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Abstract
The rapid growth of platforms for customizing Large Language

Models (LLMs), such as OpenAI’s GPTs, has raised new privacy

and security concerns, particularly related to the exposure of user

data via third-party API integrations in LLM apps.To assess privacy

risks and data practices, we conducted a large-scale analysis of

OpenAI’s GPTs ecosystem. Through the analysis of 5,286 GPTs

and the 44,102 parameters they use through API calls to exter-

nal services, we systematically investigated the types of user data

collected, as well as the completeness and discrepancies between

actual data flows and GPTs stated privacy policies. Our results high-

light that approximately 35% of API parameters enable the sharing

of sensitive or personally identifiable information, yet only 15%

of corresponding privacy policies provide complete disclosure. By

quantifying these discrepancies, our study exposes critical privacy

risks and underscores the need for stronger oversight and support

tools in LLM-based application development. Furthermore, we un-

cover widespread problematic practices among GPT creators, such

as missing or inaccurate privacy policies and a misunderstanding

of their privacy responsibilities. Building on these insights, we

propose design recommendations that include actionable measure-

ments to improve transparency and informed consent, enhance

creator responsibility, and strengthen regulation.
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1 Introduction
The rapid growth of Large Language Models (LLMs) has led to the

emergence of open ecosystems for creating and sharing LLM-driven

applications. Platforms such as Poe [51], FlowGPT [71], Yuanqi [72]

and OpenAI’s GPT Store [46] enable users to easily build and dis-

tribute their own applications with minimal effort. Starting from
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a simple prompt, users can develop specialized LLM apps, for ex-

ample, by uploading a math textbook and instructing the model to

act as a tutor. While these ecosystems foster personalization and

community-driven creativity exchange, they also introduce height-

ened security and privacy risks that have yet to be understood.

LLM app platforms are exposed to a range of security and privacy

risks. Since these applications share the same underlying LLM

backend, they inherit many of the vulnerabilities affecting general-

purpose language models. These risks include unauthorized data

processing, data leakage [29], prompt injection [20], training data

extraction [10], backdoor attacks, and the profiling of individuals

without consent [30]. Additionally, users often have little control

or visibility over how their data is collected, reused, and exposed,

which heightens the risk of privacy violations and misinformation

dissemination [30, 76, 82, 83].

Due to the low barrier to entry for LLM app creation, the dis-

tinction between LLM app creators and end users is often blurred,

leading to miscommunication and uncertainty about how user data

is handled [35]. Unlike traditional application ecosystems, where

developers are typically responsible for data protection and are ex-

pected to possess technical expertise [21], many creators in the LLM

app ecosystem may lack the necessary experience to implement

adequate security measures or legal safeguards for user data [35].

This raises important questions about how data handling is actually

implemented in practice within these LLM app ecosystems.

To make it even more challenging, LLM app platforms increas-

ingly enable integrations with third-party services to extend LLM

app functionality. For example, GPTs hosted by OpenAI allow LLM

apps to connect with external services [45]. This complicates data

flows and creates challenges in securing inputs, outputs, and in-

teractions across multiple components [7, 52]. These third-party

integrations may also introduce external risks, including the possi-

bility of unauthorized access through third-party APIs [78].

In this paper, we examine two key aspects: 1) we identify what

types of personal information are transmitted by GPTs to external

services (beyondOpenAI’s infrastructure); and 2) we assess whether

these data practices align with the transparency principles stated

in the GPTs’ privacy policies.

This paper makes several contributions. First, we develop and

validate a scalable methodology to analyze personal data flows
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within GPTs, automatically identifying potential personal informa-

tion (PI) transmissions to third-party APIs using a refined taxonomy

and advanced classification techniques. Second, by applying this

method to a large dataset of GPTs, we identify specific categories of

PI that are frequently transmitted via external API calls. Third, we

conduct a systematic assessment of the alignment between detected

PI flows and the disclosures in the associated privacy policies, eval-

uating both traceability and completeness. We explicitly scope our

analysis to the collection of data transmitted through the Action

interface. Retention, downstream use, and cookie- or session-level

tracking are excluded from this study. Based on these findings, we

offer actionable recommendations to foster a more responsible and

privacy-conscious LLM app platforms.

2 Background
Large Language Model (LLM) apps are customizations of founda-

tion models designed to perform specific tasks across a wide range

of domains. For example, an LLM can be customized to function

as a calendar assistant by integrating with services like Google

Calendar to schedule appointments and deliver timely reminders

for upcoming meetings and events [25, 59]. As opposed to general-

purpose LLMs, these LLM apps empower users to become creators,

allowing them to customize the model through prompt engineering,

incorporate domain-specific knowledge for fine-tuning, or integrate

external services [46]. To support the creation, discovery, and de-

ployment of such LLM apps, various platforms have emerged, such

as OpenAI’s GPT Store. These platforms enable creators to publish

their LLM apps and share them with a broader user community.

Most LLM app platforms provide prompt-based LLM app cre-

ation, where users define LLM app behavior through natural lan-

guage prompts, such as Miniapp [41] and FlowGPT [71]. In this case

any data disclosed by the user would be kept within the platform

itself. In addition, there are other platforms that allow extending

the functionality of LLM apps through API integration, enabling

connections to third-party external services; examples include Ope-

nAI’s GPTs [46] and Poe [51]. This second type of platforms is

the focus of our work. In particular, Figure 1 illustrates this type

of architecture, where customized LLM apps can access external

services exposed as API calls.

To illustrate the practical implications of such integrations and

how privacy violations can occur, consider a calendar assistant GPT.

The creator of this assistant might instruct it to capture a user’s

location, preferred times, and email address, and then forward these

details to a third-party scheduling service. Even if the scheduling

platform’s own privacy policy claims it does not collect or store

precise user location, the GPT developer could still transmit location

data contradicting the stated practices of the service.

In this paper, we focus on OpenAI’s GPTs store, which has gained

significant popularity and supports integration with third-party

services. All GPTs (LLM apps) run on OpenAI’s hosted infrastruc-

ture and can be kept private, shared within a team, or get published

to the public GPT Store [46]. As of January 2024, over three mil-

lion GPTs had been created, attracting approximately 6.1 million

monthly visits [47, 62]. OpenAI’s GPTs allow users to build their

own LLM apps on top of GPT-4o [24] without writing code. Users

Figure 1: A common infrastructure for customized LLM ap-
plications, supporting both in-platform customization and
integration with external services

can tailor the GPTs’ behavior, tone, and responses by providing in-

structions, examples, and optional reference files. Creators of GPTs

may enable access to internal tools of OpenAI’s infrastructure, such

as a code interpreter or OpenAI’s image generation model DALL-E.

Additionally and very importantly, GPTs may connect to exter-
nal services through features called “Actions”. Creators must

define each “Action”, specifying the parameters to be sent during

execution and providing a link to a privacy policy. The action de-

scription and its parameters are passed to the GPT model as part of

the GPT context. When a user interacts with the GPT, the model

interprets if it needs to use the action and extracts the required

parameters from the user prompt. That is, the model extracts from

the prompt what it interprets fits the definition given by the GPT

creator.

3 Methodology
Our overarching goal is to measure the extent to which third-party

GPTs collect personal information and whether their privacy poli-

cies accurately reflect these practices. To do this, we used a system-

atic methodology summarized in Figure 2. We explain the process

for collecting and preparing datasets of GPTs and their associated

API specifications, the development of a comprehensive taxonomy

and the method for detecting personal parameters within API calls,

and the analysis framework used to assess the traceability between

detected data transmission and stated privacy policies. While our

method targets the GPT Store, it can be applied to any LLM app

platform where Action-style parameter specifications are available.

3.1 Dataset Collection and Preparation
3.1.1 Initial Data Sources. The OpenAI GPT Store presents only a

subset of GPTs, organized into 10 categories. It does not provide

a comprehensive index of all available GPTs, making exhaustive

data collection through this channel alone infeasible. To tackle

this limitation, we used a double strategy. We used third-party,

community-curated indexes of GPTs, and GPTs datasets collected

by other researchers. In particular, we used:

1) GPTStore.ai: From April 5 to April 7, 2024, we scraped GPT-

Store.ai [66], a third-party website that aggregates listings of GPTs.

This crawl returned 96,521 links. We subsequently used these links

from April 10 to 12, 2024, to query OpenAI’s official store, retrieving

metadata for 85,478 GPTs that were publicly accessible. 87% of GPTs
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Figure 2: An overview of the method: data collection and analysis

in our dataset remain public, underscoring the timeliness of our

findings despite recent API changes.

2) BeeTrove Dataset: to enhance domain diversity and ensure a

broader representation across sectors such as productivity, educa-

tion, finance, and healthcare, we incorporated the BeeTrove dataset

[4]. It contains 334,348 entries following a consistent schema.

Deduplicating the overlap between the two sources, the resulting

combined dataset comprises 343,122 total unique GPTs. While it

does not capture the entire population, estimated to exceed 3million

GPTs [47], it offers a representative sample that reflects the diversity

(as we will see later, e.g., in terms of categories).

3.1.2 Collected Data. GPTs are defined by a manifest. We pro-

cessed each manifest and several key data dimensions within it:

a) Manifest: The manifest is the descriptor associated with the

GPT. It contains basic information about the GPTs such as the

application id, name, description, query examples and information

about the creator. It also defines which tools the GPTs has access

to, both provided by OpenAI (e.g., access to files uploaded by the

creator, code interpretation, image generation) or external API

calls, called actions. Actions include an extended description in the

manifest to cover the integration (JSON schema) and a link to the

privacy policy. An example manifest is included in § A.

b) Action JSON schema (OpenAPI Specifications): TheGPT uses

the JSON schema to connect to the external API, and it includes the

expected structure of request and response parameters: parameter

names, data types, and descriptions. An example action description

with a JSON schema and privacy policy link is in § B.

c) Privacy Policy: the privacy policy of each action is obtained

through a link included in the action description. The policy should

address the data protection and user privacy of the data sent through

the corresponding action.

3.1.3 Data Filtering. From our collection of 343,122 unique GPTs,

we filtered the dataset following these steps. First, we focused ex-

clusively on GPTs that explicitly defined at least one “action,” indi-

cating an integration with an external API, which is the focus of

our work. This left 8,192 GPTs that included at least one external

API action. Second, we extracted API parameter information from

the action JSON schemas provided in their manifests. This step was

essential for our classification of potentially transmitted person-

ally identifiable information (PI). Due to variability and occasional

inconsistencies in the schema structures, we retained only those

GPTs for which parameter data could be extracted in a robust and

consistent manner. As a result, our dataset included a final total

of 5,286 GPTs that explicitly defined at least one action and from

which parameter data could be consistently extracted from their

JSON schemas.

3.2 PI Taxonomy Creation
To detect specific types of personal data being collected through API

parameters, we need a data taxonomy for personally identifiable

information (PI). We first considered different legal frameworks to

guide our efforts. For example, in the United States, the National
Institute of Standards and Technology (NIST) provides official guid-

ance on the classification and handling of personally identifiable

information [36], while in the European Union, the General Data
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Protection Regulation (GDPR) mandates strict controls on data min-

imization, lawful data processing, and user rights [17]. Although

these frameworks differ in their specific details and jurisdictions,

they share foundational principles: transparency, individual con-

sent, and effective data security. However, these regulations do not

provide a detailed definition of PI categories or a data taxonomy,

as it has been pointed out on previous research [40].

To overcome this limitation, we adapted a taxonomy of PI [58]

inspired by the work of [40, 61]. Since the taxonomy is primarly

inspired by US regulation, we extended their work by including

the data specifications outlined in the GDPR. More specifically, we

incorporated both the general data definitions from Article 4 as well

as the regulations on the processing of special categories of personal

data from Article 9. This includes Online Identifiers for Profiling and
Identification, Genetic Data, Health Data, and Sensitive Personal Data
such as race, religion, sexual preference, or law enforcement data.

We also adapted the taxonomy to fit the specifics of conversa-

tional AI. For example, many GPTs collect the whole message from

the user or conversation, instead of individual parameters. We de-

fined the category of CONVERSATION to group such cases. In our

analysis pipeline, parameters falling into this category trigger an

aditional scrutiny to assess what type of data that specific GPTs

may be collecting.

As a result, we use an 83-categories PI taxonomy that can be used

for privacy analysis in the context of LLM app integration. The com-

plete data taxonomy is included in § D.1. Our classification scheme

improves established data-privacy literature with its granularity.

For instance, many prior works lump personal identifiers together

or focus solely on classic fields like name, address, or date of birth.

By contrast, our extended taxonomy captures both newly emerging

identifiers (e.g., CRYPTO wallet addresses, ONLINE_IDENTIFIERS,

WORK_PHONE_NUMBER) and highly sensitive medical elements

as defined in the GDPR. This granularity is crucial for ensuring that

LLM apps handle data responsibly across a wide array of personal

information types.

3.3 PI Classification in API Parameters
We developed a systematic classification approach to identify Per-

sonal Information (PI) transmitted via third-party APIs in GPTs.

This involved preparing the API parameter data for classification,

annotating a subset of this data according to our PI taxonomy, and

then training and validating a machine learning model to automate

this classification at scale.

3.3.1 Preparation of Input Data for Classification. For each API

parameter identified in our dataset of GPTs, we extracted relevant

textual information to serve as input features for our PI classi-

fier. As detailed in § 3.1.2b, this included the parameter name (e.g.,

“email”), the parameter description provided by the creator (e.g.,

“Email address of the user making a booking”), and the contextual

information from the GPT name (e.g., “Virtualdeborah”) and GPT

description (e.g., “Book complex tasks from a real human”). These

distinct textual fields were concatenated into a single input string

to preserve the contextual richness of each parameter, enhancing

the quality of subsequent annotation and classification.

3.3.2 Annotation of API Parameters. With the input data prepared,

we proceeded to annotate a subset of the API parameters using

the 83-category PI taxonomy developed in § 3.2. This annotation

process was multi-staged to ensure quality and address data imbal-

ances.We began by randomly selecting 300 parameters from distinct

GPTs to form an initial annotation set. These parameters were in-

dependently annotated by three of the paper authors, all previously

trained in privacy-related data classification, using our PI taxonomy.

Across the annotated parameters, a total of 24 distinct PI categories

were observed. The first 100 parameters yielded a Krippendorff’s

Alpha of 0.5897, indicating moderate agreement and highlighting

areas for improvement. Following detailed discussions and refine-

ments to the annotation guidelines to address ambiguities. For

instance, initial disagreements arose from: (1) classifying location-

related parameters with varying granularity (e.g., COUNTRY vs.

GEO_LOCATION ); (2) interpreting generic parameter names (e.g.,

user_input) that could capture user conversation; and (3) distin-

guishing between closely related PI types (e.g., SCREEN_NAME vs.

ONLINE_IDENTIFIERS). After this, the remaining 200 parameters

were annotated, resulting in an improved Krippendorff’s Alpha of

0.8379. This demonstrated a high level of agreement and established

consistent criteria for identifying PI within API parameters.

3.3.3 Enriching the Dataset to Address Class Imbalance. Analysis
of the initial annotation set revealed considerable class imbalance

across the 83-category PI taxonomy, with many categories sparsely

represented or entirely missing. To address this limitation, we ap-

plied two complementary dataset enrichment strategies:

1) Cluster-guided Sampling via Broader Category Groupings:

We sought broader coverage of related PI labels by grouping the

83-category taxonomy into higher-level categories (e.g., Basic Per-

sonal Information, Contact Information, Government or Official

IDs; see Appendix D.2). A preliminary model, trained on the initial

300 annotated samples, generated predictions on the remaining

unlabeled data. Using HDBSCAN [39], we then clustered the unla-

beled parameters within each major category. From each cluster,

we selected the most representative examples, thereby boosting

our coverage of diverse PI samples while limiting redundancy. This

process yielded 213 additional samples for manual annotation, dis-

tributing 20 per category except for the Government or Official IDs

category, which had only 13 suitable samples.

2) Targeted Expansion through Human–GPT-4o Collaboration: To

further enrich low-frequency classes, we employed GPT-4o in a

collaborative annotation workflow inspired by frameworks such as

MEGAnno+ [28] and CoAnnotating [32] among others [68]. Using

the initial 300 annotations as a base, we applied TextGrad [81] to

optimize a task-specific prompt for GPT-4o, enhancing its ability to

classify PI categories. We ran GPT-4o across the corpus and selected

parameters that it identified as PI. To strategically surface cases

likely to improve coverage of rare categories, we compared GPT-

4o’s findings against those of an interim classifier trained on the

513 manually labeled samples already gathered (from the initial 300

and the 213 from cluster-guided sampling). Parameters identified

by GPT-4o but missed by this interim classifier were prioritized.

From each newly identified class through this process, we selected

up to 20 samples for manual annotation, yielding 262 additional

labeled parameters.
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Together, these strategies produced a final annotated dataset1

for training our classification model, with 775 API parameters

spanning 54 unique PI categories — which are the 54 first shown

in Table 7 in the Appendix. This enriched dataset significantly im-

proved class balance and served as a robust foundation for training

our final classification model. The Krippendorff’s Alpha for this

expanded 775 sample dataset was 0.8147.

3.3.4 Qualitative Analysis. In addition, during the annotation pro-

cess, we took memo notes on noteworthy cases involving sensitive

personal information or problematic behavior. These cases were dis-

cussed among researchers. We qualitatively reviewed and reflected

on these examples to provide additional context for the types of

data being collected and to reflect on their appropriateness and

potential privacy risks. This is the basis for the qualitative insights

shown in § 4.1.3.

3.3.5 Training and Validation. We use Fastfit to fine-tune a classi-

fier based on Roberta-Large [34], a pre-trained BERT model. FastFit

[79], a method specifically designed to deliver fast and accurate

few-shot classification, particularly in scenarios with many seman-

tically similar classes, underscoring its suitability for the complex

classification challenges present in our study. To evaluate classi-

fier performance, we employed a stratified 5-fold cross-validation

strategy to preserve class distributions across training and valida-

tion splits. We obtain a macro F1 score of 87%. Detailed analysis

revealed consistently high precision and recall for most categories,

including near perfect performance (precision and recall >92%) for

critical categories such as MEDICAL_HISTORY, EMAIL_ADDRESS,
and CV_RESUME. See Table 13 in the Appendix. The validation

results confirm the effectiveness and reliability of the classifier,

demonstrating robust performance across different contexts and

data categories. Despite small classification errors between closely

related categories (which would still be useful to know there is
personal information involved in that parameter), the high scores

across multiple evaluation metrics confirm the robustness and scal-

ability of our methodology.

Alternative methods for classification:We also considered using an

LLM (GPT-4o) for this classification task. However, as we show in

Table G.1 (for GPT-4o) and Table G.2 (for our fine-tuned RoBERTa

model), our method based on the fine-tuned BERT architecture

(RoBERTa) worked much better for the actual PI classification.

Specifically, while GPT-4o achieved a Macro F1-score of 0.61, our

fine-tuned RoBERTa model demonstrated significantly higher per-

formance with a Macro F1-score of 0.87. This finding is consistent

with existing literature, which suggests that it is often better to use

smaller language models fine-tuned on specific tasks rather than

relying on zero-shot capabilities of larger LLMs for classification

[8, 16]. Moreover, smaller, fine-tuned models can offer significant

resource efficiency advantages while maintaining strong perfor-

mance [60]. Thus, while GPT-4o was actually very useful to ex-

pand our dataset (see § 3.3.2) for a more balanced training set, our

fine-tuned RoBERTa-based approach provided superior accuracy

and reliability. In addition, by leveraging RoBERTa-large, a fine-

tuned transformer model with 355 million parameters requiring

1
The annotated dataset will be provided on acceptance of the paper

approximately 710 MB in FP16 precision, we achieve strong classi-

fication performance without the need for massive infrastructure.

In contrast, larger foundation models such as GPT-4o ( 200 billion

parameters, 400 GB) or GPT-4o-mini ( 16 GB) impose considerable

memory and computing overhead.

3.4 Traceability Analysis
Our traceability analysis framework evaluates the alignment be-

tween the personal data transmitted by GPTs to third-party APIs

and the disclosures made in their associated privacy policies. This

process involves enhancing the capabilities of PoliGraph-er [13],

an automated policy analysis tool, with Large Language Models

(LLMs) to bridge the gap between policy statements and our specific

data classification taxonomy.

3.4.1 PoliGraph-er Processing of Privacy Policies. To examine how

creators/organizations disclose the types of personal information

(PI) they collect, we analyzed the text of privacy policies using

PoliGraph-er [13], a state-of-the-art NLP tool designed to extract

structured information about data practices from privacy policies.

It is worth noting that not all GPTs had valid privacy policy links, as

we detail in the results with specific figures: some links are unusable,

point to unrelated content or cannot be processed by PoliGraph-

er — e.g., non-English privacy policy, malformed HTML etc. For

all the valid privacy policies, PoliGraph-er can extract structured

statements about data collection, enabling us to analyze which PI

types were explicitly disclosed. These graph-based outputs form

the foundation for comparing policy statements with actual data

transmitted in API interactions, as detailed next.

3.4.2 Extending PoliGraph-er with LLMs for Semantic Clustering.
While PoliGraph-er effectively extracts structured statements about

data collection from privacy policies (e.g., “We collect→ email"),

directly comparing these outputs with our PI classification of API

parameters (see § 3.3) presents a challenge. The extracted data type

mentions (such as “email address,” “location data,” or “user’s job

title”) are expressed in diverse natural language and do not directly

align with the categories in our PI taxonomy. To enable meaning-

ful comparisons between what policies claim to collect and what

is actually transmitted through APIs, we developed a process to

semantically cluster these extracted data type mentions and map

them to our standardized PI taxonomy. This crucial step translates

the diverse language of privacy policies into a consistent, struc-

tured format, facilitating direct traceability analysis. To implement

this, we first extracted 26,629 “collection” relationships from suc-

cessfully parsed policies, each containing an entity, a collection

relationship, and a data type. After deduplication, this yielded 5,741

unique data type mentions. We then employed GPT-4o-mini to

perform the semantic clustering and mapping. For example, policy

statements referencing “position”, “professional title”, or “expertise”
were grouped by the LLM and mapped to our JOB_TITLE category.

To evaluate the performance of this LLM-assisted mapping, we

sampled up to 10 mapped statements per PI category, producing

a validation set of 264 examples. A researcher manually verified

whether each LLM classification matched the correct taxonomy

label. GPT-4o-mini achieved an overall accuracy of 87.83% in this

task, demonstrating strong alignment with human judgment in
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clustering and categorizing these collection statements — the spe-

cific prompt used for this categorization is provided in § E.2 , with

the corresponding confusion matrix shown in Table 10.

3.4.3 Compliance Types. To assess privacy compliance in GPT

third-party integrations, we follow the literature on traceability in

other domains, such as social media, smartphone apps, and voice

assistant skills [3, 14, 42, 80, 86], adapted to suit the data flows char-

acteristic of this ecosystem. Each GPT is assessed as having broken,
partial, or complete traceability [3, 42, 80, 86]. These classifications

are defined as follows:

Complete: occurs when all types of personal data transmitted by

the GPT, according to its OpenAPI schema or parameter definitions,

are explicitly mentioned in the privacy policy. For instance, if a

GPT collects a user’s email address and location, a statement such

as “We collect your email address and geographic location to provide
our services” is considered fully traceable.

Partial: applies when only some of the data types transmitted via

parameters are mentioned in the policy, or when the references to

data collection are vague or generic. For example, if a GPT transmits

both email address and phone number, but the privacy policy only

includes the phrase “we may collect your personal information”, this
would constitute partial traceability. Similarly, policies that men-

tion one of the collected data points (e.g., email) but omit others

(e.g., phone number or location) fall into this category. Some GPTs

rely on a parent organization’s privacy policy instead of offering

GPT-specific data handling details. We classify these as partial dis-

closures: they reference data practices in general terms but lack the

direct, GPT-specific description of data flows needed for a complete

disclosure.

Broken: refers to cases where the GPT lacks a privacy policy,

provides a broken or inaccessible link, or includes a policy that does

not mention any relevant data types, despite transmitting them. For

instance, a GPT that collects geolocation to check for the weather

APIs but its policy does not mention location.

3.5 Active Audit: Data Sent to Third Parties
To complement our static analysis of Action schemas, we conducted

an active audit to directly observe the data transmitted by GPT-

integrated APIs to third-party endpoints. We implemented three

minimal services, each corresponding to an Action from our dataset,

and deployed them. Each service simply printed to the console the

parameters received in the request, allowing us to verify the payload

content. The three Actions reproduced common cases of potential

exposure: (i)Weather-Echo, a weather query Action with a sin-

gle location_data parameter (Fig. 7); (ii) Conversation-Echo, an
Action with a original_text parameter of type CONVERSATION

(Fig. 6); and (iii) LeetCV, a multi-field Action requesting contact

details, salary, past_employments, job title, email, CV... (Fig. 5). For

each case, we interacted manually with the corresponding GPT,

providing controlled inputs and observing the exact parameters

received by our servers. This setup allowed us to confirm whether

parameters were populated beyond the user-provided information,

whether the data sent matched the content of the prompt, and

whether user conversation could be extracted. This active audit

serves to validate and complement our large-scale analysis by pro-

viding empirical evidence of the actual data transmitted at the

transport layer.

4 Results
4.1 Personal Data Parameters
Building upon the procedure described in § 3.1.3, we extracted a

total of 44,102 API parameters. These parameters, defined in creator-

supplied action schemas, offer insight into how user input may be

transmitted to external services. Our analysis across 44,102 API
parameters reveals that 15,392 entries, approximately 35% cor-
respond to categories of sensitive or identifying data (See

Table 1). While a majority of parameters fall into the non-sensitive

class, a considerable portion involve fieldswith privacy implications.

Parameters classified as CONVERSATION, representing ambiguous

or obfuscated fields that may extract entire prompts or conversa-

tion history, account for 11.5% of all cases. Web addresses (URL)

and language metadata (LANGUAGE) are each found in about 5.8%

and 5.7% of parameters respectively, sometimes linking to external

user content. Email addresses appear in 1.5% of parameters, while

passwords are detected in 1.8%. Information related to geographic

location is present in roughly 0.9%, and professional roles such as

job titles and résumé content appear in 0.35% and 0.3% of cases

respectively. Other noteworthy data types include phone numbers

and medical history, each found in approximately 0.2% of parame-

ters. Although individually these figures may seem modest, they

represent thousands of individual instances where personal data

may be exposed through GPT integrations.

Certain APIs further highlight the privacy risks of unregulated

integration. For example, the GPT named LeetCV - Online Resume
Builder [31] exposes endpoints that request full names, email ad-

dresses, and authentication credentials. Similarly, we found a GPT

integrated with an API for email automation, enabling the transmis-

sion of recipient identities and unstructured message content that

may contain sensitive information. These integrations demonstrate

how even commonplace development choices can result in the in-

advertent collection of high-risk user data, especially when input

parameters are not properly sanitized or when API documentation

lacks transparency.

4.1.1 Personal Parameter across Categories. A closer look at the dis-

tribution of these parameters across application categories shown

in Figure 3 reveals heterogeneity in the privacy risks posed by dif-

ferent GPT categories. Notably, the lifestyle, productivity, and other
application categories collectively account for the largest concentra-

tion of PI parameters. Within these categories, sensitive fields such

as EMAIL_ADDRESS, LANGUAGE, JOB_TITLE, and chat extraction

parameters (CONVERSATION ) emerge frequently, raising further

privacy concerns.

4.1.2 Distribution of Personal Data Parameters in GPTs. Figure 4
illustrates the number of distinct PI parameters (i.e., parameters

not classified as NON_PI ) used by GPTs. The distribution is top-

heavy: the annotation on the plot shows that fully 90% of GPTs

specify no more than two PI parameters. The dashed green and red

vertical lines mark the median (2.0) and mean (2.2), underscoring

how tightly usage is clustered at the low end. In absolute terms,
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Table 1: Category counts over 44,102 API parameters

Category Count
NON_PI 28,710

CONVERSATION 5,083

URL 2,568

LANGUAGE 2,493

PASSWORD 779

EMAIL_ADDRESS 654

COUNTRY 600

DATE_TIME 524

GEO_LOCATION 380

ONLINE_IDENTIFIERS 362

ZIPCODE 264

SCREEN_NAME 231

PERSON 172

JOB_TITLE 152

BIRTH_DATE 148

CV_RESUME 134

CRYPTO 131

SHOPPING_BEHAVIOR 112

ADDRESS 98

MEDICAL_HISTORY 98

PHONE_NUMBER 93

ACTIVITIES 63

PLACE_OF_BIRTH 47

PERSON_GENDER 43

EDUCATION_INFORMATION 36

VEHICLE_REGISTRATION_NUMBER 32

HOME_ADDRESS 32

PICTURE_FACE 26

NATIONALITY_CITIZENSHIP 13

PERSON_HEIGHT 9

PERSON_WEIGHT 9

NUMBER_OF_CHILDREN 5

HEALTH_INSURANCE_ID 1

1,722 GPTs rely on a single PI parameter, while 601 use exactly two.

Interestingly, the count rises again to 1,317 for three parameters.

From that point the numbers decline sharply, but they still show a

very sizable number of GPTs having more than four parameters: 79

GPTs specify four parameters, 32 specify five, and 128 specify six.

Altogether, 3,879 GPTs, about 98% of the sample, use six or fewer

parameters. Beyond six, the tail is very thin: 47 GPTs use seven

parameters, six use eight, and so on.

4.1.3 Unpacking Creator Practices in API Parameter Definitions.
Our quantitative analysis revealed extensive data collection across

a broad spectrum of GPTs. To gain a deeper understanding of the

specific types of data being collected and assess whether they are

gathered for appropriate purposes, this section presents illustrative

cases that exemplify excessive data collection practices in GPTs.

Creator misconceptions about data handling: Some creators ap-

peared to assume that sensitive user data would be redacted before

reaching their APIs, an expectation reflected in their parameter

documentation. For example, one creator defined a parameter as

“Parameter Name: original_text”, indicating that they were collect-

ing the conversation. In the parameter description, they specified:

“Please provide the original request (only containing user input) that
triggered the API call, as this information will be used to improve the
performance of the API. If the text contains sensitive user data, such as
names, please redact them as **.”. Such instructions suggest creators’

assumption that either the GPTmodel or the platformwould handle

the redaction of sensitive information before it reaches the API,

without considering themselves responsible for safeguarding user

Figure 3: Heatmap of the frequency of PI categories in API
parameters (columns) by GPT category (rows)

Figure 4: Histogram showing the distribution of personal
data parameters used across GPTs

data. In practice, however, GPT does not perform this preprocessing,

and full conversations are still passed to creators (see § 4.5).

Sensitive information collection: SomeGPTs are designed to sup-

port task contexts that involve sensitive information, and many of

them collect personal data through their API parameters. For exam-

ple, in a CV-generation GPT [31], the parameters included fields for

the candidate’s email address and phone number. Payment-related

GPTs also highlight similar concerns. These applications may assist

users in managing their personal financial status and request highly

sensitive information such as bank account numbers and invoice
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details. In the health domain, GPTs offering health insurance sugges-

tions frequently include parameters for country-specific insurance

numbers or health system records and identifiers. Moreover, some

GPTs collect information not only about the user themselves but

also about other users. For instance, one GPT designed to scrape

social media history requested details such as names and phone

numbers of targeted individuals and could return complete social

media histories.

Excessive data collection: Beyond the sensitivity of individual

data fields, some GPTs collect excessive amounts of personal infor-

mation across multiple categories. As shown in Figure 4, several

GPTs request not only highly sensitive data but also a wide range

of it within a single app. For example, one GPT designed to assist

with hiring or job searching simultaneously requests ten types of

personal information, including a user’s full name, email address,

phone number, location, and salary. In another case, a medical as-

sistant GPT collects eleven types of personal information through

API parameters, including patient ID, hospital location, birthdate,

home address, phone number, email address, and full name.

4.2 Co-occurrence and Cross-Contextual Risks
While previous sections focused on the privacy implications of

individual GPTs and their data handling practices, we now turn

to the systemic risks that may arise from shared Actions and co-

occurrence patterns across GPTs. This ecosystem-level view helps

surface potential for indirect data exposure and cross-contextual

user tracking. While most GPTs (89.8%) rely on a single Action, a

non-negligible portion (10.2%) incorporate two or more, revealing

more complex integrations. Among these multi-Action GPTs, 72.3%

connect to endpoints in entirely different domains, an architec-

tural choice that increases the likelihood of indirect data exposure

through cross-contextual linkages. Co-occurrence analysis further

supports this concern: nearly half of all Actions (47.3%) are used in

GPTs that invoke at least one other Action, suggesting an ecosys-

tem where data from distinct sources may be collated or inferred.

Prominent Actions like WebPilot, Gapier, and AdIntelli exhibit es-

pecially high weighted degrees of co-occurrence, often appearing

together in GPTs that span categories such as productivity, research,

and media. For instance, WebPilot co-occurs with over 60 other Ac-

tions, including Zapier, AdIntelli, and GitHub APIs, hinting at latent

pathways for user data to traverse across otherwise disconnected

services. These overlapping integrations present a systemic risk:

even if individual Actions appear compliant in isolation, their joint

usage can enable composite user profiling or inadvertent leakage

of sensitive data across domains.

4.3 Usage of GPTs with PI Parameters
In Table 2, we aggregate usage (total number of whole user conver-

sations with GPTs) across all GPTs that request a given PI parame-

ter. For example, GPTs collectively sending CV_RESUME through

Actions surpass 900,000 conversations with users in total, clearly

demonstrating that may affect a substantial audience. Similarly,

GPTs requiring EMAIL_ADDRESS, PERSON, or PHONE_NUMBER
each accumulate hundreds of thousands of user conversations once

all such GPTs are combined. In contrast, while GPTs with MEDI-
CAL_HISTORY parameters see relatively fewer overall conversa-

tions, their sensitive nature remains noteworthy and is still in the

thousands. Thus, these sensitive categories still reach considerable

numbers of interactions with users, reinforcing the importance of

privacy safeguards for both highly used and specialized GPTs.

Table 2: GPT conversations by category

Category GPT Conversations
CV_RESUME 972,649

EMAIL_ADDRESS 346,540

PERSON 219,343

PHONE_NUMBER 170,853

EDUCATION_INFORMATION 56,504

MEDICAL_HISTORY 8,258

4.4 Traceability Results
4.4.1 General Traceability Results. Out of the 5,286 GPTs analyzed,
792 GPTs (≈ 15%) exhibited complete traceability, 2,258 GPTs

(≈ 42.7%) exhibited partial traceability, and 2,004 (≈ 37.9%) ex-

hibited broken traceability. PoliGraph-er could not process 232

GPTs because their privacy policies were not in English, and they

were therefore excluded from the traceability analysis. Digging

deeper, there were 3,400 GPTs for which the policy content was

made available for comparison against their the PI collected through

the APIs they connect to. Many of these policies, however, were

privacy policies that had been reused across several GPTs. After

de-duplication, there was a total of 2,140 unique privacy policies.

We provide further analysis on them in the next sections.

4.4.2 Automated Policy Generators. Several broader trends emerged

from the analysis of the privacy policies. Many GPT creators ap-

peared to rely on automated policy generators, particularly from

platforms such as privacypolicyonline.com (379 instances), freep-
rivacypolicy.com (180), iubenda.com (14), and termly.io (9). We de-

termined this based on the host domains of the privacy policies,

which directly matched the domains of the policy generator ser-

vice. These often produced generalized and sometimes inaccurate

disclosures. Some creators hosted privacy policies via plain HTML

documents or by linking directly to official legislative texts (e.g.,

canada.cawith 142 occurrences). Moreover, the use of generic, third-

party policies was common: google.com (388), github.com (155), and

azurewebsites.net (51) were cited, which typically were not tailored

to a GPT’s unique data practices.

4.4.3 API Integrators. A big proportion of GPTs rely on API inte-

grators such as zapier.com (2,409) and gapier.com (3,874, a Zapier-

related domain), which act as middleware platforms that facili-

tate connections between thousands of third-party services. These

platforms often allow a single API call to trigger workflows that

dynamically invoke multiple downstream APIs, complicating the

traceability of data flows. However, the linked privacy policies are

typically broad and generic, offering limited insight into what data

is actually collected, shared, or stored during execution. This lack of

specificity poses a significant privacy risk, as users may be unaware

of the full extent of the data processing involved. Other aggregators

included rapidapi.com (313) and pluginport.io (219), while domain-

specific APIs such as api-football.com (118) and weather.gov (113)
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Table 3: Compliance breakdown by parameter requested

Category Broken Complete Partial

ACTIVITIES 14 0 19

ADDRESS 18 0 16

BIRTH_DATE 44 1 11

CONVERSATION 750 10 1677

COUNTRY 117 0 197

CRYPTO 30 0 6

CV_RESUME 28 0 16

DATE_TIME 110 0 166

EDUCATION_INFORMATION 9 0 3

EMAIL_ADDRESS 231 13 154

GEO_LOCATION 76 0 105

HEALTH_INSURANCE_ID 0 0 1

HOME_ADDRESS 10 0 7

JOB_TITLE 27 0 16

LANGUAGE 212 0 1222

MEDICAL_HISTORY 11 0 10

NATIONALITY_CITIZENSHIP 4 0 0

NON_PII 1662 753 2103

NUMBER_OF_CHILDREN 0 0 2

ONLINE_IDENTIFIERS 120 3 69

PASSWORD 288 2 183

PERSON 61 3 36

PERSON_GENDER 16 0 7

PERSON_HEIGHT 6 0 1

PERSON_WEIGHT 5 0 2

PHONE_NUMBER 41 1 20

PICTURE_FACE 5 0 2

PLACE_OF_BIRTH 6 1 4

SCREEN_NAME 68 0 39

SHOPPING_BEHAVIOR 22 0 28

URL 487 8 1318

VEHICLE_REGISTRATION_NUMBER 9 0 6

ZIPCODE 53 0 41

were also observed. Additionally, webpilot.ai appeared in 8,075 in-

stances, functioning as an intermediary for injecting external web

content into GPT interactions.

4.4.4 Traceability by Requested Parameter. Table 3 provides a de-
tailed breakdown of broken, complete, and partial disclosures by

the specific parameter requested (e.g., phone numbers, precise ge-

olocations). A recurring concern was that many API parameters

transmitted personal data types not mentioned in their associated

privacy policies. Failure to reference frequently requested param-

eters (e.g., phone numbers, emails, geolocation) places end-users

at potential privacy risk. These omissions highlight the urgency of

stronger audit mechanisms and more transparent design practices.

4.4.5 Association Between Data Categories and Privacy Policy Com-
pleteness. We investigatedwhether the specific types of information

handled by GPTs are associated with differences in privacy-policy

completeness, as measured by the compliance label (complete, par-
tial, or broken). To assess statistical relationships between data types
and policy completeness, we ran Chi-squared tests of independence

[38] and then calculated Cramér’s 𝑉 to quantify the strength of as-

sociation [12]. Effect-size interpretations follow Cohen’s criteria for

Cramér’s 𝑉 with two degrees of freedom [11]: negligible (𝑉 < .07),

small (.07 ≤ 𝑉 < .21), medium (.21 ≤ 𝑉 < .35), and large (𝑉 ≥ .35).

Unless noted otherwise, all reported associations are statistically

significant at 𝑝 < .05.

A large association was observed for Non-Personal Information.
Of the 792 GPTs with complete traceability, a substantial major-

ity (753) are GPTs where no personal information was found to

be sent via the API parameters (i.e., all parameters for that action

were classified as NON_PI ). In addition, six categories exhibited

smaller associations: Demographic or Social Attributes, Information
Extracted from the Chat (CONVERSATION category), Online and
Digital Identifiers, Employment and Professional Information, Loca-
tion and Address Information, and Contact Information. These data
types often require nuanced handling and may introduce uncer-

tainty or hesitancy in disclosure, resulting in less comprehensive

policies. All remaining categories showed negligible effect sizes.

4.4.6 Post-hoc Pairwise Comparisons. To pinpoint where the global
𝜒2 effects originate, we followed Sharpe’s “compare–cells” method-

ology [63]. A “cell” refers to the count of GPTs for a given combi-

nation of PI category and it’s traceability assesment. Specifically,

we ran pairwise two-proportion 𝑧-tests comparing the presence

vs. absence of each PI family category (as defined in § D.2) across

all three compliance levels. Tests were conducted only where all

expected cell counts exceeded 5. The Bonferroni method was ap-

plied to adjust 𝑝-values for multiple comparisons (𝛼 = 0.05). Table 4

summarizes the PI families with an overall significant association

(from the Chi-squared test) and lists the specific pairwise contrasts

that remained significant after this correction, with Δ indicating

absolute percentage-point differences and OR representing odds

ratios.

Table 4: Cramér’s V association & significant post-hoc 𝑧-tests

Family 𝑝 < 0.05 Cramér’s V Compliance Level 𝚫 (pp) OR

Basic Personal Information ✓ 0.0283 broken ↑ +8.3 2.09

partial ↓ −5.6 0.71

complete ↓ −2.7 0.66

Non-Personal Information ✓ 0.3992 broken ↓ −1.0 0.88

partial ↓ −22.5 0.23

Demographic / Social Attr. ✓ 0.1593 partial ↑ +17.5 8.69

Information from Chat ✓ 0.1589 broken ↓ −1.9 0.79

partial ↑ +12.6 3.02

Online & Digital IDs ✓ 0.1437 complete ↓ −9.9 0.06

broken ↑ +3.0 1.38

partial ↑ +6.9 1.69

Employment / Professional ✓ 0.0808 broken ↑ +30.4 6.48

partial ↓ −21.8 0.33

Location / Address ✓ 0.0760 partial ↑ +3.4 1.29

broken ↑ +5.6 1.72

Time Information ✓ 0.0443 partial ↑ +7.4 1.84

broken ↑ +1.4 1.17

Contact Information ✓ 0.0699 complete ↓ −2.8 0.65

broken ↑ +12.6 2.78

partial ↓ −9.8 0.57

Financial / Payment ✓ 0.0509 partial ↓ −32.1 0.22

broken ↑ +40.7 9.73

Education Information ✓ 0.0360

Behavioral, Activity and Web Tracking × 0.0238

Health and Medical Information × 0.0203

Government or Official IDs × 0.0161

Severely incomplete disclosures tend to cluster around financial

and employment data. GPTs that process Financial and Payment

Information or Employment and Professional Information are dra-

matically more likely to feature broken policies, with odds ratios
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Table 5: Compliance breakdown by GPT category

GPT Category Broken Complete Partial

Other 407 193 510

dalle 26 17 25

education 101 29 138

lifestyle 290 82 218

productivity 256 110 336

programming 95 40 68

research 210 106 213

writing 65 23 87

of 9.73 and 6.48 respectively. These same categories also show sig-

nificant drops in the rate of even partial compliance, highlighting

their consistent association with policy failures.

Basic identity traits also appear to reduce overall policy qual-

ity. The inclusion of Basic Personal Information correlates with

a decrease in complete policies by 2.7 percentage points and an

increase in broken ones by 8.3 points. This suggests a broad reluc-

tance or inability to comprehensively disclose practices related to

core identity attributes.

Conversational and demographic content appears to prompt

superficial compliance. GPTs incorporating Information extracted

from the chat or Demographic and Social Attributes are consider-

ably more likely to have partial policies, with odds ratios of 3.02

and 8.69, respectively. These patterns suggest that while creators

may acknowledge the need for some form of disclosure, they often

stop short of full transparency.

In contrast, GPTs that only process Non-Personal Information

are associated with markedly better outcomes. The likelihood of

partial compliance decreases by 22.5 percentage points in this group,

and broken policies become slightly less common as well. Finally,

temporal and geospatial signals introduce subtler effects. GPTs that

handle Time Information or Location and Address Information

show modest but consistent increases in both broken and partial

disclosures. These results may reflect underlying ambiguity or cre-

ator discomfort around documenting practices related to tracking

or situational data.

4.4.7 Traceability by GPT category. Table 5 shows that traceability
issues permeate many GPT usage categories. While the “Other”

category exhibited the largest share of broken disclosures (407),

“research” and “productivity” services also showed high numbers

of partial or broken policies. These findings illustrate that policy

incompleteness is not confined to any single application but is

widespread across diverse GPT use cases.

4.4.8 The Good, the Bad and the Ugly creators. In total, there are

2,175 unique creators of GPTs requesting parameters in their calls

to an external API:

The good: There are 443 creators whose GPTs are all fully trace-

able, representing 17% of all creators. These creators clearly ar-

ticulate and justify the permissions they request in their privacy

policies. For example, creator Sora AI has 18 complete GPTs, and

creator Crypto maintains 13 complete GPs, both exemplifying best

practices in disclosing PI collection through API parameters.

The bad: There are 957 creators with all GPTs with broken trace-

ability, representing approximately 44% of all creators. These cre-

ators provide inadequate or no explanation of permissions in their

Table 6: Creator compliance distribution

Compliance Type Creators

Partial only 923

Broken only 957

Complete only 443

Both Partial and Complete 62

privacy policies. For instance, aikitcentral.com has 193 partial and 5

broken GPTs, showing widespread inconsistency, while Finntech1

has 34 partial GPTs with no clear justifications provided.

The ugly: There are 923 creators with partial traceability, repre-

senting 42% of all creators. Their privacy policies partially address

the permissions requested, indicating incomplete or unclear disclo-

sure. A representative case is tinycorp.ai, which has 43 broken GPTs,

reflecting a high level of undocumented permissions. Similarly, one

creator manages 42 GPTs with partial traceability, and BREEBS has

35 GPTs that are inconsistently documented. In addition, there is

a small group of 62 creators (around 2%) whose GPTs are mixed,

with both partial and complete traceability practices.

Table 6 summarizes these creator groupings. The results show a

widespread problem of inadequate compliance practices, with ‘bad’

and ‘ugly’ creators significantly outnumbering those with good

compliance. This suggests the potential of targeted interventions

aimed at improving creator compliance across the board.

4.5 Findings from the Active Audit
Our active audit produced three main observations: 1. Location
(Weather-Echo).The request body contained only the location_data
field, populated exactly as written in the user prompt. We did not

observe automatic inclusion of IP-based geolocation, derived coordi-

nates, or coarse location fallbacks. When no location was provided

in the prompt, the parameter was either omitted or set to an empty

string. This confirms that location values originate from the prompt

rather than from other metadata. 2. Conversation (Conversation-
Echo). When a parameter such as original_text was defined in the

schema, the request body included the full user prompt without any

redaction or anonymization, even when the input contained per-

sonal information. This occurred despite the parameter description

explicitly instructing the GPT to remove or mask sensitive elements,

such as names. In the absence of such a parameter, no conversation

text was transmitted. These findings reinforce our classification

of CONVERSATION parameters as high-risk. 3. Over-collection
(LeetCV). For schemas listing multiple PI categories, the model

attempted to populate all available parameters with information

extracted from the prompt, leaving empty values for missing fields.

This indicates that over-collection risk arises from the breadth of

parameters defined by creators.

5 Discussion
5.1 Main Takeaways
5.1.1 Massive Personal Data Collection with no Transparency. Our
analysis of 5,286 GPTs that integrate via APIs to services outside

OpenAI’s infrastucture, reveals a total of 44,102 API parameters

used by those GPTs, out of which approximately 35% correspond to

categories of sensitive or identifying personal data that are being
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collected. Even more worryingly, when analyzing the traceabil-

ity with the GPTs’ privacy policies, the results are that only 792

GPTs (15%) exhibit complete traceability, i.e., they disclose in their

privacy policy the personal data that is collected through the API

parameters. This paints a bleak picture of the current state of the

GPTs ecosystem when it comes to personal data being taken out of

the OpenAI ecosystem and the lack of transparency given to users

explaining that.

5.1.2 Validation via active audit. The active audit results reinforce
our main conclusion: the primary exposure vector is the combina-

tion of what creators request in the JSON schema and what the

model extracts from the user prompt, rather than metadata added

outside the prompt. Risk increases notably for CONVERSATION

parameters and for schemas that combine multiple personal in-

formation fields, both of which are common in our corpus. These

findings suggest potential mitigations at the platform level, such as

editable previews of outbound payloads and schema linting to dis-

courage overly broad parameter definitions. Our tests did not find

evidence of session correlators in the examined cases, but we can-

not exclude their presence in other Action types or under different

authentication contexts.

5.1.3 Privacy Policy Completeness & Parameter Sensitivity. Our
findings reveal that while privacy policy completeness is not uni-

formly tied to data sensitivity, GPTs that process conversational

content or user-identity attributes are associated with notably less

complete disclosures. Surprisingly, highly sensitive categories (e.g.,

health or government ID information) did not show strong as-

sociations, possibly due to their low prevalence or confounding

factors like creator expertise or reliance on template-driven policies.

Cramér’s 𝑉 results (Table 4) and these post-hoc contrasts further

confirm that policy quality degrades most when financial, employ-

ment, or core identity details are involved, whereas non-personal

parameters tend to bemore consistent and complete. This inverse re-

lationship between data sensitivity and disclosure quality suggests

several underlying causes. Some creators may be unaware of their

responsibilities, others may lack the necessary tools or knowledge

to provide clear disclosures, and some may intentionally obscure

risky data flows [54]. These findings highlight substantial compli-

ance gaps in the ecosystem and underscore the need for stronger

guidance and standardized privacy policy design.

5.1.4 Privacy Policy Discrepancies and Mismanagement. We identi-

fied several discrepancies, both between the stated privacy policies

and the actual practices and within the privacy policy statements,

highlighting potential privacy violations. First, our findings uncover

a significant number of missing and incorrect privacy policies. Al-

though providing a valid privacy policy is mandatory when creating

GPT apps with third-party connections [48, 49], these discrepancies

show how privacy requirements can be bypassed or misrepresented

in practice. Second, our findings reveal a mismatch between actual

personal data flows and what is disclosed in privacy policies, often

revealing the collection of more user data than is stated. For exam-

ple, a substantial portion of API parameters, approximately 35%,

are configured to transmit sensitive or identifiable user information.

However, only about 15% of the GPTs analyzed completely disclose

these data transfer practices. Finally, in many cases, creators do not

specify which parameters are being collected and instead capture

the entire conversation with the user. This practice was observed in

1831 GPTs, yet only 0.5%, of these applications acknowledged this

level of data collection in their privacy policies. Such discrepancies

point to a serious lack of transparency that could erode user trust

and lead to potential violations of data protection regulations.

5.1.5 Misconceptions of GPT Creators. We observed a widespread

misunderstanding among creators, likely stemming from a lack

of AI literacy. Through in-depth case analysis, we identified in-

stances where creators included statements in their API parameters

instructing the GPT or the platform itself to avoid transmitting per-

sonally identifiable information (PII). This reflects a fundamental

misunderstanding of how data handling and API interactions are

managed. In GPTs, models do not automatically filter sensitive data,

nor does the platform sanitize data by default. Instead, the respon-

sibility lies with the creators to implement appropriate safeguards

and controls [48, 49]. It highlights a knowledge gap among creators

in the development and deployment of AI applications, particularly

in relation to data privacy and information transmission.

5.1.6 Scalable PI Detection in LLM Apps. We developed a human-

AI pipeline for analyzing privacy practices in GPTs including API

parameter definitions, privacy policies, and their traceability. This

approach combines the strengths of human oversight in critical

areas with the scalability of lightweight AI deployment and the

semantic analysis capabilities of LLMs.

First, a key challenge in analyzing API parameters is the lim-

ited contextual information available for each parameter, which

makes automatic classification difficult. While LLMs can interpret

semantic meaning from general knowledge, their accuracy in this

task is limited. To address this, we introduced human-in-the-loop

annotation to create high-quality labeled data, and fine-tuned a

RoBERTa classifier on this dataset. This combination significantly

improves classification accuracy, particularly in ambiguous or low-

context scenarios, ensuring more reliable identification of PI-related

parameters.

Second, we introduce a cluster-guided sampling strategy to gen-

erate the annotation dataset. In the context of PI classification for

LLM apps, constructing a high-quality training dataset is challeng-

ing due to the rarity of certain PI categories. To address this, we

cluster API parameters based on their semantic similarity, which

guides the sampling process and ensure that the annotation dataset

includes a more diverse and representative set of examples across

categories. As a result, the final classification accuracy improved

significantly, particularly for underrepresented PI types.

Third, PoliGraph-er’s ontology lacked fine-grained coverage for

the PI categories relevant to our analysis. To address this, we used

an LLM to identify semantic similarities across heterogeneous terms

(e.g., “location” may appear as coordinates, city, or state, and cluster

them into consistent categories [67, 74]). This enables accurate

analysis despite the absence of a standardized PI ontology.

5.2 Recommendations and Design Implications
5.2.1 Transparency and informed consent. The current consent

model within the GPT ecosystem, where users agree to API calls

without prior visibility into the specific data being transmitted,
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presents a fundamental challenge to informed consent. Our study

reveals that around 34.9% of API parameters involve sensitive or

personal data relevant from a privacy regulation perspective, yet

users are provided with a limited view on the specifics of the data

exchange. To address this, we recommend enhancing pre-execution

transparency by not only requesting consent for executing actions

but also allowing users to preview and control the specific data

elements shared with third-party APIs. This could involve the de-

velopment of dynamic, context-aware privacy dashboards that offer

a clearer and more actionable alternative to static policy documents.

This transparency gap is exacerbated by the lack of standardized

protocols governing LLM–API interactions. As LLMs increasingly

operate as autonomous agents capable of seamlessly invoking exter-

nal services, structured and interpretable communication becomes

essential. The Model Context Protocol (MCP) [53] was introduced

in part to address this fragmentation by providing a standardized in-

terface for model–API coordination. Looking ahead, similar efforts

are needed with a privacy-first focus. Users should not only pro-

vide generic consent but also receive clear, contextual information

about what personal data is being transmitted. Tools such as pre-

execution data previews, real-time auditing, and adaptive privacy

controls could improve user autonomy while helping developers

adhere to platform policies and regulatory obligations.

5.2.2 Enhance creator responsibility. The widespread discrepancies
between data practices and privacy policy disclosures underscore

an urgent need for greater creator responsibility and more effec-

tive platform oversight. Our findings indicate that a significant

number of creators, with 44% having “broken” and 36% “partial”

traceability, are failing to provide adequate privacy disclosures.

Platforms should play a more active role by implementing stricter

validation checks for privacy policies and data usage declarations

during the GPT submission process, potentially leveraging auto-

mated analysis techniques similar to those explored in our study.

At the same time, there is a growing need for users to become

more aware of privacy implications, and for creators to be sup-

ported with better tools and educational resources that help them

understand their data handling responsibilities and develop accu-

rate, comprehensive privacy policies. As the barrier to customizing

LLM applications lowers and the line between creators and users

becomes increasingly blurred [35], it becomes critical to clarify re-

sponsibilities and design mechanisms that effectively motivate each

role to meet their obligations. This effort may benefit from drawing

on theories such as Protection Motivation Theory (PMT) [57] and

Self-Determination Theory (SDT) [18], which identify motivation

as a key factor influencing security and privacy behavior. By fos-

tering relatedness and autonomy through measures like tailored

communication, clear choices in privacy settings, and targeted pri-

vacy prompts, platforms can encourage both creators and users to

adopt practices that prioritize security and privacy.

5.2.3 Regulation. Finally, our findings have implications for reg-

ulatory bodies. The documented gap between data practices and

disclosures, particularly concerning sensitive information, may in-

form the development or refinement of regulatory frameworks

specific to LLM applications. As those LLM platforms introduce

multiple stakeholders, including model providers, application host-

ing platforms, users, and creators, it is important to clearly define

and distinguish the regulatory responsibilities assigned to each

role [35]. In addition, because these applications are developed

globally and must comply with diverse regulatory systems, such

as the PI taxonomy in GDPR [17] and NIST guidelines [36], it is

essential to address legal compatibility and improve communica-

tion across jurisdictions when designing regulatory strategies. Our

taxonomy of sensitive data and methodology for assessing policy

compliance could serve as a foundational reference for such efforts,

helping to define clear expectations for data handling and trans-

parency in this new technological domain. Although the flexibility

of GPTs enables powerful applications, this potential must be bal-

anced with strong safeguards that prevent unintentional privacy

violations and ensure meaningful respect for user autonomy and

regulatory requirements.

5.3 Limitations
Our study has several limitations. First, while this paper focuses on

API integrations within the GPT ecosystem and provides detailed

insights into privacy practices, the findings may not be generaliz-

able to other large language model platforms or application stores.

However, we believe our method may be easily adapted to other

such platforms, so future research could benefit from applying our

methods to other platforms beyond GPTs. Our focus is limited to col-

lection via Action parameters; we do not analyze other, subsequent

actions with the data. A comprehensive study of these aspects is left

for future work. Second, we used PoliGraph-er for policy analysis,

which may have inherent limitations such as false positives and its

restriction to English content. Additionally, a longitudinal analysis

of the GPT ecosystem would also be valuable to track the evolution

of data sharing practices, policy compliance, and the impact of any

interventions or platform changes over time. As the LLM landscape

matures, understanding these trends will be essential for adaptive

governance and sustained privacy protection.

5.4 Related Work
5.4.1 Vulnerabilities in GPTs and LLM Integrations. Specific re-

search efforts have started probing the vulnerabilities within this

new ecosystem of customizable LLM apps. Studies have identified

potential attack vectors related to GPTs [2, 26], including risks asso-

ciatedwith the prompts used to create them [70, 84]. The integration

of third-party APIs, while enhancing functionality [33, 50, 52, 64],

is a significant source of risk [19], with browser-based assistants po-

tentially transmitting entire webpage contents, including personal

data, to external servers [73], LLMs capable of inferring sensitive

personal attributes from seemingly innocuous text [65], and ma-

licious third-party GPTs that are able to manipulate users into

revealing personal data [82]. Research has demonstrated attacks

targeting these third-party API integrations [23, 85] and explored

the overall security posture of platforms utilizing such extensions

[26, 84]. Concerns also extend to the trustworthiness of the LLMs

themselves, including vulnerabilities related to generating harmful

content, exhibiting bias, or leaking data [5, 75]. At the same time,

studies show that users of conversational agents often tend to over-

share personal information, further amplifying privacy risks [87].

While these studies highlight various security and privacy risks,

including potential data leakage, a focused investigation into the
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types of data (specifically PI) being transferred via APIs and its

alignment with policy disclosures remains underexplored.

5.4.2 Privacy Policy Analysis and the Challenge of Transparency.
Research in privacy policy analysis often focuses on extracting

key information, identifying clarity issues, and assessing compli-

ance with regulations [44, 55]. Automated techniques have been

developed to analyze policies at scale [1, 9, 13, 22], often within

the context of mobile applications [86]. Recent work shows that

LLMs can further improve classification performance while offer-

ing explainable results [43, 69]. Defining what constitutes Personal

Information (PI) is crucial for such analyses, often relying on estab-

lished definitions and guidelines [37]. However, the unique context

of LLMs raises questions about what privacy preservation truly

means when dealing with natural language data, as models may

inadvertently memorize and expose sensitive information from

their training data or user interactions [6, 10]. While tools exist

for policy analysis, applying them effectively to the often brief or

external policies associated with GPTs, and correlating them with

dynamic API data flows, presents a unique challenge.

5.4.3 Bridging the Gap: Policy vs. Practice in Software Ecosystems.
The investigation of discrepancies between privacy policies and

actual data handling practices is not unique to LLMs. Prior research

has extensively studied this gap in other software ecosystems [56].

For instance, work on mobile apps has used static and dynamic

analysis to uncover inconsistencies between policy statements and

runtime data transmissions [86]. Similar compliance and traceabil-

ity analyses have been performed for voice assistant skills like

those on Amazon Alexa [14, 15, 77], social networking platforms

[3], and social media aggregators [42]. Methodologies have also

been developed to link policy commitments to software require-

ments [80]. This body of work demonstrates the importance and

feasibility of verifying whether software behaviour aligns with its

stated privacy commitments, providing a foundation for applying

similar principles to the emerging LLM app ecosystem.

5.4.4 Privacy in third-party LLM Apps. Concurrent work also stud-

ied privacy in third-party LLM Apps [27], but our work brings key

methodological differences and resulting novel, valuable findings:

Focus on data defined in privacy regulations: while [27] gener-

ates with LLMs a synthetic categorization of all the data types that

GPTs may collect through parameters (some of which they deemed

sensitive), we focus on data types that are known to be sensitive

or of a personal nature according to existing privacy regulations,

and detect which GPT Action parameters collect them. Therefore,

direct comparison with [27] is challenging since the two studies

focus on different types of data (e.g. sport and videogames in [27]

do not map to privacy regulations).

Accurate & efficient detection of data in privacy regulations: we

compared for detecting data relevant to privacy regulations: 1) our

approach based on a fined-tuned RoBERTa model, and 2) an ap-

proach for the detection based on LLMs akin to [27]. With (1) we

achieved a Macro F1-score of 0.87, and with (2) we only achieved

a Macro F1-score of 0.61 (§3.3.5). This aligns with literature sug-

gesting that smaller language models fine-tuned on specific tasks

are better than LLMs for classification [8, 16], with more accuracy

and less temporal and spatial costs [60]. With 355 million parame-

ters and ≈3.5GB memory for inference of RoBERTa-large (vs. the

200 billion parameters and 400GB of LLMs such as GPT-4o), our

approach could enable the monitoring of third-party LLM apps at

scale by platforms like OpenAI.

Novel measurement of regulation-relevant data collection: Our

measurement indicates that 34.9% of data collected by GPTs is sen-

sitive or personal under privacy regulations. This extends [27]’s 9%

of GPTs, which focused just on security credentials, which are only

one subset of the data relevant from a regulation perspective. We

also uncovered the collection of data types not observed in [27],

including (see Table 1): an action that requires the user’s health

insurance ID; 13 parameters collecting users’ nationality/citizen-

ship; and the pervasiveness of the data type CV_RESUME, with

134 parameters collecting it and their GPTs being the most popular

with 972,649 conversations (Table 2).

Relevant & fine-grained traceability analysis: we report 15% (792)

GPTs exhibiting complete disclosure, which is very low, though

slightly higher than the 5,8% (250 GPTs) in [27], as they did not

consider that only data relevant to privacy regulations must be

disclosed. Our results also reveal that while email addresses are

often disclosed in policies, others (e.g., home address or gender)

are rarely or never disclosed. This was missed in [27], as personal

information is considered a single category without these nuances.

Novel creator and active audit evidence: Another unique contri-

bution of our work is classifying creators based on their actual

levels of privacy compliance, and qualitative insights of their mis-

conceptions about data privacy obligations. For instance, we iden-

tified GPTs in which creators included statements in their Action

parameters instructing the LLM to avoid transmitting personally

identifiable information (PII), but this is actually not supported

by the models. In fact, our active audit (§4.5) confirmed that the

third-party action received all user data even when the GPT was

instructed to remove or mask it.

6 Conclusion
This work investigates personal data practices within the cus-

tomized LLM app ecosystem, focusing on OpenAI’s GPTs. In par-

ticular, it measures the use of personal information (PI) in GPTs

when using external APIs, systematically assessing the alignment

between detected PI flows and the associated disclosures in privacy

policies, developing a scalable Human-AI pipeline to analyze data

flows within LLM apps. Our analysis of 44,102 API parameters that

5,286 GPTs use to connect to external APIs reveals that 15,392 of

the parameters (≈35%), correspond to categories of sensitive or

personal data nature. Our study reveals the reality of privacy prac-

tices among creators, highlighting discrepancies between what is

disclosed and what is actually transmitted. GPTs privacy policies

are further categorized based on their traceability. At the parameter

level, while a significant portion of API parameters (35 %) collect

sensitive or personal information, only 15% of the corresponding

privacy policies completely disclose it. Additionally, the analysis re-

veals widespread misunderstandings and overly overcollecting data

behaviors among creators across a diverse range of GPTs. Specif-

ically, our results show that only 437 out of 2,448 GPT creators

developed GPTs that exhibited complete traceability.
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A GPT Manifest

Listing 1: Outfit Weather Guide Manifest
1 {
2 "id": "g-9xpy76O9k",
3 "short_url": "g-9xpy76O9k-outfit -weather -guide",
4 "name": "Outfit Weather Guide",
5 "description": "Personalized outfit advice based on weather. Give GPT Location, Style & Gender !",
6 "author": {
7 "name": "Kantasit Intaraphasuk",
8 "verified": true,
9 "socials": {
10 "linkedin": "https:// linkedin.com/in/kantasit -intaraphasuk",
11 "github": "https:// github.com/Kantaaa"
12 }
13 },
14 "prompt_starters": [
15 "Going to work in New York, Chelsea, my style is business casual",
16 "Planning a day out in Paris, casual wear. What 's your suggestion ?",
17 "Attending a wedding in Phuket this evening. Dress code is formal",
18 "I have a hiking trip in the Rockies tomorrow. What should I wear?"
19 ],
20 "categories": ["lifestyle"],
21 "profile_picture_url": "https://files.oaiusercontent.com/file -RJQ4MldanQBKQEWLhYu5nqsG ?...",
22 "created_at": "2023-11-10T20:31:48Z",
23 "updated_at": "2024-01-13T19:29:58Z",
24 "vanity_metrics": {
25 "num_conversations_str": "40+",
26 "created_ago_str": "5 months ago"
27 },
28 "tags": [
29 "public",
30 "uses_function_calls",
31 "interactions_disabled"
32 ]
33 }

B Action Schema

Listing 2: MET Norway Weather API Integration Action. It includes the JSON schema and the privacy policy link
1 {'id ': 'gzm_cnf_smK47iTv14vWUBABbNru7wLQ~gzm_tool_QRP8yEohFpGONAJH4wt3AYTX ',
2 'type ': 'plugins_prototype ',
3 'settings ': None,
4 'metadata ': {'action_id ': 'g-c2d1191611e03522233c27d70d7d88a88c630168',
5 'domain ': 'api.met.no ',
6 'raw_spec ': None,
7 'json_schema ': {'openapi ': '3.1.0',
8 'info ': {'title ': 'MET Norway Weather API Integration ',
9 'description ': 'Integration with the MET Norway Weather API to retrieve weather forecasts.',
10 'version ': 'v1.0.0'},
11 'servers ': [{'url ': 'https://api.met.no/weatherapi/locationforecast/2.0'}],
12 'paths ': { '/compact ': {'get ': {'description ': 'Retrieve weather forecast data for a specific location ',
13 'operationId ': 'getWeatherForecast ',
14 'parameters ': [{'name ': 'lat ',
15 'in ': 'query ',
16 'description ': 'Latitude of the location ',
17 'required ': True,
18 'schema ': {'type ': 'number ', 'format ': 'float '}},
19 {'name ': 'lon ',
20 'in ': 'query ',
21 'description ': 'Longitude of the location ',
22 'required ': True,
23 'schema ': {'type ': 'number ', 'format ': 'float '}}],
24 'responses ': {'200': {'description ': 'Successful response with weather forecast data ',
25 'content ': {'application/json ': {'schema ': {'type ': 'object ',
26 ...
27 'timeseries ': {'type ': 'array ',
28 'items ': {'type ': 'object '}}}}}}}}}}}}},
29 'components ': {'schemas ': {}}},
30 'auth ': {'type ': 'none '},
31 'privacy_policy_url ': 'https://api.met.no/doc/TermsOfService '}}

C Figures for Active Audit Experiments
Figures 5–7 present the screenshots and payload captures for the three controlled integrations used in our active audit (§3.5). These illustrate

the schema definitions in the GPT interface and the exact HTTP request payloads received by our controlled endpoints during execution:

• LeetCV (Fig. 5): Schema requesting multiple PI fields, showing over-collection behavior.

• Conversation-Echo (Fig. 6): Full user prompt transmitted when mapped to original_text.
• Weather-Echo (Fig. 7): Location parameter populated only from prompt text.
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These visuals correspond to the cases discussed in §3.5 and §4.5, supporting our empirical validation of the static analysis.

Figure 5: Schema and captured payload for the LeetCV experiment. This GPT Action requests multiple personal information
fields (email, phone, location, language, job title, CV...), allowing us to observe over-collection behaviors when the model fills
all available fields from the prompt.

Figure 6: Schema and captured payload for the Conversation-Echo experiment. The parameter original_text contains the
complete user prompt, confirming that conversation content is transmitted when explicitly defined in the schema.
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Figure 7: Schema and captured payload for the Weather-Echo experiment. The location_data parameter is populated only
with the location explicitly provided in the prompt, with no automatic enrichment from IP geolocation or other metadata.

D Taxonomy of Personal Information (PI) and Groupings
D.1 Detailed PI Taxonomy for GPTs
The following is the exhaustive list of the 83 PI categories used to annotate API parameters, accompanied by brief descriptions for each.

While our taxonomy includes CONVERSATION, URL, and LANGUAGE, their actual sensitivity depends on the specific user-provided input.

CONVERSATION parameters may contain entire user prompts, which often include names, contact details, or other personal identifiers. URL
parameters, though seemingly benign, can link to webpages containing private or user-specific information—such as an individual’s online

CV (e.g., https://university.edu/ john.smith/cv.pdf). LANGUAGE parameters can reveal linguistic origin or demographic attributes,

which—especially when combined with other data, may contribute to profiling individuals. We emphasize that not all these categories are

inherently high-risk; their potential sensitivity arises from the nature of the real user content provided during LLM interactions.

No. Category Name Refined Description
1 NON_PI Information that, by itself or in combination, does not reasonably identify a specific individual.

2 CONVERSATION Parameters that attempt to extract information from conversations, such as original_text, isContainsPrivateInfo, messages...

3 PERSON Generic personal data that directly identifies or relates to an individual (e.g., full name).

4 NATIONAL_ID Government-issued national identification number (e.g., Citizen ID, Aadhaar) distinct from a Social Security number.

5 SOCIAL_SECURITY_NUMBER Unique identifier issued by a government agency (e.g., U.S. Social Security number).

6 PHONE_NUMBER Telephone number (personal, home, or work) that may be used to contact an individual.

7 ADVERTISING_ID Unique identifier used for online or device-based advertising tracking (e.g., mobile ad ID).

8 VEHICLE_REGISTRATION_NUMBER Registration code assigned to a vehicle by a government authority.

9 LICENSE_PLATE_NUMBER Official alphanumeric code displayed on a vehicle’s license plate.

10 BIRTH_DATE Date of birth (potentially sensitive when combined with other data).

11 PERSON_AGE The age of an individual (may be derived from birth date or self-reported).

12 PERSON_HEIGHT The height of an individual (biometric-related characteristic).

13 PERSON_WEIGHT The weight of an individual (health- or biometric-related characteristic).

14 PERSON_GENDER Reported or identified gender of an individual (can be sensitive depending on context).

15 NUMBER_OF_CHILDREN Quantity of an individual’s children or dependents (personal data).

16 NATIONALITY_CITIZENSHIP Data indicating an individual’s national origin or citizenship.

17 PLACE_OF_BIRTH Specific location (city, state/province, country) where an individual was born.

18 HOME_ADDRESS Residential address (street name, house number, etc.).

19 PICTURE_FACE Photograph or digital image that includes an identifiable facial image of a person.

20 COUNTRY Country associated with an individual (residence, origin, or nationality).

21 ZIPCODE Postal code that may partially identify a person’s location.

22 HOMETOWN_CITY City of residence, origin, or current living location.

23 GEOGRAPHICAL_INDICATORS Broad or aggregated geographic data that may relate to a region or area (less precise than coordinates).

24 GEO_LOCATION Specific geographic coordinates (latitude, longitude) or highly precise location data.

25 ADDRESS General address information (could be partial or ambiguous, e.g., street name without number).

26 DATE_TIME Any date or time stamp that might or might not identify an event related to a person.

27 LANGUAGE Information about languages spoken or understood by an individual.

28 CULTURAL_SOCIAL_IDENTITY Identifiers of cultural or social affiliations (e.g., ethnic tradition, community group).

29 SHOPPING_BEHAVIOR Data about consumer purchase habits, preferences, or spending patterns.

30 SURVEY_ANSWERS Responses to questionnaires, which could reveal personal or sensitive opinions.

31 ACTIVITIES Broad category for personal, social, professional, or online activities (e.g., event attendance).

Continued on next page
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No. Category Name Refined Description
32 EDUCATION_INFORMATION Academic history and qualifications (e.g., schools attended, degrees).

33 EMAIL_ADDRESS Personal or work-related email address (unique personal identifier).

34 ONLINE_IDENTIFIERS Internet-based identifiers (IP addresses, cookies, device IDs) that may be tied to an individual’s usage.

35 URL Web addresses that could point to personal or potentially identifying content.

36 PASSWORD Confidential string used to authenticate a user (strict security measures required).

37 SOCIAL_NETWORK_PROFILE Profile handle or URL for a user’s social media account.

38 JOB_TITLE Professional title or role (may indirectly reveal employer or industry).

39 INCOME_LEVEL Estimated or reported financial earnings of an individual or household.

40 OCCUPATION General or specific field of employment or profession.

41 WORK_ID Employee or workplace-issued identification code or badge number.

42 EMPLOYMENT_INFORMATION Employment history, current employer data, and job-related details.

43 CRYPTO Cryptocurrency wallet addresses or related transaction data.

44 FINANCIAL_INFORMATION General financial data (income statements, investments, transaction history).

45 INVOICE_PAYMENTS Records of billing, invoicing, or payment transactions that may include personal data.

46 CV_RESUME Curriculum vitae or résumé with personal details, education, and work history.

47 DOCUMENTS General category for uploaded or stored documents which may contain personal data.

48 RACE_ETHNIC Information regarding an individual’s racial or ethnic background (GDPR special category).

49 POLITICAL_AFFILIATION Affiliation with or support for a political party or ideology (GDPR special category).

50 SEXUAL_PREFERENCE Information on an individual’s sexual orientation or preference (GDPR special category).

51 HEALTH_INSURANCE_ID Insurance policy or plan identifier, considered Protected Health Information (PHI) under HIPAA if linked to a U.S. individual.

52 MEDICAL_HISTORY Records of an individual’s past or current medical conditions (PHI under HIPAA, special category under GDPR).

53 X_RAY Medical imaging data, typically PHI under HIPAA if identifiable.

54 PHYSIOLOGICAL_DATA Any data about physiological functions (e.g., heart rate, blood pressure) often handled as health data.

55 PASSPORT_NUMBER Official passport identifier issued by a national authority.

56 DRIVERS_LICENSE_NUMBER Official driver’s license identifier issued by a governmental authority.

57 MARITAL_STATUS Information about an individual’s marital status (e.g., single, married, divorced).

58 MOTHERS_MAIDEN_NAME Birth surname of an individual’s mother, often used as a security question.

59 APPEARANCE_DISTINGUISHING_CHARACTERISTIC Unique physical attribute (e.g., scar, tattoo) that can help identify a person.

60 FAMILY_FRIEND_CONTACT_INFORMATION Contact details for family members or friends (includes names, phone numbers, addresses).

61 SIGNED_PETITIONS Records indicating an individual’s participation in or support for specific petitions.

62 DIGITAL_SIGNATURE Electronic signature data used to authenticate documents or transactions.

63 SCREEN_NAME Username, handle, or alias used on social or online platforms.

64 SOCIAL_NETWORK_ACTIVITY Interactions (posts, likes, comments) on social platforms that reveal personal interests or behavior.

65 WORK_ADDRESS Address of the workplace or primary office location.

66 WORK_CONTACT_INFORMATION Work-related email, phone number, or other contact channels for professional use.

67 WORK_PHONE_NUMBER Phone number assigned to an individual at their place of employment.

68 CREDIT_CARD_NUMBER Payment card number (PCI-DSS regulated), highly sensitive financial data.

69 CREDIT_SCORE Creditworthiness rating (e.g., FICO score), sensitive personal financial attribute.

70 ABA_ROUTING_NUMBER Bank routing transit number (used in U.S. for financial transactions).

71 BANK_ACCOUNT_NUMBER Unique bank account identifier, highly sensitive when combined with routing numbers.

72 INDIVIDUAL_TAXPAYER_IDENTIFICATION Official taxpayer identification (e.g., ITIN in the U.S.), separate from SSN.

73 SWIFT_CODE International bank code for sending wire transfers (SWIFT/BIC).

74 HANDWRITING_SAMPLE Sample or image of an individual’s handwriting (can be a biometric attribute).

75 RELIGION Data regarding religious beliefs or affiliations (GDPR special category).

76 PHILOSOPHICAL_BELIEF Information on personal philosophical views (GDPR special category).

77 TRADEUNION_AFFILIATION Membership or affiliation with a trade or labor union (GDPR special category).

78 SEX_LIFE Details regarding an individual’s sexual behavior or history (GDPR special category).

79 LAW_ENFORCEMENT Data relating to criminal records, investigations, or law enforcement interactions.

80 GENETIC_DATA Information derived from genetic testing or analysis (GDPR special category, HIPAA if identifiable).

81 FINGERPRINT_DATA Biometric data collected via fingerprint scanning (GDPR special category, HIPAA if used for health IDs).

82 VOICE_PRINT Audio data used for voice recognition (considered biometric data).

83 BIOMETRIC_DATA Catch-all for data derived from unique physical or behavioral traits (e.g., retinal scans, facial geometry).

D.2 Grouping of PI Categories for Analysis
This categorization was used to analyze the association between data types and the completeness of privacy policies (see § 4.4.5)

E System Prompts for LLM-Assisted Tasks
This section contains the exact system prompts provided to large language models (LLMs) to assist with two key classification tasks in our

methodology: identifying PI in API parameters and mapping data collection statements from privacy policies to our PI taxonomy.

E.1 Prompt for PI Classification in API Parameters
The following prompt was used with GPT-4o in a collaborative annotation role to help identify and classify API parameters according to our

PI taxonomy, as described in § 3.3.2.

System prompt: Classification for PI Taxonomy

You are an API privacy analyst tasked with classifying parameters based on their potential to reveal personally identifiable

information (PII).

I will provide the name of the custom GPT , its description , the name of the parameter sent to the API , and its description.

Carefully consider the context and description of each parameter to determine its classification.

Your classification must reflect the most appropriate category based on the parameter 's description , ensuring it aligns with the

specific type of data being analyzed.

You must classify the parameter into one of the following: [

"NON_PI", "UNKNOWN", "PERSON", "NATIONAL_ID", "PASSPORT_NUMBER", "SOCIAL_SECURITY_NUMBER",
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Table 8: Categorization of Personal Information Types

Category Subcategories
Basic Personal Information PERSON, MOTHERS_MAIDEN_NAME, BIRTH_DATE, PERSON_AGE, PERSON_HEIGHT, PERSON_WEIGHT, PER-

SON_GENDER, MARITAL_STATUS, NUMBER_OF_CHILDREN, PLACE_OF_BIRTH, NATIONALITY_CITIZENSHIP, APPEAR-

ANCE_DISTINGUISHING_CHARACTERISTIC, PICTURE_FACE

Government or Official IDs NATIONAL_ID, PASSPORT_NUMBER, SOCIAL_SECURITY_NUMBER, DRIVERS_LICENSE_NUMBER, VE-

HICLE_REGISTRATION_NUMBER, LICENSE_PLATE_NUMBER, INDIVIDUAL_TAXPAYER_IDENTIFICATION,

HEALTH_INSURANCE_ID, LAW_ENFORCEMENT

Contact Information PHONE_NUMBER, FAMILY_FRIEND_CONTACT_INFORMATION, EMAIL_ADDRESS, WORK_PHONE_NUMBER,

WORK_CONTACT_INFORMATION

Location and Address Information HOME_ADDRESS, ADDRESS, COUNTRY, ZIPCODE, GEOGRAPHICAL_INDICATORS, GEO_LOCATION

Demographic or Social Attributes CULTURAL_SOCIAL_IDENTITY, RACE_ETHNIC, RELIGION, PHILOSOPHICAL_BELIEF, SEXUAL_PREFERENCE, SEX_LIFE, POLITI-

CAL_AFFILIATION, TRADEUNION_AFFILIATION, LANGUAGE

Online and Digital Identifiers ADVERTISING_ID, ONLINE_IDENTIFIERS, SOCIAL_NETWORK_PROFILE, SOCIAL_NETWORK_ACTIVITY, SCREEN_NAME, PASS-

WORD, DIGITAL_SIGNATURE, URL

Employment and Professional Information JOB_TITLE, OCCUPATION, WORK_ID, WORK_ADDRESS, EMPLOYMENT_INFORMATION, INCOME_LEVEL, CV_RESUME, DOCU-

MENTS

Financial and Payment Information CREDIT_CARD_NUMBER, CREDIT_SCORE, ABA_ROUTING_NUMBER, BANK_ACCOUNT_NUMBER, SWIFT_CODE, CRYPTO,

FINANCIAL_INFORMATION, INVOICE_PAYMENTS

Education Information EDUCATION_INFORMATION

Behavioral, Activity and Web Tracking Information SHOPPING_BEHAVIOR, SURVEY_ANSWERS, SIGNED_PETITIONS, ACTIVITIES

Health and Medical Information MEDICAL_HISTORY, X_RAY, PHYSIOLOGICAL_DATA, GENETIC_DATA

Biometric Data FINGERPRINT_DATA, VOICE_PRINT, BIOMETRIC_DATA, HANDWRITING_SAMPLE

Time Information about the user DATE_TIME

"PHONE_NUMBER", "ADVERTISING_ID", "DRIVERS_LICENSE_NUMBER", "VEHICLE_REGISTRATION_NUMBER",

"LICENSE_PLATE_NUMBER", "BIRTH_DATE", "PERSON_AGE", "PERSON_HEIGHT", "PERSON_WEIGHT",

"PERSON_GENDER", "MARITAL_STATUS", "NUMBER_OF_CHILDREN", "NATIONALITY_CITIZENSHIP",

"PLACE_OF_BIRTH", "MOTHERS_MAIDEN_NAME", "HOME_ADDRESS", "PICTURE_FACE",

"APPEARANCE_DISTINGUISHING_CHARACTERISTIC", "COUNTRY", "ZIPCODE", "HOMETOWN_CITY",

"GEOGRAPHICAL_INDICATORS", "GEO_LOCATION", "ADDRESS", "DATE_TIME", "LANGUAGE",

"FAMILY_FRIEND_CONTACT_INFORMATION", "CULTURAL_SOCIAL_IDENTITY", "SHOPPING_BEHAVIOR",

"SURVEY_ANSWERS", "SIGNED_PETITIONS", "ACTIVITIES", "EDUCATION_INFORMATION", "EMAIL_ADDRESS",

"ONLINE_IDENTIFIERS", "DIGITAL_SIGNATURE", "URL", "PASSWORD", "SCREEN_NAME",

"SOCIAL_NETWORK_PROFILE", "SOCIAL_NETWORK_ACTIVITY", "JOB_TITLE", "INCOME_LEVEL", "OCCUPATION",

"WORK_ID", "WORK_ADDRESS", "WORK_CONTACT_INFORMATION", "WORK_PHONE_NUMBER",

"EMPLOYMENT_INFORMATION", "CREDIT_CARD_NUMBER", "CREDIT_SCORE", "ABA_ROUTING_NUMBER",

"BANK_ACCOUNT_NUMBER", "INDIVIDUAL_TAXPAYER_IDENTIFICATION", "SWIFT_CODE", "CRYPTO",

"FINANCIAL_INFORMATION", "INVOICE_PAYMENTS", "HANDWRITING_SAMPLE", "CV_RESUME", "DOCUMENTS",

"RACE_ETHNIC", "RELIGION", "PHILOSOPHICAL_BELIEF", "POLITICAL_AFFILIATION",

"TRADEUNION_AFFILIATION", "SEXUAL_PREFERENCE", "SEX_LIFE", "LAW_ENFORCEMENT",

"HEALTH_INSURANCE_ID", "MEDICAL_HISTORY", "X_RAY", "PHYSIOLOGICAL_DATA", "GENETIC_DATA",

"FINGERPRINT_DATA", "VOICE_PRINT", "BIOMETRIC_DATA "].

If the context suggests a clear classification , do not hesitate to assign it, rather than defaulting to 'UNKNOWN.'

Ensure that your classification is precise , as inaccuracies can lead to significant privacy concerns.

Consider the implications of the parameter in relation to consumer behavior and reflect on previous classifications to adjust your

approach based on feedback regarding accuracy and context.

For each classification , include a brief explanation of why the parameter fits into the chosen category , particularly focusing on

how it relates to personally identifiable information (PII).

Always consider the context in which the parameter is used , as this can influence its classification.

If a parameter could be classified as both "NON_PI" and another category , prioritize the latter.

Remember that misclassifying parameters can lead to significant privacy violations; therefore , strive for precision in your

classifications.

Review previous classifications and their feedback to refine your understanding of how similar parameters have been classified ,

ensuring consistency and accuracy in your current analysis.

Additionally , prioritize the functional implications of parameters over their contextual usage , and be aware that parameters like

API keys function as credentials similar to passwords.

Misclassifying such sensitive parameters can lead to significant privacy violations , so always consider the broader implications of

your classifications.

Encourage a learning mindset by reflecting on past classifications and integrating feedback to improve future accuracy.

Always assess how the context of the parameter may link to personal behaviors or patterns , especially in sensitive areas like

travel.

Your classifications must be precise , as inaccuracies can lead to serious privacy concerns.

Regularly review past classifications and their feedback to identify patterns and improve your decision -making process.

Consider how this parameter might combine with others to create a fuller picture of an individual 's identity or behavior.

Be vigilant about potential misinterpretations of parameters and articulate why certain classifications mitigate privacy risks.

Adopt a continuous learning approach by regularly revisiting previous classifications and their outcomes to enhance your analytical

skills.

Critically evaluate feedback on past classifications to discern patterns and apply relevant insights to current analyses.

Additionally , when classifying parameters , consider their functional role (e.g., boolean flags , numerical values , or strings) and

how they may not directly relate to personal data.

Lean towards classifying ambiguous parameters as "NON_PI" unless there is clear evidence to suggest otherwise.
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Always reflect on the implications of your classifications and document insights gained from past analyses to foster a culture of

continuous improvement.

Additionally , emphasize the importance of contextual sensitivity , clarify the distinction between PI and sensitive identifiers , and

encourage a risk assessment mindset when classifying parameters.

Incorporate examples of misclassifications and their consequences to reinforce the need for accuracy , and promote a learning

framework that encourages reflection and collaboration with historical data.

Examples:

{examples}

E.2 Prompt for Mapping PoliGraph-er Results to the PI Taxonomy
The following prompt was used with GPT-4o-mini to semantically group data type mentions extracted by PoliGraph-er from privacy policies

and map them to our standardized PI taxonomy, as detailed in § 3.4.2.

System prompt: Mapping PoliGraph-er results to the PI taxonomy

Classify a data type into specific provided categories based on its content. Structure the results with each data element assigned

to its correct classification.

Below are the available categories along with examples to help you classify them correctly.

# Categories

- URL: Website addresses.

- LANGUAGE: Language preferences or settings.

- PASSWORD: Access credentials or passwords.

- EMAIL_ADDRESS: Email addresses.

- COUNTRY: Information about country of residence , citizenship , or origin.

- DATE_TIME: Timestamps , dates , or specific times.

- GEO_LOCATION: Geographic location data.

- ONLINE_IDENTIFIERS: Unique identifiers associated with online accounts.

- ZIPCODE: Postal codes.

- SCREEN_NAME: Visible names on digital platforms.

- PERSON: Full names and variations.

- JOB_TITLE: Professional titles or roles.

- BIRTH_DATE: Birth dates.

- CV_RESUME: Information related to resumes or CVs.

- CRYPTO: Cryptocurrency -related information.

- SHOPPING_BEHAVIOR: Data on shopping preferences.

- ADDRESS: Physical addresses.

- MEDICAL_HISTORY: Medical history or information.

- PHONE_NUMBER: Phone numbers.

- ACTIVITIES: Online or service activities.

- PLACE_OF_BIRTH: Place of birth.

- PERSON_GENDER: Gender identity.

- EDUCATION_INFORMATION: Educational information.

- VEHICLE_REGISTRATION_NUMBER: Vehicle registration numbers or plates.

- HOME_ADDRESS: Residential addresses.

- PICTURE_FACE: Facial photographs or identification images.

- NATIONALITY_CITIZENSHIP: Nationality or citizenship.

- PERSON_HEIGHT: A person 's height.

- PERSON_WEIGHT: A person 's weight.

- NUMBER_OF_CHILDREN: Number of children.

- HEALTH_INSURANCE_ID: Health insurance numbers.

- CHAT_MESSAGE: If the data is related to the user 's chat information , clearly related to chat interaction with custom GPT.

- BROAD: If the data uses broad terms like "personal information ".

- NONE: If the data does not fit into any of the above categories.

# Examples

{examples_str}

# Notes

- Consider the different variations and synonyms that may exist for each category and use them as a guide.

- If a data point does not reasonably fit into any category , classify it as NONE.

- Use keyword context to determine the appropriate category if it is not explicitly mentioned in the given examples.

- Real examples are expected to follow a similar pattern to those shown , but they may include additional words or phrases that help

define the category.
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F Confusion Matrix Analysis of Policy–Parameter Mapping

Table 10: Confusion Matrix Analysis of Policy–Parameter Mapping

Category Total TP FN FNR
EMAIL_ADDRESS 10 4 6 0.6

NUMBER_OF_CHILDREN 2 1 1 0.5

CHAT_MESSAGE 10 6 4 0.4

ADDRESS 10 6 4 0.4

PERSON 10 7 3 0.3

SCREEN_NAME 10 8 2 0.2

ONLINE_IDENTIFIERS 10 8 2 0.2

JOB_TITLE 10 8 2 0.2

NONE 10 9 1 0.1

EDUCATION_INFORMATION 10 9 1 0.1

PICTURE_FACE 10 9 1 0.1

VEHICLE_REGISTRATION_NUMBER 10 9 1 0.1

PASSWORD 10 9 1 0.1

COUNTRY 10 9 1 0.1

GEO_LOCATION 10 9 1 0.1

MEDICAL_HISTORY 10 9 1 0.1

ACTIVITIES 10 10 0 0.0

NATIONALITY_CITIZENSHIP 2 2 0 0.0

LANGUAGE 10 10 0 0.0

HEALTH_INSURANCE_ID 2 2 0 0.0

BIRTH_DATE 3 3 0 0.0

BROAD 10 10 0 0.0

CRYPTO 10 10 0 0.0

CV_RESUME 10 10 0 0.0

DATE_TIME 10 10 0 0.0

PERSON_WEIGHT 2 2 0 0.0

PERSON_HEIGHT 1 1 0 0.0

PERSON_GENDER 4 4 0 0.0

PHONE_NUMBER 10 10 0 0.0

PLACE_OF_BIRTH 1 1 0 0.0

SHOPPING_BEHAVIOR 10 10 0 0.0

URL 10 10 0 0.0

ZIPCODE 6 6 0 0.0

Table 10 compares the automated mapping between privacy-policy statements and our PI taxonomy. Examples of misclassified
instances: In several cases, the automated mapping misclassified a collection statement. For example, the statement “api key login credential”
was classified as ONLINE_IDENTIFIERS instead of PASSWORD. Similarly, “paypal” and “openai account” were classified under EMAIL_ADDRESS,
these terms are linked to account identifiers often associated with an email address, but we consider strict synonym matching for explicit

email terms. Another example is “gmail message”, which the classifier assigned to CHAT_MESSAGE. These misclassifications typically stem

from indirect, brand-specific wording or from the mapping model’s conservative matching rules, which fail to generalize beyond exact

term–category associations.

G Detailed Model Classification Performance
This section provides a detailed view of the performance of the machine learning models used in the study. It includes standard metrics such

as precision, recall, and F1-score for each PI category, for both GPT-4o and the fine-tuned RoBERTa classifier.

G.1 Classification Metrics with GPT4-o
Table 11 shows the detailed classification performance metrics obtained when using the prompt described as Prompt for PI Classification in

API Parameters (GPT-4o) on the 775 annotated samples.

G.2 Fine-Tuned RoBERTa Model Classification Metrics
Table 13 presents the detailed performance metrics for the classifier based on RoBERTa-Large, fine-tuned for PI classification in API

parameters (discussed in § 3.3.5).
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Table 11: Classification Metrics with GPT4-o

Label Precision Recall F1-Score Support
ACTIVITIES 0.50 0.57 0.53 7

ADDRESS 0.59 0.53 0.56 19

BIRTH_DATE 1.00 0.83 0.91 6

COUNTRY 0.77 0.83 0.80 12

CREDIT_CARD_NUMBER 0.00 0.00 0.00 0

CRYPTO 0.89 0.50 0.64 16

CULTURAL_SOCIAL_IDENTITY 0.33 1.00 0.50 1

CV_RESUME 1.00 0.94 0.97 16

DATE_TIME 0.34 0.95 0.50 20

DOCUMENTS 0.50 1.00 0.67 3

EDUCATION_INFORMATION 0.83 1.00 0.91 10

EMAIL_ADDRESS 0.96 0.92 0.94 24

EMPLOYMENT_INFORMATION 0.00 0.00 0.00 7

FINANCIAL_INFORMATION 0.80 0.80 0.80 5

GEOGRAPHICAL_INDICATORS 0.57 0.50 0.53 8

GEO_LOCATION 0.57 0.57 0.57 7

HEALTH_INSURANCE_ID 0.67 1.00 0.80 2

HOMETOWN_CITY 0.09 1.00 0.17 2

HOME_ADDRESS 0.56 1.00 0.71 15

INCOME_LEVEL 1.00 0.67 0.80 3

INVOICE_PAYMENTS 0.00 0.00 0.00 1

JOB_TITLE 1.00 1.00 1.00 5

LANGUAGE 1.00 1.00 1.00 25

LICENSE_PLATE_NUMBER 1.00 1.00 1.00 2

MEDICAL_HISTORY 1.00 0.57 0.73 21

NATIONALITY_CITIZENSHIP 0.00 0.00 0.00 3

NATIONAL_ID 1.00 1.00 1.00 1

NON_PI 0.72 0.67 0.70 326

NUMBER_OF_CHILDREN 0.75 1.00 0.86 3

OCCUPATION 0.75 1.00 0.86 15

ONLINE_IDENTIFIERS 0.50 0.60 0.55 10

PASSWORD 0.82 1.00 0.90 14

PERSON 0.38 0.89 0.53 9

SCREEN_NAME 0.89 0.89 0.89 9

URL 0.81 0.55 0.65 31

VEHICLE_REGISTRATION_NUMBER 1.00 0.80 0.89 5

Accuracy 0.67 (775 samples)

Macro Average 0.62 0.68 0.61 775

Weighted Average 0.70 0.67 0.66 775

Overall Accuracy 0.67

Balanced Accuracy 0.73

Macro F1-Score 0.61

Micro F1-Score 0.67

Matthews Correlation Coefficient 0.60

Cohen’s Kappa 0.60

Table 13: RoBerTA Fine-Tuned Performance Metrics

Label Precision Recall F1-Score Support
ACTIVITIES 0.60 0.86 0.71 7

ADDRESS 0.78 0.74 0.76 19

BIRTH_DATE 1.00 1.00 1.00 6

COUNTRY 0.71 0.83 0.77 12

CRYPTO 0.75 0.94 0.83 16

CV_RESUME 1.00 0.94 0.97 16

DATE_TIME 0.67 0.70 0.68 20

EDUCATION_INFORMATION 0.91 1.00 0.95 10

EMAIL_ADDRESS 0.92 1.00 0.96 24

GEO_LOCATION 0.74 0.93 0.82 15

HEALTH_INSURANCE_ID 0.67 1.00 0.80 2

HOME_ADDRESS 0.73 0.73 0.73 15

JOB_TITLE 0.78 0.90 0.84 20

LANGUAGE 0.85 0.88 0.86 25

MEDICAL_HISTORY 1.00 0.95 0.98 21

NATIONALITY_CITIZENSHIP 1.00 1.00 1.00 3

NON_PI 0.88 0.84 0.86 326

NUMBER_OF_CHILDREN 0.75 1.00 0.86 3

ONLINE_IDENTIFIERS 0.80 0.80 0.80 10

PASSWORD 0.88 1.00 0.93 14

PERSON 0.89 0.89 0.89 9

PERSON_GENDER 1.00 1.00 1.00 2

PERSON_HEIGHT 1.00 1.00 1.00 4

PERSON_WEIGHT 0.80 1.00 0.89 4

PHONE_NUMBER 0.67 1.00 0.80 2

PICTURE_FACE 1.00 0.80 0.89 5

PLACE_OF_BIRTH 0.89 1.00 0.94 8

SCREEN_NAME 1.00 0.89 0.94 9

SHOPPING_BEHAVIOR 1.00 0.50 0.67 10

UNKWOWN 0.71 0.62 0.67 40

URL 0.96 0.87 0.92 31

VEHICLE_REGISTRATION_NUMBER 1.00 1.00 1.00 5

ZIPCODE 0.81 0.88 0.84 24

Accuracy 0.85 (737 samples)

Macro Average 0.85 0.89 0.87 737

Weighted Average 0.86 0.85 0.85 737

Overall Accuracy 0.85

Balanced Accuracy 0.89

Macro F1-Score 0.87

Micro F1-Score 0.85

Matthews Correlation Coefficient 0.81

Cohen’s Kappa 0.81
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