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Abstract
We present SEED, a system that enables the deployment of dis-

tributed privacy-preserving micro-services in the cloud while main-

taining the secrecy of user code and data and ensuring correct,

complete results. Unlike prior approaches that minimize the TCB

by pushing large parts of the software stack outside the enclave,

SEED includes the entire container software stack—from the ap-

plication layer up to the operating system—inside the TCB. This

holistic design protects proprietary software, datasets, and optional

ML models from exposure; prevents leakage of sensitive inputs or

queries; and thwarts metadata-inference attacks that could reveal

workload identity or versioning. Yet we achieve an optimized TCB

(22 MB in total), over 30× smaller than the typical 690 MB TCB

for confidential privacy-enhancing VMs. In practice, SEED runs

on AMD SEV-SNP–capable machines and supports real container

workloads (i.e., TensorFlow, OpenVINO inference, PyTorch train-

ing, Redis, NGINX, Apache httpd). We demonstrate that SEEDCore

matches or outperformsmainstream runtime workload deployment,

stayingwithin 5% of native throughput and reaching up to 6× higher

performance on CPU-bound jobs. Finally, we conduct a thorough

privacy and security evaluation against 11 cloud attack vectors and

show that SEED blocks or confines every exploit that remains pos-

sible even under the state-of-the-art Gramine-TDX model, thanks

to late binding, per-container PCR chains, and continuous in-TEE

attestation throughout the workload’s lifetime.

1 Introduction
ModernAI/ML pipelines, language runtimes, andweb services—even

in heavily-regulated sectors such as finance, healthcare, and tele-

com edge—ship as Open Container Initiative (OCI) containers: self-
contained images that a runtime (crun [20], runc [51]) or engine
(Docker [46], Kubernetes [35]) can pull, replicate, and start in mil-

liseconds. This late-binding model decouples build from run and

has become the de-facto unit of cloud deployment. While hardware

Trusted Execution Environments (TEEs) protect code in use [60, 19,

48, 62], running containers on an untrusted cloud still requires a
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seamless push→run→prove pipeline. Crucially, that pipeline must

guarantee privacy for all tenant workloads—shielding code, data,
and runtime characteristics from the cloud operator and neigh-

bouring tenants. Effective TEE frameworks must therefore support

unmodified container images and on-demand pulls—features cur-

rently incompatible with existing TEE designs [10].

This incompatibility arises primarily from the size and place-

ment of the Trusted Computing Base (TCB), comprising hardware,

firmware, and software components that must remain trusted to

preserve privacy and integrity. However, achieving comprehensive

endpoint security and privacy through TEEs is subject to overcom-

ing its structural challenges:

• Process-level TEEs safeguard individual address spaces but

introduce a pre-enclave window where secrets appear in plaintext,

while preventing containers from being pulled securely post-

launch (§2.2);

• VM-level TEEs, broaden protection to entire virtual machines,

enabling secure post-boot container pulls but incorporating a

complete multi-user OS and container stack into the TCB, thereby

significantly enlarging both the trusted footprint and the attack

surface (§2.2).

Existing methods aiming to minimize the TCB—such as LibOS

partitioning, security monitors, or unikernels (§3)—either disrupt

essential features like on-demand pulls, verification, binary and for-

ward compatibility, or inadvertently expose vulnerabilities through

host interfaces that can leak workload content or operational meta-

data.

This study presents SEED, a novel TEE framework that preserves

standard container workflows while shrinking the enclave to a

verifiable, unikernel-scale TCB. Unlike prior designs that either drag

a full multi-user OS into the enclave or freeze a single immutable

process (§3), SEED embeds only a minimal container runtime inside

the TEE and admits and tracks containers after attestation. This
eliminates the pre-enclave window without sacrificing off-the-shelf

container compatibility.

Technically, SEED statically links to a patched Linux 6.8, glibc
[58], and a minimal runtime (erun) into one 22 MB ELF, then binds

each pulled image to this core via vTPM-backed attestation and a

container-aware Integrity Measurement Architecture (IMA) names-

pace. This co-design establishes a new paradigm in TEE deploy-

ment by unifying unikernel-scale TCB, late binding, and contin-

uous streamlined hardware-rooted integrity in a single pipeline,
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outperforming LibOS, monitor-based, and traditional unikernel ap-

proaches in both attack-surface reduction and runtime flexibility.

SEED achieves this via the following contributions:

• Privacy-first push→run→prove Deployment Framework.
Unified system- and network-layer framework that turns TEE

deploymentmodel into a verifiable defense against pre-enclave at-

tacks and tying each workload to a privacy-anchored attestation

chain, SEED prevents exfiltration of code, data, or configuration

throughout the workload lifecycle.(see §6)

• Unikernel-scale TCB Optimisation. SEEDCore1 embeds only

the essential container runtime inside the kernel, yielding a

unikernel-scale TCB that closes the pre-enclave window yet pre-

serves ordinary container workflows.

• Kernel-resident, Statically Linked erun.We demonstrate, for

the first time, that a full-featured, OCI-compatible container run-

time can be statically linked into the kernel without forfeiting

lift-and-shift flexibility. Running entirely in kernel space elim-

inates the user-kernel syscall boundary, trims the dependency

closure to ∼180 kLoC (versus >2 M LoC for Docker + contain-

erd), and still supports unmodified images, registry pulls, and

layer caching (§7.2). This fusion of unikernel tightness and late-

binding enforces a strong privacy boundary for any container

workload—web services, analytics jobs, or ML inference alike.

• Hardware-rooted, Per-container Attestation for a Mutable
TCB. Traditional Linux IMA cannot streamline our deployment

framework because, to the kernel, containers are just user-space

constructs isolated by namespaces and cgroups; that user/kernel

split hides per-container activity and blocks fine-grained integrity

checks. By statically linking the container runtime into the kernel,

SEEDCore collapses this boundary and promotes the container

to a first-class kernel object. We therefore implement a container-

aware IMA namespace: every file erun loads is tagged with its

container ID and extends into a granular and unified view inside

a lightweight vTPM built on AMD-SEV firmware (§ 7.1). This

fine-grained chain of trust blocks inference attacks that could

reveal which software stack is running, when it was updated, or

how it is being exercised.

• Performance evaluation in real confidential clouds. On
Azure SEV-SNP VMs, Seedcore delivers ≥95% overhead on CPU-

bound micro-benchmarks, 20–60% higher ML throughput than

mainstream runtimes, and ≥95% native web-server throughput

across 1–100 concurrent clients, while erun outperforms crun,

containerd, docker, podman on every AI/ML pipeline configura-

tion tested (§9.1.4–9.1.3).

The methodology opens new directions for secure, multi-tenant

cloud services that require drop-in privacy, confidentiality and

integrity without re-engineering existing container ecosystems.

2 Trusted Execution Environments (TEEs)
TEEs establish isolated enclaves and leveraging CPU-enforcedmem-

ory encryption and strict access control policies, TEEs can protect

sensitive information against a wide range of threats, including

those arising within hypervisors or operating systems. However,

1SEEDCore is the core trusted computing base of SEED, comprising a minimal binary

that includes a patched kernel and erun, and dependencies statically linked into a

single ELF executable

achieving comprehensive endpoint security through TEEs is fraught

with practical challenges, stemming not only from the complexi-

ties of how TEEs are structured (e.g., as process-level or VM-based

enclaves), but also from fundamental design trade-offs involving

trust boundaries and the size of the TCB.

2.1 Process-level TEEs
Process-level TEEs (e.g., Intel SGX [15]) protect a single address
space. At launch the CPU hashes the enclave’s initial pages into

MRENCLAVE [15]; any post-launch change breaks that hash. This im-

mutability keeps the in-enclave code verifiably trusted, but it also

complicates late-bound components: while SGX supports encrypted

enclaves (where code and data are encrypted and only decrypted

at runtime) and sealing mechanisms for offline secret protection,

the fundamental challenge remains that container images cannot

be dynamically pulled and verified post-attestation without break-

ing the enclave’s measurement. Thus, while runtime isolation is

strong, process-level TEEs integrate poorly with modern container

workflows that rely on dynamic loading and updates.

2.2 VM-level TEEs
Given the limitations of process-level TEEs, many practitioners

have moved to VM-level TEEs – systems which host an unmodified

Linux kernel inside an enclave and still support modern container

workflows, such as pulling and running standard container images.

In these designs, the secure firmware boots a virtual TPM (vTPM)

[53, 49], a software component providing cryptographic measure-

ment and reporting functions to the guest VM. The firmware then

measures the BIOS, bootloader, and kernel chain into Platform Con-

figuration Registers (PCRs), and exposes those PCRs for remote

attestation, a process allowing a remote party to cryptographically

verify the integrity of these boot measurements. Only after this

hardware-anchored baseline is verified does the in-guest container

runtime pull and start user images, eliminating the pre-enclave
window that process-level TEEs suffer from.

3 Related works
Prior work on confidential containers is shaped by a fundamental

trade-off: Linux-with-containers preserves OCI semantics and late

binding but inherits a large, multi-purpose TCB; unikernel designs

achieve tiny TCBs but lose container workflows and typically lack

continuous, workload-lifetime attestation. A third line of work

inserts a security monitor to reduce audited code but adds costly

boundary crossings and constrains container-granular trust. We

use this lens to organize prior work.

Running a full Linux guest inside a TEE preserves POSIX and

OCI semantics [77, 17, 56, 18], enabling unmodified containers with

late binding and standard runtime ecosystems. Yet existing systems

still forfeit at least one of confidentiality, integrity, or practicality.
This compatibility comes with a ballooning TCB: network stacks,

filesystems, drivers, and kernel subsystems designed for multi-

tenant bare-metal servers add little value inside single-tenant con-

fidential containers [32]. Worse, Linux views containers as mere

namespaces and cgroups—userspace fiction [6, 14]—preventing se-

curity modules like IMA from expressing per-container policies.
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Table 1: Qualitative comparison of TCB–minimisation strategies. Icons:¥ desirableE partialq undesirable.

Approach TCB Size Runtime Flex. Pre-Enclave Exposure Side-channel / Iago Binary Compat.

Partitioned LibOS ¥ Small (8-15 MB) E Emulated kernel functions q High – pulls pre-attestation q Elevated – ABI leaks ¥ Needs patched glibc

Security Monitor ¥ Small (5-10 MB) ¥ Full Linux outside enclave q High – data leaves TEE E Context-switch channels ¥ Excellent

Unikernel ¥ Tiny (2-5 MB) q None – immutable image q High – pre-boot linking ¥ Low q ABI freezes

Monolithic Linux q Large (690 MB) ¥ OCI-compatible ¥ Low q High – full kernel in TEE ¥ Excellent

SEEDCore ¥ Small (22 MB) ¥ OCI delayed loading ¥ None – vTPM-enbled IMA ¥Micro-architectural Only ¥ Excellent

Table 1 summarizes this landscape; we examine how each cate-

gory attempts to minimize risk:

Partitioning the System into Trusted and Untrusted Components.
Systems such as Gramine [69, 23], SCONE [2], Occlum [63], and

Civet [70] embed a micro-kernel-sized set of services inside the

enclave while delegating the rest—including the full container

stack—to the untrusted host. This shrinks the kernel portion of

the TCB but creates two high-risk interfaces: (i) the enclave–kernel

boundary, vulnerable to Iago attacks [7], and (ii) the container-

runtime boundary, where host-visible syscall/cgroup traces leak

workload behaviour [73].

Leveraging a Security Monitor. SeKVM [38], HyperEnclave [29],

Veil [1], and Keystone [37] interpose a hardware-rooted monitor

to mediate privileged events and produce attestation. The audited

code base remains small, yet each I/O or page-table update crosses

monitor boundaries—incurring latency and obliging developers to

re-encrypt or re-validate data.

Reducing TCB Size by Removing Functionality. Unikernels (Mira-

geOS [44], OSv [32], X-Containers [64], UKL [72]) link one applica-

tion to the kernel code it needs, producing few-megabyte images

amenable to formal verification. Immutability is intrinsic: no new

code can load after build time, clashing with late-bound container

workflows.

As Table 1 makes clear, each category attains at most two of the

three goals—small TCB, first-class containers, or continuous attes-

tation. SEED departs conceptually along three axes: (i) kernel-native
containers, where policy and measurement are container-scoped

in the kernel rather than via a userspace runtime; (ii) a supervisor-
mode process model on UKL that preserves OCI late binding without
re-inflating the TCB; and (iii) a continuous, hardware-rooted attesta-
tion path that binds code and data flows (I/O, storage, network) to

current measurement state. These ideas break the architectural con-

straints that prevent this combination in other systems and enable

a unikernel-scale TCB with full container support and continuous

attestation. We detail mechanisms in §5 and analyze privacy im-

plications in §8.1. To our knowledge, SEED is the first system to

deliver all three properties simultaneously.

4 Threat Model
SEED protects the confidentiality, integrity, and correctness of code

and data throughout all operational stages—at rest, in transit, and

during execution. It achieves this by relying on a structured trust

framework and deploying defensive measures against powerful

adversaries.

Trusted Components Two primary actors govern the SEED ar-

chitecture: the untrusted cloud provider (𝑃1), who controls the

infrastructure and may attempt to compromise the workload, and

the trusted cloud user (𝑃2), who owns the workload and seeks to

ensure its security. Within this context, five trusted components

form the trust foundation (see Figure 1):

E1 CLI : Acts as an administrative interface, managing deploy-

ment, encryption keys, and attestation policies.

E2 CAS: Functions as a secret broker and verifier. It attests

to component integrity, encrypts and signs workloads and

configurations, manages secrets, and authenticates entities

via access keys [3, 10].

E3 vTPM: Derives a hardware root of trust to locally attest and

authenticate components.

E4 TCB: Provides a confidential VM (CVM) enclave with mini-

mized internal attack surfaces and integrated integrity mea-

surement capabilities leveraging E3.
E5 Workload: Represents the containerized instance through-

out its lifecycle, protected by the above components.

The first two components (E1 and E2) remain under the control of

the trusted user, ensuring direct oversight and transparency. The

others (E3, E4, and E5) reside in the cloud, where the provider may

run arbitrary code, intercept data, and attempt to exploit vulnerabili-

ties. To mitigate these risks, SEED relies on integrity measurements,

attestation reports, and the continuous verification of component

authenticity.

Certification Authorities (CAs) SEED utilizes three independent

CAs to further solidify trust:

𝐶𝐴1 Cloud CA: Issued by the cloud vendor for authenticating and
managing service credentials.

𝐶𝐴2 AMD CA: Ensures the hardware’s authenticity and the valid-

ity of attestation reports.

𝐶𝐴3 SEED CAS CA: A self-signed authority within SEED that

issues and manages internal certificates independent of ex-

ternal trust anchors.

Scope Limitation for Workload Users External workload users

and systems interacting through application-level interfaces lie

outside SEED’s primary threat model. Application-specific threats

such as deserialization vulnerabilities or advanced hardware-level

attacks—cache [22, 43, 74], [76, 27], power analysis [39, 40], Spectre

[34, 45], and Meltdown [41, 9]—remain unaddressed by SEED itself.

While SEED provides guarantees at the container runtime level,

complete protection requires complementary techniques such as

microarchitectural defenses (i.e., hardware features like Intel CAT

[31] or software mitigations (e.g., page coloring, cache partitioning)

to defend against cache-based side channels), application hardening,

and supply chain security (i.e., container image signing, vulnerabil-

ity scanning, and software bill of materials (SBOM) verification to

ensure trusted workload sources).
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Figure 1: Architectural Overview of SEED’s Software Stack and eRun, highlighting VM privilege levels used for vTPM segregation. While VMPL is AMD-specifc, such privilege level segregation
is transferable across all VM-level encryption technologies, providing a confidential computing solution across various configurations (detailed in §2).

SEED focuses on eliminating the pre-enclave exposure window

and minimizing the TCB while maintaining container compatibil-

ity—it serves as a foundational layer that must be augmented with

these domain-specific protections for comprehensive security.

Algorithm 1 Attested TLS Handshake Protocol

Require: Participants: Client (C), Server (S)
Ensure: Mutual authentication and secure key exchange with attestation

1: procedure AttestedTLS(C, S)
2: Notation and Cryptographic Functions:
3: 𝐻 ( ·) : Collision-resistant hash function (SHA-256)

4: PRF𝑘 ( ·) : Keyed pseudo-random function with key 𝑘

5: Enc𝑘 [ad] { ·}: Authenticated encryption with key 𝑘 and associated data

6: Sign
sk
( ·) : Digital signature using private key sk

7: 𝑔𝑥 , 𝑔𝑦 : Diffie-Hellman ephemeral public keys

8: 𝑐𝑟, 𝑠𝑟 : Client and server random nonces

9: 𝑘𝑠ℎ, 𝑘𝑐ℎ : Server/client handshake encryption keys

10: 𝑘𝑠𝑚 , 𝑘𝑐𝑚 : Server/client MAC keys for handshake

11: 𝑘𝑎𝑝 : Application data encryption key (post-handshake)

12: transcript𝑆 , transcript𝐶 : Handshake message transcripts

Stage 1: Initial Handshake - TLS
13: C→ S: ClientHello← (ciphers ∥ versions ∥ cr ∥ 𝑔𝑥 )
14: S→ C: ServerHello← (selected_suite ∥ selected_version ∥ sr ∥ 𝑔𝑦 )
15: S→ C: EncryptedExtensions← Enc𝑘𝑠ℎ

[ad] {ext}
Stage 2: Endpoint Authentication and Attestation - mTLS

16: S→ C: CertificateRequest← Enc𝑘𝑠ℎ
[ad] {cert_req}

17: S→ C: Certificate← Enc𝑘𝑠ℎ
[ad] {cert

pubTIK-S
}

18: S→ C: CertificateVerify← Enc𝑘𝑠ℎ
[ad] {Sign

privTIK-S
(transcript𝑆 ) }

19: S→ C: Finished← Enc𝑘𝑠ℎ
[ad] {PRF𝑘𝑠𝑚 (transcript𝑆 ) }

20: C→ S: Certificate← Enc𝑘𝑐ℎ
[ad] {cert

pubTIK-C
}

21: C→ S: AttestationEvidence← Enc𝑘𝑐ℎ
[ad] {Evidence𝐶 } ⊲ Attestation integrated in

handshake

22: C→ S: CertificateVerify← Enc𝑘𝑐ℎ
[ad] {Sign

privTIK-C
(transcript𝐶 ) }

23: C→ S: Finished← Enc𝑘𝑐ℎ
[ad] {PRF𝑘𝑐𝑚 (transcript𝐶 ) }

Stage 3: Attestation Evidence (encrypted)
24: ⊲ First application-data record after the 2×Finished

25: C→ S: Evidence* ← Enc𝑘𝑎𝑝 [ad] {quote, claims}
26: ⊲ SMUST verify before accepting/issuing any further app-data

5 Design Rationale
SEEDCore revisits the basic assumptions behind confidential-container

deployment. First, production confidential VMs are almost always

single-tenant, so no adversarial processes inhabit the enclave. Sec-

ond, once the VM is encrypted, multi-user Linux baggage—drivers,

UID/GID isolation, ptrace hooks, hundreds of dormant syscalls—only

swells the attack surface, while a third insight shows the top-20

Docker-Hub images (83 % of pulls) rely on a very small syscall set.

Userspace collapse via statically-linked, kernel-resident
erunWe link erun—a modified crun—into the kernel at VMPL3, cre-
ating a single address space that (a) removes the enclave–runtime

interface that leaks syscalls, (b) keeps every byte of code and data in-

side encrypted memory, and (c) trims the TCB to 22 MB—about 30×

smaller than a full confidential VM. Third-party runtimes (Python,

JVM, etc.) arrive as ordinary OCI layers, so compatibility is retained

while the host sees no plaintext and no syscall traces. Implementa-

tion required complete container toolchain reimplementation, as

Go-based utilities cannot execute in kernel space (see §7.2.1).

Code reduction methodology. To achieve the 22MB TCB, we

systematically removed subsystems unnecessary for single-tenant

confidential containers. Starting from crun’s 26,529 lines in its core

library, erun eliminates: cgroups (5,500 LOC)—redundant when the

entire VM serves one tenant; eBPF (554 LOC) and seccomp (1,051

LOC)—attack surface with no benefit inside TEEs; CRIU checkpoint-

ing (1,053 LOC)—incompatible with attestation chains; Intel RDT

(369 LOC)—inapplicable to AMD SEV. This surgical removal yields

14,708 LOC in erun’s library (45% reduction) while preserving OCI

compatibility. Combined with kernel-side stripping of unnecessary

drivers and subsystems, the binary measures 22MB—small enough

for line-by-line audit yet enough for production containers.

Container-granular, hardware-rooted attestation. Elevating
containers to first-class kernel objects enables dedicated PCR chains

per container. IMA measures each FileExec event before execution;
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the vTPM quotes chains. Prior container-aware IMA attempts [42,

25] measure from userspace, creating imprecise detection. Only

kernel-integration enables per-container measurement visibility.

Zero-exposure deployment pipeline.Attested-TLS (Algorithm 1)

establishes trust among CAS, vTPM, and kernel before transmitting

OCI layers. Container data never leaves protected DRAM, eliminat-

ing pre-enclave exposure while maintaining standard workflows

on a small TCB with continuous hardware attestation.

Standard TLS provides confidentiality and integrity for data in

transit but cannot prove the code integrity of the endpoints. A

malicious cloud provider could present a compromised TCB that

passes TLS authentication while running tampered code. Attested-

TLS extends the handshake to include hardware-rooted attestation

evidence, cryptographically proving that: (i) the endpoint runs

inside genuine TEE hardware (via VCEK signature); (2) the soft-

ware stack matches expected measurements (via PCR values); (3)

the attestation is fresh and bound to this session (via nonce). Only

after verifying this evidence does sensitive data flow.

Practical deployment through UKL’s hybrid model. Traditional
unikernels achieve small TCBs by specializing for a single purpose

and freezing binaries at build time, which breaks binary/forward

compatibility and precludes dynamic container workflows. SEED

instead adopts UKL (Unikernel Linux), which allows processes to

run at supervisor privilege within a Linux kernel, preserving the

Linux ABI and forward compatibility while retaining a unikernel-

scale TCB. This yields in-practice benefits: (i) Binary compatibility

with unmodified Linux applications; (ii) Dynamic container loading

post-boot (late binding); (iii) Multi-workload support within a single

enclave/VM; (iv) Compatibility with existing container tooling.

These choices target host-visible leakage channels (syscall/cgroup

traces, system-wide hash exposure) while retaining OCI workflows

(see §8.1).

We evaluate the design consequences in §8.1 and §9.

6 Privacy-first Deployment Framework
Overview. SEED turns a standard push into a hardware-rooted,

three-step pipeline—push→run→prove (with optional seal)—shown
in Figure 1. A developer drives the process from the CLI (E1),
which calls the Configuration & Attestation Service (CAS, E2). The
CAS first authenticates to the cloud control-plane, then launches a

single SEV-SNP VM that contains both the Trusted-Computing Base

(E4) and an in-guest vTPM (E3). Using an attested-TLS handshake
(Algorithm 1) the CAS, vTPM, and TCB build a chain of trust rooted

in AMD’s SNP report: they verify the CPU, the vTPM firmware, and

finally the kernel-integrated runtime erun. Only after that chain

closes does the encrypted OCI image flow into the VM, where

erun executes it, the vTPM continuously re-measures it, and—if

requested—the workload’s state is sealed to hardware-bound keys.

Deployment sequence. The numbered circles in Figure 1 trace

the complete deployment flow: (1) The CLI configures the CAS

with deployment parameters and container references; (2) CAS

authenticates to the cloud control plane and requests a confidential

VM; (3) The hypervisor boots the SEV-SNP VM containing the

vTPM (VMPL1) and TCB (VMPL3); (4) CAS and vTPM establish an

attested-TLS channel, validating the vTPM via AMD’s VCEK chain;

(5) CAS and TCB establish a second attested-TLS channel for secure

container transfer. Once trust is established, encrypted OCI layers

flow directly into kernel memory where erun executes them while

IMA continuously measures each file operation into per-container

PCRs. This choreography ensures that container data never exists

in plaintext outside the hardware-encrypted VM boundary.

The deployment process begins when the Configuration and
Attestation Service (CAS, E2) is configured via the CLI (E1) (step
1○). The CAS obtains a access token from the cloud’s control plane

(𝐶𝐴1) and forms a mutually-authenticated TLS (step 2○).

During the confidential runtime-loading phase, the hypervisor

boots the (TCB, E4) and a virtual TPM (vTPM, E3) inside an SEV-

SNP-protected VM (step 3○). The vTPM provisions its keys (§7.1)

used for remote attestation, authentication, and sealing. Meanwhile,

the AMD Secure Processor (ASP) generates an SNP attestation report
whose measurement is cryptographically bound to the VM and

signed by a VCEK certified by AMD.

An attested TLS handshake between CAS and vTPM (step 4○)

validates: (i) the integrity of the vTPM via its AIK-signed quote,

and (ii) the authenticity of the CPU via the SNP attestation report

and the AMD certificate chain 𝐶𝐴2. Once trust is established, a

second TLS channel is negotiated between the CAS and the TCB

(step 5○) using 𝐶𝐴3-issued certificates, ensuring that only attested

components exchange the encrypted container image. The TCB

returns its own SNP report to the CAS, proving that it executes on

genuine hardware and that its measurement matches the hash.

Once attested, CAS streams the encrypted OCI image. erun loads
it in-kernel, while the container-aware IMA logic measures each

executable page and extends the appropriate PCR. Optional seal-

ing (§6.4): a data-encryption key derived from the TLS session

(Data-Encryption Key (DEK)) is sealed under vTPM SRK and bound

to the measured TCB, so only a re-attested SEED instance can

re-hydrate state (§6.4). This flow executes unmodified container

images, maintains continuous attestation, and never exposes secrets

outside encrypted memory turning a normal image push into the

hardware-rooted pipeline shown in Fig. 1: push→run→prove, with
optional seal.

6.1 Push: Environment Setup and Verification
This phase securely prepares and verifies the cloud execution envi-

ronment before any workload is introduced. Unlike a conventional

container “push,” it includes a secure boot sequence and remote

attestation, confirming the trustworthiness of the TCB, E4. Specifi-
cally, it checks both the TCB’s software integrity and the underlying

CPU’s authenticity—thereby establishing a hardware root of trust.

Only after this verification can workloads run in a genuinely confi-

dential, integrity-protected environment.

6.1.1 Authentication. This process begins with E1 establishing a
secure, encrypted, and authenticated communication channel via

HTTPS/TLS with the cloud infrastructure. The Configuration and

Attestation Service (CAS, E2) initiates a TLS handshake with the

cloud provider’s API endpoint to establish a secure channel. This

begins with a ClientHello message, in which the CAS advertises

supported cipher suites, protocol versions, and includes a client

random (𝑐𝑟 ) and an ephemeral public key (𝑔𝑥 ). The cloud provider
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responds with a ServerHello, selecting the cipher suite and protocol
version, plus its own random (𝑠𝑟 ) and ephemeral key (𝑔𝑦 ).

Both parties compute a shared secret 𝑘 = (𝑔𝑦)𝑥 = (𝑔𝑥 )𝑦 , then
derive session keys:

𝑘𝑠ℎ , 𝑘𝑐ℎ for handshake encryption.

𝑘𝑠𝑚 , 𝑘𝑐𝑚 for secure message transmission.

Mutual authentication follows via mTLS (Stage 2 of Algorithm 1).

The server sends a certificate (encrypted under 𝑘𝑠ℎ and signed by

𝐶𝐴1) confirming its identity:

Certificate = Enc𝑘𝑠ℎ
[ad] {cert

pub𝐶𝐴1-𝑃1 }

The CAS then provides its own certificate:

Certificate = Enc𝑘𝑐ℎ
[ad] {cert

pub𝐶𝐴1-E2 }

Upon successful exchange and verification, the CAS has an au-

thenticated, encrypted channel to the cloud services.

6.1.2 Boot/Attest. Upon validating the request, the cloud platform

executes predefined logic to load the necessary components. This

step can be automated with Infrastructure-as-Code (IaC) tools such

as Terraform or Pulumi, allowing developers to manage the cloud

topology from declarative configuration files. In this sequence, the

untrusted hypervisor loads the SEED guest image (pre-staged on

the cloud platform). The image bundles the logic for the vTPM E3
and the TCB E4, but excludes the workload E5, which is injected

later at runtime.

After the guest image is launched, the hypervisor invokes the

LAUNCH_START ioctl exposed by KVM, triggering the AMD Platform
Security Processor (PSP) to enter the SEV-SNP launch flow. During

this instantiation and provisioning phase the PSP:

• allocates a unique ASID and derives a per-VM AES-XTS memory-

encryption key,

• locks the guest’s pages into the RMP so that only the VM can

access them,

• records a cryptographic measurement of the initial guest memory

via LAUNCH_UPDATE commands, and

• finalises the launch with LAUNCH_FINISH, returning an SNP at-
testation report bound to the VM’s measurement and signed by

the (VCEK certified by AMD.
2
)

SEV-SNP’s hardware state ensures that code running inside the

VM (including the vTPM and TCB) executes at VM Privilege Level 0
(VMPL0), which is higher than any guest user-space and isolated

from the host hypervisor. All guest memory is transparently en-

crypted in DRAM, and any attempt by lower-privileged entities (e.g.

the hypervisor or another VM) to access protected pages triggers a

hardware fault, preserving confidentiality and integrity even in the

face of a malicious host.

With the launch flow complete, the vTPM and TCB proceed to

remote attestation and secure workload injection as described in

the following sections.

6.1.3 vTPMProvision. Once the vTPM is activated inside the SEV/̄SNP

VM, it generates:

• EK Pair – Endorsement Key used as the TLS client credential,

• AIK Pair – Attestation Identity Key for signing quotes,

• SRK Pair – Storage Root Key for sealing and binding opera-

tions (§6.4).

2
See AMD SEV-SNP specification [30].

Figure 2: Overview of layered attester for SEAM-vTPM

All keys are derived from the vTPM’s hardware RNG seed (§7.1).

Immediately after key generation, the vTPM performs a local attes-
tation of the SEV/̄SNP environment: it requests an SNP attestation
report from the Platform Security Processor (PSP). The report cryp-

tographically binds the VM’s launchmeasurement to a VCEK signed

by AMD and embeds 𝐸𝐾pub in one of the report’s REPORT_DATA
fields. The full report is persisted in the vTPM’s NVIndex so that

any remote verifier—over an attested TLS channel—can retrieve the

tuple ⟨SNPReport, 𝐸𝐾pub⟩ and validate that the TCB is executing

inside genuine SEV/̄SNP hardware (§6.1.4, §6.1.5).

6.1.4 Obtain Attestation Report. Figure 2 depicts the local attesta-
tion pathwhen SEED runs onAMDSEV/̄SNP. Unlike Intel TDX—which

relies on a TD Quoting Enclave (TDQE) and Provisioning Certi-

fication Enclave (PCE)—SEV/̄SNP delegates report generation to

the on-die Platform Security Processor (PSP). The PSP produces a

hardware-signed SNP_REPORTwhose signature chain ultimately ter-

minates at AMD’s Root Key (ARK), removing the need for in-guest

quoting enclaves.

Report Request. The vTPM populates a REPORT_REQ structure in

the Guest-Hypervisor Communication Block (GHCB) and triggers

the VMGEXIT instruction. The request is encrypted and integrity-

protected with the VM-specific Secure Guest Key (SGK) so that

an untrusted hypervisor cannot tamper with it. The report_data
field is filled with a SHA-256 digest that binds the vTPM’s public

endorsement key to the current TLS session:

report_data = SHA256
(
protVerUp ∥ protVerLow ∥ 𝐸𝐾pub ∥ 𝑛𝑐 )

where protVer* encode protocol compatibility, 𝐸𝐾pub is the vTPM’s

endorsement key, and 𝑛𝑐 is the TLS-exported nonce acting as a

channel binder.

SNP_REPORT Generation. Upon the REPORT_REQ, the PSP
• verifies the VMPL-0 privileges of the caller,

• measures the guest-owner-supplied pages recorded in the RMP,

and

• returns a 400-byte SNP_REPORT that includes (i) the VM’s mea-

surement hash, (ii) CPU and PSP Security Version Numbers

(SVNs), and (iii) the user-supplied report_data.
The report is MAC-ed and signed with the socket-unique Ver-

sioned Chip Endorsement Key VCEK, which in turn is certified by

AMD’s ASK (AMD Signing Key) and ARK root certificate.
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Remote-Evidence Assembly. The vTPM stores the SNP_REPORT in

an NVIndex and bundles it with the certificate chain:

Evidence =
〈
SNP_REPORT, VCEK, ASK, ARK

〉
.

Any external verifier—over the attested TLS channel—can now

• validate the VCEK against AMD’s ASK/ARK hierarchy,

• verify the PSP signature on SNP_REPORT, and
• check that the embedded hash matches 𝐸𝐾pub and the nonce 𝑛𝑐 ,

thereby confirming both the vTPM’s identity and the live TLS

session.

This flow establishes a strong chain of trust from AMD hardware

(ARK) through the PSP and into the guest VM, culminating in

cryptographic evidence that the vTPM and the broader SEED TCB

execute inside genuine, unmodified SEV/̄SNP silicon.

6.1.5 Verify. Finally, the CAS (E2) and vTPM (E3) establish an at-
tested TLS handshake (differing from the earlier “cloud handshake”)

where the vTPM uses 𝐸𝐾pub as its TLS certificate and includes the

TD Quote. Both endpoints incorporate a nonce 𝑛𝑐 to bind the quote

to the TLS session.

The CAS (E2) and the vTPM (E3) now perform an attested TLS
handshake—This is distinct from the earlier cloud handshake in
which the CAS authenticated to the provider’s control plane. The

vTPM presents 𝐸𝐾pub as its TLS certificate and embeds the AMD

SNP_REPORT bundle (Evidence) in the first encrypted record. Both

peers insert the nonce 𝑛𝑐 into their random structures to bind the

report to the session.

Handshake Process. The handshake starts with ClientHello and

ServerHello, both including 𝑛𝑐 :

E2 → E3 ClientHello← (· · · ∥ 𝑛𝑐 )
E3 → E2 ServerHello← (· · · ∥ 𝑛𝑐 )

After deriving session keys, mutual authentication follows using

𝐶𝐴3-signed certificates. The vTPM sends its certificate, including

𝐸𝐾pub:

E3 → E2 Certificate← Enc𝑘𝑠ℎ
[ad] {cert𝐸𝐾

pub
}

E2 → E3 Certificate← Enc𝑘𝑐ℎ
[ad] {cert𝐶𝐴𝑆

pub
}

SEED treats the TLS channel as provisional until the vTPM-side

verifier validates Evidence*. Although the handshake already es-

tablishes application-data keys (𝑘𝑎𝑝 ), no application payload is re-

leased by either endpoint until the attestation quote carried inside

the first encrypted record is checked. The quote thus inherits TLS

confidentiality and integrity, and a failed verification forces a fa-

tal alert—preventing any sensitive bytes from crossing a channel

whose peer lacks hardware attestation.

Attestation Evidence Exchange. Once authenticated, the vTPM
provides attestation evidence—endorsements, reference values, and

the attestation report:

E3 → E2 Evidence← Enc𝑘𝑠ℎ
[ad] {SNP_REPORT,VCEK,ASK,ARK}

Verifier Logic. The CAS validates evidence as follows:
• Certificate Chain. Check that the Versioned Chip Endorsement
Key VCEK is signed by AMD’s ASK, which in turn chains to the

AMD ARK root.

• Report Signature. Verify the PSP-generated MAC/signature on

SNP_REPORT with the VCEK.

• Channel Binding. Ensure report_data inside the report equals
SHA256(protVers ∥ 𝐸𝐾pub ∥ 𝑛𝑐 ) to bind the report to the live TLS
session and 𝐸𝐾pub.

• Security Versions. Compare the PSP and microcode Security

Version Numbers (SVNs) against SEED’s appraisal policy (revo-

cation list, min-SVNs).

• Measurement Match. Confirm that the VM measurement in

the report matches the expected hash for the vTPM + TCB image.

If all checks succeed, the CAS marks the peer as trusted; the
TLS channel transitions from provisional to active, and encrypted

workload transfer can begin. This procedure guarantees that the

vTPM—and by extension the entire SEED TCB—runs inside genuine,

up-to-date AMD SEV/̄SNP hardware with an untampered software

stack.

6.2 Run: Workload Deployment and Execution
Once the environment is verified, the actual unmodified container

images workload is securely loaded and executed (i.e., Launch con-

tainers inside a hardware-enforced TEE, minimizing TCB footprint).

6.2.1 Container Key Exchange and Image Decryption. A secure

channel must be established between E2 and E4 to ensure confiden-
tial transmission of the encrypted container image and decryption

keys. SEED’s 𝐶𝐴3 provides certificates for both components, en-

abling mutual authentication without external dependencies. This

internal trust anchor ensures that only client-approved components

participate in the communication, reinforcing C3 from our trust

model.

Following a standard TLS handshake, E2 and E4 exchange their
𝐶𝐴3-issued certificates, verify each other’s credentials, and execute

the CertificateVerify steps by signing handshake transcripts, proving
private key possession:

E4 → E2 Certificate← Enc𝑘𝑠ℎ
[ad] {cert

pubCA3-E4 }
E2 → E4 Certificate← Enc𝑘𝑐ℎ

[ad] {cert
pubCA3-E2 }

E4 → E2 CertificateVerify← Enc𝑘𝑠ℎ
[ad] {Sign

privCA3-E4 (transcriptE4 ) }
E2 → E4 CertificateVerify← Enc𝑘𝑐ℎ

[ad] {Sign
privCA3-E2 (transcriptE2 ) }

After mutual authentication, E4 provides an attestation report

(Evidence) to E2, proving its integrity and that it is running on

genuine hardware. E2 verifies this using 𝐶𝐴2 (AMD CA) and 𝐶𝐴3;

similarly, E2 may send its own evidence if required.

E4 → E2 Evidence← Enc𝑘𝑐ℎ
[ad] {AttestationReportE

4

}

With mutual authentication and attestation complete, a shared

secret key 𝑘shared is established. Using 𝑘shared, E2 encrypts the con-
tainer image and transmits it securely to E4, which can then decrypt
and run it using erun, ensuring the workload’s confidentiality:

E2 → E4 EncryptedContainer ← Enc𝑘
shared
[ad] {ContainerImage}

6.3 Prove: Continuous Runtime Verification
The push and run stages attest the SEEDCore TCB only once—at

VM launch. To preserve trust for the remainder of the VM’s lifetime,

SEED must continuously demonstrate that (i) the root container

image loaded by erun is pristine and (ii) every file subsequently

executed inside each container remains unaltered.
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SEED implements a measure-before-execute policy that cap-

tures all security-critical operations in real-time, preventing any

window for undetected tampering:

• Event capture (in–kernel hooks). All security-sensitive opera-
tions—ContainerLoad and FileExec (see §7.1.1)—are intercepted
synchronously by kernel-level IMA hooks before execution pro-

ceeds. These hooks:

– compute ℎ = SHA256(file);
– block execution if the hash doesn’t match a pre-approved

whitelist (when configured);

– emit ⟨CID, path, ℎ⟩ into an in-kernel ring buffer; and

– extendℎ into the container-dedicated PCR: 𝑃𝐶𝑅CID ← 𝐻 (𝑃𝐶𝑅CID ∥
ℎ).

• Quote thread. A kernel thread wakes every Δ𝑡 (default 1 s)

or when the ring buffer is full to transmit accumulated mea-

surements. It issues TPM2_Quote on all changed PCRs using the

CAS-supplied nonce, packages ⟨QUOTE, log-delta⟩, and streams it

encrypted to the CAS.

The periodic quotes serve as checkpoints rather than detection

points—all malicious activity would already have been blocked

at load time. The CAS can thus verify the complete execution

history: (i) the root image accepted by erunmatches expectations

and (ii) the cumulative hash chain proves every executed binary

was measured before running.

• Secure transport. The quote bundle travels inside the same
mutually-authenticated, attested TLS session (Algorithm 1, Stage

3) that established 𝑘𝑎𝑝 . Thus the verifier checks freshness (nonce),

integrity (AIK signature), and provenance (EK chain) before releas-
ing further application data, preserving the pipeline’s end-to-end

security invariants.

Security Analysis. This design prevents the attack scenario

where an adversary modifies container state between attestation

quotes. Since every executable must pass through the IMA subsys-

tem before execution, and the measurement occurs synchronously

with mandatory PCR extension, there exists no temporal window

for running unmeasured code. Even if an attacker somehow mod-

ified files on disk between quotes, those modifications would be

caught at the next load attempt.

6.4 Seal: Secure State Persistence
SEED performs dynamic sealing to protect any state that must

out-live a confidential-VM session. At the end of the attested TLS

handshake between the CAS (E2) and the TCB (E4) both parties

hold the shared session secret 𝐾TLS. The TCB invokes an HKDF to

obtain a purpose-bound DEK (see 2). Using a fresh context string

prevents the raw TLS material from being re-used directly for data

encryption. Inside the enclave, the DEK is sealed with TPM2_Seal
under the vTPM’s 𝑆𝑅𝐾priv and a PCR policy that captures the TCB’s

trusted measurements. The call returns only the opaque blob 𝐵DEK;
the plaintext DEK never leaves the enclave.

The workload (E5) encrypts its artefacts 𝐷 with the DEK, yield-

ing 𝐶𝐷 = EncDEK (𝐷). Both 𝐶𝐷 and 𝐵DEK are written to untrusted,

persistent storage (e.g. object storage or returned to the client).

Compromise of that store reveals no secrets.

As shown in algorithm 2, when the workload terminates, the

enclave zeroises its memory; DEK and all derived keys vanish.What

the client regains is sole possession of 𝐵DEK, not the raw key. Upon

redeployment the client supplies 𝐵DEK to a freshly booted TCB and

vTPM. After a new attested TLS session and PCR verification, the

vTPM executes TPM2_Unseal which succeeds only if (i) the same

SRK pair is present and (ii) the current PCR values match the sealing

policy. The recovered DEK then decrypts 𝐶𝐷 , restoring application

state transparently. A PCR mismatch—or execution on hardware

lacking the correct SRK—causes unsealing to fail, rendering the

ciphertext permanently opaque.

Algorithm 2 Sealing & Restoration Protocol

Require: Actors: Client (C), TCB & vTPM (inside Server, S)
Ensure: Confidential, integrity-protected snapshot that can be resumed only in a

re-attested TCB

1: procedure Seal(S, C)
2: /* pre-condition: attested TLS completed; both hold 𝐾TLS */
3: S: DEK← HKDF

(
𝐾TLS, “seed for container data”

)
4: S:𝐶𝐷 ← EncDEK [ad] {𝐷 } ⊲ Encrypt workload data

5: S: 𝐵DEK ← TPM2_Seal

(
𝑆𝑅𝐾priv, PCRsTCB, DEK

)
6: S→ C: Store or return (𝐶𝐷 , 𝐵DEK )
7: S: zeroise DEK ; power off
8: procedure Unseal(C, S)
9: /* new TCB instance, fresh attested TLS in place */
10: C→ S: (𝐶𝐷 , 𝐵DEK )
11: S: DEK← TPM2_Unseal

(
𝑆𝑅𝐾priv, PCRsTCB, 𝐵DEK

)
12: if unseal fails then
13: S: abort ⊲ Wrong SRK or PCRs⇒ data stays locked

14: else
15: S: 𝐷 ← DecDEK [ad] {𝐶𝐷 } ⊲ Restore state

16: continue execution

7 Implementation
Implementing SEED involved overcoming challenges such as re-

ducing the TCB while maintain trusted and confidentiality. SEED

achieves its 22MB TCB through five key optimizations: (i) collapsing

the container runtime into kernel space via static linking, (ii) elim-

inating multi-tenant features unnecessary in single-tenant TEEs,

(iii) systematically removing 45% of crun’s codebase (cgroups, eBPF,

seccomp), (iv) replacing heavyweight libraries with minimal al-

ternatives (700+ kLoC reduction), and (v) using static compilation

to eliminate dynamic loading overhead. This section details the

decisions made to address these issues.

7.1 vTPM and IMA Implementation
TPM core. SEED’s vTPM is built with libtpms and follows the

TPM 2.0specification [66, 67, 68]. It runs inside the SEVSNP Secure-

VM Service Module (SVSM) at VMPL0 [49]. The SVSM environment

is bare-metal—no syscalls, timers, or libc—so we statically link only

the required cryptography and replace OS-dependent calls with

thin wrappers that use PSP GHCB services (e.g. monotonic counter,

wall clock).

Entropy source. Key generation relies on the on-die RNG exposed

via RDRAND/RDSEED on Zen 3+. These instructions are serviced by

the PSP, so the entropy never leaves the package, preventing a

malicious hypervisor from influencing or observing the seed [49].

Command buffer isolation. SEEDCore/vTPM traffic uses a sin-

gle shared Guest-Hypervisor Communication Block (GHCB) page

marked Shared in the RMP. Only VMPL0 vTPM and VMPL1 (guest
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kernel) can touch the page; any host or VMPL> 1 access raises

an RMP fault. SEV’s inline AES-XTS engine encrypts the page

transparently, while the PSP integrity-tree blocks replay, ensuring

that vTPM state and IMA measurements remain confidential and

tamper-evident throughout VM lifecycle events.

VMPL/RMP protection of PCRs. Because the vTPM’s PCR bank

resides in VMPL0-private pages, neither the cloud operator (hy-

pervisor) nor SEEDCore (VMPL1) can read, reset, or roll back PCR

values [65]. Thus, any attempt to subvert runtime measurements

would need the sealed AIK private key—also locked behind VMPL0

isolation.

Measurement Isolation Guarantees. Pages holding the vTPM’s

code, sealed state, and PCR bank are marked private & VMPL0

in the RMP; hypervisor access triggers an RMP fault. SEEDCore

executes at VMPL1; any VMPL1 read/write to VMPL0 pages also

raises an RMP fault, ensuring the guest itself cannot tamper with

PCRs or the AIK key. If a malicious container is introduced, its

code is still hashed and extended into the IMA PCRs. The resulting

quote diverges from policy and is detected by the CAS; forging or

suppressing PCR updates would require the AIK privkey or direct

PCR writes—both infeasible without VMPL0 access.

7.1.1 Container Promotion & Per-Container PCRs. By collapsing

erun, IMA, and a lightweight LSM shim into one address-space

image, SEEDCore removes the classic user/kernel split.

During ContainerLoad erun:
• allocates a seed_container_t descriptor,
• stores its pointer in task→cred→security, and
• reserves a dedicated PCR for that container’s runtime measure-

ments inside the vTPM.

IMA hooks with CID context. Existing hooks (bprm_check_security,
file_mmap(PROT_EXEC), do_execve, . . . ) inherit the container iden-
tifier (CID).

7.2 erun implementation
The design of erun begins with a minimal, specification-conformant
subset of the crun code base [20]. All functionality that is superflu-

ous in a single-tenant TEE—namely Linux Security Module hooks

(seccomp, AppArmor, SELinux, keyrings), checkpoint/restore fa-

cilities (CRIU), resource-control subsystems (cgroups, eBPF, I/O

priorities), and terminal handling—was eliminated. These mech-

anisms are valuable in multi-tenant settings, yet they introduce

considerable attack surface inside an enclave whose boundary is

already enforced by the TEE itself. The retained abstractions are lim-

ited to mount, PID, and network namespaces so that OCI containers

continue to observe the expected isolation semantics.

Subsequently, this reduced runtime was ported to a statically
linked, kernel-resident environment. A lightly patched Linux

6.8 and a size-optimised glibc are linked with erun, yielding a sin-

gle 22 MB ELF in the style of Unikernel Linux (UKL) [58, 57]. Static

linkage removes the dynamic loader, shared-library resolution, and

user-space system-call trampolines while preserving forward and
binary compatibility with conventional Linux binaries. The result-

ing unikernel-scale TCB boots within milliseconds, eliminates the

pre-enclave exposure window, and provides the substrate for the

IMA-namespaced, vTPM-bound, and attested-TLS subsystems that

follow.

7.2.1 Building SEED’s Toolchain. A unikernel–scale TCB keeps

SEED verifiable, but it also removes the rich user-space that conven-

tional container workflows assume. Vanilla crun can still launch a

root file-system, yet it cannot pull, reshape, or lifecycle–manage

images by itself. We therefore crafted a bespoke tool-chain that

couples [58, 57] with a heavily pruned erun, restoring full OCI

semantics without re-inflating the TCB.

OCI compatibility and orchestration. erun remains byte-for-byte

compliant with the OCI Runtime and Image specifications, enabling

transparent use beneath containerd [11], the Moby Engine [46,

47], and Kubernetes [54].

We evaluated three integration paths:

• a C-based gRPC client statically linked into UKL,

• an out-of-enclave Go proxy that terminates gRPC and forwards

flattened messages, and

• a tiny C-native orchestrator embedded in UKL.

Option (ii) is the default: it leaves the Go stack outside the trusted

boundary while adding only a 36 kB proxy inside.

Image-handling utilities. Container creation still needs Buildah,
Skopeo, and Umoci. Because the reference implementations are writ-

ten in Go—whose runtime, garbage collector, and reflection are

unsupported in UKL [21]—we split responsibility: Buildah runs dur-

ing CI outside the enclave [12], while Skopeo [13] and Umoci [71]

must execute inside the TCB. We therefore re-implemented the Reg-

istry V2 pull path [16] and bundle conversion [50, 52] in 4.8 kLoC

of ANSI C, streaming layers directly into OverlayFS.

Lean support libraries. To avoid dragging in glibc-scale bag-

gage we curated BusyBox-style components: a 4 kLoC HTTP client

replaces curl, a hand-rolled JSON parser supplants cJSON, and a

trimmed libarchive covers compression duties. Together these

cuts shed more than 700 kLoC of external code.

Shared-buffer optimisation. At boot the launcher creates a single
64MiB page-aligned memfd, maps it MAP_SHARED across all enclave

processes, and exports the file descriptor via environment variables

ERUN_SHM_FD and ERUN_SHM_SIZE. A 20-line bump allocator carved

from this region replaces jemalloc, eliminating heap metadata

and steady-state mmap/brk. Because AMD SEV encrypts memory

per-VM, the pool remains opaque to the hypervisor yet delivers

end-to-end zero-copy DMA when registered with io_uring and

vhost-user.

Targeted code reductions. A line-by-line audit of crun excised

feature that added risk but no value inside a single-tenant TEE:

• Archive path:multi-process tar replaced by in-process CPIO+gzip,
slicing peak RAM by 68 % and unpacking a 240MB Ubuntu image

in 412ms (vs. 1.2 s);

• Security modules: -DTEE_OPTIMIZED stubs out seccomp, Ap-

pArmor, SELinux, capability dropping, and CRIU;

• Namespaces: keep mount and optional PID/network; drop user,

cgroup, IPC, and UTS namespaces;

• Cgroups, hooks, checkpoint/restore, state-root: removed;

resource policing is delegated to the hypervisor.
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Figure 3: SEED software stack that to confidential and isolation inside the TCB

The final statically linked binary, including the C puller, weighs

1.7MB (stripped) and lowers SEED’s kernel-space TCB to∼220 kLoC—
small enough for formal verification yet fully interoperable with

mainstream container ecosystems [8, 75, 4].

7.3 OS-Layer Optimization
To reduce the TCB size and enhance both efficiency and security

without sacrificing general-purpose capabilities, we adopted a hy-

brid strategy. Our approach combines specialized kernel configura-

tions with the integration of UKL [57, 58], as shown in Figure 3.

Building on insights from Lupine [36], which minimized kernel

features for cloud applications, we tailored the Linux kernel for

container runtimes. We removed unnecessary functionality—such

as single-machine administration interfaces, broad hardware ab-

stractions, and redundant synchronization or scheduling mecha-

nisms—thereby reducing system call overhead. Guided by a heuris-

tic methodology, we refined UKL to support the top 20 most down-

loaded Docker Hub applications, significantly decreasing the TCB

while preserving essential services.

However, customizing the OS layer often requires substantial

kernel modifications, risking loss of binary compatibility and com-

plicating broader adoption. Prior efforts, including NetBSD’s Rump

Kernel, Windows’ Drawbridge, and Linux’s LKL, extended kernel

functionality but also struggled with maintainability and compati-

bility [59, 5, 55]. Similarly, while Lupine and X-Containers improved

performance for specific scenarios, they faced challenges in pre-

serving forward compatibility [36].

7.4 Linking erun to the Kernel
We address compatibility challenges posed by the architectural dif-

ferences involved in running the container runtime directly within

kernel space. Additionally, we refined our compilation strategies to

enhance workload deployment. This section details the technical

enhancements.

Running the runtime entirely in kernel mode imposes two key

changes. (i) Minimal libc. Unikernel Linux (UKL) ships only a

skeletal libc. Rather than restore a full user-space ABI, we re-

move or inline most system calls; the few still required—e.g. setns
and unshare for namespace management—are invoked directly

viasyscall(SYS_setns,. . . ) and syscall(SYS_unshare,. . . ).
This approach preserves OCI namespace semantics while avoid-

ing the code and attack surface of a full glibc, with erun provid-

ing the error handling normally hidden inside libc wrappers. (ii)
Kernel-level services. TLS hand-shake logic, vTPM calls, and IMA

namespace hooks are compiled directly into the supervisor binary,

eliminating context switches and userspace helpers.

Static–link build pipeline. First, every C unit in src/ (erun proper),

the pruned crun glue, and a handful of support libraries (cus-

tom HTTP/JSON, libarchive, zlib) is compiled into position-

independent objects. UKL’s stripped libc, libpthread, librt,
libm, OpenSSL (libssl/libcrypto), libcurl and libgcc are built
staticallywith the same kernel-friendly flags (-static -mcmodel=kernel
-mno-red-zone). The linker then performs a two-stage merge (the

process implemented in UKL [58]):

• relocatable link (ld -r) combines all objects, start-up stubs

(crt1.o, crti.o, crtbeginT.o) and termination stubs (crtend.o,
crtn.o) into temp.o, using –whole-archive to pull every sym-

bol but avoiding duplicate definitions;

• archiving packs temp.o into UKL.a, after which objcopy pre-

fixes every global symbol with seedcore_ and applies a small

renaming map to prevent clashes with kernel symbols.

At kernel build time the Linux image links against UKL.a; the
resulting vmlinuz therefore boots with erun, OpenSSL, vTPM stubs,

and the IMA namespace already resident in ring 0. Because all code

is immutable and address-space-layout-randomisation (ASLR) is

disabled, the measured hash loaded into PCR 0 at boot uniquely

identifies the entire TCB, simplifying remote attestation.

8 Security Evaluation
This section evaluates how SEEDCore achieves privacy through

end-to-end confidentiality and integrity. Our analysis addresses

different privacy dimensions against 11 attacks (A1–A11) from [28].

8.1 Privacy Analysis
Privacy prevents inference about what is running, who is using it,
and how it operates. We examine three privacy dimensions:

Workload privacy. SEED achieves workload privacy by elimi-

nating the pre-enclave window via post-attestation dynamic load-

ing—admittingworkloads only after verification. By contrast, Uniker-

nels, though they place a statically linked workload+kernel as a

single ELF entirely inside the TEE, still lack end-to-end privacy:

during deployment the provider can see which specialized image is

being loaded before protections engage; likewise, conventional TEE
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Table 2: Resistance to an outside attacker. SEEDCore inherits AMD SEV-SNP; Gramine-TDX relies on Intel TDX.

# Attacker move SEEDCore (single container) Gramine-TDX (single process) Why SEEDCore wins for micro-
services

1 Inject / swap layers post-attestation (A3 & A4) ¥ attested-TLS puller; every layer re-measured

into per-container PCR⇒ quote fails

q TD never re-pulls; host can replace whole

virtio-fs tree; only manifest is covered

Supports late, on-demand OCI pulls

without breaking integrity

2 Add a second, malicious container into the same VM

(A1 & A6)

¥ new namespace set and separate PCR stream;

CAS can withhold secrets only from the bad pod

q one process→ new TD per side-car Side-cars / service mesh stay in one

VM

3 Incrementally corrupt files in a running container

(A2:E9–E12)

¥ erun→ IMA streams deltas; CAS detects <1 s q no runtime measurement; tampering is

silent until reboot

Continuous run→prove fits rolling

updates

4 Roll back an old but signed layer (A3:E14) ¥ layer MAC binds freshness-nonce inside TLS

Finished

E files bound to measurement, not time Freshness enforced by CAS, not op-

erator discipline

5 Sniff/alter secrets in flight (A1:E1, E2) ¥ RA-TLS baked into pull path; host sees only

ciphertext

E RA-TLS helpers exist, but developer must

use them; vsock leg plaintext on host

No extra work for app authors / De-

vOps

6 Abuse K8s control-plane knobs (A1:E6, A6:E22–E30) E dangerous knobs become no-ops under

TEE_OPTIMIZED kernel build

¥ black-box VM; spec cannot affect policy Keeps full pod-spec expressiveness

for benign cases

7 Hypervisor reads plaintext pages (A10:E42) ¥ SEV-SNP AES-XTS + VMPL / RMP ¥ TDX AES-XTS + Secure-EPT parity

8 Hypervisor re-maps or replays pages (A8:E37) ¥ RMP + vTPM quote ¥ Secure-EPT + RTMRs parity

9 Crash container daemon with bogus requests (A4:E19) ¥ no user-space daemon; in-kernel ioctl per pod q no runtime removal beats hardening

10 Exploit kernel subsystems inside enclave (A9, A7) E eBPF/cgroups stripped, but minimal TCP/IP re-

tained for pod networking

¥ no net-stack, no namespaces Containers need a net-stack; SEED

keeps it with reduced code size

containerizations that launch images pre-attestation leak workload

identity across build/pull/launch.

Query and Input Privacy. SEED preserves query/input pri-

vacy by enveloping the entire container stack within the TCB (zero

operational visibility) and using a kernel-integrated runtime that re-

moves syscall visibility, preventing the hypervisor from distinguish-

ing query types or inferring input features. In contrast, LibOS-based

TEEs (Gramine-SGX [23], SCONE [2], Occlum [63]) lack container-

native primitives (namespaces, OverlayFS) and push image/layer op-

erations to the untrusted host; the host can observe pulls, layer diffs,

and runtime telemetry—syscall sequences, memory-access rates,

I/O mix—that fingerprint queries and reveal inputs (e.g., patient-

scan inference vs. transaction-fraud analysis), while the narrow

trusted/untrusted interface enables Iago and side channels.

Metadata and Co-residency Inference. SEED’s limits dis-

closure to the requesting container’s measurements plus shared

dependencies, masking other containers’ PCRs. This cuts metadata

exposure by reducing the file hash to ≈200–500 container-specific
file hashes vs 10,000–50,000 system-wide. Classic IMA discloses the

node-wide measurement list to verifiers [61], revealing all running

workloads and enabling co-residency inference (business relation-

ships, usage patterns, deployment scale).

8.2 Security Analysis Against External Attacks
For each exploit family listed in the survey we ask: How far can
an outside attacker get before the TEE detects, confines, or prevents
the action. A coarse rating scheme highlights the result (¥ blocked,
E confined/detectable, q still possible). Table 2 summarises the

outcome; below explains the differences.

Post-attestation tampering (Attacks #1, #3, #4) These at-

tacks not only compromise integrity but enable workload iden-

tification through tampered files. SEEDCore prevents both through:

(i) attested-TLS termination inside the TEE for all registry pulls,

(ii) continuous IMA streaming measuring every file operation into

per-container PCRs with sub-second validation, and (iii) freshness

nonces preventing rollback. Gramine-TDX’s single boot-time mea-

surement cannot detect runtime tampering. Privacy protected: Work-
load privacy & Metadata/co-residency.

Container isolation (Attacks #2, #6)Multi-container microser-

vices risk cross-workload inference. SEEDCore enforces separate

namespace sets and PCR chains per container, preventing one con-

tainer from inferring another’s identity or behavior. The CAS can

selectively distribute secrets while maintaining isolation. Gramine-

TDX’s single-process model requires separate TDs per container,

ironically improving isolation but breaking service meshes and in-

creasing observable deployment patterns. Privacy protected: Work-

load privacy & Metadata/co-residency.

Network security (Attack #5) Network patterns reveal work-

load behavior—API calls, model downloads, and communication

patterns fingerprint applications. SEEDCore bakes RA-TLS into the

image pull path with attestation-bound keys, encrypting all observ-

able patterns. Gramine-TDX’s plaintext vsock leg between host and

TD leaks config data and connection metadata. Privacy protected:
Query & Input privacy & (supporting) Metadata/co-residency.

Memory protection (Attacks #7, #8) Both platforms encrypt

memory (SEEDCore via SEV-SNP AES-XTS, Gramine-TDX via Intel

TDX Secure-EPT). However, access patterns remain vulnerable to

cache-timing analysis—an active research area for both systems.

Privacy protected: Workload privacy (contents hidden); residual

side-channels discussed separately.

Runtime integrity (Attacks #9, #10) SEEDCore retains mini-

mal TCP/IP for pod networking while stripping privacy-violating

functions like eBPF (which exposes execution traces) and cgroups

(which leak resource patterns). This trades slightly more code for

compatibility with containerized microservices while maintaining

operational privacy. Privacy protected: Query & Input privacy.

SEEDCore addresses privacy in container-native clouds, it
adds comprehensive privacy protection against workload inference,

query analysis, and metadata leakage—critical for protecting ML

models, algorithms, and business logic in multi-tenant clouds.

Formal verification feasibility. SEED’s reduced codebase sug-

gests formal verification of security-critical components may be

feasible. The erun runtime (≈14,708 C LOC) exceeds fully verified

kernels like seL4 (≈8,700 LOC) and CertiKOS (≈6,500 LOC), as well
as the 10k LOC threshold [33, 24, 26], however, erunmodular design

puts verification within reach, container library is (≈3,700 LOC)

only.
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1 2 4 8

0

20

40

60

Batch Size

T
h
r
o
u
g
h
p
u
t
(
i
m
g
/
s
e
c
)

(c) PyTorch – AlexNet Classification

1 2 4 8 16 32

0

1,000

2,000

Batch Size

T
h
r
o
u
g
h
p
u
t
(
F
P
S
)

(d) OpenVINO – ResNet-50 Inference

Figure 4: Performance of ML confidential workloads across different container runtimes
and virtualization technologies. Each subplot compares the performance of different con-
tainer runtimes (erun, crun, containerd, docker, podman) across various ML workloads: (a)
TensorFlow Neural Network training throughput in examples/sec, (b) TensorFlow BERT
Large inference throughput in tokens/sec, (c) PyTorch AlexNet image classification through-
put in img/sec, (d) OpenVINO ResNet-50 inference throughput in FPS.

9 Performance Evaluation
Our evaluation examines the performance characteristics of our

framework across diverse workloads. We assess both the perfor-

mance of eRun within confidential VMs and the fundamental capa-

bilities of seedcore. Our experiments focus on real-world applica-

tions spanning machine learning (ML) frameworks, programming

language environments, and web servers to provide a comprehen-

sive understanding of performance trade-offs in confidential com-

puting scenarios. We present architecture-consistent comparisons

first, followed by cross-architecture microbenchmarks that serve as

indicative references rather than direct comparisons. ML workloads

represent the most privacy-critical use cases for confidential com-

puting. With the rise of LLMs and AI agents processing sensitive

personal/corporate data, ensuring model confidentiality (prevent-

ing IP theft) and inference privacy (protecting user queries) has
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CPU Memory
File

IO
HTTP

Eve
ntL

oop

Con
cur

ren
t

0

50

100

12.47M ops/s 71.8K ops/s
166K ops/s

11K req/s 673K ops/s 86.8K ops/s

Performance Metric

R
e
l
a
t
i
v
e
P
e
r
f
o
r
m
a
n
c
e
(
%
)

(a) Node.js Performance
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Figure 5: Runtime micro-benchmarks. (a) Node.js — Docker wins CPU tasks, containerd
leads in HTTP + memory, crun dominates file I/O. (b) Go — erun tops sequential & high-
concurrency throughput, crun excels at moderate concurrency & memory use, containerd
is most CPU-efficient. (c) Rust — Docker leads CPUworkloads, Podman excels at disk writes
and parallelism, crun outperforms in fork + crypto, containerd delivers the best memory
throughput.

become paramount. ML training on datasets exemplifies workloads

where both data and model privacy are essential.

Testbed All experiments were conducted on an Azure Confiden-
tial VM (Standard DC4as v5, 4 vCPUs, 16 GiB RAM) hosted in the

East US. This instance is backed by a 3rd-generationAMDEPYC 7763
processor with SEV-SNP enabled. The guest operating system is

Ubuntu 22.04 LTS (kernel 6.8, Canonical confidential-vm build), and

the system disk resides on encrypted Premium LRS NVMe storage.

For each benchmark we execute three independent runs and re-

port the arithmetic mean to smooth out minor runtime variance.

Boot-time logs confirm that both SEV-SNP memory encryption

and Azure Secure Boot are active. Our evaluation explores two

dimensions to assess SEED: Execution environments:We com-

pare (1) Ubuntu VM as the standard baseline, (2) SEEDCore, our

minimal TCB with kernel integration, (3) Gramine-SGX, and (4)
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(a) NGINX Performance Across Container Runtimes
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(b) Apache httpd Performance Across Container Runtimes

Figure 6: Web-server throughput. (a) NGINX: erun is fastest at every concurrency level
(crun ties at 100 conns). Containerd sustains 97 % of peak; Docker and Podman 95 %. (b)
Apache httpd: crun dominates; containerd and Podman reach 93 %, Docker 82–91 %, erun
45–51 %. Note: httpd delivers 3–4× NGINX throughput under identical loads.

Gramine-TDX as state-of-the-art LibOS. This selection spans from

Ubuntu through LibOS partitioning (Gramine) to our unified de-

sign, enabling direct comparison of TCB size versus functionality

trade-offs across process and VM-level TEE architectures.

We evaluate (1) erun (2) crun as the lightweight reference, (3) con-

tainerd as Kubernetes’ standard supervisor, (4) Docker as the most

widely-deployed platform, and (5) podman as the daemonless en-

terprise alternative. This range from minimal (crun) to feature-rich

(Docker) demonstrates that SEED maintains compatibility across

the entire container ecosystem while adding hardware-rooted at-

testation. This multi-dimensional evaluation validates both TCB

optimization approaches and runtime overhead.

9.1 Runtime Performance
We evaluate the performance of five container runtimes—erun, crun,
containerd, docker, and podman—across four ML workloads.

9.1.1 MLWorkloads. We benchmark Node.js, Go, and Rust on CPU,

memory, file-I/O, HTTP, and crypto inside an SEV-SNP VM; Fig. 5

normalises throughput to per-test best. Node.js: erun reaches 98%

on CPU/event-loop; containerd leads HTTP; Docker lags on file-

I/O (67–79%). Go: erun leads single-thread and high-concurrency;

containerd ties on CPU-only. Rust: Docker leads raw CPU, crun
fork+crypto, Podman disk writes, containerd memory ops; erun

stays within 5–15%.

9.1.2 Programming-Language Benchmarks. Using Node.js, Go, and

Rust, we benchmark CPU, memory, file-I/O, HTTP, and crypto

inside an SEV-SNP VM; Fig. 5 normalises throughput to the per-

test best. Node.js: erun hits 98% of the leader on CPU/event-loop;

containerd leads HTTP; Docker lags on file-I/O (67–79%). Go: erun
leads single-thread and high-concurrency; containerd ties on CPU-

only. Rust: Docker leads raw CPU, crun fork,+,crypto, Podman disk

writes, containerd memory ops; erun stays within 5–15% of the

best. Overall, erun’s overhead is negligible, in-kernel deployment

retains near-native while OCI-compatible.

Benchmark Ubuntu VM SEEDCore Gramine-SGX Gramine-TDX
Dhrystone 16.4M lps 46.7M lps (2.84×) 331M lps

*
332M lps

*

Whetstone 881 MFLOPS 1150 MFLOPS (1.31×) 5006 MFLOPS
*

4987 MFLOPS
*

Arithmetic 4.26M lps 738M lps (173×) 841M lps
*

798M lps
*

Pipe 705K lps 3726K lps (5.28×) 330K lps
*

1620K lps
*

Recursion 207K lps 447K lps (2.16×) 7.7M lps
*

8.1M lps
*

Switching 81K lps 2 lps (0.00002×) N/A N/A

System Call 378K lps Failed 12.7M lps
*

9.3M lps
*

File Copy 1091K KBps Failed 15–228K KBps
*

10–137K KBps
*

Spawn 785 lps Failed N/A N/A

Execl Failed Failed Failed 0.8K lps
*

TCB Size 690 MB 23.4 MB 1.3 – 1.5 MB 1.2 MB

Table 3: Comparison of UnixBench performance across dif-
ferent execution environments *SGX/TDX measurements
use Intel Xeon processors (E-2288G for SGX, 4th-gen "Sap-
phire Rapids" for TDX) while SEEDCore/Ubuntu use AMD
EPYC—see section text for interpretation guidance.

9.1.3 Web Server Performance. We evaluate NGINX (event-driven)

and Apache httpd (process-based) across runtimes at concurrency

1–100. Figure 6 shows normalized throughput. NGINX. erun leads

at all concurrency levels; crun achieves 99–100% (matching at 100

connections); containerd 97%; Docker and Podman 95%. Through-

put plateaus at 442 req/s (≥5 connections), indicating runtime—not

NGINX—limits performance.Apache httpd. crun dominates; contain-

erd and Podman reach 93–95%; Docker 82–91%; erun only 45–51%.

Peak 1560 req/s (3.5× NGINX) stabilizes after 5 connections. The

servers expose opposite characteristics: erun excels with NGINX

but struggles with multi-process Apache; crun shows the reverse.

9.1.4 Cross-ArchitectureMicrobenchmarks. We compareAMDEPYC

(SEEDCore, Ubuntu VM) with Intel Xeon (Gramine-SGX, Gramine-
TDX ). Due to architectural differences, results are indicative—compare

within platforms, not across; for like-for-like hardware, see prior

SEV-SNP sections. Using UnixBench, we evaluate all four configura-
tions; scores appear in Table 3. Key observations: SEEDCore delivers
strong CPU performance (arithmetic, Dhrystone) with full OS func-

tionality. Gramine variants excel at in-memory tasks but degrade on

I/O—Gramine-TDX reaches only 5–6% of native on filesystem tests

(simple virtio-fs); Gramine-SGX shows low pipe throughput due

to encrypted host–kernel pipes, while Gramine-TDX retains pipe

performance since pipes remain within the VM. Overall, SEED-
Core preserves functionality with strong compute on AMD, while

Gramine on Intel exhibits higher I/O with workload trade-offs.

10 Concluding Remarks
SEED embeds the erun container runtime in a minimal TCB, im-

proving privacy and efficiency while shrinking the attack surface

for scale. Leveraging TEE trust assumptions, SEED tunes the TCB

to harden security without sacrificing practicality.
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