GloVe-Wiki and
between ¢ = 50 and 60 for Word2Vec, either the original word or
its distant neighbors are output by the original mechanism. Our
mechanism in comparison ensures a more equitable proportion
for the original word, its close and distant neighbors, in line with
the one-dimensional case shown in Figure 1. A drawback of this
mechanism, of course, is that the value of ¢ needs to be empirically
determined for each vocabulary.

Comparison with the Exponential Mechanism. Our fix looks similar
to the exponential mechanism proposed by Yue et al. [35, Algorithm
1]. They pre-compute a matrix containing the probability that each
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token of the vocabulary is replaced by any other token. The proba-
bilities are computed as an exponential of the Euclidean distance.
More precisely, the probability that a token w is replaced by a token
x is proportional to exp(—%e' |l[w — x||)). The authors argue that the
mechanism has better performance by avoiding the nearest neigh-
bor search in an n-dimensional space during sanitization. However,
in Figure 9 we show that it still suffers from the problem exposed
by us, namely that close neighbors are almost never sampled. The
main difference between this mechanism and our fix is that we
use the rank instead of a distance metric to compute probabilities.
We leave it as an open problem to construct a distance metric that
“flattens out” the distance between an embedding and its nearest
neighbor, and distances between its consecutive neighbors. That
is, it should behave similarly to the nearest neighbor function dyn,
while still satisfying the properties of a distance metric.

8 Related Work

In addition to the multidimensional Laplace mechanism for word-
level dx-privacy from [15, 16, 22, 31, 35] detailed in this paper,
a few other word-level dy-privacy methods have also been pro-
posed in the literature. In [17], the authors propose a dx-private
mechanism using a distance metric in the hyperbolic space, which
according to the authors, better preserves hierarchical relation-
ships between words. For instance, the hierarchical relationship
of the city of London to England. Xu et al [34] propose the Maha-
lanobis mechanism, which instead of the spherical noise via the
multidimensional Laplace mechanism, samples elliptical noise. The
authors note that this mechanism provides better privacy for iso-
lated points (see Section 2) since the elliptical nature of the noise
results in sampling points other than the original word with higher
probability. Another mechanism for word-level dx-privacy is the
truncated exponential mechanism (TEM) [9], proposed to remove
the drawback of the multidimensional Laplace mechanism which
adds the same amount of noise regardless of whether a word is in
a dense or sparse region of space. Applying their mechanism to a
data domain would add more noise to points in low density areas.
Although the mechanisms from [9] and [34] may solve the issue
with isolated embeddings, they are unlikely to resolve the issue
raised by us. As we show in Section 6, the problem stems from the
large difference in probabilities of sampling the same word versus
its nearest neighbors in the nearest neighbor search. The Maha-
lanobis mechanism [34] also contains nearest neighbor search as a
post-processing step, and the TEM from [9] uses a distance metric
to sample a word. Thus the problem is likely to persist in these
mechanisms.

Instead of word-level differential privacy, several works focus on
providing differential privacy at the sentence level [19, 23]. More
specifically, these works calculate the conditional probabilities of
the next word, given a sequence of previous words. We note that
both the mechanisms in [23] and [19] are for ordinary differential
privacy and not dy-privacy. Finally, differential privacy mecha-
nisms for more advanced downstream tasks such as paraphrasing
have also been proposed [32], but again using ordinary differential
privacy. The exponential mechanism in [23] and [32] is similar to
our fix for multidimensional Laplace mechanism for dx-privacy
with the difference being that our fix is a post-processing step.
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There have been some prior works showing the weaknesses of
word-level d x-privacy. The aforementioned work in [23] criticizes
several aspects of word-level d y-privacy, including introduction of
grammatical errors and only making changes to individual words,
rather than changing lengths of sentences. The work in [28] demon-
strates attacks on word and sentence-level differential privacy on
text data, by reconstructing santized prompts where the original
prompts are taken from the training data of the language model.
The issues and attacks mentioned in these two works are tangential
to the problem addressed in our paper.

The fact that dx-privacy, in particular, the multidimensional
Laplace mechanism does not provide adequate protection for iso-
lated points in the input domain has also been highlighted in the
case of location privacy [6, 12]. We discuss here why we think
these solutions are not readily applicable to fix our issue in a high-
dimensional space. The works in [6, 12] use the concept of elastic
distinguishability introduced in [12]. The idea is that in addition
to the usual requirement in d x-privacy that nearby points should
have higher probability of being sampled than far away points, the
mechanism should also sample a point proportional to its proba-
bility mass or density. For instance, an isolated location such as
an island has a lower probability mass than a location in a dense
urban area [12]. The mechanisms in [6, 12] are essentially weighted
versions of the exponential mechanism, where the probability of
sampling a point is also weighted by its probability mass. Location
has a natural candidate for assigning a probability mass to points
in space: the number of people at a given location.

First, we emphasize that their observation is related to the (loca-
tion) data distribution, with the assumption that the bulk of data
is concentrated with only a few isolated points. This is unlike our
finding where we show that in essence every embedding in high
dimensions is isolated. Second, in the context of location data, even
isolated points have a non-zero probability of being output by the
mechanism, as they are valid locations. Consequently, there is no
need for a nearest neighbor search. Indeed the mechanisms in [6, 12]
do not use it. This is unlike the word embedding space, where a
random vector is overwhelmingly not an actual word embedding,
and hence the need to perform the nearest neighbor search which,
as we saw, is what causes the issue identified in this paper. Third,
if we were to apply a similar mechanism to our setting, we need to
determine how to assign probability mass to regions in the embed-
ding space. One way to do this is to divide the embedding space into
equal-volume hypercubes, count the number of embeddings falling
in each hypercube and assign the fractional count as the probability
mass. This is analogous to how the two-dimensional location map
is divided into a grid in [6, 12]. However, dividing the embedding
space in hypercubes is not trivial. On the one hand, dividing each
of the n dimensions into m shares results in m" hypercubes which
is unfit for storage (e.g., n = 300 in some of our vocabularies). On
the other hand, choosing a subset of the n dimensions to be divided
requires an analysis of which dimension to divide or not. Thus it
is unclear whether the notion of elastic distinguishability offers a
solution let alone a feasible one.

The work in [4] also looks at the distinguishability of isolated
points in the shuffle model of differential privacy. In the shuffle
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model, an intermediate shuffler permutes (local) differentially pri-
vate inputs of end users before submitting them to the central ag-
gregator. This amplifies privacy compared to the local model as the
server cannot tie an output to a particular user. In the dx-privacy
equivalent version of the shuffle model, the server can still identify
isolated inputs (even when perturbed) as they stand out from the
rest. To remove this drawback, one of the techniques proposed
in [4] is to encode an input in unary and then apply differentially
private noise (randomized response) to each bit before sending it to
the shuffler. It is not clear how these techniques can be applied to
the case of text embeddings. We would need to convert embeddings
into bit vectors and then combine multiple embeddings together.
Moreover, once again, the isolated point issue is endemic in high
dimensional embeddings as opposed to being just a few bad apples.

Lastly, researchers have identified issues with Euclidean distance
in high dimensions. Beyer et al [5] show that the distance of the
nearest neighbor approaches that of the farthest neighbor as the
number of dimensions increases, thus making nearest neighbor
search using the Euclidean distance meaningless, a result known as
concentration of distances [13]. The authors in [13], expand on this
to show that the concentration of distances is not applicable as long
as the number of ‘relevant’ dimensions are on par with the actual
data dimensions, and hence in these cases nearest neighbor search
is still meaningful. This seems to be the case with word embedding
models as is backed up by the empirical results in this paper and
the fact that word embedding models are trained to ensure that
Euclidean distance can be used to find similar words even with high
dimensions [24, 29]. For more information on this topic, we refer
the reader to the survey [37].

9 Conclusion

The multidimensional Laplace mechanism for d x-privacy is widely
used as a method to provide privacy for sensitive text data due to
its ease of implementation. We have shown that the method be-
haves unexpectedly under common word embedding models. More
specifically, it almost never outputs semantically related words,
as it is expected to do for utility. We have extensively analyzed
the noise generated through this mechanism and ruled out any
issues with the original mechanism. Instead, we have identified
the post-processing step of the nearest neighbor search as the cul-
prit, causing each word embedding to behave as an outlier in high
dimensions. We have provided an easy-to-use fix which makes
the mechanism behave more expectedly. The reader is invited to
investigate alternative remedies.
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A Proofs

Proof of Theorem 2.

as required.

Proor.
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Proof of Theorem 4.

Proor. Let B, = B((n—1)/2,1/2). For any n > 4, we note that:
Buo TCSHT(R) T35+ 1)
B TR+ TG
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where we have used the fact that T'(x + 1) = xI'(x) for any real
number x > 0. We first consider the cases of n = 2 and 3. When

n = 2, we have:
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where we have used the fact that cost is positive in the interval
(—m/2,7/2). With j = 0, it is easy to see that u(0,2) = 1. And for
Jj =1, we see that u(1,2) = 0 since the integral of sint is — cos .
Consider therefore j > 2. Integrating by parts, we have
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From this recurrence relation, we see that for odd j we have u(j, 2) =
0, since p(1,2) = 0. And for even j, by using p(0,2) =1 in the re-
currence relation, it is easy to show that

. (G-n!
u(j,2) = T,

=T(1/2)T(1/2)/T(1) =
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where x!! = x(x — 2)(x —4) - - - 4 - 2 is the double factorial. Thus,

1, ifj=o0,
u(j,2) =10, if jis odd, (25)
M if j is even
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where we have used Eq. (23). Thus,
u(,n) = H(J, -2) (27)

n+j-—

If j = 0, then u(0, n) is the integral of the PDF of the distribution,
and hence p(0,n) = 1, for all n > 2. Consider now, odd j. From
Egs. (25), (26) and (27) we see that p(j,n) = 0, for all n > 2. Thus,
consider even j. First consider even n, starting from n = 4. We have
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p1(j,n—2) = p(j,2), for n = 4. Putting the result from Eq. (25) into
Eq. (27), we get
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Lastly, consider odd n starting from n = 5. We have p(j,n—2) =
1(J,3), for n = 5. Putting the result from Eq. (26) into Eq. (27), we
get
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K = ey j—dn+ -6 5+j-27+1
. n-—2 n—4 n—-6 3 1
Th+j-2n+j—4n+j—-6 j+3j+1
_ n-2 n-—4 n-—=6 3 1 (G-
Thtj-2n+j-4n+j-6 j+3j+1( -1
C(n=2n(j- 1
T o (n-24+ )N

Putting the results together, we get for n > 2

1, if j =0,
u(j,n) =10, if j is odd,
%, if j is even

From the above equation we see that E[K] = p(1,n) = 0 and
Var[K] = E[K?] - (E[K])* = E[K?] = p(2,n) = . o

Proof of Theorem 6.

Proor. First note that p = p(1,n) = 0 from Eq. (14). There-
fore, using the Taylor series expansion of the exponential function,
Lemma 1 and Eq. (14), we have:

E[e*®~1] = B[]

I

=]
ez
o

o (A2)7 (n—2)1(2j — D!

£2) (n-2+2))!

Now, note that

j-ni _ (2j-1)(2j-3)(2j=5)---3-1
2 T 2j(2j-1)(2j—2)(2j-3)---3-2-1
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1
=5
_ 1
T 2j(2j-2)(2j—4)---4-2
_ 1
2 jj-1@G-2)---2-1
1
=

Therefore, the above becomes,
E[e’l(K */1)]

(A2 (n=2)1
2/j1 (n—2+2))!!

(2% 1

Proof of Theorem 7

Proor. Recall first that Markov’s inequality states that if X is a
non-negative random variable and a > 0, then

E[X]
a

Pr[X > a] <

Also, let My (t) = E[¢*X] be the moment generating function of X,
where we assume the expectation to exist within —h < t < h, for
some real number h > 0 [10, §2.3].

Let us define another random variable Y = ¢!X. Since e!* is an
increasing function of x if ¢t > 0, we have that

E[etX]

Pr[X > a] =Pr[eX > ] < -
e a

=e "“Mx(1), (28)
where we have used Markov’s inequality on the random variable
Y with 0 < t < h. Next e’* is a decreasing function of x if t < 0.
Therefore

E[etX]

Pr[X <a] =Pr[e?X > ] < -
e a

=e Mx (), (29)

with —h < t < 0. The moment generating function Mg of R is [10,
§2.3]

Mo(t) = (1—t/e)™", (30)
Letc > 1,a =cn/e and R = X, then for 0 < t < € through Egs. (30)
and (28) we get

—n
Pr [R > ﬂ] < ementle (1 - £) =y.
€

t<e.
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To find the minimum value of y in the interval 0 < t < €, we take
the derivative of y, which gives

y/ — _ﬂe—cm‘/e (1 _ E)_n
€ €
ty—n-l 1
+ et/ (—p) (1 - —) (——)
€ €
— _ﬂe—cnt/e (l _ E)_n + Ee—cm‘/ne (1 _ E)_n_l
€ € € €
—n—

t 1 t
<reme i) ) )
€ € €

= Ee_c”t/e (1 - E)_n_l (c_t -c+ 1)
€ € €

We see that the derivative is 0 if t = @ which is in the interval
(0,€) if ¢ > 1. If we take the second derivative of y, we get

cn?

£\~ 1 et
r/:__e—cnt/e(l__) (——C+1)
y €2 € €
+ 2e—cnt/e (1 _ £)7n71
€ €
n(n+1 t\7"2 et
ML P P e L
€ € €

Att= @ the first and the last term in the above expression is
0. The remaining term is positive since the exponential function is
greater than 0 for any value of ¢, and 1 — t/e is also greater than
0if 0 < t < €. Thus, y”’ > 0. Hence the function y is minimized at
this value of ¢. Putting this value of t into the expression for y, we
get the first statement of the theorem.

For the second statement, again let ¢ > 1, a = n/ce and R = X,
then for —h < t < 0 through Eqs. (30) and (29) we get

0oy

Pr [R < i] < e ntlee (1 -
ce €

Again, taking the derivative of y to find the value of t that minimizes
y in the intervale —h < t < 0, we get

n t\ Lt 1
g =Temie (1 )77 (L L),
€ € ce c

~

We see that y’ = 0if t = (1 — ¢)e, which indeed satisfies t < 0 < e,
with ¢ > 1. Taking the second derivative of y, we get:

2 -n-1
y//:_n_ze—nt/ce (I—E) " (i_l_l_l)
ce € ce c

ty—n-1
)

t\y2 e 1
(1-2) " [=--+1).

€ ce ¢
Once again at t = (1 — ¢)€, the first and the last term in the above
expression vanishes. The middle term is positive since the expo-
nential function is positive for any value of t and 1 —t/e = ¢ > 1
for this value of t. Thus, y” > 0, meaning that y is minimized at

this value of ¢. Putting this value of  in the expression for y gives
us the second statement of the theorem. ]

+ ie—nt/ce (1 _
ce

N n(n+1) s
2
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B Noise Length Follows the Gamma
Distribution
Let f(r, S) denote the joint probability density function of the noise
distribution, which samples a noise vector n = ra where 1 is sam-
pled uniformly over the surface of the n-dimensional hypersphere
of unit radius, and where r = ||n||, whose distribution we seek to
determine. Let fz(r) denote the probability density function of this
distribution. This is given by the marginal PDF
= [ pes)as 61
S(r)
where the integration is over S(r), i.e., the surface area of the n-
dimensional hypersphere of radius r. Now, S(r) oc "~ and we want
the distribution at r to be proportional to exp(—¢||n||) = exp(—er).
Therefore, fz(r) oc r"~! exp(—er). To make this into a probability
density function, we must have:

(o) (o)
/ er" e dr = c/ e dr =1
0 0

LetI,_; = /Ooo r*~le=¢" dr. Then

(e8]
/ rle€r gy
0

In—l

e~ €" o0 o o—er
= —r"71| - / (n—1)r""2%dr
—€ 0 0 —€
n-1 /oo —er_n—2
= e "r" dr
€ 0
n-—1
= In-».
Now,
* e " | 1 1
Il=/ e " dr= =-—(0-1)=-.
0 —€ lo € €
Therefore,
(n-1)(n-2) (n=-(n-1)1
I = z
€ € € €
_(n=1! T(n)
T e e

Thus, ¢ = €"/T'(n), and fr(r) = fc(r), i.e,, the gamma distribution
given in Eq. (2).

As an illustration of this, suppose we want to sample a point
uniformly at random on and inside a circle with radius p. We first
sample a point uniformly at random on the circumference of the
circle (e.g., via the method of zero mean, unit variance Gaussians as
explained in Section 3). To now select a point uniformly at random
within the circle (including its circumference), we need to find the
length r of the point, where 0 < r < p. From Eq. (31) we see that at
radius r the marginal PDF of the random variable R representing
the length of the point is given by

2mr

fr(r) = f(r,8)ds,
where 277 is the circumference of the circle with radius r. See
Figure 10.

Since the point needs to have a uniform distribution, we have
that fr(r) oc 27rr. To make it into a probability density function, we
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Figure 10: Sampling a point uniformly at random on and
inside a circle of radius p. At radius r we need to integrate
over the circumference of the inner circle of length 27r.

get

p 1
c2rrdr=1=c=—;.
0 p
Thus fr(r) = 2”2 = 22 . Indeed, we see that if we let fz(z) denote

the PDF of a point z 1nside or on the circle of radius p, i.e., ||z||? < p?,
and let fi7(u) denote the uniform distribution on the circumference
of the unit circle which is 1/27 if u is on the circumference of the
unit circle, and 0 otherwise, we get from Eq. (12):

P
2@ = [ eotain dr
P 2r 1
—‘/0' ?fU(z/r); dr

_ 12 /pr(z/r) dr

=—/'—awmmm

= TS el ar
p

where § is the Dirac delta functlon [18, §9.4]. Define t = r — ||z||,
which gives dt = dr. Therefore, the above becomes

p=llzll
fZ(Z)=”Lp2/ 5(t)dt:L2.1ZL

Il mp mp*
where the integral is 1 because 0 € [—||z|, p — ||z||] [18, §9.4]. This
is precisely the area of the circle with radius p, and hence the
distribution is uniform as required.
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