Personal Data Flows and Privacy Policy Traceability in
Third-party LLM Apps in the GPT Ecosystem

Juan-Carlos Carrillo
VRAIN, Universitat Politécnica de Valéncia
Spain
juacalOj@upv.es

Rongjun Ma
Aalto University
Finland
rongjun.ma@aalto.fi

Abstract

The rapid growth of platforms for customizing Large Language
Models (LLMs), such as OpenAI’s GPTs, has raised new privacy
and security concerns, particularly related to the exposure of user
data via third-party API integrations in LLM apps.To assess privacy
risks and data practices, we conducted a large-scale analysis of
OpenAT’s GPTs ecosystem. Through the analysis of 5,286 GPTs
and the 44,102 parameters they use through API calls to exter-
nal services, we systematically investigated the types of user data
collected, as well as the completeness and discrepancies between
actual data flows and GPTs stated privacy policies. Our results high-
light that approximately 35% of API parameters enable the sharing
of sensitive or personally identifiable information, yet only 15%
of corresponding privacy policies provide complete disclosure. By
quantifying these discrepancies, our study exposes critical privacy
risks and underscores the need for stronger oversight and support
tools in LLM-based application development. Furthermore, we un-
cover widespread problematic practices among GPT creators, such
as missing or inaccurate privacy policies and a misunderstanding
of their privacy responsibilities. Building on these insights, we
propose design recommendations that include actionable measure-
ments to improve transparency and informed consent, enhance
creator responsibility, and strengthen regulation.
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1 Introduction
The rapid growth of Large Language Models (LLMs) has led to the

emergence of open ecosystems for creating and sharing LLM-driven
applications. Platforms such as Poe [51], FlowGPT [71], Yuangqi [72]
and OpenATl’s GPT Store [46] enable users to easily build and dis-
tribute their own applications with minimal effort. Starting from
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a simple prompt, users can develop specialized LLM apps, for ex-
ample, by uploading a math textbook and instructing the model to
act as a tutor. While these ecosystems foster personalization and
community-driven creativity exchange, they also introduce height-
ened security and privacy risks that have yet to be understood.

LLM app platforms are exposed to a range of security and privacy
risks. Since these applications share the same underlying LLM
backend, they inherit many of the vulnerabilities affecting general-
purpose language models. These risks include unauthorized data
processing, data leakage [29], prompt injection [20], training data
extraction [10], backdoor attacks, and the profiling of individuals
without consent [30]. Additionally, users often have little control
or visibility over how their data is collected, reused, and exposed,
which heightens the risk of privacy violations and misinformation
dissemination [30, 76, 82, 83].

Due to the low barrier to entry for LLM app creation, the dis-
tinction between LLM app creators and end users is often blurred,
leading to miscommunication and uncertainty about how user data
is handled [35]. Unlike traditional application ecosystems, where
developers are typically responsible for data protection and are ex-
pected to possess technical expertise [21], many creators in the LLM
app ecosystem may lack the necessary experience to implement
adequate security measures or legal safeguards for user data [35].
This raises important questions about how data handling is actually
implemented in practice within these LLM app ecosystems.

To make it even more challenging, LLM app platforms increas-
ingly enable integrations with third-party services to extend LLM
app functionality. For example, GPTs hosted by OpenAl allow LLM
apps to connect with external services [45]. This complicates data
flows and creates challenges in securing inputs, outputs, and in-
teractions across multiple components [7, 52]. These third-party
integrations may also introduce external risks, including the possi-
bility of unauthorized access through third-party APIs [78].

In this paper, we examine two key aspects: 1) we identify what
types of personal information are transmitted by GPTs to external
services (beyond OpenAr’s infrastructure); and 2) we assess whether
these data practices align with the transparency principles stated
in the GPTs’ privacy policies.

This paper makes several contributions. First, we develop and
validate a scalable methodology to analyze personal data flows
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within GPTs, automatically identifying potential personal informa-
tion (PI) transmissions to third-party APIs using a refined taxonomy
and advanced classification techniques. Second, by applying this
method to a large dataset of GPTs, we identify specific categories of
PI that are frequently transmitted via external API calls. Third, we
conduct a systematic assessment of the alignment between detected
PI flows and the disclosures in the associated privacy policies, eval-
uating both traceability and completeness. We explicitly scope our
analysis to the collection of data transmitted through the Action
interface. Retention, downstream use, and cookie- or session-level
tracking are excluded from this study. Based on these findings, we
offer actionable recommendations to foster a more responsible and
privacy-conscious LLM app platforms.

2 Background

Large Language Model (LLM) apps are customizations of founda-
tion models designed to perform specific tasks across a wide range
of domains. For example, an LLM can be customized to function
as a calendar assistant by integrating with services like Google
Calendar to schedule appointments and deliver timely reminders
for upcoming meetings and events [25, 59]. As opposed to general-
purpose LLMs, these LLM apps empower users to become creators,
allowing them to customize the model through prompt engineering,
incorporate domain-specific knowledge for fine-tuning, or integrate
external services [46]. To support the creation, discovery, and de-
ployment of such LLM apps, various platforms have emerged, such
as OpenAI’s GPT Store. These platforms enable creators to publish
their LLM apps and share them with a broader user community.

Most LLM app platforms provide prompt-based LLM app cre-
ation, where users define LLM app behavior through natural lan-
guage prompts, such as Miniapp [41] and FlowGPT [71]. In this case
any data disclosed by the user would be kept within the platform
itself. In addition, there are other platforms that allow extending
the functionality of LLM apps through API integration, enabling
connections to third-party external services; examples include Ope-
nAD's GPTs [46] and Poe [51]. This second type of platforms is
the focus of our work. In particular, Figure 1 illustrates this type
of architecture, where customized LLM apps can access external
services exposed as API calls.

To illustrate the practical implications of such integrations and
how privacy violations can occur, consider a calendar assistant GPT.
The creator of this assistant might instruct it to capture a user’s
location, preferred times, and email address, and then forward these
details to a third-party scheduling service. Even if the scheduling
platform’s own privacy policy claims it does not collect or store
precise user location, the GPT developer could still transmit location
data contradicting the stated practices of the service.

In this paper, we focus on OpenAI’s GPTs store, which has gained
significant popularity and supports integration with third-party
services. All GPTs (LLM apps) run on OpenAT’s hosted infrastruc-
ture and can be kept private, shared within a team, or get published
to the public GPT Store [46]. As of January 2024, over three mil-
lion GPTs had been created, attracting approximately 6.1 million
monthly visits [47, 62]. OpenAI’s GPTs allow users to build their
own LLM apps on top of GPT-4o0 [24] without writing code. Users
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Figure 1: A common infrastructure for customized LLM ap-
plications, supporting both in-platform customization and
integration with external services

can tailor the GPTs’ behavior, tone, and responses by providing in-
structions, examples, and optional reference files. Creators of GPTs
may enable access to internal tools of OpenAl’s infrastructure, such
as a code interpreter or OpenAI’s image generation model DALL-E.
Additionally and very importantly, GPTs may connect to exter-
nal services through features called “Actions”. Creators must
define each “Action”, specifying the parameters to be sent during
execution and providing a link to a privacy policy. The action de-
scription and its parameters are passed to the GPT model as part of
the GPT context. When a user interacts with the GPT, the model
interprets if it needs to use the action and extracts the required
parameters from the user prompt. That is, the model extracts from
the prompt what it interprets fits the definition given by the GPT
creator.

3 Methodology

Our overarching goal is to measure the extent to which third-party
GPTs collect personal information and whether their privacy poli-
cies accurately reflect these practices. To do this, we used a system-
atic methodology summarized in Figure 2. We explain the process
for collecting and preparing datasets of GPTs and their associated
API specifications, the development of a comprehensive taxonomy
and the method for detecting personal parameters within API calls,
and the analysis framework used to assess the traceability between
detected data transmission and stated privacy policies. While our
method targets the GPT Store, it can be applied to any LLM app
platform where Action-style parameter specifications are available.

3.1 Dataset Collection and Preparation

3.1.1 Initial Data Sources. The OpenAl GPT Store presents only a
subset of GPTs, organized into 10 categories. It does not provide
a comprehensive index of all available GPTs, making exhaustive
data collection through this channel alone infeasible. To tackle
this limitation, we used a double strategy. We used third-party,
community-curated indexes of GPTs, and GPTs datasets collected
by other researchers. In particular, we used:

1) GPTStore.ai: From April 5 to April 7, 2024, we scraped GPT-
Store.ai [66], a third-party website that aggregates listings of GPTs.
This crawl returned 96,521 links. We subsequently used these links
from April 10 to 12, 2024, to query OpenAT’s official store, retrieving
metadata for 85,478 GPTs that were publicly accessible. 87% of GPTs
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Figure 2: An overview of the method: data collection and analysis

in our dataset remain public, underscoring the timeliness of our
findings despite recent API changes.
2) BeeTrove Dataset: to enhance domain diversity and ensure a

broader representation across sectors such as productivity, educa-
tion, finance, and healthcare, we incorporated the BeeTrove dataset
[4]. It contains 334,348 entries following a consistent schema.

Deduplicating the overlap between the two sources, the resulting
combined dataset comprises 343,122 total unique GPTs. While it
does not capture the entire population, estimated to exceed 3 million
GPTs [47], it offers a representative sample that reflects the diversity
(as we will see later, e.g., in terms of categories).

3.1.2 Collected Data. GPTs are defined by a manifest. We pro-
cessed each manifest and several key data dimensions within it:

a) Manifest: The manifest is the descriptor associated with the
GPT. It contains basic information about the GPTs such as the
application id, name, description, query examples and information
about the creator. It also defines which tools the GPTs has access
to, both provided by OpenAl (e.g., access to files uploaded by the
creator, code interpretation, image generation) or external API
calls, called actions. Actions include an extended description in the
manifest to cover the integration (JSON schema) and a link to the
privacy policy. An example manifest is included in § A.

b) Action JSON schema (OpenAPI Specifications): The GPT uses
the JSON schema to connect to the external API, and it includes the
expected structure of request and response parameters: parameter
names, data types, and descriptions. An example action description
with a JSON schema and privacy policy link is in § B.
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c) Privacy Policy: the privacy policy of each action is obtained
through a link included in the action description. The policy should
address the data protection and user privacy of the data sent through
the corresponding action.

3.1.3 Data Filtering. From our collection of 343,122 unique GPTs,
we filtered the dataset following these steps. First, we focused ex-
clusively on GPTs that explicitly defined at least one “action,” indi-
cating an integration with an external API, which is the focus of
our work. This left 8,192 GPTs that included at least one external
API action. Second, we extracted API parameter information from
the action JSON schemas provided in their manifests. This step was
essential for our classification of potentially transmitted person-
ally identifiable information (PI). Due to variability and occasional
inconsistencies in the schema structures, we retained only those
GPTs for which parameter data could be extracted in a robust and
consistent manner. As a result, our dataset included a final total
of 5,286 GPTs that explicitly defined at least one action and from
which parameter data could be consistently extracted from their
JSON schemas.

3.2 PI Taxonomy Creation

To detect specific types of personal data being collected through API
parameters, we need a data taxonomy for personally identifiable
information (PI). We first considered different legal frameworks to
guide our efforts. For example, in the United States, the National
Institute of Standards and Technology (NIST) provides official guid-
ance on the classification and handling of personally identifiable
information [36], while in the European Union, the General Data
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Protection Regulation (GDPR) mandates strict controls on data min-
imization, lawful data processing, and user rights [17]. Although
these frameworks differ in their specific details and jurisdictions,
they share foundational principles: transparency, individual con-
sent, and effective data security. However, these regulations do not
provide a detailed definition of PI categories or a data taxonomy,
as it has been pointed out on previous research [40].

To overcome this limitation, we adapted a taxonomy of PI [58]
inspired by the work of [40, 61]. Since the taxonomy is primarly
inspired by US regulation, we extended their work by including
the data specifications outlined in the GDPR. More specifically, we
incorporated both the general data definitions from Article 4 as well
as the regulations on the processing of special categories of personal
data from Article 9. This includes Online Identifiers for Profiling and
Identification, Genetic Data, Health Data, and Sensitive Personal Data
such as race, religion, sexual preference, or law enforcement data.

We also adapted the taxonomy to fit the specifics of conversa-
tional AL For example, many GPTs collect the whole message from
the user or conversation, instead of individual parameters. We de-
fined the category of CONVERSATION to group such cases. In our
analysis pipeline, parameters falling into this category trigger an
aditional scrutiny to assess what type of data that specific GPTs
may be collecting.

As aresult, we use an 83-categories PI taxonomy that can be used
for privacy analysis in the context of LLM app integration. The com-
plete data taxonomy is included in § D.1. Our classification scheme
improves established data-privacy literature with its granularity.
For instance, many prior works lump personal identifiers together
or focus solely on classic fields like name, address, or date of birth.
By contrast, our extended taxonomy captures both newly emerging
identifiers (e.g., CRYPTO wallet addresses, ONLINE_IDENTIFIERS,
WORK_PHONE_NUMBER) and highly sensitive medical elements
as defined in the GDPR. This granularity is crucial for ensuring that
LLM apps handle data responsibly across a wide array of personal
information types.

3.3 PI Classification in API Parameters

We developed a systematic classification approach to identify Per-
sonal Information (PI) transmitted via third-party APIs in GPTs.
This involved preparing the API parameter data for classification,
annotating a subset of this data according to our PI taxonomy, and
then training and validating a machine learning model to automate
this classification at scale.

3.3.1 Preparation of Input Data for Classification. For each API
parameter identified in our dataset of GPTs, we extracted relevant
textual information to serve as input features for our PI classi-
fier. As detailed in § 3.1.2b, this included the parameter name (e.g.,
“email”), the parameter description provided by the creator (e.g.,
“Email address of the user making a booking”), and the contextual
information from the GPT name (e.g., “Virtualdeborah”) and GPT
description (e.g., “Book complex tasks from a real human”). These
distinct textual fields were concatenated into a single input string
to preserve the contextual richness of each parameter, enhancing
the quality of subsequent annotation and classification.
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3.3.2  Annotation of APl Parameters. With the input data prepared,
we proceeded to annotate a subset of the API parameters using
the 83-category PI taxonomy developed in § 3.2. This annotation
process was multi-staged to ensure quality and address data imbal-
ances. We began by randomly selecting 300 parameters from distinct
GPTs to form an initial annotation set. These parameters were in-
dependently annotated by three of the paper authors, all previously
trained in privacy-related data classification, using our PI taxonomy.
Across the annotated parameters, a total of 24 distinct PI categories
were observed. The first 100 parameters yielded a Krippendorft’s
Alpha of 0.5897, indicating moderate agreement and highlighting
areas for improvement. Following detailed discussions and refine-
ments to the annotation guidelines to address ambiguities. For
instance, initial disagreements arose from: (1) classifying location-
related parameters with varying granularity (e.g., COUNTRY vs.
GEO_LOCATION); (2) interpreting generic parameter names (e.g.,
user_input) that could capture user conversation; and (3) distin-
guishing between closely related PI types (e.g., SCREEN_NAME vs.
ONLINE_IDENTIFIERS). After this, the remaining 200 parameters
were annotated, resulting in an improved Krippendorff’s Alpha of
0.8379. This demonstrated a high level of agreement and established
consistent criteria for identifying PI within API parameters.

3.3.3 Enriching the Dataset to Address Class Imbalance. Analysis
of the initial annotation set revealed considerable class imbalance
across the 83-category PI taxonomy, with many categories sparsely
represented or entirely missing. To address this limitation, we ap-
plied two complementary dataset enrichment strategies:

1) Cluster-guided Sampling via Broader Category Groupings:

We sought broader coverage of related PI labels by grouping the
83-category taxonomy into higher-level categories (e.g., Basic Per-
sonal Information, Contact Information, Government or Official
IDs; see Appendix D.2). A preliminary model, trained on the initial
300 annotated samples, generated predictions on the remaining
unlabeled data. Using HDBSCAN [39], we then clustered the unla-
beled parameters within each major category. From each cluster,
we selected the most representative examples, thereby boosting
our coverage of diverse PI samples while limiting redundancy. This
process yielded 213 additional samples for manual annotation, dis-
tributing 20 per category except for the Government or Official IDs
category, which had only 13 suitable samples.

2) Targeted Expansion through Human—GPT-40 Collaboration: To

further enrich low-frequency classes, we employed GPT-40 in a
collaborative annotation workflow inspired by frameworks such as
MEGAnno+ [28] and CoAnnotating [32] among others [68]. Using
the initial 300 annotations as a base, we applied TextGrad [81] to
optimize a task-specific prompt for GPT-40, enhancing its ability to
classify PI categories. We ran GPT-40 across the corpus and selected
parameters that it identified as PI. To strategically surface cases
likely to improve coverage of rare categories, we compared GPT-
40’s findings against those of an interim classifier trained on the
513 manually labeled samples already gathered (from the initial 300
and the 213 from cluster-guided sampling). Parameters identified
by GPT-40 but missed by this interim classifier were prioritized.
From each newly identified class through this process, we selected
up to 20 samples for manual annotation, yielding 262 additional
labeled parameters.
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Together, these strategies produced a final annotated dataset!
for training our classification model, with 775 API parameters
spanning 54 unique PI categories — which are the 54 first shown
in Table 7 in the Appendix. This enriched dataset significantly im-
proved class balance and served as a robust foundation for training
our final classification model. The Krippendorff’s Alpha for this
expanded 775 sample dataset was 0.8147.

3.3.4 Qualitative Analysis. In addition, during the annotation pro-
cess, we took memo notes on noteworthy cases involving sensitive
personal information or problematic behavior. These cases were dis-
cussed among researchers. We qualitatively reviewed and reflected
on these examples to provide additional context for the types of
data being collected and to reflect on their appropriateness and
potential privacy risks. This is the basis for the qualitative insights
shown in § 4.1.3.

3.3.5 Training and Validation. We use Fastfit to fine-tune a classi-
fier based on Roberta-Large [34], a pre-trained BERT model. FastFit
[79], a method specifically designed to deliver fast and accurate
few-shot classification, particularly in scenarios with many seman-
tically similar classes, underscoring its suitability for the complex
classification challenges present in our study. To evaluate classi-
fier performance, we employed a stratified 5-fold cross-validation
strategy to preserve class distributions across training and valida-
tion splits. We obtain a macro F1 score of 87%. Detailed analysis
revealed consistently high precision and recall for most categories,
including near perfect performance (precision and recall >92%) for
critical categories such as MEDICAL_HISTORY, EMAIL_ADDRESS,
and CV_RESUME. See Table 13 in the Appendix. The validation
results confirm the effectiveness and reliability of the classifier,
demonstrating robust performance across different contexts and
data categories. Despite small classification errors between closely
related categories (which would still be useful to know there is
personal information involved in that parameter), the high scores
across multiple evaluation metrics confirm the robustness and scal-
ability of our methodology.

Alternative methods for classification: We also considered using an
LLM (GPT-4o) for this classification task. However, as we show in
Table G.1 (for GPT-40) and Table G.2 (for our fine-tuned RoBERTa
model), our method based on the fine-tuned BERT architecture
(RoBERTa) worked much better for the actual PI classification.
Specifically, while GPT-40 achieved a Macro F1-score of 0.61, our
fine-tuned RoBERTa model demonstrated significantly higher per-
formance with a Macro F1-score of 0.87. This finding is consistent
with existing literature, which suggests that it is often better to use
smaller language models fine-tuned on specific tasks rather than
relying on zero-shot capabilities of larger LLMs for classification
[8, 16]. Moreover, smaller, fine-tuned models can offer significant
resource efficiency advantages while maintaining strong perfor-
mance [60]. Thus, while GPT-40 was actually very useful to ex-
pand our dataset (see § 3.3.2) for a more balanced training set, our
fine-tuned RoBERTa-based approach provided superior accuracy
and reliability. In addition, by leveraging RoBERTa-large, a fine-
tuned transformer model with 355 million parameters requiring

I The annotated dataset will be provided on acceptance of the paper

277

Proceedings on Privacy Enhancing Technologies 2026(1)

approximately 710 MB in FP16 precision, we achieve strong classi-
fication performance without the need for massive infrastructure.
In contrast, larger foundation models such as GPT-40 ( 200 billion
parameters, 400 GB) or GPT-40-mini ( 16 GB) impose considerable
memory and computing overhead.

3.4 Traceability Analysis

Our traceability analysis framework evaluates the alignment be-
tween the personal data transmitted by GPTs to third-party APIs
and the disclosures made in their associated privacy policies. This
process involves enhancing the capabilities of PoliGraph-er [13],
an automated policy analysis tool, with Large Language Models
(LLMs) to bridge the gap between policy statements and our specific
data classification taxonomy.

3.4.1  PoliGraph-er Processing of Privacy Policies. To examine how
creators/organizations disclose the types of personal information
(PI) they collect, we analyzed the text of privacy policies using
PoliGraph-er [13], a state-of-the-art NLP tool designed to extract
structured information about data practices from privacy policies.
It is worth noting that not all GPTs had valid privacy policy links, as
we detail in the results with specific figures: some links are unusable,
point to unrelated content or cannot be processed by PoliGraph-
er — e.g., non-English privacy policy, malformed HTML etc. For
all the valid privacy policies, PoliGraph-er can extract structured
statements about data collection, enabling us to analyze which PI
types were explicitly disclosed. These graph-based outputs form
the foundation for comparing policy statements with actual data
transmitted in API interactions, as detailed next.

3.4.2 Extending PoliGraph-er with LLMs for Semantic Clustering.
While PoliGraph-er effectively extracts structured statements about
data collection from privacy policies (e.g., “We collect — email"),
directly comparing these outputs with our PI classification of API
parameters (see § 3.3) presents a challenge. The extracted data type
mentions (such as “email address,” “location data,” or “user’s job
title”) are expressed in diverse natural language and do not directly
align with the categories in our PI taxonomy. To enable meaning-
ful comparisons between what policies claim to collect and what
is actually transmitted through APIs, we developed a process to
semantically cluster these extracted data type mentions and map
them to our standardized PI taxonomy. This crucial step translates
the diverse language of privacy policies into a consistent, struc-
tured format, facilitating direct traceability analysis. To implement
this, we first extracted 26,629 “collection” relationships from suc-
cessfully parsed policies, each containing an entity, a collection
relationship, and a data type. After deduplication, this yielded 5,741
unique data type mentions. We then employed GPT-40-mini to
perform the semantic clustering and mapping. For example, policy
statements referencing “position”, “professional title”, or “expertise”
were grouped by the LLM and mapped to our JOB_TITLE category.

To evaluate the performance of this LLM-assisted mapping, we
sampled up to 10 mapped statements per PI category, producing
a validation set of 264 examples. A researcher manually verified
whether each LLM classification matched the correct taxonomy
label. GPT-40-mini achieved an overall accuracy of 87.83% in this
task, demonstrating strong alignment with human judgment in
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clustering and categorizing these collection statements — the spe-
cific prompt used for this categorization is provided in § E.2 , with
the corresponding confusion matrix shown in Table 10.

3.4.3 Compliance Types. To assess privacy compliance in GPT
third-party integrations, we follow the literature on traceability in
other domains, such as social media, smartphone apps, and voice
assistant skills [3, 14, 42, 80, 86], adapted to suit the data flows char-
acteristic of this ecosystem. Each GPT is assessed as having broken,
partial, or complete traceability [3, 42, 80, 86]. These classifications
are defined as follows:

Complete: occurs when all types of personal data transmitted by
the GPT, according to its OpenAPI schema or parameter definitions,
are explicitly mentioned in the privacy policy. For instance, if a
GPT collects a user’s email address and location, a statement such
as “We collect your email address and geographic location to provide
our services” is considered fully traceable.

Partial: applies when only some of the data types transmitted via
parameters are mentioned in the policy, or when the references to
data collection are vague or generic. For example, if a GPT transmits
both email address and phone number, but the privacy policy only
includes the phrase “we may collect your personal information”, this
would constitute partial traceability. Similarly, policies that men-
tion one of the collected data points (e.g., email) but omit others
(e.g., phone number or location) fall into this category. Some GPTs
rely on a parent organization’s privacy policy instead of offering
GPT-specific data handling details. We classify these as partial dis-
closures: they reference data practices in general terms but lack the
direct, GPT-specific description of data flows needed for a complete
disclosure.

Broken: refers to cases where the GPT lacks a privacy policy,
provides a broken or inaccessible link, or includes a policy that does
not mention any relevant data types, despite transmitting them. For
instance, a GPT that collects geolocation to check for the weather
APISs but its policy does not mention location.

3.5 Active Audit: Data Sent to Third Parties

To complement our static analysis of Action schemas, we conducted
an active audit to directly observe the data transmitted by GPT-
integrated APIs to third-party endpoints. We implemented three
minimal services, each corresponding to an Action from our dataset,
and deployed them. Each service simply printed to the console the
parameters received in the request, allowing us to verify the payload
content. The three Actions reproduced common cases of potential
exposure: (i) Weather-Echo, a weather query Action with a sin-
gle location_data parameter (Fig. 7); (ii) Conversation-Echo, an
Action with a original_text parameter of type CONVERSATION
(Fig. 6); and (iii) LeetCV, a multi-field Action requesting contact
details, salary, past_employments, job title, email, CV... (Fig. 5). For
each case, we interacted manually with the corresponding GPT,
providing controlled inputs and observing the exact parameters
received by our servers. This setup allowed us to confirm whether
parameters were populated beyond the user-provided information,
whether the data sent matched the content of the prompt, and
whether user conversation could be extracted. This active audit
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serves to validate and complement our large-scale analysis by pro-
viding empirical evidence of the actual data transmitted at the
transport layer.

4 Results

4.1 Personal Data Parameters

Building upon the procedure described in § 3.1.3, we extracted a
total of 44,102 API parameters. These parameters, defined in creator-
supplied action schemas, offer insight into how user input may be
transmitted to external services. Our analysis across 44,102 API
parameters reveals that 15,392 entries, approximately 35% cor-
respond to categories of sensitive or identifying data (See
Table 1). While a majority of parameters fall into the non-sensitive
class, a considerable portion involve fields with privacy implications.
Parameters classified as CONVERSATION, representing ambiguous
or obfuscated fields that may extract entire prompts or conversa-
tion history, account for 11.5% of all cases. Web addresses (URL)
and language metadata (LANGUAGE) are each found in about 5.8%
and 5.7% of parameters respectively, sometimes linking to external
user content. Email addresses appear in 1.5% of parameters, while
passwords are detected in 1.8%. Information related to geographic
location is present in roughly 0.9%, and professional roles such as
job titles and résumé content appear in 0.35% and 0.3% of cases
respectively. Other noteworthy data types include phone numbers
and medical history, each found in approximately 0.2% of parame-
ters. Although individually these figures may seem modest, they
represent thousands of individual instances where personal data
may be exposed through GPT integrations.

Certain APIs further highlight the privacy risks of unregulated
integration. For example, the GPT named LeetCV - Online Resume
Builder [31] exposes endpoints that request full names, email ad-
dresses, and authentication credentials. Similarly, we found a GPT
integrated with an API for email automation, enabling the transmis-
sion of recipient identities and unstructured message content that
may contain sensitive information. These integrations demonstrate
how even commonplace development choices can result in the in-
advertent collection of high-risk user data, especially when input
parameters are not properly sanitized or when API documentation
lacks transparency.

4.1.1  Personal Parameter across Categories. A closer look at the dis-
tribution of these parameters across application categories shown
in Figure 3 reveals heterogeneity in the privacy risks posed by dif-
ferent GPT categories. Notably, the lifestyle, productivity, and other
application categories collectively account for the largest concentra-
tion of PI parameters. Within these categories, sensitive fields such
as EMAIL_ADDRESS, LANGUAGE, JOB_TITLE, and chat extraction
parameters (CONVERSATION) emerge frequently, raising further
privacy concerns.

4.1.2  Distribution of Personal Data Parameters in GPTs. Figure 4
illustrates the number of distinct PI parameters (i.e., parameters
not classified as NON_PI) used by GPTs. The distribution is top-
heavy: the annotation on the plot shows that fully 90% of GPTs
specify no more than two PI parameters. The dashed green and red
vertical lines mark the median (2.0) and mean (2.2), underscoring
how tightly usage is clustered at the low end. In absolute terms,
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Table 1: Category counts over 44,102 API parameters

Category Count
NON_PI 28,710
CONVERSATION 5,083
URL 2,568
LANGUAGE 2,493
PASSWORD 779
EMAIL_ADDRESS 654
COUNTRY 600
DATE_TIME 524
GEO_LOCATION 380
ONLINE_IDENTIFIERS 362
ZIPCODE 264
SCREEN_NAME 231
PERSON 172
JOB_TITLE 152
BIRTH_DATE 148
CV_RESUME 134
CRYPTO 131
SHOPPING_BEHAVIOR 112
ADDRESS 98
MEDICAL_HISTORY 98
PHONE_NUMBER 93
ACTIVITIES 63
PLACE_OF BIRTH 47
PERSON_GENDER 43
EDUCATION_INFORMATION 36
VEHICLE_REGISTRATION_NUMBER 32
HOME_ADDRESS 32
PICTURE_FACE 26
NATIONALITY CITIZENSHIP 13
PERSON_HEIGHT 9
PERSON_WEIGHT 9
NUMBER_OF_CHILDREN 5
HEALTH_INSURANCE _ID 1

1,722 GPTs rely on a single PI parameter, while 601 use exactly two.
Interestingly, the count rises again to 1,317 for three parameters.
From that point the numbers decline sharply, but they still show a
very sizable number of GPTs having more than four parameters: 79
GPTs specify four parameters, 32 specify five, and 128 specify six.
Altogether, 3,879 GPTs, about 98% of the sample, use six or fewer
parameters. Beyond six, the tail is very thin: 47 GPTs use seven
parameters, six use eight, and so on.

4.1.3  Unpacking Creator Practices in APl Parameter Definitions.
Our quantitative analysis revealed extensive data collection across
a broad spectrum of GPTs. To gain a deeper understanding of the
specific types of data being collected and assess whether they are
gathered for appropriate purposes, this section presents illustrative
cases that exemplify excessive data collection practices in GPTs.
Creator misconceptions about data handling: Some creators ap-
peared to assume that sensitive user data would be redacted before
reaching their APIs, an expectation reflected in their parameter
documentation. For example, one creator defined a parameter as
“Parameter Name: original_text”, indicating that they were collect-
ing the conversation. In the parameter description, they specified:
“Please provide the original request (only containing user input) that
triggered the API call, as this information will be used to improve the
performance of the APL If the text contains sensitive user data, such as
names, please redact them as **.”. Such instructions suggest creators’
assumption that either the GPT model or the platform would handle
the redaction of sensitive information before it reaches the API,
without considering themselves responsible for safeguarding user
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ACTIVITIES - 0 1 6 8 3 0 7 0
ADDRESS- 0 0 1 10 7 0 4 1
BIRTH_DATE- 1 6 26 2 3 1 6 3
CONVERSATION- 24 153 IETBIEZEEZE '~ |34 100
COUNTRY - 6 14 54 66 57 7 47 12
CRYPTO- 0 0 1 6 2 5 5 0
CV_RESUME- 0 1 1 13 13 0 2 6
DATE_TIME - 5 12 64 45 59 5 28 8
EDUCATION_INFORMATION - 0 2 1 3 3 0 0 0
EMAIL_ADDRESS- 11 20 80 92 80 13 32 18
GEO_LOCATION- 0 5 44 a5 25 2 1 0
HOME_ADDRESS- 0 0 1 4 3 0 2 1
JOB_TITLE - 0 1 1 16 12 0 4 1
LANGUAGE- 16 93 144 273 229 51 127 56
MEDICAL_HISTORY- 0 1 6 6 0 0 5 0
NATIONALITY_CITIZENSHIP- 0 0 1 0 0 0 0 0
NUMBER_OF_CHILDREN- 0 0 1 0 0 0 0 0
ONLINE_IDENTIFIERS - 8 9 21 a2 36 3 26 5
PASSWORD - 6 17 117 102 45 20 41 11
PERSON - 3 4 6 22 24 2 7 4
PERSON_GENDER- 1 0 6 6 1 0 1 0
PERSON_HEIGHT- 0 0 2 0 1 0 0 0
PERSON_WEIGHT- 0 0 3 0 1 0 0 0
PHONE_NUMBER- 0 1 6 15 20 3 2 2
PICTURE_FACE- 0 0 1 1 1 0 0 0
PLACE_OF BIRTH- 0 0 8 1 0 0 0 0
SCREEN_NAME- 0 16 6 2 13 16 7 2
SHOPPING_BEHAVIOR- 0 1 27 4 7 0 0 0
URL- 25 102 142 357 325 920 173 74
VEHICLE_REGISTRATION_NUMBER- 0 0 2 5 4 1 1 0
ZIPCODE- 2 2 18 36 6 2 6 1
S
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Figure 3: Heatmap of the frequency of PI categories in API
parameters (columns) by GPT category (rows)
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Figure 4: Histogram showing the distribution of personal
data parameters used across GPTs

data. In practice, however, GPT does not perform this preprocessing,
and full conversations are still passed to creators (see § 4.5).
Sensitive information collection: Some GPTs are designed to sup-
port task contexts that involve sensitive information, and many of
them collect personal data through their API parameters. For exam-
ple, in a CV-generation GPT [31], the parameters included fields for
the candidate’s email address and phone number. Payment-related
GPTs also highlight similar concerns. These applications may assist
users in managing their personal financial status and request highly
sensitive information such as bank account numbers and invoice
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details. In the health domain, GPTs offering health insurance sugges-
tions frequently include parameters for country-specific insurance
numbers or health system records and identifiers. Moreover, some
GPTs collect information not only about the user themselves but
also about other users. For instance, one GPT designed to scrape
social media history requested details such as names and phone
numbers of targeted individuals and could return complete social
media histories.

Excessive data collection: Beyond the sensitivity of individual
data fields, some GPTs collect excessive amounts of personal infor-
mation across multiple categories. As shown in Figure 4, several
GPTs request not only highly sensitive data but also a wide range
of it within a single app. For example, one GPT designed to assist
with hiring or job searching simultaneously requests ten types of
personal information, including a user’s full name, email address,
phone number, location, and salary. In another case, a medical as-
sistant GPT collects eleven types of personal information through
API parameters, including patient ID, hospital location, birthdate,
home address, phone number, email address, and full name.

4.2 Co-occurrence and Cross-Contextual Risks

While previous sections focused on the privacy implications of
individual GPTs and their data handling practices, we now turn
to the systemic risks that may arise from shared Actions and co-
occurrence patterns across GPTs. This ecosystem-level view helps
surface potential for indirect data exposure and cross-contextual
user tracking. While most GPTs (89.8%) rely on a single Action, a
non-negligible portion (10.2%) incorporate two or more, revealing
more complex integrations. Among these multi-Action GPTs, 72.3%
connect to endpoints in entirely different domains, an architec-
tural choice that increases the likelihood of indirect data exposure
through cross-contextual linkages. Co-occurrence analysis further
supports this concern: nearly half of all Actions (47.3%) are used in
GPTs that invoke at least one other Action, suggesting an ecosys-
tem where data from distinct sources may be collated or inferred.
Prominent Actions like WebPilot, Gapier, and AdIntelli exhibit es-
pecially high weighted degrees of co-occurrence, often appearing
together in GPTs that span categories such as productivity, research,
and media. For instance, WebPilot co-occurs with over 60 other Ac-
tions, including Zapier, AdIntelli, and GitHub APIs, hinting at latent
pathways for user data to traverse across otherwise disconnected
services. These overlapping integrations present a systemic risk:
even if individual Actions appear compliant in isolation, their joint
usage can enable composite user profiling or inadvertent leakage
of sensitive data across domains.

4.3 Usage of GPTs with PI Parameters

In Table 2, we aggregate usage (total number of whole user conver-
sations with GPTs) across all GPTs that request a given PI parame-
ter. For example, GPTs collectively sending CV_RESUME through
Actions surpass 900,000 conversations with users in total, clearly
demonstrating that may affect a substantial audience. Similarly,
GPTs requiring EMAIL_ADDRESS, PERSON, or PHONE_NUMBER
each accumulate hundreds of thousands of user conversations once
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all such GPTs are combined. In contrast, while GPTs with MEDI-
CAL_HISTORY parameters see relatively fewer overall conversa-
tions, their sensitive nature remains noteworthy and is still in the
thousands. Thus, these sensitive categories still reach considerable
numbers of interactions with users, reinforcing the importance of
privacy safeguards for both highly used and specialized GPTs.

Table 2: GPT conversations by category

Category GPT Conversations
CV_RESUME 972,649
EMAIL_ADDRESS 346,540
PERSON 219,343
PHONE_NUMBER 170,853
EDUCATION_INFORMATION 56,504
MEDICAL_HISTORY 8,258

4.4 Traceability Results

4.4.1 General Traceability Results. Out of the 5,286 GPTs analyzed,
792 GPTs (~ 15%) exhibited complete traceability, 2,258 GPTs
(~ 42.7%) exhibited partial traceability, and 2,004 (~ 37.9%) ex-
hibited broken traceability. PoliGraph-er could not process 232
GPTs because their privacy policies were not in English, and they
were therefore excluded from the traceability analysis. Digging
deeper, there were 3,400 GPTs for which the policy content was
made available for comparison against their the PI collected through
the APIs they connect to. Many of these policies, however, were
privacy policies that had been reused across several GPTs. After
de-duplication, there was a total of 2,140 unique privacy policies.
We provide further analysis on them in the next sections.

4.4.2  Automated Policy Generators. Several broader trends emerged
from the analysis of the privacy policies. Many GPT creators ap-
peared to rely on automated policy generators, particularly from
platforms such as privacypolicyonline.com (379 instances), freep-
rivacypolicy.com (180), iubenda.com (14), and termly.io (9). We de-
termined this based on the host domains of the privacy policies,
which directly matched the domains of the policy generator ser-
vice. These often produced generalized and sometimes inaccurate
disclosures. Some creators hosted privacy policies via plain HTML
documents or by linking directly to official legislative texts (e.g.,
canada.ca with 142 occurrences). Moreover, the use of generic, third-
party policies was common: google.com (388), github.com (155), and
azurewebsites.net (51) were cited, which typically were not tailored
to a GPT’s unique data practices.

4.4.3 APl Integrators. A big proportion of GPTs rely on API inte-
grators such as zapier.com (2,409) and gapier.com (3,874, a Zapier-
related domain), which act as middleware platforms that facili-
tate connections between thousands of third-party services. These
platforms often allow a single API call to trigger workflows that
dynamically invoke multiple downstream APIs, complicating the
traceability of data flows. However, the linked privacy policies are
typically broad and generic, offering limited insight into what data
is actually collected, shared, or stored during execution. This lack of
specificity poses a significant privacy risk, as users may be unaware
of the full extent of the data processing involved. Other aggregators
included rapidapi.com (313) and pluginport.io (219), while domain-
specific APIs such as api-football.com (118) and weather.gov (113)
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Table 3: Compliance breakdown by parameter requested

Category Broken Complete Partial
ACTIVITIES 14 0 19
ADDRESS 18 0 16
BIRTH_DATE 44 1 11
CONVERSATION 750 10 1677
COUNTRY 117 0 197
CRYPTO 30 0 6
CV_RESUME 28 0 16
DATE_TIME 110 0 166
EDUCATION_INFORMATION 9 0 3
EMAIL_ADDRESS 231 13 154
GEO_LOCATION 76 0 105
HEALTH_INSURANCE_ID 0 0 1
HOME_ADDRESS 10 0 7
JOB_TITLE 27 0 16
LANGUAGE 212 0 1222
MEDICAL_HISTORY 11 0 10
NATIONALITY_CITIZENSHIP 4 0 0
NON_PII 1662 753 2103
NUMBER_OF_CHILDREN 0 0 2
ONLINE_IDENTIFIERS 120 3 69
PASSWORD 288 2 183
PERSON 61 3 36
PERSON_GENDER 16 0 7
PERSON_HEIGHT 6 0 1
PERSON_WEIGHT 5 0 2
PHONE_NUMBER 41 1 20
PICTURE_FACE 5 0 2
PLACE_OF_BIRTH 6 1 4
SCREEN_NAME 68 0 39
SHOPPING_BEHAVIOR 22 0 28
URL 487 8 1318
VEHICLE_REGISTRATION_NUMBER 9 0 6
ZIPCODE 53 0 41

were also observed. Additionally, webpilot.ai appeared in 8,075 in-
stances, functioning as an intermediary for injecting external web
content into GPT interactions.

4.4.4  Traceability by Requested Parameter. Table 3 provides a de-
tailed breakdown of broken, complete, and partial disclosures by
the specific parameter requested (e.g., phone numbers, precise ge-
olocations). A recurring concern was that many API parameters
transmitted personal data types not mentioned in their associated
privacy policies. Failure to reference frequently requested param-
eters (e.g., phone numbers, emails, geolocation) places end-users
at potential privacy risk. These omissions highlight the urgency of
stronger audit mechanisms and more transparent design practices.

4.4.5 Association Between Data Categories and Privacy Policy Com-
pleteness. We investigated whether the specific types of information
handled by GPTs are associated with differences in privacy-policy
completeness, as measured by the compliance label (complete, par-
tial, or broken). To assess statistical relationships between data types
and policy completeness, we ran Chi-squared tests of independence
[38] and then calculated Cramér’s V to quantify the strength of as-
sociation [12]. Effect-size interpretations follow Cohen’s criteria for
Cramér’s V with two degrees of freedom [11]: negligible (V < .07),
small (.07 <V < .21), medium (.21 < V < .35), and large (V > .35).
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Unless noted otherwise, all reported associations are statistically
significant at p < .05.

A large association was observed for Non-Personal Information.
Of the 792 GPTs with complete traceability, a substantial major-
ity (753) are GPTs where no personal information was found to
be sent via the API parameters (i.e., all parameters for that action
were classified as NON_PI). In addition, six categories exhibited
smaller associations: Demographic or Social Attributes, Information
Extracted from the Chat (CONVERSATION category), Online and
Digital Identifiers, Employment and Professional Information, Loca-
tion and Address Information, and Contact Information. These data
types often require nuanced handling and may introduce uncer-
tainty or hesitancy in disclosure, resulting in less comprehensive
policies. All remaining categories showed negligible effect sizes.

4.4.6 Post-hoc Pairwise Comparisons. To pinpoint where the global
x? effects originate, we followed Sharpe’s “compare—cells” method-
ology [63]. A “cell” refers to the count of GPTs for a given combi-
nation of PI category and it’s traceability assesment. Specifically,
we ran pairwise two-proportion z-tests comparing the presence
vs. absence of each PI family category (as defined in § D.2) across
all three compliance levels. Tests were conducted only where all
expected cell counts exceeded 5. The Bonferroni method was ap-
plied to adjust p-values for multiple comparisons (a = 0.05). Table 4
summarizes the PI families with an overall significant association
(from the Chi-squared test) and lists the specific pairwise contrasts
that remained significant after this correction, with A indicating
absolute percentage-point differences and OR representing odds
ratios.

Table 4: Cramér’s V association & significant post-hoc z-tests

Behavioral, Activity and Web Tracking X 0.0238

Health and Medical Information X 0.0203

Family p <0.05 Cramér’sV ‘ Compliance Level A (pp) OR
Basic Personal Information v 0.0283 broken T +8.3  2.09
partial | -5.6 0.71
complete | -2.7  0.66
Non-Personal Information v 0.3992 broken | -1.0 0.88
partial | —225 0.23
Demographic / Social Attr. v 0.1593 ‘ partial T +17.5  8.69
Information from Chat v 0.1589 broken | -1.9  0.79
partial T +12.6  3.02
Online & Digital IDs v 0.1437 complete | -9.9  0.06
broken T +3.0 138
partial T +6.9  1.69
Employment / Professional v 0.0808 broken T +30.4  6.48
partial | -21.8 033
Location / Address v 0.0760 partial T +34 129
broken T +5.6 172
Time Information v 0.0443 partial T +7.4 184
broken T +14 117
Contact Information v 0.0699 complete | -2.8  0.65
broken T +12.6  2.78
partial | -9.8 057
Financial / Payment v 0.0509 partial | -32.1 022
broken T +40.7  9.73

Education Information v 0.0360 ‘

Government or Official IDs X 0.0161

Severely incomplete disclosures tend to cluster around financial
and employment data. GPTs that process Financial and Payment
Information or Employment and Professional Information are dra-
matically more likely to feature broken policies, with odds ratios
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Table 5: Compliance breakdown by GPT category

GPT Category Broken Complete Partial
Other 407 193 510
dalle 26 17 25
education 101 29 138
lifestyle 290 82 218
productivity 256 110 336
programming 95 40 68
research 210 106 213
writing 65 23 87

of 9.73 and 6.48 respectively. These same categories also show sig-
nificant drops in the rate of even partial compliance, highlighting
their consistent association with policy failures.

Basic identity traits also appear to reduce overall policy qual-
ity. The inclusion of Basic Personal Information correlates with
a decrease in complete policies by 2.7 percentage points and an
increase in broken ones by 8.3 points. This suggests a broad reluc-
tance or inability to comprehensively disclose practices related to
core identity attributes.

Conversational and demographic content appears to prompt
superficial compliance. GPTs incorporating Information extracted
from the chat or Demographic and Social Attributes are consider-
ably more likely to have partial policies, with odds ratios of 3.02
and 8.69, respectively. These patterns suggest that while creators
may acknowledge the need for some form of disclosure, they often
stop short of full transparency.

In contrast, GPTs that only process Non-Personal Information
are associated with markedly better outcomes. The likelihood of
partial compliance decreases by 22.5 percentage points in this group,
and broken policies become slightly less common as well. Finally,
temporal and geospatial signals introduce subtler effects. GPTs that
handle Time Information or Location and Address Information
show modest but consistent increases in both broken and partial
disclosures. These results may reflect underlying ambiguity or cre-
ator discomfort around documenting practices related to tracking
or situational data.

4.4.7 Traceability by GPT category. Table 5 shows that traceability
issues permeate many GPT usage categories. While the “Other”
category exhibited the largest share of broken disclosures (407),
“research” and “productivity” services also showed high numbers
of partial or broken policies. These findings illustrate that policy
incompleteness is not confined to any single application but is
widespread across diverse GPT use cases.

4.4.8 The Good, the Bad and the Ugly creators. In total, there are
2,175 unique creators of GPTs requesting parameters in their calls
to an external API:

The good: There are 443 creators whose GPTs are all fully trace-
able, representing 17% of all creators. These creators clearly ar-
ticulate and justify the permissions they request in their privacy
policies. For example, creator Sora Al has 18 complete GPTs, and
creator Crypto maintains 13 complete GPs, both exemplifying best
practices in disclosing PI collection through API parameters.

The bad: There are 957 creators with all GPTs with broken trace-
ability, representing approximately 44% of all creators. These cre-
ators provide inadequate or no explanation of permissions in their
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Table 6: Creator compliance distribution

Compliance Type Creators
Partial only 923
Broken only 957
Complete only 443
Both Partial and Complete 62

privacy policies. For instance, aikitcentral.com has 193 partial and 5
broken GPTs, showing widespread inconsistency, while Finntech1
has 34 partial GPTs with no clear justifications provided.

The ugly: There are 923 creators with partial traceability, repre-
senting 42% of all creators. Their privacy policies partially address
the permissions requested, indicating incomplete or unclear disclo-
sure. A representative case is tinycorp.ai, which has 43 broken GPTs,
reflecting a high level of undocumented permissions. Similarly, one
creator manages 42 GPTs with partial traceability, and BREEBS has
35 GPTs that are inconsistently documented. In addition, there is
a small group of 62 creators (around 2%) whose GPTs are mixed,
with both partial and complete traceability practices.

Table 6 summarizes these creator groupings. The results show a
widespread problem of inadequate compliance practices, with ‘bad’
and ‘ugly’ creators significantly outnumbering those with good
compliance. This suggests the potential of targeted interventions
aimed at improving creator compliance across the board.

4.5 Findings from the Active Audit

Our active audit produced three main observations: 1. Location

(Weather-Echo). The request body contained only the location_data
field, populated exactly as written in the user prompt. We did not

observe automatic inclusion of IP-based geolocation, derived coordi-
nates, or coarse location fallbacks. When no location was provided

in the prompt, the parameter was either omitted or set to an empty

string. This confirms that location values originate from the prompt

rather than from other metadata. 2. Conversation (Conversation-
Echo). When a parameter such as original_text was defined in the

schema, the request body included the full user prompt without any

redaction or anonymization, even when the input contained per-
sonal information. This occurred despite the parameter description

explicitly instructing the GPT to remove or mask sensitive elements,
such as names. In the absence of such a parameter, no conversation

text was transmitted. These findings reinforce our classification

of CONVERSATION parameters as high-risk. 3. Over-collection

(LeetCV). For schemas listing multiple PI categories, the model

attempted to populate all available parameters with information

extracted from the prompt, leaving empty values for missing fields.
This indicates that over-collection risk arises from the breadth of
parameters defined by creators.

5 Discussion
5.1 Main Takeaways

5.1.1 Massive Personal Data Collection with no Transparency. Our
analysis of 5,286 GPTs that integrate via APIs to services outside
OpenAT’s infrastucture, reveals a total of 44,102 API parameters
used by those GPTs, out of which approximately 35% correspond to
categories of sensitive or identifying personal data that are being
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collected. Even more worryingly, when analyzing the traceabil-
ity with the GPTs’ privacy policies, the results are that only 792
GPTs (15%) exhibit complete traceability, i.e., they disclose in their
privacy policy the personal data that is collected through the API
parameters. This paints a bleak picture of the current state of the
GPTs ecosystem when it comes to personal data being taken out of
the OpenAl ecosystem and the lack of transparency given to users
explaining that.

5.1.2  Validation via active audit. The active audit results reinforce
our main conclusion: the primary exposure vector is the combina-
tion of what creators request in the JSON schema and what the
model extracts from the user prompt, rather than metadata added
outside the prompt. Risk increases notably for CONVERSATION
parameters and for schemas that combine multiple personal in-
formation fields, both of which are common in our corpus. These
findings suggest potential mitigations at the platform level, such as
editable previews of outbound payloads and schema linting to dis-
courage overly broad parameter definitions. Our tests did not find
evidence of session correlators in the examined cases, but we can-
not exclude their presence in other Action types or under different
authentication contexts.

5.1.3  Privacy Policy Completeness & Parameter Sensitivity. Our
findings reveal that while privacy policy completeness is not uni-
formly tied to data sensitivity, GPTs that process conversational
content or user-identity attributes are associated with notably less
complete disclosures. Surprisingly, highly sensitive categories (e.g.,
health or government ID information) did not show strong as-
sociations, possibly due to their low prevalence or confounding
factors like creator expertise or reliance on template-driven policies.
Cramér’s V results (Table 4) and these post-hoc contrasts further
confirm that policy quality degrades most when financial, employ-
ment, or core identity details are involved, whereas non-personal
parameters tend to be more consistent and complete. This inverse re-
lationship between data sensitivity and disclosure quality suggests
several underlying causes. Some creators may be unaware of their
responsibilities, others may lack the necessary tools or knowledge
to provide clear disclosures, and some may intentionally obscure
risky data flows [54]. These findings highlight substantial compli-
ance gaps in the ecosystem and underscore the need for stronger
guidance and standardized privacy policy design.

5.1.4  Privacy Policy Discrepancies and Mismanagement. We identi-
fied several discrepancies, both between the stated privacy policies
and the actual practices and within the privacy policy statements,
highlighting potential privacy violations. First, our findings uncover
a significant number of missing and incorrect privacy policies. Al-
though providing a valid privacy policy is mandatory when creating
GPT apps with third-party connections [48, 49], these discrepancies
show how privacy requirements can be bypassed or misrepresented
in practice. Second, our findings reveal a mismatch between actual
personal data flows and what is disclosed in privacy policies, often
revealing the collection of more user data than is stated. For exam-
ple, a substantial portion of API parameters, approximately 35%,
are configured to transmit sensitive or identifiable user information.
However, only about 15% of the GPTs analyzed completely disclose
these data transfer practices. Finally, in many cases, creators do not
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specify which parameters are being collected and instead capture
the entire conversation with the user. This practice was observed in
1831 GPTs, yet only 0.5%, of these applications acknowledged this
level of data collection in their privacy policies. Such discrepancies
point to a serious lack of transparency that could erode user trust
and lead to potential violations of data protection regulations.

5.1.5 Misconceptions of GPT Creators. We observed a widespread
misunderstanding among creators, likely stemming from a lack
of Al literacy. Through in-depth case analysis, we identified in-
stances where creators included statements in their API parameters
instructing the GPT or the platform itself to avoid transmitting per-
sonally identifiable information (PII). This reflects a fundamental
misunderstanding of how data handling and API interactions are
managed. In GPTs, models do not automatically filter sensitive data,
nor does the platform sanitize data by default. Instead, the respon-
sibility lies with the creators to implement appropriate safeguards
and controls [48, 49]. It highlights a knowledge gap among creators
in the development and deployment of Al applications, particularly
in relation to data privacy and information transmission.

5.1.6  Scalable PI Detection in LLM Apps. We developed a human-
Al pipeline for analyzing privacy practices in GPTs including API
parameter definitions, privacy policies, and their traceability. This
approach combines the strengths of human oversight in critical
areas with the scalability of lightweight AI deployment and the
semantic analysis capabilities of LLMs.

First, a key challenge in analyzing API parameters is the lim-
ited contextual information available for each parameter, which
makes automatic classification difficult. While LLMs can interpret
semantic meaning from general knowledge, their accuracy in this
task is limited. To address this, we introduced human-in-the-loop
annotation to create high-quality labeled data, and fine-tuned a
RoBERTa classifier on this dataset. This combination significantly
improves classification accuracy, particularly in ambiguous or low-
context scenarios, ensuring more reliable identification of PI-related
parameters.

Second, we introduce a cluster-guided sampling strategy to gen-
erate the annotation dataset. In the context of PI classification for
LLM apps, constructing a high-quality training dataset is challeng-
ing due to the rarity of certain PI categories. To address this, we
cluster API parameters based on their semantic similarity, which
guides the sampling process and ensure that the annotation dataset
includes a more diverse and representative set of examples across
categories. As a result, the final classification accuracy improved
significantly, particularly for underrepresented PI types.

Third, PoliGraph-er’s ontology lacked fine-grained coverage for
the PI categories relevant to our analysis. To address this, we used
an LLM to identify semantic similarities across heterogeneous terms
(e.g., “location” may appear as coordinates, city, or state, and cluster
them into consistent categories [67, 74]). This enables accurate
analysis despite the absence of a standardized PI ontology.

5.2 Recommendations and Design Implications

5.2.1 Transparency and informed consent. The current consent
model within the GPT ecosystem, where users agree to API calls
without prior visibility into the specific data being transmitted,
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presents a fundamental challenge to informed consent. Our study
reveals that around 34.9% of API parameters involve sensitive or
personal data relevant from a privacy regulation perspective, yet
users are provided with a limited view on the specifics of the data
exchange. To address this, we recommend enhancing pre-execution
transparency by not only requesting consent for executing actions
but also allowing users to preview and control the specific data
elements shared with third-party APIs. This could involve the de-
velopment of dynamic, context-aware privacy dashboards that offer
a clearer and more actionable alternative to static policy documents.
This transparency gap is exacerbated by the lack of standardized
protocols governing LLM—-API interactions. As LLMs increasingly
operate as autonomous agents capable of seamlessly invoking exter-
nal services, structured and interpretable communication becomes
essential. The Model Context Protocol (MCP) [53] was introduced
in part to address this fragmentation by providing a standardized in-
terface for model-API coordination. Looking ahead, similar efforts
are needed with a privacy-first focus. Users should not only pro-
vide generic consent but also receive clear, contextual information
about what personal data is being transmitted. Tools such as pre-
execution data previews, real-time auditing, and adaptive privacy
controls could improve user autonomy while helping developers
adhere to platform policies and regulatory obligations.

5.2.2  Enhance creator responsibility. The widespread discrepancies
between data practices and privacy policy disclosures underscore
an urgent need for greater creator responsibility and more effec-
tive platform oversight. Our findings indicate that a significant
number of creators, with 44% having “broken” and 36% “partial”
traceability, are failing to provide adequate privacy disclosures.
Platforms should play a more active role by implementing stricter
validation checks for privacy policies and data usage declarations
during the GPT submission process, potentially leveraging auto-
mated analysis techniques similar to those explored in our study.
At the same time, there is a growing need for users to become
more aware of privacy implications, and for creators to be sup-
ported with better tools and educational resources that help them
understand their data handling responsibilities and develop accu-
rate, comprehensive privacy policies. As the barrier to customizing
LLM applications lowers and the line between creators and users
becomes increasingly blurred [35], it becomes critical to clarify re-
sponsibilities and design mechanisms that effectively motivate each
role to meet their obligations. This effort may benefit from drawing
on theories such as Protection Motivation Theory (PMT) [57] and
Self-Determination Theory (SDT) [18], which identify motivation
as a key factor influencing security and privacy behavior. By fos-
tering relatedness and autonomy through measures like tailored
communication, clear choices in privacy settings, and targeted pri-
vacy prompts, platforms can encourage both creators and users to
adopt practices that prioritize security and privacy.

5.2.3 Regulation. Finally, our findings have implications for reg-
ulatory bodies. The documented gap between data practices and
disclosures, particularly concerning sensitive information, may in-
form the development or refinement of regulatory frameworks
specific to LLM applications. As those LLM platforms introduce
multiple stakeholders, including model providers, application host-
ing platforms, users, and creators, it is important to clearly define
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and distinguish the regulatory responsibilities assigned to each
role [35]. In addition, because these applications are developed
globally and must comply with diverse regulatory systems, such
as the PI taxonomy in GDPR [17] and NIST guidelines [36], it is
essential to address legal compatibility and improve communica-
tion across jurisdictions when designing regulatory strategies. Our
taxonomy of sensitive data and methodology for assessing policy
compliance could serve as a foundational reference for such efforts,
helping to define clear expectations for data handling and trans-
parency in this new technological domain. Although the flexibility
of GPTs enables powerful applications, this potential must be bal-
anced with strong safeguards that prevent unintentional privacy
violations and ensure meaningful respect for user autonomy and
regulatory requirements.

5.3 Limitations

Our study has several limitations. First, while this paper focuses on
API integrations within the GPT ecosystem and provides detailed
insights into privacy practices, the findings may not be generaliz-
able to other large language model platforms or application stores.
However, we believe our method may be easily adapted to other
such platforms, so future research could benefit from applying our
methods to other platforms beyond GPTs. Our focus is limited to col-
lection via Action parameters; we do not analyze other, subsequent
actions with the data. A comprehensive study of these aspects is left
for future work. Second, we used PoliGraph-er for policy analysis,
which may have inherent limitations such as false positives and its
restriction to English content. Additionally, a longitudinal analysis
of the GPT ecosystem would also be valuable to track the evolution
of data sharing practices, policy compliance, and the impact of any
interventions or platform changes over time. As the LLM landscape
matures, understanding these trends will be essential for adaptive
governance and sustained privacy protection.

5.4 Related Work

5.4.1 Vulnerabilities in GPTs and LLM Integrations. Specific re-
search efforts have started probing the vulnerabilities within this
new ecosystem of customizable LLM apps. Studies have identified
potential attack vectors related to GPTs [2, 26], including risks asso-
ciated with the prompts used to create them [70, 84]. The integration
of third-party APIs, while enhancing functionality [33, 50, 52, 64],
is a significant source of risk [19], with browser-based assistants po-
tentially transmitting entire webpage contents, including personal
data, to external servers [73], LLMs capable of inferring sensitive
personal attributes from seemingly innocuous text [65], and ma-
licious third-party GPTs that are able to manipulate users into
revealing personal data [82]. Research has demonstrated attacks
targeting these third-party API integrations [23, 85] and explored
the overall security posture of platforms utilizing such extensions
[26, 84]. Concerns also extend to the trustworthiness of the LLMs
themselves, including vulnerabilities related to generating harmful
content, exhibiting bias, or leaking data [5, 75]. At the same time,
studies show that users of conversational agents often tend to over-
share personal information, further amplifying privacy risks [87].
While these studies highlight various security and privacy risks,
including potential data leakage, a focused investigation into the
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types of data (specifically PI) being transferred via APIs and its
alignment with policy disclosures remains underexplored.

5.4.2  Privacy Policy Analysis and the Challenge of Transparency.
Research in privacy policy analysis often focuses on extracting
key information, identifying clarity issues, and assessing compli-
ance with regulations [44, 55]. Automated techniques have been
developed to analyze policies at scale [1, 9, 13, 22], often within
the context of mobile applications [86]. Recent work shows that
LLMs can further improve classification performance while offer-
ing explainable results [43, 69]. Defining what constitutes Personal
Information (PI) is crucial for such analyses, often relying on estab-
lished definitions and guidelines [37]. However, the unique context
of LLMs raises questions about what privacy preservation truly
means when dealing with natural language data, as models may
inadvertently memorize and expose sensitive information from
their training data or user interactions [6, 10]. While tools exist
for policy analysis, applying them effectively to the often brief or
external policies associated with GPTs, and correlating them with
dynamic API data flows, presents a unique challenge.

5.4.3 Bridging the Gap: Policy vs. Practice in Software Ecosystems.
The investigation of discrepancies between privacy policies and
actual data handling practices is not unique to LLMs. Prior research
has extensively studied this gap in other software ecosystems [56].
For instance, work on mobile apps has used static and dynamic
analysis to uncover inconsistencies between policy statements and
runtime data transmissions [86]. Similar compliance and traceabil-
ity analyses have been performed for voice assistant skills like
those on Amazon Alexa [14, 15, 77], social networking platforms
[3], and social media aggregators [42]. Methodologies have also
been developed to link policy commitments to software require-
ments [80]. This body of work demonstrates the importance and
feasibility of verifying whether software behaviour aligns with its
stated privacy commitments, providing a foundation for applying
similar principles to the emerging LLM app ecosystem.

5.4.4  Privacy in third-party LLM Apps. Concurrent work also stud-
ied privacy in third-party LLM Apps [27], but our work brings key
methodological differences and resulting novel, valuable findings:

Focus on data defined in privacy regulations: while [27] gener-
ates with LLMs a synthetic categorization of all the data types that
GPTs may collect through parameters (some of which they deemed
sensitive), we focus on data types that are known to be sensitive
or of a personal nature according to existing privacy regulations,
and detect which GPT Action parameters collect them. Therefore,
direct comparison with [27] is challenging since the two studies
focus on different types of data (e.g. sport and videogames in [27]
do not map to privacy regulations).

Accurate & efficient detection of data in privacy regulations: we

compared for detecting data relevant to privacy regulations: 1) our
approach based on a fined-tuned RoBERTa model, and 2) an ap-
proach for the detection based on LLMs akin to [27]. With (1) we
achieved a Macro F1-score of 0.87, and with (2) we only achieved
a Macro F1-score of 0.61 (§3.3.5). This aligns with literature sug-
gesting that smaller language models fine-tuned on specific tasks
are better than LLMs for classification [8, 16], with more accuracy
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and less temporal and spatial costs [60]. With 355 million parame-
ters and ~3.5GB memory for inference of RoBERTa-large (vs. the
200 billion parameters and 400GB of LLMs such as GPT-40), our
approach could enable the monitoring of third-party LLM apps at
scale by platforms like OpenAL

Novel measurement of regulation-relevant data collection: Our
measurement indicates that 34.9% of data collected by GPTs is sen-
sitive or personal under privacy regulations. This extends [27]’s 9%
of GPTs, which focused just on security credentials, which are only
one subset of the data relevant from a regulation perspective. We
also uncovered the collection of data types not observed in [27],
including (see Table 1): an action that requires the user’s health
insurance ID; 13 parameters collecting users’ nationality/citizen-
ship; and the pervasiveness of the data type CV_RESUME, with
134 parameters collecting it and their GPTs being the most popular
with 972,649 conversations (Table 2).

Relevant & fine-grained traceability analysis: we report 15% (792)
GPTs exhibiting complete disclosure, which is very low, though
slightly higher than the 5,8% (250 GPTs) in [27], as they did not
consider that only data relevant to privacy regulations must be
disclosed. Our results also reveal that while email addresses are
often disclosed in policies, others (e.g., home address or gender)
are rarely or never disclosed. This was missed in [27], as personal
information is considered a single category without these nuances.

Novel creator and active audit evidence: Another unique contri-
bution of our work is classifying creators based on their actual
levels of privacy compliance, and qualitative insights of their mis-
conceptions about data privacy obligations. For instance, we iden-
tified GPTs in which creators included statements in their Action
parameters instructing the LLM to avoid transmitting personally
identifiable information (PII), but this is actually not supported
by the models. In fact, our active audit (§4.5) confirmed that the
third-party action received all user data even when the GPT was
instructed to remove or mask it.

6 Conclusion

This work investigates personal data practices within the cus-
tomized LLM app ecosystem, focusing on OpenAI's GPTs. In par-
ticular, it measures the use of personal information (PI) in GPTs
when using external APIs, systematically assessing the alignment
between detected PI flows and the associated disclosures in privacy
policies, developing a scalable Human-AlI pipeline to analyze data
flows within LLM apps. Our analysis of 44,102 API parameters that
5,286 GPTs use to connect to external APIs reveals that 15,392 of
the parameters (*35%), correspond to categories of sensitive or
personal data nature. Our study reveals the reality of privacy prac-
tices among creators, highlighting discrepancies between what is
disclosed and what is actually transmitted. GPTs privacy policies
are further categorized based on their traceability. At the parameter
level, while a significant portion of API parameters (35 %) collect
sensitive or personal information, only 15% of the corresponding
privacy policies completely disclose it. Additionally, the analysis re-
veals widespread misunderstandings and overly overcollecting data
behaviors among creators across a diverse range of GPTs. Specif-
ically, our results show that only 437 out of 2,448 GPT creators
developed GPTs that exhibited complete traceability.
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A GPT Manifest

Listing 1: Outfit Weather Guide Manifest

{
"id": "g-9xpy7609k",
"short_url": "g-9xpy7609k-outfit-weather-guide",
"name": "Outfit Weather Guide",
"description": "Personalized outfit advice based on weather. Give GPT Location, Style & Gender!",
"author": {
"name": "Kantasit Intaraphasuk",
"verified": true,
"socials": {
"linkedin": "https://linkedin.com/in/kantasit-intaraphasuk",
"github": "https://github.com/Kantaaa"
}
3,
"prompt_starters": [
"Going to work in New York, Chelsea, my style is business casual",
"Planning a day out in Paris, casual wear. What's your suggestion?",
"Attending a wedding in Phuket this evening. Dress code is formal",
"I have a hiking trip in the Rockies tomorrow. What should I wear?"
15
"categories": ["lifestyle"],
"profile_picture_url": "https://files.oaiusercontent.com/file-RJQ4M1danQBKQEWLhYu5nqgsG?...",
"created_at": "2023-11-10T20:31:48Z",
"updated_at": "2024-01-13T19:29:58Z",
"vanity_metrics": {
"num_conversations_str": "40+",
"created_ago_str": "5 months ago"
3,
"tags": [
"public",
"uses_function_calls",
"interactions_disabled"
]
}

B Action Schema

Listing 2: MET Norway Weather API Integration Action. It includes the JSON schema and the privacy policy link

{'id': 'gzm_cnf_smK471iTv14vWUBABbNru7wLQ~gzm_tool _QRP8yEohFpGONAJH4wt3AYTX "',
'type': 'plugins_prototype',
'settings': None,
'metadata': {'action_id': 'g-c2d1191611e03522233c27d70d7d88a88c630168"'
'domain': 'api.met.no',
'raw_spec': None,
'json_schema': {'openapi': '3.1.0"',
'info': {'title': 'MET Norway Weather API Integration',
'description': 'Integration with the MET Norway Weather API to retrieve weather forecasts.',
'version': 'v1.0.0'},
'servers': [{'url': 'https://api.met.no/weatherapi/locationforecast/2.0"'}]
'paths': {'/compact': {'get': {'description': 'Retrieve weather forecast data for a specific location',
'operationId': 'getWeatherForecast',
'parameters': [{'name': 'lat',
'in': ‘'query',
'description': 'Latitude of the location',
'required': True,
'schema': {'type': 'number', 'format': 'float'}},
{'name': 'lon',
'in': 'query',
'description': 'Longitude of the location',
'required': True,
'schema': {'type': 'number', 'format': 'float'}}],
'responses': {'200': {'description': 'Successful response with weather forecast data',
‘content': {'application/json': {'schema': {'type': 'object',
'timeseries': {'type': 'array',
‘items': {'type': 'object'}}}}}}}}}31}33,
'components': {'schemas': {}}}
'auth': {'type': 'none'},
'privacy_policy_url': 'https://api.met.no/doc/TermsOfService'}}

C Figures for Active Audit Experiments

Figures 5-7 present the screenshots and payload captures for the three controlled integrations used in our active audit (§3.5). These illustrate
the schema definitions in the GPT interface and the exact HTTP request payloads received by our controlled endpoints during execution:
o LeetCV (Fig. 5): Schema requesting multiple PI fields, showing over-collection behavior.
e Conversation-Echo (Fig. 6): Full user prompt transmitted when mapped to original_text.
e Weather-Echo (Fig. 7): Location parameter populated only from prompt text.
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These visuals correspond to the cases discussed in §3.5 and §4.5, supporting our empirical validation of the static analysis.

Hi, my name is Juan Carlos. I have primary skills in Python and Machine Learning, and secondary skills in SQL and Docker. You can contact me via
. email at talento@example.com or by phone at +34123456789. I'm currently available for work and have 5 years of experience. I've held job titles
ﬂ like Data Scientist and ML Engineer. My most recent job title is Senior Data Scientist. I'm available to start on 2025-09-01. I'm based in Madrid,

but I'm currently living in Valencia. The company I'm interested in is located in Barcelona. I speak Spanish and English fluently. My expected
' salary is 55000 EUR. You can view my resume at https://example.com/cv/talento123. Here are some additional links to my work and profiles:

LinkedIn: https://linkedin.com/in/talento123, GitHub: https://github.com/talento123 , Twitter: @talento_ai. In the past, I've worked at
companies like Google and Microsoft. I'm looking for opportunities that require skills like Python, SQL, and Numpy.

...parameters: - name: email - name: availability - name: job_titles
/) JSON - name: primary_skills in: query in: query in: query
in: query required: false required: false required: false
required: false schema: schema: schema:
schema: type: string type: string type: string
type: string format: email
"params": {"primary_skills": "Python, Machine Learning", "secondary_skills": "SQL, Docker", "email
"talento@example.com”, "phone": "+34123456789", "availability": "Available to start on 2025-09-01' xperience": "5
=] years", "job_titles": "Data Scientist, ML Engineer, Senior Data Scientist", "date": "2025-09-01", "location": "Madrid
L] (currently in Valencia)", "talents_location": "Valencia, Spain”, "company_location": "Barcelona, Spain”, "language":
=] "Spanish, English","salary": "55000 EUR", "resume": "https://example.com/cv/talento123","linkedin":

ttps://github.com/talento123","twitter": "@talento_ai","past_employments":

"https://linkedin.com/in/talento123","git'
ython, SQL, Numpy","job_title": "Senior Data Scientist"}

"Google, Microsoft","required_skills":

Figure 5: Schema and captured payload for the LeetCV experiment. This GPT Action requests multiple personal information
fields (email, phone, location, language, job title, CV...), allowing us to observe over-collection behaviors when the model fills

all available fields from the prompt.

Hello, my name is Ana Pérez. My email address is ana.perez@email.com and my phone number is 5566778899. I
live at Calle Falsa 123, Mexico City. I have been working as a Developer at TechCorp since 2018. I also have

ﬂ previous experience at SoftSolutions. My current salary is 48,000 pesos per month.
1 My LinkedIn profile is linkedin.com/in/anaperez and my Twitter account is @anaperez_dev.

Iam looking for new job opportunities and am available to start next month.

schema:
// type: object
JSON properties:
original_text:
type: string
description: Please provide the original request (only containing user input) that triggered the API call, as this information will be
used to improve the performance of the APL. If the text contains sensitive user data such as names, please redact them as ***.
required:
- original_text
“params": {
"original_text": "Hello, my name is Ana Pérez. My email address is ana.perez@email.com and my phone number is
T 5566778899. | live at Calle Falsa 123, Mexico City. | have been working as a Developer at TechCorp since 2018. |
—ees] also have previous experience at SoftSolutions. My current salary is 48,000 pesos per month. \nMy LinkedIn profile is
linkedin.com/infanaperez and my Twitter account is @anaperez_dev. \nl am looking for new job opportunities and am

available to start next month.”

}

Figure 6: Schema and captured payload for the Conversation-Echo experiment. The parameter original_text contains the
complete user prompt, confirming that conversation content is transmitted when explicitly defined in the schema.
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F: l What is the weather like in Valencia, Spain?

schema:
type: object
JSON properties:
location_data:
type: string
description: The location information (e.g., city, address, etc.) for which the weather is requested.
required:
- location_data

T "operation_hash": "f6146¢d047b1f29d298acc177d0c3c5333¢2b006",

is_consequential: true,
"params”: { "location_data": "Valencia, Spain"}}

Figure 7: Schema and captured payload for the Weather-Echo experiment. The location_data parameter is populated only
with the location explicitly provided in the prompt, with no automatic enrichment from IP geolocation or other metadata.

D Taxonomy of Personal Information (PI) and Groupings
D.1 Detailed PI Taxonomy for GPTs

The following is the exhaustive list of the 83 PI categories used to annotate API parameters, accompanied by brief descriptions for each.
While our taxonomy includes CONVERSATION, URL, and LANGUAGE, their actual sensitivity depends on the specific user-provided input.
CONVERSATION parameters may contain entire user prompts, which often include names, contact details, or other personal identifiers. URL
parameters, though seemingly benign, can link to webpages containing private or user-specific information—such as an individual’s online
CV (e.g., https://university.edu/ john.smith/cv.pdf). LANGUAGE parameters can reveal linguistic origin or demographic attributes,
which—especially when combined with other data, may contribute to profiling individuals. We emphasize that not all these categories are
inherently high-risk; their potential sensitivity arises from the nature of the real user content provided during LLM interactions.

No. | Category Name Refined Description
1 NON_PI Information that, by itself or in combination, does not reasonably identify a specific individual.
2 CONVERSATION Parameters that attempt to extract information from conversations, such as original_text, isContainsPrivateInfo, messages...
3 PERSON Generic personal data that directly identifies or relates to an individual (e.g., full name).
4 NATIONAL_ID Government-issued national identification number (e.g., Citizen ID, Aadhaar) distinct from a Social Security number.
5 SOCIAL_SECURITY_NUMBER Unique identifier issued by a government agency (e.g., U.S. Social Security number).
6 PHONE_NUMBER Telephone number (personal, home, or work) that may be used to contact an individual.
7 ADVERTISING_ID Unique identifier used for online or device-based advertising tracking (e.g., mobile ad ID).
8 VEHICLE_REGISTRATION_NUMBER Registration code assigned to a vehicle by a government authority.
9 LICENSE_PLATE_NUMBER Official alphanumeric code displayed on a vehicle’s license plate.
10 BIRTH_DATE Date of birth (potentially sensitive when combined with other data).
11 PERSON_AGE The age of an individual (may be derived from birth date or self-reported).
12 PERSON_HEIGHT The height of an individual (biometric-related characteristic).
13 PERSON_WEIGHT The weight of an individual (health- or biometric-related characteristic).
14 PERSON_GENDER Reported or identified gender of an individual (can be sensitive depending on context).
15 NUMBER_OF_CHILDREN Quantity of an individual’s children or dependents (personal data).
16 NATIONALITY_CITIZENSHIP Data indicating an individual’s national origin or citizenship.
17 PLACE_OF_BIRTH Specific location (city, state/province, country) where an individual was born.
18 HOME_ADDRESS Residential address (street name, house number, etc.).
19 PICTURE_FACE Photograph or digital image that includes an identifiable facial image of a person.
20 COUNTRY Country associated with an individual (residence, origin, or nationality).
21 ZIPCODE Postal code that may partially identify a person’s location.
22 HOMETOWN_CITY City of residence, origin, or current living location.
23 GEOGRAPHICAL_INDICATORS Broad or aggregated geographic data that may relate to a region or area (less precise than coordinates).
24 GEO_LOCATION Specific geographic coordinates (latitude, longitude) or highly precise location data.
25 ADDRESS General address information (could be partial or ambiguous, e.g., street name without number).
26 DATE_TIME Any date or time stamp that might or might not identify an event related to a person.
27 LANGUAGE Information about languages spoken or understood by an individual.
28 CULTURAL_SOCIAL_IDENTITY Identifiers of cultural or social affiliations (e.g., ethnic tradition, community group).
29 SHOPPING_BEHAVIOR Data about consumer purchase habits, preferences, or spending patterns.
30 SURVEY_ANSWERS Responses to questionnaires, which could reveal personal or sensitive opinions.
31 ACTIVITIES Broad category for personal, social, professional, or online activities (e.g., event attendance).

Continued on next page
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No. | Category Name Refined Description

32 EDUCATION_INFORMATION Academic history and qualifications (e.g., schools attended, degrees).

33 EMAIL_ADDRESS Personal or work-related email address (unique personal identifier).

34 ONLINE_IDENTIFIERS Internet-based identifiers (IP addresses, cookies, device IDs) that may be tied to an individual’s usage.
35 URL Web addresses that could point to personal or potentially identifying content.

36 PASSWORD Confidential string used to authenticate a user (strict security measures required).

37 SOCIAL_NETWORK_PROFILE Profile handle or URL for a user’s social media account.

38 JOB_TITLE Professional title or role (may indirectly reveal employer or industry).

39 INCOME_LEVEL Estimated or reported financial earnings of an individual or household.

40 OCCUPATION General or specific field of employment or profession.

41 ‘WORK_ID Employee or workplace-issued identification code or badge number.

42 EMPLOYMENT_INFORMATION Employment history, current employer data, and job-related details.

43 CRYPTO Cryptocurrency wallet addresses or related transaction data.

44 FINANCIAL_INFORMATION General financial data (income statements, investments, transaction history).

45 INVOICE_PAYMENTS Records of billing, invoicing, or payment transactions that may include personal data.

46 CV_RESUME Curriculum vitae or résumé with personal details, education, and work history.

47 DOCUMENTS General category for uploaded or stored documents which may contain personal data.

48 RACE_ETHNIC Information regarding an individual’s racial or ethnic background (GDPR special category).

49 POLITICAL_AFFILIATION Affiliation with or support for a political party or ideology (GDPR special category).

50 SEXUAL_PREFERENCE Information on an individual’s sexual orientation or preference (GDPR special category).

51 HEALTH_INSURANCE_ID Insurance policy or plan identifier, considered Protected Health Information (PHI) under HIPAA if linked to a U.S. individual.
52 MEDICAL_HISTORY Records of an individual’s past or current medical conditions (PHI under HIPAA, special category under GDPR).
53 X_RAY Medical imaging data, typically PHI under HIPAA if identifiable.

54 PHYSIOLOGICAL_DATA Any data about physiological functions (e.g., heart rate, blood pressure) often handled as health data.
55 PASSPORT_NUMBER Official passport identifier issued by a national authority.

56 DRIVERS_LICENSE_NUMBER Official driver’s license identifier issued by a governmental authority.

57 MARITAL_STATUS Information about an individual’s marital status (e.g., single, married, divorced).

58 MOTHERS_MAIDEN_NAME Birth surname of an individual’s mother, often used as a security question.

59 APPEARANCE_DISTINGUISHING_CHARACTERISTIC Unique physical attribute (e.g., scar, tattoo) that can help identify a person.

60 FAMILY_FRIEND_CONTACT_INFORMATION Contact details for family members or friends (includes names, phone numbers, addresses).

61 SIGNED_PETITIONS Records indicating an individual’s participation in or support for specific petitions.

62 DIGITAL_SIGNATURE Electronic signature data used to authenticate documents or transactions.

63 SCREEN_NAME Username, handle, or alias used on social or online platforms.

64 SOCIAL_NETWORK_ACTIVITY Interactions (posts, likes, comments) on social platforms that reveal personal interests or behavior.
65 WORK_ADDRESS Address of the workplace or primary office location.

66 WORK_CONTACT_INFORMATION Work-related email, phone number, or other contact channels for professional use.

67 WORK_PHONE_NUMBER Phone number assigned to an individual at their place of employment.

68 CREDIT_CARD_NUMBER Payment card number (PCI-DSS regulated), highly sensitive financial data.

69 CREDIT_SCORE Creditworthiness rating (e.g., FICO score), sensitive personal financial attribute.

70 ABA_ROUTING_NUMBER Bank routing transit number (used in U.S. for financial transactions).

71 BANK_ACCOUNT_NUMBER Unique bank account identifier, highly sensitive when combined with routing numbers.

72 INDIVIDUAL_TAXPAYER_IDENTIFICATION Official taxpayer identification (e.g., ITIN in the U.S.), separate from SSN.

73 SWIFT_CODE International bank code for sending wire transfers (SWIFT/BIC).

74 HANDWRITING_SAMPLE Sample or image of an individual’s handwriting (can be a biometric attribute).

75 RELIGION Data regarding religious beliefs or affiliations (GDPR special category).

76 PHILOSOPHICAL_BELIEF Information on personal philosophical views (GDPR special category).

77 TRADEUNION_AFFILIATION Membership or affiliation with a trade or labor union (GDPR special category).

78 SEX_LIFE Details regarding an individual’s sexual behavior or history (GDPR special category).

79 LAW_ENFORCEMENT Data relating to criminal records, investigations, or law enforcement interactions.

80 GENETIC_DATA Information derived from genetic testing or analysis (GDPR special category, HIPAA if identifiable).
81 FINGERPRINT_DATA Biometric data collected via fingerprint scanning (GDPR special category, HIPAA if used for health IDs).
82 VOICE_PRINT Audio data used for voice recognition (considered biometric data).

83 BIOMETRIC_DATA Catch-all for data derived from unique physical or behavioral traits (e.g., retinal scans, facial geometry).

D.2 Grouping of PI Categories for Analysis

This categorization was used to analyze the association between data types and the completeness of privacy policies (see § 4.4.5)

E System Prompts for LLM-Assisted Tasks

This section contains the exact system prompts provided to large language models (LLMs) to assist with two key classification tasks in our
methodology: identifying PI in API parameters and mapping data collection statements from privacy policies to our PI taxonomy.

E.1 Prompt for PI Classification in API Parameters

The following prompt was used with GPT-4o in a collaborative annotation role to help identify and classify API parameters according to our
PI taxonomy, as described in § 3.3.2.

ystem prompt: Classification for PI Taxonomy

You are an API privacy analyst tasked with classifying parameters based on their potential to reveal personally identifiable

information (PII).

specific type of data being analyzed.
You must classify the parameter into one of the following: [
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I will provide the name of the custom GPT, its description, the name of the parameter sent to the API, and its description.
Carefully consider the context and description of each parameter to determine its classification.
Your classification must reflect the most appropriate category based on the parameter's description, ensuring it aligns with the

"NON_PI", "UNKNOWN", "PERSON", "NATIONAL_ID", "PASSPORT_NUMBER", "SOCIAL_SECURITY_NUMBER",
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Table 8: Categorization of Personal Information Types

Category Subcategories

ANCE_DISTINGUISHING_CHARACTERISTIC, PICTURE_FACE

Basic Personal Information PERSON, MOTHERS_MAIDEN_NAME, BIRTH _DATE, PERSON_AGE, PERSON_HEIGHT, PERSON_WEIGHT,
SON_GENDER, MARITAL_STATUS, NUMBER_OF_CHILDREN, PLACE_OF BIRTH, NATIONALITY_CITIZENSHIP, APPEAR-

PER-

"FINGERPRINT_DATA", "VOICE_PRINT", "BIOMETRIC_DATA"].
If the context suggests a clear classification, do not hesitate to assign it, rather than defaulting to 'UNKNOWN.'
Ensure that your classification is precise, as inaccuracies can lead to significant privacy concerns.

approach based on feedback regarding accuracy and context.

how it relates to personally identifiable information (PII).

Always consider the context in which the parameter is used, as this can influence its classification.

If a parameter could be classified as both "NON_PI" and another category, prioritize the latter.

Remember that misclassifying parameters can lead to significant privacy violations; therefore, strive for precision in your
classifications.

Review previous classifications and their feedback to refine your understanding of how similar parameters have been classified,
ensuring consistency and accuracy in your current analysis.

API keys function as credentials similar to passwords.

your classifications.

Encourage a learning mindset by reflecting on past classifications and integrating feedback to improve future accuracy.

Always assess how the context of the parameter may link to personal behaviors or patterns, especially in sensitive areas like
travel.

Your classifications must be precise, as inaccuracies can lead to serious privacy concerns.

Regularly review past classifications and their feedback to identify patterns and improve your decision-making process.

Consider how this parameter might combine with others to create a fuller picture of an individual's identity or behavior.

Be vigilant about potential misinterpretations of parameters and articulate why certain classifications mitigate privacy risks.

skills.
Critically evaluate feedback on past classifications to discern patterns and apply relevant insights to current analyses.

how they may not directly relate to personal data.
Lean towards classifying ambiguous parameters as "NON_PI" unless there is clear evidence to suggest otherwise.
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Consider the implications of the parameter in relation to consumer behavior and reflect on previous classifications to adjust your

For each classification, include a brief explanation of why the parameter fits into the chosen category, particularly focusing on

Additionally, prioritize the functional implications of parameters over their contextual usage, and be aware that parameters like

Misclassifying such sensitive parameters can lead to significant privacy violations, so always consider the broader implications of

Adopt a continuous learning approach by regularly revisiting previous classifications and their outcomes to enhance your analytical

Additionally, when classifying parameters, consider their functional role (e.g., boolean flags, numerical values, or strings) and

Government or Official IDs NATIONAL_ID, PASSPORT_NUMBER, SOCIAL_SECURITY_NUMBER, DRIVERS_LICENSE_NUMBER, VE-
HICLE_REGISTRATION_NUMBER, LICENSE_PLATE_NUMBER, INDIVIDUAL_TAXPAYER_IDENTIFICATION,
HEALTH_INSURANCE_ID, LAW_ENFORCEMENT
Contact Information PHONE_NUMBER, FAMILY_FRIEND_CONTACT_INFORMATION, EMAIL_ADDRESS, WORK_PHONE_NUMBER,
WORK_CONTACT_INFORMATION
Location and Address Information HOME_ADDRESS, ADDRESS, COUNTRY, ZIPCODE, GEOGRAPHICAL_INDICATORS, GEO_LOCATION
Demographic or Social Attributes CULTURAL_SOCIAL_IDENTITY, RACE_ETHNIC, RELIGION, PHILOSOPHICAL_BELIEF, SEXUAL_PREFERENCE, SEX_LIFE, POLITI-
CAL_AFFILIATION, TRADEUNION_AFFILIATION, LANGUAGE
Online and Digital Identifiers ADVERTISING_ID, ONLINE_IDENTIFIERS, SOCIAL_NETWORK_PROFILE, SOCIAL_NETWORK_ACTIVITY, SCREEN_NAME, PASS-
WORD, DIGITAL_SIGNATURE, URL
Employment and Professional Information JOB_TITLE, OCCUPATION, WORK_ID, WORK_ADDRESS, EMPLOYMENT_INFORMATION, INCOME_LEVEL, CV_RESUME, DOCU-
MENTS
Financial and Payment Information CREDIT_CARD_NUMBER, CREDIT_SCORE, ABA_ROUTING_NUMBER, BANK_ACCOUNT_NUMBER, SWIFT_CODE, CRYPTO,
FINANCIAL_INFORMATION, INVOICE_PAYMENTS
Education Information EDUCATION_INFORMATION
Behavioral, Activity and Web Tracking Information SHOPPING_BEHAVIOR, SURVEY_ANSWERS, SIGNED_PETITIONS, ACTIVITIES
Health and Medical Information MEDICAL_HISTORY, X_RAY, PHYSIOLOGICAL_DATA, GENETIC_DATA
Biometric Data FINGERPRINT_DATA, VOICE_PRINT, BIOMETRIC_DATA, HANDWRITING_SAMPLE
Time Information about the user DATE_TIME
"PHONE_NUMBER", "ADVERTISING_ID", "DRIVERS_LICENSE_NUMBER", "VEHICLE_REGISTRATION_NUMBER",
"LICENSE_PLATE_NUMBER", "BIRTH_DATE", "PERSON_AGE", "PERSON_HEIGHT", "PERSON_WEIGHT",
"PERSON_GENDER", "MARITAL_STATUS", "NUMBER_OF_CHILDREN", "NATIONALITY_CITIZENSHIP",
"PLACE_OF_BIRTH", "MOTHERS_MAIDEN_NAME", "HOME_ADDRESS", "PICTURE_FACE",
"APPEARANCE_DISTINGUISHING_CHARACTERISTIC", "COUNTRY", "ZIPCODE", "HOMETOWN_CITY",
"GEOGRAPHICAL_INDICATORS", "GEO_LOCATION", "ADDRESS", "DATE_TIME", "LANGUAGE",
"FAMILY_FRIEND_CONTACT_INFORMATION", "CULTURAL_SOCIAL_IDENTITY", "SHOPPING_BEHAVIOR",
"SURVEY_ANSWERS", "SIGNED_PETITIONS", "ACTIVITIES", "EDUCATION_INFORMATION", "EMAIL_ADDRESS",
"ONLINE_IDENTIFIERS", "DIGITAL_SIGNATURE", "URL", "PASSWORD", "SCREEN_NAME",
"SOCIAL_NETWORK_PROFILE", "SOCIAL_NETWORK_ACTIVITY", "JOB_TITLE", "INCOME_LEVEL", "OCCUPATION",
"WORK_ID", "WORK_ADDRESS", "WORK_CONTACT_INFORMATION", "WORK_PHONE_NUMBER",
"EMPLOYMENT_INFORMATION", "CREDIT_CARD_NUMBER", "CREDIT_SCORE", "ABA_ROUTING_NUMBER",
"BANK_ACCOUNT_NUMBER", "INDIVIDUAL_TAXPAYER_IDENTIFICATION", "SWIFT_CODE", "CRYPTO",
"FINANCIAL_INFORMATION", "INVOICE_PAYMENTS", "HANDWRITING_SAMPLE", "CV_RESUME", "DOCUMENTS",
"RACE_ETHNIC", "RELIGION", "PHILOSOPHICAL_BELIEF", "POLITICAL_AFFILIATION",
"TRADEUNION_AFFILIATION", "SEXUAL_PREFERENCE", "SEX_LIFE", "LAW_ENFORCEMENT",
"HEALTH_INSURANCE_ID", "MEDICAL_HISTORY", "X_RAY", "PHYSIOLOGICAL_DATA", "GENETIC_DATA",
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Always reflect on the implications of your classifications and document insights gained from past analyses to foster a culture of
continuous improvement.

Additionally, emphasize the importance of contextual sensitivity, clarify the distinction between PI and sensitive identifiers, and
encourage a risk assessment mindset when classifying parameters.

Incorporate examples of misclassifications and their consequences to reinforce the need for accuracy, and promote a learning
framework that encourages reflection and collaboration with historical data.

Examples:

{examples}

E.2 Prompt for Mapping PoliGraph-er Results to the PI Taxonomy

The following prompt was used with GPT-40-mini to semantically group data type mentions extracted by PoliGraph-er from privacy policies
and map them to our standardized PI taxonomy, as detailed in § 3.4.2.

tem prompt: Mapping PoliGraph-er results to the PI taxonomy

Classify a data type into specific provided categories based on its content. Structure the results with each data element assigned
to its correct classification.

Below are the available categories along with examples to help you classify them correctly.

# Categories

- URL: Website addresses.

- LANGUAGE: Language preferences or settings.

- PASSWORD: Access credentials or passwords.

- EMAIL_ADDRESS: Email addresses.

- COUNTRY: Information about country of residence, citizenship, or origin.
- DATE_TIME: Timestamps, dates, or specific times.

- GEO_LOCATION: Geographic location data.

- ONLINE_IDENTIFIERS: Unique identifiers associated with online accounts.
- ZIPCODE: Postal codes.

- SCREEN_NAME: Visible names on digital platforms.

- PERSON: Full names and variations.

- JOB_TITLE: Professional titles or roles.

- BIRTH_DATE: Birth dates.

- CV_RESUME: Information related to resumes or CVs.

- CRYPTO: Cryptocurrency-related information.

- SHOPPING_BEHAVIOR: Data on shopping preferences.

- ADDRESS: Physical addresses.

- MEDICAL_HISTORY: Medical history or information.

- PHONE_NUMBER: Phone numbers.

- ACTIVITIES: Online or service activities.

- PLACE_OF_BIRTH: Place of birth.

- PERSON_GENDER: Gender identity.

- EDUCATION_INFORMATION: Educational information.

- VEHICLE_REGISTRATION_NUMBER: Vehicle registration numbers or plates.
- HOME_ADDRESS: Residential addresses.

- PICTURE_FACE: Facial photographs or identification images.

- NATIONALITY_CITIZENSHIP: Nationality or citizenship.

- PERSON_HEIGHT: A person's height.

- PERSON_WEIGHT: A person's weight.

- NUMBER_OF_CHILDREN: Number of children.

- HEALTH_INSURANCE_ID: Health insurance numbers.

- CHAT_MESSAGE: If the data is related to the user's chat information, clearly related to chat interaction with custom GPT.
- BROAD: If the data uses broad terms like "personal information".

- NONE: If the data does not fit into any of the above categories.

# Examples
{examples_str}
# Notes

- Consider the different variations and synonyms that may exist for each category and use them as a guide.

- If a data point does not reasonably fit into any category, classify it as NONE.

- Use keyword context to determine the appropriate category if it is not explicitly mentioned in the given examples.

- Real examples are expected to follow a similar pattern to those shown, but they may include additional words or phrases that help
define the category.
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F Confusion Matrix Analysis of Policy-Parameter Mapping

Table 10: Confusion Matrix Analysis of Policy-Parameter Mapping

Category Total TP FN FNR
EMAIL_ADDRESS 10 4 6 0.6
NUMBER_OF_CHILDREN 2 1 1 0.5
CHAT_MESSAGE 10 6 4 0.4
ADDRESS 10 6 4 0.4
PERSON 10 7 3 0.3
SCREEN_NAME 10 8 2 0.2
ONLINE_IDENTIFIERS 10 8 2 0.2
JOB_TITLE 10 8 2 0.2
NONE 10 9 1 0.1
EDUCATION_INFORMATION 10 9 1 0.1
PICTURE_FACE 10 9 1 0.1
VEHICLE_REGISTRATION_NUMBER 10 9 1 0.1
PASSWORD 10 9 1 0.1
COUNTRY 10 9 1 0.1
GEO_LOCATION 10 9 1 0.1
MEDICAL_HISTORY 10 9 1 0.1
ACTIVITIES 10 10 0 0.0
NATIONALITY_CITIZENSHIP 2 2 0 0.0
LANGUAGE 10 10 0 0.0
HEALTH_INSURANCE_ID 2 2 0 0.0
BIRTH_DATE 3 3 0 0.0
BROAD 10 10 0 0.0
CRYPTO 10 10 0 0.0
CV_RESUME 10 10 0 0.0
DATE_TIME 10 10 0 0.0
PERSON_WEIGHT 2 2 0 0.0
PERSON_HEIGHT 1 1 0 0.0
PERSON_GENDER 4 4 0 0.0
PHONE_NUMBER 10 10 0 0.0
PLACE_OF_BIRTH 1 1 0 0.0
SHOPPING_BEHAVIOR 10 10 0 0.0
URL 10 10 0 0.0
ZIPCODE 6 6 0 0.0

Table 10 compares the automated mapping between privacy-policy statements and our PI taxonomy. Examples of misclassified
instances: In several cases, the automated mapping misclassified a collection statement. For example, the statement “api key login credential”
was classified as ONLINE_IDENTIFIERS instead of PASSWORD. Similarly, “paypal” and “openai account” were classified under EMAIL _ADDRESS,
these terms are linked to account identifiers often associated with an email address, but we consider strict synonym matching for explicit
email terms. Another example is “gmail message”, which the classifier assigned to CHAT_MESSAGE. These misclassifications typically stem
from indirect, brand-specific wording or from the mapping model’s conservative matching rules, which fail to generalize beyond exact
term—category associations.

G Detailed Model Classification Performance

This section provides a detailed view of the performance of the machine learning models used in the study. It includes standard metrics such
as precision, recall, and F1-score for each PI category, for both GPT-40 and the fine-tuned RoBERTa classifier.

G.1 Classification Metrics with GPT4-o

Table 11 shows the detailed classification performance metrics obtained when using the prompt described as Prompt for PI Classification in
API Parameters (GPT-40) on the 775 annotated samples.

G.2 Fine-Tuned RoBERTa Model Classification Metrics

Table 13 presents the detailed performance metrics for the classifier based on RoBERTa-Large, fine-tuned for PI classification in API
parameters (discussed in § 3.3.5).
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Table 11: Classification Metrics with GPT4-o

Label Precision Recall F1-Score Support
ACTIVITIES 0.50 0.57 0.53 7
ADDRESS 0.59 0.53 0.56 19
BIRTH_DATE 1.00 0.83 0.91 6
COUNTRY 0.77 0.83 0.80 12
CREDIT_CARD_NUMBER 0.00 0.00 0.00 0
CRYPTO 0.89 0.50 0.64 16
CULTURAL_SOCIAL_IDENTITY 0.33 1.00 0.50 1
CV_RESUME 1.00 0.94 0.97 16
DATE_TIME 0.34 0.95 0.50 20
DOCUMENTS 0.50 1.00 0.67 3
EDUCATION_INFORMATION 0.83 1.00 0.91 10
EMAIL_ADDRESS 0.96 0.92 0.94 24
EMPLOYMENT_INFORMATION 0.00 0.00 0.00 7
FINANCIAL_INFORMATION 0.80 0.80 0.80 5
GEOGRAPHICAL_INDICATORS 0.57 0.50 0.53 8
GEO_LOCATION 0.57 0.57 0.57 7
HEALTH_INSURANCE_ID 0.67 1.00 0.80 2
HOMETOWN_CITY 0.09 1.00 0.17 2
HOME_ADDRESS 0.56 1.00 0.71 15
INCOME_LEVEL 1.00 0.67 0.80 3
INVOICE_PAYMENTS 0.00 0.00 0.00 1
JOB_TITLE 1.00 1.00 1.00 5
LANGUAGE 1.00 1.00 1.00 25
LICENSE_PLATE_NUMBER 1.00 1.00 1.00 2
MEDICAL_HISTORY 1.00 0.57 0.73 21
NATIONALITY_CITIZENSHIP 0.00 0.00 0.00 3
NATIONAL_ID 1.00 1.00 1.00 1
NON_PI 0.72 0.67 0.70 326
NUMBER_OF_CHILDREN 0.75 1.00 0.86 3
OCCUPATION 0.75 1.00 0.86 15
ONLINE_IDENTIFIERS 0.50 0.60 0.55 10
PASSWORD 0.82 1.00 0.90 14
PERSON 0.38 0.89 0.53 9
SCREEN_NAME 0.89 0.89 0.89 9
URL 0.81 0.55 0.65 31
VEHICLE_REGISTRATION_NUMBER 1.00 0.80 0.89 5
Accuracy 0.67 (775 samples)

Macro Average 062 | 068 | 061 | 775
Weighted Average 070 | 067 | 066 | 775
Overall Accuracy 0.67

Balanced Accuracy 0.73

Macro F1-Score 0.61

Micro F1-Score 0.67

Matthews Correlation Coefficient 0.60

Cohen’s Kappa 0.60

Table 13: RoBerTA Fine-Tuned Performance Metrics

Label Precision Recall F1-Score Support
ACTIVITIES 0.60 0.86 0.71 7
ADDRESS 0.78 0.74 0.76 19
BIRTH_DATE 1.00 1.00 1.00 6
COUNTRY 0.71 0.83 0.77 12
CRYPTO 0.75 0.94 0.83 16
CV_RESUME 1.00 0.94 0.97 16
DATE_TIME 0.67 0.70 0.68 20
EDUCATION_INFORMATION 0.91 1.00 0.95 10
EMAIL_ADDRESS 0.92 1.00 0.96 24
GEO_LOCATION 0.74 0.93 0.82 15
HEALTH_INSURANCE_ID 0.67 1.00 0.80 2
HOME_ADDRESS 0.73 0.73 0.73 15
JOB_TITLE 0.78 0.90 0.84 20
LANGUAGE 0.85 0.88 0.86 25
MEDICAL_HISTORY 1.00 0.95 0.98 21
NATIONALITY_CITIZENSHIP 1.00 1.00 1.00 3
NON_PI 0.88 0.84 0.86 326
NUMBER_OF_CHILDREN 0.75 1.00 0.86 3
ONLINE_IDENTIFIERS 0.80 0.80 0.80 10
PASSWORD 0.88 1.00 0.93 14
PERSON 0.89 0.89 0.89 9
PERSON_GENDER 1.00 1.00 1.00 2
PERSON_HEIGHT 1.00 1.00 1.00 4
PERSON_WEIGHT 0.80 1.00 0.89 4
PHONE_NUMBER 0.67 1.00 0.80 2
PICTURE_FACE 1.00 0.80 0.89 5
PLACE_OF_BIRTH 0.89 1.00 0.94 8
SCREEN_NAME 1.00 0.89 0.94 9
SHOPPING_BEHAVIOR 1.00 0.50 0.67 10
UNKWOWN 0.71 0.62 0.67 40
URL 0.96 0.87 0.92 31
VEHICLE_REGISTRATION_NUMBER 1.00 1.00 1.00 5
ZIPCODE 0.81 0.88 0.84 24
Accuracy 0.85 (737 samples)

Macro Average 0.85 [ 089 [ o087 | 737
Weighted Average 086 | 08 | 08 | 737
Overall Accuracy 0.85

Balanced Accuracy 0.89

Macro F1-Score 0.87

Micro F1-Score 0.85

Matthews Correlation Coefficient 0.81

Cohen’s Kappa 0.81
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