
What-App? App Usage Detection Using Encrypted LTE/5G Traffic
Jinjin Wang∗

University of Birmingham
Birmingham, UK

jxw1663@student.bham.ac.uk

Zishuai Cheng∗
Beijing University of Posts and Telecommunications

Bejing, China
chengzishuai@bupt.edu.cn

Mihai Ordean†
University of Birmingham

Birmingham, UK
m.ordean@bham.ac.uk

Baojiang Cui
Beijing University of Posts and Telecommunications

Bejing, China
cuibj@bupt.edu.cn

Abstract
Cellular traffic fingerprinting attacks, in which an unprivileged
adversary passively monitors encrypted wireless channels to infer
user activities, introduce significant privacy risks by giving attack-
ers the ability to track user behaviors, infer sensitive activities, and
profile victims without authorization. Although such attacks have
been discussed for LTE and 5G, many existing studies rely on ideal-
ized assumptions that fall short when faced with the complexities
of real-world practical scenarios.

In this paper, we present the first practical traffic fingerprinting
attack leveraging a Man-in-the-Middle (MITM) Relay in an opera-
tional cellular network. Implemented with open-source software,
our attack allows a passive adversary to identify user applications
with up to 99.02% accuracy, even under noisy conditions. We eval-
uate our method using 40 applications across five categories on
multiple COTS user equipment (UE). Our approach further demon-
strates the ability to infer fine-grained user activities such as brows-
ing, messaging, and video streaming under practical constraints,
including partial traffic knowledge and app version drift. The attack
also achieves cross-device and cross-network transferability, and
it remains robust in open-world scenarios where only a subset of
application traffic is known to the adversary.

We additionally propose a novel traffic regularization-based de-
fense tailored specifically for cellular networks. This defense oper-
ates as an optional, backward-compatible security layer integrated
seamlessly into the existing cellular protocol stack, effectively bal-
ancing security strength with practical considerations such as la-
tency and bandwidth overhead.
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1 Introduction
With the rapid advancement of cellular technologies such as LTE
and 5G, users increasingly prefer cellular networks over Wi-Fi
hotspots, particularly in public venues like airports and cafes when
conducting sensitive activities (e.g., mobile banking and online
payments). This preference largely stems from the perception that
cellular infrastructure, operated and secured by network providers,
offers enhanced protection [11]. However, this perceived security
is misleading. Despite robust infrastructural protection and strong
encryption protocols, the openness of wireless channels exposes
cellular networks to privacy breaches.

Recent studies have demonstrated that adversaries can exploit
side-channel information and machine learning techniques to de-
rive sensitive user data (such as application usage and browsing
behavior) from encrypted traffic. Multiple studies have shown that
user activity can be inferred by leveraging the physical schedul-
ing information available over the air [6, 23, 27, 42]. Furthermore,
Man-in-the-Middle (MITM) Relay attacks, as discussed in [4, 19, 33],
enable adversaries to intercept the entirety of encrypted communi-
cations without access to encryption keys. This intercepted traffic
can be used to extract fingerprints and execute selective denial-of-
service (DoS) attacks [10, 19, 22, 33, 47].

Unfortunately, current app fingerprinting studies in cellular net-
works often fail in realistic environments due to idealized assump-
tions. First, these studies often exclude realistic attack conditions,
relying on controlled experimental data. Second, their analysis of
attack scenarios tends to be simplistic; for example, traffic is typi-
cally collected during the app launch phase, without considering
concurrent background activity. In real-world mobile traffic, data
is interwoven between multiple foreground and background appli-
cations, encrypted across several protocol layers, and lacks explicit
markers for session initiation. Third, the effects of app versions and
device models on fingerprinting accuracy are often underexplored.
While some studies have examined these factors [6], none offer a
comprehensive evaluation that reflects actual attack conditions.

In response to these limitations, we design and implement a prac-
tical, real-world attack scenario on both 4G and 5G standalone (5G-
SA) networks. By setting up a MITM Relay to intercept and analyze
encrypted traffic between user equipment (UE) and the core net-
work, we gather encrypted traffic traces and train a Convolutional
Neural Network (CNN) based classifier for accurate app fingerprint-
ing. We collect data using three commercial off-the-shelf (COTS)
UEs running the 40 most popular mobile applications across five
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categories [1]. Moving beyond simulation-based studies, we assess
the impact of background traffic, app version, and device model
variations on attack performance and further validate the attack’s
feasibility and effectiveness in commercial networks. Our results
demonstrate that these attacks can not only accurately identify
which applications users are operating, but also distinguish be-
tween specific in-app functionalities. This finding highlights the
real privacy risks associated with these attacks.

To address the growing threat of mobile traffic fingerprinting,
we analyze the traffic characteristics that contribute most to upper-
layer information leakage. Our experiments further reveal that
simplistic defenses, such as solely obfuscating packet sizes or delay-
ing packets, are insufficient to mitigate these attacks. These results
are consistent with prior research in web fingerprinting [9, 12, 46],
indicating that inadequately designed defenses may only provide a
false sense of security.

Motivated by these observations, we propose a novel defense
mechanism that is integrated into the Packet Data Convergence
Protocol (PDCP) layer. Inspired by TAMARAW [9], our defense em-
ploys a regularization-based shaping mechanism that offers strong
security guarantees. By classifying applications based on their la-
tency requirements and traffic throughput, our approach minimizes
defense overhead while ensuring robust security.
Contributions. This paper makes the following contributions.

• We present the first comprehensive evaluation of fingerprint-
ing attacks in real-world LTE and 5G-SA networks using a
MITM Relay.

• We propose and implement a novel defense scheme for cel-
lular networks that minimizes overhead for a given security
level, tailored to the latency tolerance of applications.

• We validate our methods on multiple commercial cellular
networks, testing 49 app activities across 40 popular An-
droid applications, and achieving a classification accuracy
exceeding 99.02%.

Organization. Section 2 provides background on fingerprinting
techniques and related defense mechanisms. Section 3 presents
the adversary model. In Section 4, we detail the attack design and
evaluation. Section 5 introduces our proposed defense mechanism
and its evaluation. Finally, Section 6 concludes the paper.

2 Background and Related Work
2.1 LTE and 5G Network Architectures
LTE and 5G networks consist of three main components: the user
equipment (UE), the cellular base station (BS) (known as eNodeB
in LTE or gNodeB in 5G), and the core network. Communication
between the BS and the core is secured via IPsec over a wired infras-
tructure; in contrast, the over-the-air radio link between the UE and
the BS remains susceptible to eavesdropping and tampering. To safe-
guard user traffic, the Packet Data Convergence Protocol (PDCP)
layer encrypts IP packets using symmetric cryptography (typically
an AES-CTR-based cipher), thereby protecting the payload. How-
ever, not all transmission-related information is concealed; details
such as the Radio Network Temporary Identifier (RNTI), payload
size, packet direction, and arrival time remain accessible through
the radio link layer, providing valuable side-channel data that can
be exploited for traffic analysis and fingerprinting attacks.
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Figure 1: Attack framework. The attacker sets up a position
between the victim and the e/gNB to capture traffic (up). This
traffic is processed in order to identify the apps and their
activities as used on the victim UE (down).

2.2 Identity Mapping in Cellular Networks
A radio link-layer adversary can distinguish a user’s signals based
on the RNTI associated with each transmitted signal block. The
RNTI is a temporary identifier assigned by the BS to a UE for the
duration of a radio connection, and is used to uniquely identify the
UE’s signaling and data transmissions within a cell. For long-term
victim monitoring, the adversary must map the victim’s Personally
Identifiable Information (PII), such as an International Mobile Sub-
scriber Identity (IMSI), social media account, or phone number, to
the RNTIs currently used by the victim. In 4G networks, a victim’s
IMSI can be mapped to the corresponding RNTI by means of spoof-
ing and intercepting unprotected unicast messages, such as Identity
Request and Identity Response. In both 4G and 5G networks, even
without access to the IMSI, the adversary can still infer the victim’s
RNTI if they know another identifier (e.g., a social media account
or phone number) associated with the target. In this case, the adver-
sary sends stealthy, patterned traffic toward the target device, and
then correlates the resulting network activity across all observed
users to identify the RNTI corresponding to the victim [10, 27].

2.3 MITM Relay Attacks in Cellular Networks
MITM Relay attacks exploit structural weaknesses in the LTE/5G
access architecture, particularly the lack of security enforcement at
the physical and data link layers of the air interface between the
UEs and the BSs. Specifically, these attacks leverage the absence
of physical channel binding during the initial network attachment
procedure, allowing an adversary to relay control signaling and
user-plane data between targeted UEs and the network without
possessing any legitimate credentials.

In this class of attacks, the adversary takes a man-in-the-middle
position as a relay node between the UE and the BS (see fig. 1).
This relay transparently forwards all messages exchanged during
the Authentication and Key Agreement (AKA) procedure. As the
AKA protocol validates cryptographic credentials at higher protocol
layers, such as PDCP and Non-Access Stratum (NAS) layer, but does
not perform any verification at the physical layer, the core network
completes mutual authentication and establishes a security context
under the assumption that it is communicating directly with the
legitimate UE. Since in LTE and 5G, security protections apply only
at the PDCP layer and above, lower layers such as the Radio Link
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Table 1: Comparison with existing cellular network fingerprinting works.

Paper Bkg. Noise App Ver. Device Model Commercial Net Open-world Target

Zhai et al. [47] ✗ ✗ ✓ ✗ ✗ 20 apps
Trinh et al. [42] ✓ ✗ ✗ ✓ ✓ 6 apps
Kohls et al. [22] ✓ ✗ ✓ ✓ ✗ Websites
Bae et al. [6] ✗ ✗ ✓ ✓ ✓ Video
Lakshmanan et al. [24] ✗ ✗ ✓ ✓ ✓ Video
Baek et al. [7] ✓ ✗ ✓ ✓ ✗ 9 apps
Islam et al. [20] ✗ ✗ ✗ ✗ ✗ 12 apps
Our Work ✓ ✓ ✓ ✓ ✓ 40 apps / 49 activities

Note: Bkg. Noise indicates whether background traffic from idle/system apps is considered. App Ver. means the impact of different application versions
is analyzed. Device Model reflects whether different smartphones were evaluated. Commercial Net Indicates if evaluation is conducted using data
captured by an adversary on commercial networks. Target lists the attack classification goal (e.g., apps, websites). Open-worldmeans the work evaluated
unseen app traffic. ✓: factor considered; ✗: not considered.

Control (RLC), Medium Access Control (MAC), and Physical (PHY)
layers lack integrity protection and source authentication, thereby
allowing the adversary to persistently maintain the connection
through these insecure layers.

A characteristic of these attacks is that the adversary does not
need to compromise cryptographic material, break encryption
schemes, or manipulate authentication messages. Instead, these
attacks enable eavesdropping on the traffic simply by relaying mes-
sages in a protocol-compliant manner. As a result, the attacker gains
real-time access to encrypted communication traffic between the
UEs and the network, which provides a foundation for subsequent
attacks such as user tracking, traffic injection, data manipulation,
or service redirection [19, 33, 34].

2.4 Traffic Fingerprinting Attacks
2.4.1 Network and Transport Layer Fingerprinting. Traffic finger-
printing attacks at the network and transport layers aim to infer
sensitive user activities from encrypted traffic by exploiting in-
formation contained in IP packets and upper-layer packet head-
ers [15, 26, 31, 35, 36, 38]. Typically, attackers collect and label
traffic sequences corresponding to target webpages or videos, then
employ machine learning or deep learning techniques with pre-
trained models to analyze intercepted victim traffic and identify
detailed online activities, such as the specific webpages visited or
video titles accessed. Although these attacks can effectively reveal
fine-grained user behaviors, they often rely on a strong assumption:
privileged access to network or transport layer metadata (e.g., IP
addresses and TCP/UDP port numbers). This assumption, however,
is generally not met in cellular networks, where app-to-server com-
munications are secured both at the IP level with TLS and at the
PDCP layer with an AES-based stream cipher (EEA2).

2.4.2 Traffic Fingerprinting on Cellular Networks. Similar to finger-
printing attacks at the network and transport layers, attackers in cel-
lular networks exploit traffic characteristics to infer sensitive user
activities. However, due to the inherent securitymeasures in cellular
infrastructures, adversaries typically cannot access network-layer
data directly with sufficient depth. Nonetheless, recent research
has demonstrated that attackers can still infer user activities by
leveraging information leaked from insecure radio links. For in-
stance, Bae et al. [6] successfully identified the specific videos a

victim was watching by analyzing information disclosed through
the PDCP data stream; however, these attacks were confined to
video content and did not extend to other types of user activities.
Similarly, Baek et al. [7] employed sniffing tools (such as OWL and
LTESniffer [8, 13, 16]) to capture physical-layer scheduling infor-
mation (i.e., Downlink Control Information, DCI) for application
identification, although these experiments did not systematically
evaluate the influence of real-world conditions or open-world sce-
narios on identification performance. In table 1, we summarize and
compare existing state-of-the-art work in cellular network finger-
printing with our work. We would like to highlight that, while the
aforementioned studies collectively demonstrate the feasibility of
fingerprinting attacks in cellular networks, they generally fall short
of providing a systematic evaluation under realistic conditions.

2.5 Traffic Fingerprinting Defenses
Current traffic fingerprinting defenses have primarily targeted
application-layer protocols such as HTTP and website traffic. A va-
riety of techniques have been proposed to mitigate such attacks. For
instance, traffic randomization-based defenses introduce dummy
packets and transmission delays to increase intra-class variance
and thereby reduce classifier confidence [5, 14, 21, 28, 30]. In addi-
tion, adversarial machine learning-based defenses craft carefully
designed perturbations using techniques such as GANs or gradient-
based methods so as to deliberately induce misclassifications by
the attackers’ models [5, 18, 29, 32]. Despite the promise of these
approaches, they have several critical shortcomings. First, both
randomization-based and adversarial defenses are typically evalu-
ated only against known attackmodels, and as a result, theymay fail
to generalize to continuously evolving attackers who can rapidly
update their classifiers to bypass these perturbations [46]. This lim-
itation renders these defenses less suitable for cellular network in-
frastructures. Second, application traffic inmobile networks exhibits
significant heterogeneity across dimensions such as packet size dis-
tributions, inter-packet timings, burstiness, throughput, and down-
link and uplink ratios. Such variation can substantially undermine
the effectiveness of these defenses [12], particularly for approaches
lacking formal guarantees. In contrast, traffic regularization-based
defenses reshape the original application traffic into standardized
patterns, such as fixed transition rates and packet sizes, thereby
providing reliable security protection by rendering network traces

244



What-App? App Usage Detection Using Encrypted LTE/5G Traffic Proceedings on Privacy Enhancing Technologies 2026(1)

from different sources indistinguishable [9, 12, 17, 43, 44]. However,
this approach introduces additional bandwidth and latency over-
heads. As we will show in section 5, our defense model builds upon
these regularization-based techniques while explicitly addressing
the trade-off between latency and bandwidth overheads under a
fixed security level.

3 Threat Model
We consider a passive link-layer adversary who monitors the en-
crypted wireless communication between the user equipment (UE)
and the cellular base station (e.g., eNB or gNB). The adversary is
assumed to possess at least one piece of the victim’s PII, and could
selectively intercept the victim’s PDCP traffic over the air interface
using the MITM Relay (see section 2.2). However, the adversary
cannot decrypt, modify, or inject any packets. He has no access
to the core network or IP-layer data. The adversary can observe
traffic metadata such as packet sizes, directions, and timing infor-
mation. Additionally, the adversary has full knowledge of the traffic
patterns of a set of target applications, obtained through offline
profiling. The adversary is also able to train classifiers offline using
labeled traffic traces and use them during the attack phase.

With the knowledge from above, the adversary aims to identify
the smartphone apps installed on a victim’s device and their use
patterns from the predefined list of targeted apps. A basic example
of this attack could be an adversary that learns that its victim sent
or received several WhatsApp messages, or was watching YouTube
while also texting on WhatsApp. In more critical scenarios, the
attacker can precisely identify one or more applications and use
this insight as an entry point for further exploitation. For instance,
if the adversary detects that the victim is actively using both a
delivery app and banking software at the same time, they can infer
that the victim is currently awaiting a delivery. This information
could then lead to exposure of the victim’s identity or make them
vulnerable to targeted threats.

4 Attack Design and Evaluation
In this section we give a detailed description of our attack, followed
by our experimental setup and evaluation.

4.1 Attack Design
As stated, the goal of our adversary is: (1) to identify a set of smart-
phone applications installed on a victim’s device, and (2) to infer
user activities within these applications with a high level of detail.
To achieve these objectives, the attack proceeds in two stages. In the
attack preparation stage, the adversary collects application-specific
traffic in a controlled environment, extracts relevant features, and
trains a classification model capable of recognizing different apps
and activity types. In the activity identification stage, the adversary
passively captures encrypted traffic from the victim over the wire-
less channel using a MITM Relay; then infers the victim’s apps and
specific in-app behaviors using the pre-trained model.

4.1.1 Attack Preparation Stage. In the preparation stage, the adver-
sary collects app traffic traces and uses them to train a classification
model. It is important that this data shares the same distributional
characteristics as the traffic observed during the attack phase. As
such, given that our adversary is interacting with the network at

the PDCP layer, and is only able to observe encrypted traffic, the
relevant data for the model will be restricted to PDCP packet meta-
data consisting primarily of packet-sizes and packet-arrival-times.
There are multiple practical approaches for obtaining such training
data, as described in the following.

An initial direct method for collecting training data for finger-
printing relies on an attacker controlling a UE connected to a private
5G/LTE testbed. This setup can be deployed using open-source soft-
ware (e.g., Open5GS, srsRAN). With this method, PDCP metadata
can be directly captured during app execution, with no need for
further modification.

Alternatively, in a slightly modified method that better emulates
the real-world attack setting, the adversary collects traffic through
a MITM Relay, which intercepts the communication between the
UE and the gNB. This approach more closely reflects the passive
interception scenario and avoids the potential time distortions in-
troduced by the relay during the attack stage.

Finally, due to the use of symmetric encryption between the
network and PDCP layers, traffic characteristics at the PDCP layer
are correlated with those at the IP layer. Leveraging this property,
the adversary can adopt a lightweight approach by extracting train-
ing data from IP-layer traffic and mapping it to the PDCP layer.
While convenient, this method requires careful handling: in ad-
dition to target application traffic, background traffic must also
be captured or generated to reflect realistic environmental noise.
Naturally, training data collected in this way may differ slightly
from traffic observed at the PDCP layer during attacks.

Fingerprint Extraction. Traffic patterns generated by different app
activities often exhibit distinguishable temporal and size distribu-
tions (see fig. 2 and fig. A1). However, real-world traffic introduces
several challenges: user behaviors are asynchronous and session-
dependent; background traffic (e.g., keep-alive packets, notifica-
tions) is mixed with target traffic; and content-specific differences
(e.g., different YouTube videos) add further unpredictability.

To address these challenges, we adopt a fingerprint extraction
method that preserves the complete data distribution and converts
it into a two-dimensional representation. Then we apply a CNN
model, inspired by [25, 40], as our primary classifier. The CNN is
well-suited for this task, as it can effectively capture spatial and
temporal correlations between packets in the transformed traffic
data, enabling robust classification despite noise and variability.

Specifically, we extract fingerprints from collected traffic using
a 𝑇 -second long sliding window with an 𝑛-second step, where
𝑛 ≪ 𝑇 . Data in each window is converted into a payload-size
distribution (PSD) for a specific time interval. Then, we define a
system of coordinates where the X-axis represents the observed
time, and the Y-axis indicates the packet size similar to [31]. We
additionally use colors to represent the direction of the traffic, i.e.,
red for uplink, blue for downlink, and black for links which do not
contain directional information. We then generate the PSD figures
by plotting all observed PDCP packets captured in the defined
interval with the following set of adjustments. For the X-axis, we
first normalize all the records in an interval by subtracting the
initial timestamps. Then, we scale the X-axis to fit into the interval
[0, 1500] such that we obtain square figure representations of the
PSD as shown in fig. 2.
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Figure 2: Example of PSD images, which provide a visual representation of traffic traces from four different activities across
three applications (Instagram, Facebook, WhatsApp chat, and WhatsApp video call). In each figure, every packet is depicted
as a single point, where the x-axis represents its arrival time and the y-axis indicates its size. The black-and-white graph
represents traffic in only one direction, with the shade indicating the traffic density. Uplink and Downlink information are
further distinguished by red and blue, respectively.

4.1.2 App Identification Stage. After completing the preparation
stage, the adversary initiates the fingerprinting attack by deploying
a MITM Relay within the victim’s vicinity 1, as shown in fig. 1. Once
the traffic relay is established, the adversary continuously monitors
encrypted data exchanged between the victim UE and the network.
The pretrained classifier is used with a sliding window of 60 seconds
to infer user activity in real time. With this setup, the attacker’s goal
is to: (1) identify which applications from a predefined target list
are in use; (2) determine how those applications are being used, for
instance, distinguishing between browsing reels on Instagram and
sending messages. With the traffic collected, the attacker can also
estimate the (3) duration of each activity and (4) infer the temporal
sequence of usage patterns.

Although a 60-second window provides a good trade-off between
accuracy and latency, overlapping activities within a window can
still occur. For example, a victim could be watching a YouTube
video while simultaneously receiving WhatsApp messages. In such
a case, if the adversary requires more precise traffic localization in
time, or better separation between concurrent or interleaved app
activities, then the accuracy can be adjusted through the size of the
sliding window.

4.2 Attack Evaluation
In this section, we comprehensively evaluate the effectiveness and
generalization of our fingerprinting attack across multiple dimen-
sions. First, we compare the performance differences among mul-
tiple classifiers, including our CNN-based model and traditional
models such as SVM, KNN, and MLP, and assess their robustness
when only limited features are available, such as unidirectional
traffic, isolated packet-size information, or timing information (see
section 4.2.3). Next, we determine the classifier’s accuracy in an
open-world scenario where the attacker can access traffic from only
a subset of applications (section 4.2.5). Then, we investigate the
impact of application software versions, network types, and device
models on classification accuracy in both commercial and private

1Typically within 100 m, but can be up to 2 km with an amplifier [39].

network environments 2 (sections 4.2.6 and 4.2.8). Finally, we ana-
lyze the effects of background traffic noise, as well as variations in
signal strength and overall network connection quality, on attack
performance (sections 4.2.7 and 4.2.11).
Ethical Consideration. We comply with the law and other users’
privacy by controlling the transmission power of our cellular relay
in order to avoid interference with commercial network nodes.
When validating our attacks on commercial networks, we isolate
both the rogue base station and the target User Equipment (UE)
within a Faraday cage. Additionally, we configure our relay to allow
connections only from our specific test SIM cards. This ensures
that even if an external device detects our base station, it cannot
establish a connection with our relay.

4.2.1 Experimental Setup. Our data acquisition setup consists of
two USRP B210 SDRs, an Intel i9-12900 PCwith 32G RAM running a
modified version of srsRAN which supports the relay functionality.
Traffic collection is done in the form of pcap files as seen by the
cellular-relay node and consists of user-plane PDCP traffic and radio
identifier (i.e., RNTI). The training stage is performed on a private
LTE network using Open5GS and sysmoISIM-SJA2 programmable
USIM cards for the test UEs.

We use three UEs: a Google Pixel 5, a Samsung S8, and an iPhone
12. The Pixel 5 runs Android 13 on a Qualcomm Snapdragon 765G
chipset, and the Samsung S8 runs Android 8 on an Exynos 8895
chipset. When collecting the training and test datasets, the Pixel 5 is
used with our private network and is controlled by ADB to facilitate
the simulation task. For the attack datasets, both the Pixel 5 and
the Samsung S8 are used to test with commercial LTE networks.
The iPhone is used to connect to the commercial LTE network and
a private 5G-SA network.

4.2.2 Data Collection. We collect the data using our MITM Relay
from a private LTE network, as described in section 4.1.1. The data
comes from the most popular Android applications from Android
Rank [1]. We focus on five common application categories: video,

2The classifier is trained on the private network.
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music, social networking, communication, and gaming, which cap-
ture a broad range of typical user behaviors. Within each category,
we select the top eight apps according to the Android Rank listings.
Each app is mapped to one or more representative user activities,
resulting in a total of 49 (app, activity) labels, as shown in table A2
in the Appendix. To generate realistic training traffic, we simulate
these activities through automated scripts or manual interactions,
including actions such as playing or pausing media, scrolling, send-
ing messages, and playing games. For streaming and messaging
apps, actions are randomized to increase variance; game traffic is
collected via manual gameplay to preserve interaction richness. We
also ensure that traffic includes foreground usage and background
behaviors (e.g., notifications, keep-alive messages) to closely mimic
real-world app usage patterns. Training data is collectedwith Pixel 5
on our private network by simulating the major activities of each
app for 45 minutes. We collect about 29.92 GB of encrypted PDCP
traffic, totaling 2205 minutes of use time.

4.2.3 Classifier Setup and Evaluation. To train our model, we ex-
tract traffic fingerprints from collected data as inputs to the CNN
model using the approach described in section 4.1.1.

In order to determine the appropriate step size for training, we
first conducted experiments on a small subset of applications to
compare the impact of different step sizes on training performance
(see fig. 5). Through experiments on five apps from different cate-
gories, we found that the impact of step size is most significant for
Instagram Real, where a longer step size resulted in a decrease in
classification accuracy of up to approximately 50%. Moreover, the
accuracy across all apps is most balanced when the step size is set
to 5. Therefore, we use a 60-second window size with a 5-second
step size to extract 540 PSD samples, which include directional
information. We then select 500 of these to evaluate the perfor-
mance. As traffic is independently and uniformly generated, we
perform a three-way split where we use 80% to train our model,
and the remaining 10% and 10% to validate and test classification
performance, respectively. We use the micro average F1 score to
evaluate our model.

We also implement three traditional classifiers: Support Vec-
tor Machine (SVM), k-Nearest Neighbors (KNN), and Multi-Layer
Perceptron (MLP), following parameters from previous cellular
network fingerprinting literature [47]. These models operate on
handcrafted statistical features extracted from each fingerprint win-
dow (e.g., number of packets, percentile of packet sizes, and packet
arrival times) [22, 47]. For the MLP, we further tune the hidden
layer size to improve accuracy when using the full feature set. We
provide hyperparameters and configurations for each model in
the table 2. Our classification results are summarized in the table 3.
The CNN achieved the highest accuracy (i.e., 99.02%) when using
the full set of features, demonstrating its ability to capture complex
traffic patterns. All other traditional models also achieved more
than 95% classification accuracy.

4.2.4 Classifier Performance on Limited Features. In practical at-
tack scenarios, adversaries may not have access to complete bidi-
rectional traffic between the UE and the network. Some attackers
can only obtain the downlink scheduling data [13, 27], which does
not fully represent packet size details. Additionally, native defense
mechanisms such as packet padding or intentional delays might

Table 2: Parameters of each classifier.

Model Main Parameters / Architecture

KNN 𝑘 = 5; weight: distance; distance metric: 𝐿2 (Euclidean)
SVM 𝐶 = 4; kernel: RBF; 𝛾 = 0.125
MLP Batch size: 64; 4 fully-connected layers with hidden

dimensions 512, 256, 128, and ReLU activations
CNN Two convolutional layers (10 and 20 filters, kernel size

10 × 10, stride 5), each followed by ReLU and max-
pooling; dropout (0.25 and 0.5); final dense layers: 64-
ReLU and softmax

Table 3: Classification accuracy (%) of different models using
various feature subsets.

Model Full UL DL UL+DL T UL+DL S DL T DL S

CNN 99.02 98.86 97.55 71.76 98.84 57.18 97.71
SVM 95.65 85.88 81.89 78.45 87.82 59.39 68.13
KNN 95.81 93.87 90.35 91.58 93.63 82.84 85.29
MLP 97.59 96.44 90.75 89.52 94.23 73.78 79.00

Note: Full uses all features; UL/DL refer to uplink/downlink only; UL+DL T/S
combine timing/size features from both directions; DL T/S use only downlink
timing/size.

be used to mitigate fingerprinting attacks [21, 28, 45]. Thus, we
evaluate our classifier efficiency under scenarios with restricted
traffic information: (1) uplink-only (UL) or downlink-only (DL) traf-
fic; (2) timing information only (packet arrival timestamps); and
(3) packet size information only. Table 3 presents the accuracy of
various classifiers under these conditions.

To remove the packet size or time feature from our 2D represen-
tation, we apply simple transformations: for timing-only input, all
packet sizes are set to zero; for size-only input, inter-arrival times
are set to a constant value across all app samples. Our CNN clas-
sifier maintains high accuracy even under constrained conditions,
achieving 98.86% and 97.55% accuracy with only uplink and down-
link data respectively. When limited to packet-size information, the
CNN accuracy remains robust at 98.84% (combined UL and DL sizes)
and 97.71% (DL sizes only). However, the performance drops with
only timing information, primarily because zeroing packet sizes
collapses the input to a 1-D representation, which is less suitable
for our CNN architectures.

In comparison, traditional classifiers such as KNN and MLP
also demonstrate resilience to feature restrictions. Notably, even
the simplest SVM model, with access only to limited directional
and statistical features, achieves 59% accuracy when classifying
49 applications, further illustrating the inherent vulnerability of
encrypted traffic to fingerprinting attacks.

4.2.5 Open-World Scenario Analysis. We evaluate the open-world
setting where the adversary has access only to a limited subset of
known application traffic, while traffic from other unseen applica-
tions remains available. The attacker’s objective is to detect if a
specific target application has been used by the victim.

For this scenario, we divide the application traffic into two sub-
sets. The first subset consists of𝑁 known application activities, used
to train the classifier. The remaining activities are treated as unseen
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Figure 3: Impact of increasing the number of known applica-
tion activities 𝑁 on classification performance in the open-
world setting.

and excluded from training. We measure the performance of our
attack in function of the different number of known applications 𝑁 .
Specifically, we train the model using only data from known apps
and subsequently test our attack on traffic from all apps, both from
the known and from the unknown sets. We assess the detection
performance in this setting using four metrics: accuracy, precision,
true positive rate (TPR), and false positive rate (FPR). The results
in fig. 3 show how these metrics vary as the size of the known
application set increases.

A higher number of known applications can improve the model’s
ability to detect targeted traffic. The true positive rate (TPR) remains
consistently above 95%, indicating that the attacker can reliably
identify the presence of the target application once it occurs. When
the known application set includes 15 out of 49 total applications,
which is approximately 30% of the total, the model achieves high
accuracy exceeding 95% and maintains a low false positive rate
(FPR) below 5%.

Precision is initially lower due to the fact that traffic from un-
seen applications can exhibit statistical patterns similar to those
of known apps, leading to false positives. However, precision im-
proves as more known applications are added to the training set.
To further improve precision, an attacker can selectively include
applications that are functionally similar to the target app in the
known set. For example, if the target is a messaging application, in-
corporating traffic from other messaging apps as non-target classes
in the known set can help the model better learn discriminative
features and reduce false positives.

4.2.6 App Software Version. In order to evaluate the effects of
smartphone app software versions on the classifier’s accuracy, we
first train our model using traffic from a single version of each
application. We then collect an attack dataset consisting of four
activities performed using 3 to 6 different versions of three apps.
The results are shown in table 4.

In most cases, the model achieves near-perfect recognition for
newer versions, while a few older versions, specifically, YouTube
v16.36.35 and Instagram v199.0.0.34.119, show noticeable drops

Table 4: Classification accuracy (%) for app activities on dif-
ferent versions over a 12-month period.

App & Activity Version Acc.

YouTube

17.48.44 100.00
17.46.37 100.00
17.40.41 100.00
17.26.35 100.00
17.01.36 100.00
16.36.35 0.00

WhatsApp

Text chat 2.22.24.78 91.89
Video call 100
Text chat 2.22.23.77 97.29
Video call 100
Text chat 2.22.20.80 86.49
Video call 75.00

Instagram

262.0.0.24.327 100.00
254.0.0.19.109 100.00
242.0.0.16.111 100.00
217.0.0.15.474 100.00
199.0.0.34.119 46.67

in accuracy. This suggests that the classifier adapts well to traffic
from similar app versions but may struggle when an app undergoes
substantial changes in its data flow or internal architecture. For
example, with YouTube, manual examinations revealed that the
poor classification performance for the older version is due to a
protocol difference, where the older version preferred GQUIC over
QUIC for delivering video content. Consequently, we believe that
an attacker does not need to update the attack model frequently;
updates are only necessary when a major update substantially
alters the app’s traffic characteristics. In our experiments, the high
classification accuracy for YouTube persisted for ten months.

4.2.7 Background Activity Detection. Background activity, also
known as the IDLE state, happens when the UE is connected to the
e/gNB but no active user activities are performed. This state is peri-
odically triggered when the UE connects to the network to check
for notifications, such as FCM or APN. We simulate this scenario
by connecting a victim UE to a network and then keeping several
apps, including video, social, and communication services running
in the background, while performing no additional actions on the
UE. Our results are shown in fig. 4. Our classifier is able to correctly
identify the background states in 98% of the cases, and the IDLE
state identification has a 92% precision and a 95% F1-score.

4.2.8 Real-World Attack Validation. To validate the feasibility of
our attack in a real network environment, we connect our UEs
to a commercial LTE network, and a MITM Relay is deployed to
monitor the traffic exchanged between the UE and the network.
Our classification model is trained solely on traffic collected from
our private network. We evaluate our attack by collecting traffic
from the commercial network; specifically, we collect data from
four applications (covering six activities), operating each one for 10
minutes on the commercial network, and then use our pre-trained
CNN model to identify the application traffic.
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Figure 4: Confusion matrix for IDLE state. IDLE state is cor-
rectly identified in 98% of the cases (i.e., recall).

The evaluation results are shown in table 5. Due to automation
challenges on iPhone devices, we had to limit our data collection on
this platform to YouTube and Facebook. We observe that the model
performs worse on the Samsung S8 than on the Pixel 5, which
we attribute to device model differences. For example, Facebook
uses the TCP protocol, which is affected by the TCP Maximum
Segment Size (MSS). Different smartphone models yield varying
MSS values (see table A1 in the Appendix). When connected to
the same network, the Pixel 5 sets the TCP MSS at 1360 bytes,
while the S8 uses 1260 bytes. Consequently, downlink packets are
concentrated around a MSS value of 1400 for the Pixel 5 and 1300
for the S8. We also observed that all tested Android UEs, except the
Samsung S8, use aMSS value of 1360, and that some iPhone versions
use 1400 while newer ones use 1410. These findings suggest that
attackers do not need to train on every smartphone model; a limited
set of representative devices suffices. Although device variation
can affect accuracy, a well-resourced attacker can generalize by
collecting traffic from diverse configurations.

4.2.9 5G-SA Specifics. The 5G specification adds new security
features like IMSI encryption, initial Non-Access-Stratum (NAS)
message protection, and optional user plane (UP) traffic integrity
protection design to protect against data tampering. Additionally,
a new Service Data Adaptation Protocol (SDAP) layer is added
on top of the PDCP layer to improve the Quality of Service (QoS)
functionality by mapping QoS flows to and from Data Radio Bearers
(DRBs) at the PDCP sub-layer in both directions. Unfortunately,
these changes do not protect against our attacks, as they are passive
and remain undetectable by integrity based protection techniques.
Furthermore, the PDCP layer remains similar to that of LTE.

To demonstrate this, we test our attack on a self-deployed 5G-SA
network, by running YouTube on the iPhone 12. Then, we use the
same CNN model which is trained on the private LTE network to
identify the app activities. The results show that the CNN model
achieves a 66.67% accuracy, which indicates that the PDCP layer in
5G is as susceptible as LTE to our attacks.
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Table 5: Accuracy (%) of app activity identification on com-
mercial networks.

App & Activity Proto. Samsung S8 Pixel 5 iPhone 12

YouTube QUIC 71.11 70.00 97.00
Facebook QUIC 63.64 100.00 100.00

WhatsApp Text chat TCP 13.70 56.60 -
Video call UDP 84.09 60.00 -

Line Text chat TCP 22.83 73.68 -
Video call UDP 52.38 100.00 -

4.2.10 Fine-Grained Activity Classification. In our attacker model
the adversary does not have access to network-layer information.
As such, distinguishing between in-app activities is a challenging
task. In particular, the attacker cannot precisely identify when
an application session begins, as they lack visibility into IP layer
metadata such as packet destinations.

To address this, we propose a recursive fingerprinting approach
that operates in a coarse-to-fine manner. Specifically, once the at-
tacker successfully identifies the application in use (e.g., WhatsApp),
they can reapply the fingerprinting process with a finer-grained
window to infer more specific user activities. We demonstrate this
recursive method in our evaluation using WhatsApp-generated
traffic. First, we detect sessions associated with WhatsApp, and
then we reapply our model to classify in-app tasks such as specific
notification events and state information about messages (e.g., sent,
delivered, read) based on previously labeled traffic.

As certain activities tend to be associated with specific types of
packets (e.g., DNS or fixed size TCP exchanges), our classifier is able
to reliably identify TCP packets corresponding to specific events
based on their characteristic sizes (e.g., 62 or 69 bytes), thereby
validating and extending the findings from [37].

4.2.11 Network Connection Quality. Our attack uses a cellular-
relay node to capture traffic at the PDCP layer. As such, while the
network environment does have some impact on the traffic’s behav-
ior (i.e, traffic shape [6]), the adversary can control the quality of
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the connection by adjusting the transmission power or by increas-
ing the bandwidth of the e/gNB component of the relay (which
is facing the victim). In order to control the quality of the radio
connection segment between the relay and the commercial network
the adversary can use radio-frequency power amplifiers in order
to improve the received radio power, or use directional antennas
to increase the received power and reduce interference from un-
wanted sources. Alternative setups, such as separating the UE and
e/gNB components of the relay and using an out-of-band method to
communicate between them, might also be viable options, however,
the efficiency of these falls outside the scope of this paper. In our
tests, the network environment had minor effects on our attacks.

5 Defense and Evaluation
In this section, we present our defense framework designed to
protect against traffic fingerprinting in cellular networks. We first
describe the underlying design principles, followed by an overview
of the implementation and the latency-overhead trade-off model.
Finally, we evaluate the defense using both analytical modeling and
experimental measurements.

5.1 Defense Design Principles
Our defense is built upon the following three core principles:

(1) Strong security foundations. For our cellular traffic de-
fense framework we take inspiration from Tamaraw [9], a
scheme proven secure under an information theoretic frame-
work of 𝜖-security. In our framework, the adversary’s proba-
bility to correctly identify the targeted application is bounded
by a tunable parameter 𝜖 ∈ (0, 1], which means that even an
optimal adversary cannot achieve a success rate higher than
𝜖 . We achieve this by clustering 𝑛 applications into 𝑘 = 𝑛 · 𝜖
groups and applying uniform traffic shaping within each
group, ensuring that any two applications’ traffic within the
same cluster is indistinguishable to the attacker.

(2) Feature obfuscation via regularization. Our defense re-
shapes both uplink and downlink traffic into fixed-size pack-
ets sent at fixed intervals to achieve indistinguishability. This
approach not only hides burst patterns and flow rate varia-
tions, but also conceals the correlation between uplink and
downlink data streams, thus preventing adversaries from
exploiting low-level features observed at the PDCP layer.

(3) Latency and overhead-aware deployment. Finally, we
explicitly model the trade-off between the introduced latency
and the shaping rate to achieve practical usability. For each
application, we determine the minimal shaping parameters
(𝜃𝑈𝐿, 𝜃𝐷𝐿) that satisfy its latency constraints, thus minimiz-
ing overhead while preserving the desired level of security.
This enables efficient grouping of heterogeneous applica-
tions under a common defense strategy.

Based on the principles above, we implement and experimentally
test our scheme at the PDCP layer of the 4G and 5G protocol stacks,
and show that our solution can be transparently deployed within
the radio access network without impacting the core network load.
This makes our scheme particularly suitable for privacy-sensitive
enterprises or private mobile networks.
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Figure 7: Traffic characteristics of five mobile applications:
TE-T (Telegram chat), WA-T (WhatsApp chat), SKP (Skype
video), TKT (TikTok), and YT (YouTube). Left: PDF output for
instantaneous throughput estimated using KDE, the x-axis
represents flow rate in log10 of Bps. Right: Average uplink
and downlink throughput (log-scale, Mbps). Text Chat apps
show lower and balanced traffic, while video streaming apps
exhibit significantly higher downlink rates. SKP (Skype) dis-
plays a notable uplink bias.

5.2 Challenges in App Fingerprinting Defense
While the proposed scheme provides strong security guarantees,
traffic regularization can introduce non-negligible latency and band-
width overheads. A key challenge arises from the heterogeneity of
mobile application behaviors, as shown in section 5.3. For exam-
ple, when comparing a video streaming service (e.g., YouTube) and
real-time communication applications (e.g., Skype) they both could
exhibit similar throughput, but their latency tolerances will differ
significantly, primarily due to the buffering mechanisms employed
by the video streaming service. Video streaming services can toler-
ate higher delays, whereas real-time communications require low
latencies to maintain interactive performance.

To address this challenge, we introduce a latency and overhead
trade-off model that relates the defense configurations (e.g., shaping
rates) to the application’s delay tolerance. Given an application’s
traffic profile and performance requirements, we derive the minimal
output rate needed to satisfy its delay constraints. This enables us
to form application clusters that not only meet the fixed security
level 𝜖 , but also minimize the shaping overhead, facilitating efficient
deployment in diverse mobile environments.

5.3 Traffic Patterns in Mobile Applications
Due to the diverse nature of mobile applications, their traffic pat-
terns vary significantly in throughput, burstiness, and directional
balance. In fig. 7 we show the traffic characteristics of five repre-
sentative applications. The left side of the figure shows the esti-
mated probability density function (PDF) outputs for instantaneous
throughput, computed from average throughput measured over
short time intervals using kernel density estimation (KDE) [41].
The x-axis represents the instantaneous flow rate (in Bps, on a log-
arithmic scale), while the y-axis denotes the estimated probability
density. To emphasize the differences between applications, zero
throughput intervals were excluded from the density estimates.
Across all applications, these zero-rate intervals constitute a signif-
icant portion of the data, reflecting the bursty nature of the traffic;
that is, traffic tends to arrive in sudden large bursts, followed by
periods of silence.
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As shown, traffic rate distributions vary significantly between
applications. For instance, Skype peaks around 105 Bps (Bytes per
second), indicating frequent low-rate bursts, while TikTok peaks
near 106 Bps with much higher bursts. The right side of fig. 7
compares the average uplink and downlink throughput across these
applications. Text chat apps have much lower overall throughput
than video apps, with relatively balanced traffic. In contrast, video
streaming apps produce farmore downlink traffic than uplink traffic.
Notably, Skype displays an inverse pattern, with higher throughput
observed in the uplink direction.

5.4 Regularization-Based Defense Design
We now describe the architecture and operation of our proposed
regularization-based defense. The defense mechanism is imple-
mented at the PDCP layer on both the UE and base station (gNB)
side, without modifying the application layer or the core network
stack. This ensures transparency to the user and application.

Briefly, according to 3GPP specifications[2, 3], there are two
PDCP entity types based on data flows: transmitting entities and re-
ceiving entities. Transmitting entities get service data units (SDUs)
from upper layers (e.g., IP, SDAP, RRC) and construct PDCP packets
by adding sequence numbers, header compression, and ciphering
before submitting them to the lower RLC layer. The receiving enti-
ties perform the process in reverse to recover the original payload.

5.4.1 Transmitting Entity. We introduce a traffic shaper that buffers
application traffic and releases fixed-size payloads at regular inter-
vals. This module is activated at the start of an application session
and remains active until the session ends. Upon activation, it re-
trieves its shaping parameters, specifically, the fixed packet size,
denoted by 𝑠 , and the packet transmission interval 𝜌 , from a pre-
computed configuration or from the upper layer (SDAP), which is
derived from the app’s assigned traffic cluster. Once initialized, the
module starts a timer that triggers every 𝜌 milliseconds. Incoming
SDUs from upper layers (e.g., IP or SDAP) are first stored in a FIFO
queue 𝑄𝑠𝑛𝑑 , and wait until next scheduled transmission. On each
timer event, 𝑠 bytes are extracted from 𝑄𝑠𝑛𝑑 to construct a PDCP
SDU. If the queue contains fewer than 𝑠 bytes at timer expiration,
padding is added, and if no data is available, a dummy packet con-
sisting of padding only is transmitted. This ensures that traffic is
emitted with uniform patterns, regardless of application behavior.

5.4.2 Receiving Entity. To properly reassemble the original IP pack-
ets, the receiving entity must identify the start and end of each IP
packet and distinguish actual payload data from padding. In our
design, we use a secondary FIFO queue𝑄𝑟𝑐𝑣 , and a custom reassem-
bly function which is executed after the standard PDCP procedure.
As such, after the PDCP decryption and integrity checks are con-
cluded, the receiver checks if the PDCP payload contains a valid
header. If not, and the receiver is not waiting for data, the packet
is treated as a dummy and discarded. Valid payloads are appended
to 𝑄𝑟𝑐𝑣 . Since the first IP packet is always contained in the first
PDCP packet of the bearer, the receiving entity can directly extract
the expected IP packet size |𝑖𝑝 | from the header of this first PDCP
packet. After appending the unencrypted PDCP packet payload to
𝑄𝑟𝑐𝑣 , the receiver updates the queue length |𝑄𝑟𝑐𝑣 | accordingly and
subsequently performs the following:

(1) If |𝑖𝑝 | > |𝑄𝑟𝑐𝑣 |, the receiver waits for additional PDCP pack-
ets to complete the reassembly.

(2) If |𝑖𝑝 | ≤ |𝑄𝑟𝑐𝑣 |, an IP packet of size |𝑖𝑝 | is extracted from
𝑄𝑟𝑐𝑣 , and a IP checksum validation is performed.

Any remaining data in the queue is checked for null bytes,
which indicate padding. These are discarded before processing the
next IP packet.

5.4.3 Direction Binding. Each application generates two traffic
flows: uplink and downlink. These two flows can be shaped sep-
arately. However, treating them as independent may leak infor-
mation through cross-directional correlation. To prevent this, we
bind each pair of shaping parameters (𝑠𝑈𝐿, 𝜌𝑈𝐿) and (𝑠𝐷𝐿, 𝜌𝐷𝐿) as
a joint configuration assigned per application cluster, where 𝑠𝑈𝐿

and 𝑠𝐷𝐿 denote the fixed packet sizes for uplink and downlink, and
𝜌𝑈𝐿 and 𝜌𝐷𝐿 represent their respective transmission intervals. This
ensures a consistent and uninformative traffic pattern.

5.5 Latency and Overhead Trade-Off Model
Any regularization-based defense inevitably introduces transmis-
sion delays, as arriving packets may need to wait until their sched-
uled send occasion. To quantify and control this delay, we present
a latency model that estimates the expected per-packet delay 𝐿 as
the sum of two components:

(1) Scheduling delay. The time a packet waits for the next
transmission occasion, which is bounded by the fixed packet
transmission interval 𝜌 .

(2) Queuing delay. The additional delay is caused when the
input traffic rate exceeds the shaping rate, resulting in the
traffic data being split and sent in multiple intervals.

We define the shaping rate as 𝜃 = 𝑠
𝜌
, where 𝑠 is the fixed packet

size and 𝜌 is the fixed transmission interval. We also denote 𝜆

as a random variable representing the instantaneous input traffic
rate, with 𝑃 (𝜆 = 𝑥𝑖 ) as its empirical probability mass function,
derived from observed traffic traces. Using this notation, the latency
experienced by a packet, given an input rate 𝜆, is defined as:

𝐿(𝜆) =
{
𝜌, 𝜆 ≤ 𝜃,

⌊ 𝜆
𝜃
⌋ · 𝜌 + 𝜌, 𝜆 > 𝜃,

(1)

where ⌊𝑥⌋ denotes the floor function, which rounds 𝑥 down to the
nearest integer. This function is used to capture the number of
complete transmission intervals required to clear the accumulated
data when the input rate 𝜆 exceeds the shaping rate 𝜃 .

Specifically:
(1) When 𝜆 ≤ 𝜃 , the traffic shaper’s capacity is sufficient to

handle the incoming traffic immediately, so each packet ex-
periences only the scheduling delay of 𝜌 .

(2) When 𝜆 > 𝜃 , the shaper’s capacity is insufficient. In this case,
the ratio 𝜆

𝜃
represents the number of intervals needed to

transmit the incoming data. The floor function ⌊ 𝜆
𝜃
⌋ gives the

count of complete intervals required. An additional delay of
𝜌 is then added to account for the scheduling delay in the
next interval. Together, ⌊ 𝜆

𝜃
⌋ · 𝜌 + 𝜌 models the total delay,

reflecting both the time needed to transmit the queued data
and the extra waiting time for the next transmission slot.
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The latency overhead is computed as the expectation:

𝐸 [𝐿] =
∑︁
𝑥𝑖

𝐿(𝑥𝑖 ) · 𝑃 (𝜆 = 𝑥𝑖 ) . (2)

In our experiments, we determine the optimal shaping rate 𝜃
for traffic flows by conducting a grid search over a predefined
list of candidate values for both 𝜃 and the interval 𝜌 . Specifically,
we generate candidate configurations by selecting various (𝑠, 𝜌)
pairs (with 𝜃 = 𝑠

𝜌
) and computing the corresponding expected

latency 𝐸 [𝐿] using Equation (2). We then choose the configuration
that minimizes the overhead while ensuring that 𝐸 [𝐿] remains
below a desired latency threshold. Alternatively, optimization-based
approaches can be employed; however, the grid search method
proves straightforward and effective for our use case.

5.6 Application Clustering
Once we determine each application’s uplink and downlink shaping
rates according to its latency tolerance, we perform clustering to
group similar applications into classes.

As stated, for an application 𝑎, we obtain two shaping rates: 𝜃𝑈𝐿
𝑎 ,

the rate corresponding to the uplink traffic of application a; and 𝜃𝐷𝐿
𝑎

the rate for downlink, both computed from the model in section 5.5.
We then apply 𝑘-means clustering over the (𝜃𝑈𝐿

𝑎 , 𝜃𝐷𝐿
𝑎 ) pairs to

assign the applications into 𝑘 clusters.
Within each cluster, the configuration of the traffic shaper is

based on the maximum uplink traffic as well as the downlink traffic
within the cluster:

(𝜃𝑈𝐿
𝐶 , 𝜃𝐷𝐿

𝐶 ) =
(
max
𝑎∈𝐶

𝜃𝑈𝐿
𝑎 ,max

𝑎∈𝐶
𝜃𝐷𝐿
𝑎

)
. (3)

This ensures that all applications in the same cluster can be
safely reshaped using the same parameters without exceeding their
individual delay bounds. We define the cost of the defense as the
ratio of the total throughput after shaping to the total throughput
before shaping, which is expressed as:

𝐶𝑜𝑠𝑡 =

∑
𝑎∈A (𝜃𝑈𝐿

𝑐 (𝑎) + 𝜃𝐷𝐿
𝑐 (𝑎) )∑

𝑎∈A (Λ𝑈𝐿
𝑎 + Λ𝐷𝐿

𝑎 )
, (4)

where A is the set of all applications, 𝐶 (𝑎) denotes the cluster to
which application 𝑎 belongs, and Λ𝑈𝐿

𝑎 , Λ𝐷𝐿
𝑎 represent the original

uplink and downlink traffic throughput of application 𝑎.
Finally, each application cluster is assigned a fixed pair of shaping

parameters (𝑠𝑈𝐿, 𝜌𝑈𝐿) and (𝑠𝐷𝐿, 𝜌𝐷𝐿), derived from the selected 𝜃
values. These parameters are applied by the traffic shaper to all flows
in the same cluster, ensuring uniform traffic shaping. The selection
of (𝑠, 𝜌) for each direction can be further tailored to the cluster
traffic characteristics. A smaller 𝜌 results in lower transmission
latency for small packets, while a larger 𝜌 helps avoid excessive
segmentation by allowing larger packets to be sent as a whole.
This trade-off enables more efficient and application-aware shaping
within each cluster.

5.7 Defense Evaluation
5.7.1 Analytical Evaluation. To evaluate our defense mechanism,
we examine how our proposed scheme balances bandwidth over-
head, latency overhead, and security levels. First, we derive the
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Figure 8: Bandwidth overhead vs. latency overhead at dif-
ferent security levels. Lower latency configurations increase
the bandwidth overhead. The graph highlights the trade-off
between latency and bandwidth.

instantaneous throughput distributions for both uplink and down-
link traffic for all 49 applications (as in fig. 7). Then, using our
latency model from section 5.5, we translate each application la-
tency requirement into a specific defense configuration.

We use a non-uniform 𝜖-security definition (commonly used in
this setting [9]), meaning that the adversary’s average accuracy
across all applications is bounded by 𝜖 , but individual application
accuracies are not. In practice, we cluster 𝑛 total applications into
𝑛 × 𝜖 groups and unify their throughput shaping parameters to ob-
scure traffic patterns. The bandwidth overhead introduced by our
defense arises from aligning each application’s traffic to the maxi-
mum uplink and downlink defense throughput within its assigned
group (see eq. (4)). The results are shown in fig. 8 where we plot the
bandwidth overheads (y-axis) against different latency constraints
(x-axis) for various security levels 𝜖 ∈ {10%, 20%, 30%, 40%, 50%}.
These translate to the following:

(1) Security is proportional to the bandwidth overhead. As
shown in fig. 8, the curve for 𝜖 = 10% (i.e., a stronger security
requirement on the adversary’s accuracy) stays above those
for higher 𝜖 values at all latency settings.

(2) Bandwidth overheads can be reduced by adjusting the
latency tolerance. Across all curves, increasing the latency
tolerance from near-zero to around 1000 ms substantially
lowers the bandwidth overhead. This suggests that if an
application (or user) can tolerate longer delays, the defense
can efficiently shape traffic without generating excessive
dummy packets or padding.

(3) Overheads are lower bounded. At each security level, un-
der very low-latency requirements, even a slight relaxation
dramatically reduces overhead. This indicates that under
strict delay constraints, the latency requirement is the pri-
mary factor contributing to the overhead. However, as the
permitted latency increases, each curve tends to stabilize
and no longer exhibits significant decline, at which point 𝜖
becomes the primary factor affecting overhead. This behav-
ior corroborates the existence of a theoretical lower bound
to the bandwidth overhead, as demonstrated by Cai et al. [9].
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Table 6: Throughput and latency of the proposed defense under varying packet transmission interval 𝜌 .

Transmission interval 𝜌 (ms) 10 9 8 7 6 5 4 3 2 1 Baseline

Measured throughput (Mbits/s) 1.15 1.28 1.44 1.63 1.92 2.30 2.88 3.82 5.74 11.30 25.8
Shaped throughput (Mbits/s) 1.20 1.33 1.50 1.71 2.00 2.40 3.00 4.00 6.00 12.00 –

Latency (ms) 33.915 31.457 29.000 28.873 27.011 26.871 25.081 25.065 23.520 21.697 27.575

Note: Measurements are obtained using srsRAN_4G with a srsUE/srsENB testbed (USRP B210, SISO) on an AMD Ryzen 9 7950X CPU with 64GB RAM.

5.7.2 Defense Performance. In addition to the analytical evaluation,
we also implement our defense in a LTE testbed to assess its real-
world performance. Specifically, we implemented the algorithm
described in section 5.4 using the open-source project srsRAN_4G.
The modified srsUE and the srsENB are connected via two USRP
B210, with the srsENB cell configured to use 100 physical resource
blocks in single-input single-output (SISO) mode. We simplify the
configuration by fixing the packet size 𝑠 to 1500 bytes and varying
the transmission interval 𝜌 to control the shaping throughput 𝜃 = 𝑠

𝜌
.

We then measure the effective throughput using iPerf and evaluate
end-to-end latency by generating ICMP traffic and recording the
round-trip time. For comparison, we also use the unmodified srsUE
and srsENB as the baseline.

As table 6 shows, the measured throughput closely follows the
shaped values across all tested 𝜌 , with minor degradation of typ-
ically less than 5% due to dummy packets and padding. Without
defense, the baseline throughput reaches 25.8Mbits/s. The maxi-
mum throughput achieved under our defense is 11.3 Mbits/s. This
value is close to the theoretical shaping limit of 12 Mbits/s, which
is imposed by our implementation: the minimum packet sending
interval is 1 ms, and with 𝑠 = 1500 bytes this yields a shaping rate
of 12 Mbits/s. Regarding latency, we observe that when the shaping
interval 𝜌 is small, the additional delay introduced by the defense
is negligible. Latency increases when 𝜌 becomes larger, as packets
experience additional queuing before transmission. Interestingly,
reducing the packet sending interval yields even lower latency
than the baseline, due to the finer granularity of packet scheduling.
From the result, we can learn that when the defense is correctly
configured, it does not impact the operation of the applications.

6 Conclusion
Our traffic fingerprinting attack underscores a substantial and re-
alistic privacy risk within current cellular networks, largely due
to its high accuracy and demonstrated practicality across diverse
real-world scenarios. While adversaries require certain hardware
and software tools to intercept the radio link [16, 27, 33], these
remain relatively easy to obtain, enabling potential exploitation by
both cybercriminals and large organizations involved in espionage.
Such targeted attacks can severely threaten individual privacy and
security by revealing fine-grained user activities, from specific ap-
plication usage to browsing behaviors and messaging interactions,
and thereby facilitating a wide array of malicious operations, includ-
ing phishing, financial fraud, identity theft, unauthorized profiling,
targeted advertising, surveillance, and censorship. As cellular net-
works continue to expand in coverage and user base, these risks
demand proactive attention from network operators, application
developers, and policymakers.

While our proposed regularization-based defense effectively mit-
igates fingerprinting threats by providing robust security guaran-
tees, it introduces unavoidable performance trade-offs, particularly
in terms of bandwidth overhead and latency. Despite its backward
compatibility and flexibility, the overhead may hinder widespread
adoption in environments with strict latency constraints or lim-
ited resources. Future research should focus on optimizing this
trade-off, potentially through adaptive defense strategies or more
sophisticated traffic shaping techniques to maintain strong security
without significant performance penalties.
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Appendix

Table A1: Maximum Segment Size (MSS) values of different UEs when connected to the same carrier.

Phone OS Version Chipset Baseband Version MSS (bytes)

iPhone X Max 15.4 Apple A12 Bionic 4.03.02 1400
iPhone 11 16.3 Apple A13 Bionic 4.00.00 1400
iPhone 12 15.4.1 Apple A14 Bionic 2.53.01 1410
iPhone 13 Pro Max 16.1.2 Apple A15 Bionic 2.12.02 1410
iPhone 14 16.3 Apple A15 Bionic 1.41.02 1410
iPhone 15 17.2.1 Apple A16 Bionic – 1410
Samsung S8 9 Exynos 8895 G9500ZHS6DUD1 1260
Google Pixel 5 13 Snapdragon 765G TQ1A.221205.011 1360
Honor V30 Harmony OS 2.0.0 Kirin 990 21C20B710S000C000 1360

ZTE Axon 30 Ultra 5G 11 Snapdragon 888 5G MPSS.HI.4.0.c8-00016-LC
ALL_PACK-1.422254.58 1360

Huawei Mate 30 5G 10 Kirin 990 21C20B516S000C000 1360
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(a) YouTube
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(b) TikTok
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(c) Twitch
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(d) Vimeo
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(e) Messenger - video.
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(f) Garena (game)
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(g) Spotify
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(h) Twitter

Figure A1: PSD distributions of app activities. The first row corresponds to video streaming activities on YouTube, TikTok,
Twitch, and Vimeo. The second row shows the traffic behavior corresponding to Messenger video call activities, followed by the
Garena gaming activities. The last two images represent the behaviors of Spotify music and Twitter. The red and blue pixels
represent uplink and downlink traffic, respectively.
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Table A2: Classification performance for 40 apps and 49 activities.

Category App Activity Precision Recall F1-Score App Version

Video

YouTube – 1.00 0.98 0.99 17.17.37
TikTok – 1.00 1.00 1.00 27.3.4
Vimeo – 1.00 0.94 0.97 3.65.3
TED – 1.00 1.00 1.00 7.4.64
WeTV – 0.91 0.86 0.89 5.5.8.9820
Bilibili – 1.00 1.00 1.00 3.16.0
Twitch – 0.93 0.76 0.84 14.3.2
iQIYI – 1.00 1.00 1.00 4.11.0

Music

Spotify – 0.96 1.00 0.98 8.7.92.521
YouTube Music – 1.00 0.96 0.98 5.36.51
SoundCloud – 1.00 0.98 0.99 2022.12.05-release
QQ Music – 1.00 0.98 0.99 12.0.0.9
Shazam – 1.00 1.00 1.00 13.9.0-221205
KuGou – 1.00 1.00 1.00 11.4.2
NetEase Cloud Music – 1.00 1.00 1.00 8.9.0
Pandora – 1.00 1.00 1.00 2212.1

Social

Facebook Reels 1.00 1.00 1.00 396.1.0.28.104

Instagram Reels 0.96 1.00 0.98 263.2.0.19.104Text 0.92 0.98 0.95
Twitter – 1.00 1.00 1.00 9.69.1-release.0
Reddit – 0.94 1.00 0.97 2022.45.0
Pinterest – 1.00 1.00 1.00 10.44.0
Quora – 1.00 1.00 1.00 3.2.20
Weibo – 1.00 1.00 1.00 12.12.2
Zhihu – 1.00 1.00 1.00 8.33.0

Communication

WhatsApp Text 1.00 1.00 1.00 2.22.24.78Video 1.00 1.00 1.00

Messenger Text 1.00 1.00 1.00 390.2.0.29.103Video 1.00 1.00 1.00

Telegram Text 1.00 1.00 1.00 9.2.2Video 1.00 1.00 1.00

WeChat Text 1.00 0.94 0.97 8.0.30Video 1.00 1.00 1.00

Snapchat Text 0.91 1.00 0.95 12.12.0.38Video 1.00 1.00 1.00

Skype Text 1.00 0.98 0.99 8.92.0.206Video 1.00 1.00 1.00

QQ Text 0.98 1.00 0.99 8.2.11Video 0.83 1.00 0.91

Line Text 1.00 1.00 1.00 12.21.1Video 0.98 1.00 0.99

Game

Garena Free Fire – 0.94 1.00 0.97 1.9.4.1
PUBG Mobile – 1.00 1.00 1.00 2.3.0
Arena of Valor – 1.00 1.00 1.00 1.48.1.2
FIFA Mobile: FIFA World Cup – 1.00 1.00 1.00 18.0.02
Genshin Impact – 1.00 0.91 0.95 3.3.0_11741873_11806263
Hearthstone – 0.92 0.98 0.95 25.0.159202
League of Legends: Wild Rift – 1.00 0.94 0.97 3.5.0.6093
UNO – 0.98 0.94 0.96 1.10.3448
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