SEED: A Minimal-Footprint TEE Framework for Verifiable,
Confidential Microservice Deployment

Omar Jarkas
The University of Queensland
Brisbane, Australia
o.jarkas@ugq.edu.au

Naipeng Dong

The University of Queensland
Brisbane, Australia
n.dong@ugq.edu.au

Abstract

We present SEED, a system that enables the deployment of dis-
tributed privacy-preserving micro-services in the cloud while main-
taining the secrecy of user code and data and ensuring correct,
complete results. Unlike prior approaches that minimize the TCB
by pushing large parts of the software stack outside the enclave,
SEED includes the entire container software stack—from the ap-
plication layer up to the operating system—inside the TCB. This
holistic design protects proprietary software, datasets, and optional
ML models from exposure; prevents leakage of sensitive inputs or
queries; and thwarts metadata-inference attacks that could reveal
workload identity or versioning. Yet we achieve an optimized TCB
(22 MB in total), over 30x smaller than the typical 690 MB TCB
for confidential privacy-enhancing VMs. In practice, SEED runs
on AMD SEV-SNP-capable machines and supports real container
workloads (i.e., TensorFlow, OpenVINO inference, PyTorch train-
ing, Redis, NGINX, Apache httpd). We demonstrate that SEEDCore
matches or outperforms mainstream runtime workload deployment,
staying within 5% of native throughput and reaching up to 6x higher
performance on CPU-bound jobs. Finally, we conduct a thorough
privacy and security evaluation against 11 cloud attack vectors and
show that SEED blocks or confines every exploit that remains pos-
sible even under the state-of-the-art Gramine-TDX model, thanks
to late binding, per-container PCR chains, and continuous in-TEE
attestation throughout the workload’s lifetime.

1 Introduction

Modern AI/ML pipelines, language runtimes, and web services—even
in heavily-regulated sectors such as finance, healthcare, and tele-
com edge—ship as Open Container Initiative (OCI) containers: self-
contained images that a runtime (crun [20], runc [51]) or engine
(Docker [46], Kubernetes [35]) can pull, replicate, and start in mil-
liseconds. This late-binding model decouples build from run and
has become the de-facto unit of cloud deployment. While hardware
Trusted Execution Environments (TEEs) protect code in use [60, 19,
48, 62], running containers on an untrusted cloud still requires a
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2026(1), 411-425

© 2026 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2026-0021

This work is licensed under the Creative Commons Attribu-

411

Ryan K L Ko
The University of Queensland
Brisbane, Australia
ryan.ko@uq.edu.au

Redowan Mahmud

Curtin University
Perth, Australia
mdredowan.mahmud@curtin.edu.au

seamless push— run—s prove pipeline. Crucially, that pipeline must

guarantee privacy for all tenant workloads—shielding code, data,

and runtime characteristics from the cloud operator and neigh-
bouring tenants. Effective TEE frameworks must therefore support
unmodified container images and on-demand pulls—features cur-

rently incompatible with existing TEE designs [10].

This incompatibility arises primarily from the size and place-
ment of the Trusted Computing Base (TCB), comprising hardware,
firmware, and software components that must remain trusted to
preserve privacy and integrity. However, achieving comprehensive
endpoint security and privacy through TEEs is subject to overcom-
ing its structural challenges:

e Process-level TEEs safeguard individual address spaces but
introduce a pre-enclave window where secrets appear in plaintext,
while preventing containers from being pulled securely post-
launch (§2.2);

e VM-level TEEs, broaden protection to entire virtual machines,
enabling secure post-boot container pulls but incorporating a
complete multi-user OS and container stack into the TCB, thereby
significantly enlarging both the trusted footprint and the attack
surface (§2.2).

Existing methods aiming to minimize the TCB—such as LibOS
partitioning, security monitors, or unikernels (§3)—either disrupt
essential features like on-demand pulls, verification, binary and for-
ward compatibility, or inadvertently expose vulnerabilities through
host interfaces that can leak workload content or operational meta-
data.

This study presents SEED, a novel TEE framework that preserves
standard container workflows while shrinking the enclave to a
verifiable, unikernel-scale TCB. Unlike prior designs that either drag
a full multi-user OS into the enclave or freeze a single immutable
process (§3), SEED embeds only a minimal container runtime inside
the TEE and admits and tracks containers after attestation. This
eliminates the pre-enclave window without sacrificing off-the-shelf
container compatibility.

Technically, SEED statically links to a patched Linux 6.8, glibc
[58], and a minimal runtime (erun) into one 22 MB ELF, then binds
each pulled image to this core via vIPM-backed attestation and a
container-aware Integrity Measurement Architecture (IMA) names-
pace. This co-design establishes a new paradigm in TEE deploy-
ment by unifying unikernel-scale TCB, late binding, and contin-
uous streamlined hardware-rooted integrity in a single pipeline,

https://orcid.org/0000-0003-4325-9111
https://orcid.org/0000-0003-0804-1176
https://orcid.org/0000-0002-8248-3362
https://orcid.org/0000-0003-0785-0457
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2026-0021

Proceedings on Privacy Enhancing Technologies 2026(1)

outperforming LibOS, monitor-based, and traditional unikernel ap-

proaches in both attack-surface reduction and runtime flexibility.

SEED achieves this via the following contributions:

e Privacy-first push—run— prove Deployment Framework.
Unified system- and network-layer framework that turns TEE
deployment model into a verifiable defense against pre-enclave at-
tacks and tying each workload to a privacy-anchored attestation
chain, SEED prevents exfiltration of code, data, or configuration
throughout the workload lifecycle.(see §6)

o Unikernel-scale TCB Optimisation. SEEDCore! embeds only
the essential container runtime inside the kernel, yielding a
unikernel-scale TCB that closes the pre-enclave window yet pre-
serves ordinary container workflows.

o Kernel-resident, Statically Linked erun. We demonstrate, for
the first time, that a full-featured, OCI-compatible container run-
time can be statically linked into the kernel without forfeiting
lift-and-shift flexibility. Running entirely in kernel space elim-
inates the user-kernel syscall boundary, trims the dependency
closure to ~180 kLoC (versus >2 M LoC for Docker + contain-
erd), and still supports unmodified images, registry pulls, and
layer caching (§7.2). This fusion of unikernel tightness and late-
binding enforces a strong privacy boundary for any container
workload—web services, analytics jobs, or ML inference alike.

e Hardware-rooted, Per-container Attestation for a Mutable
TCB. Traditional Linux IMA cannot streamline our deployment
framework because, to the kernel, containers are just user-space
constructs isolated by namespaces and cgroups; that user/kernel
split hides per-container activity and blocks fine-grained integrity
checks. By statically linking the container runtime into the kernel,
SEEDCore collapses this boundary and promotes the container
to a first-class kernel object. We therefore implement a container-
aware IMA namespace: every file erun loads is tagged with its
container ID and extends into a granular and unified view inside
a lightweight vIPM built on AMD-SEV firmware (§ 7.1). This
fine-grained chain of trust blocks inference attacks that could
reveal which software stack is running, when it was updated, or
how it is being exercised.

e Performance evaluation in real confidential clouds. On
Azure SEV-SNP VMs, Seedcore delivers >95% overhead on CPU-
bound micro-benchmarks, 20-60% higher ML throughput than
mainstream runtimes, and >95% native web-server throughput
across 1-100 concurrent clients, while erun outperforms crun,
containerd, docker, podman on every AI/ML pipeline configura-
tion tested (§9.1.4-9.1.3).

The methodology opens new directions for secure, multi-tenant
cloud services that require drop-in privacy, confidentiality and
integrity without re-engineering existing container ecosystems.

2 Trusted Execution Environments (TEEs)

TEEs establish isolated enclaves and leveraging CPU-enforced mem-
ory encryption and strict access control policies, TEEs can protect
sensitive information against a wide range of threats, including
those arising within hypervisors or operating systems. However,

ISEEDCore is the core trusted computing base of SEED, comprising a minimal binary
that includes a patched kernel and erun, and dependencies statically linked into a
single ELF executable

412

Jarkas et al.

achieving comprehensive endpoint security through TEEs is fraught
with practical challenges, stemming not only from the complexi-
ties of how TEEs are structured (e.g., as process-level or VM-based
enclaves), but also from fundamental design trade-offs involving
trust boundaries and the size of the TCB.

2.1 Process-level TEEs

Process-level TEEs (e.g., Intel SGX [15]) protect a single address
space. At launch the CPU hashes the enclave’s initial pages into
MRENCLAVE [15]; any post-launch change breaks that hash. This im-
mutability keeps the in-enclave code verifiably trusted, but it also
complicates late-bound components: while SGX supports encrypted
enclaves (where code and data are encrypted and only decrypted
at runtime) and sealing mechanisms for offline secret protection,
the fundamental challenge remains that container images cannot
be dynamically pulled and verified post-attestation without break-
ing the enclave’s measurement. Thus, while runtime isolation is
strong, process-level TEEs integrate poorly with modern container
workflows that rely on dynamic loading and updates.

2.2 VM-level TEEs

Given the limitations of process-level TEEs, many practitioners
have moved to VM-level TEEs - systems which host an unmodified
Linux kernel inside an enclave and still support modern container
workflows, such as pulling and running standard container images.
In these designs, the secure firmware boots a virtual TPM (vVIPM)
[53, 49], a software component providing cryptographic measure-
ment and reporting functions to the guest VM. The firmware then
measures the BIOS, bootloader, and kernel chain into Platform Con-
figuration Registers (PCRs), and exposes those PCRs for remote
attestation, a process allowing a remote party to cryptographically
verify the integrity of these boot measurements. Only after this
hardware-anchored baseline is verified does the in-guest container
runtime pull and start user images, eliminating the pre-enclave
window that process-level TEEs suffer from.

3 Related works

Prior work on confidential containers is shaped by a fundamental
trade-off: Linux-with-containers preserves OCI semantics and late
binding but inherits a large, multi-purpose TCB; unikernel designs
achieve tiny TCBs but lose container workflows and typically lack
continuous, workload-lifetime attestation. A third line of work
inserts a security monitor to reduce audited code but adds costly
boundary crossings and constrains container-granular trust. We
use this lens to organize prior work.

Running a full Linux guest inside a TEE preserves POSIX and
OCI semantics [77, 17, 56, 18], enabling unmodified containers with
late binding and standard runtime ecosystems. Yet existing systems
still forfeit at least one of confidentiality, integrity, or practicality.

This compatibility comes with a ballooning TCB: network stacks,
filesystems, drivers, and kernel subsystems designed for multi-
tenant bare-metal servers add little value inside single-tenant con-
fidential containers [32]. Worse, Linux views containers as mere
namespaces and cgroups—userspace fiction [6, 14]—preventing se-
curity modules like IMA from expressing per-container policies.

SEED: A Minimal-Footprint TEE Framework for Verifiable, Confidential Microservice Deployment

Proceedings on Privacy Enhancing Technologies 2026(1)

Table 1: Qualitative comparison of TCB-minimisation strategies. Icons: & desirable @ partial @ undesirable.

Approach TCB Size Runtime Flex. Pre-Enclave Exposure Side-channel / Iago Binary Compat.
Partitioned LibOS @ Small (8-15 MB) © Emulated kernel functions © High - pulls pre-attestation © Elevated - ABI leaks @ Needs patched glibc
Security Monitor @ Small (5-10 MB) @ Full Linux outside enclave © High - data leaves TEE @ Context-switch channels @ Excellent

Unikernel @ Tiny (2-5 MB) © None - immutable image © High - pre-boot linking @ Low © ABI freezes
Monolithic Linux [x] Large (690 MB) (] OCI-compatible @ Low Q High - full kernel in TEE @ Excellent

SEEDCore @ Small (22 MB) @ OCI delayed loading @ None - vIPM-enbled IMA @ Micro-architectural Only @ Excellent

Table 1 summarizes this landscape; we examine how each cate-
gory attempts to minimize risk:

Partitioning the System into Trusted and Untrusted Components.
Systems such as Gramine [69, 23], SCONE [2], Occlum [63], and
Civet [70] embed a micro-kernel-sized set of services inside the
enclave while delegating the rest—including the full container
stack—to the untrusted host. This shrinks the kernel portion of
the TCB but creates two high-risk interfaces: (i) the enclave-kernel
boundary, vulnerable to Iago attacks [7], and (ii) the container-
runtime boundary, where host-visible syscall/cgroup traces leak
workload behaviour [73].

Leveraging a Security Monitor. SeKVM [38], HyperEnclave [29],
Veil [1], and Keystone [37] interpose a hardware-rooted monitor
to mediate privileged events and produce attestation. The audited
code base remains small, yet each I/O or page-table update crosses
monitor boundaries—incurring latency and obliging developers to
re-encrypt or re-validate data.

Reducing TCB Size by Removing Functionality. Unikernels (Mira-
geOS [44], OSv [32], X-Containers [64], UKL [72]) link one applica-
tion to the kernel code it needs, producing few-megabyte images
amenable to formal verification. Immutability is intrinsic: no new
code can load after build time, clashing with late-bound container
workflows.

As Table 1 makes clear, each category attains at most two of the
three goals—small TCB, first-class containers, or continuous attes-
tation. SEED departs conceptually along three axes: (i) kernel-native
containers, where policy and measurement are container-scoped
in the kernel rather than via a userspace runtime; (ii) a supervisor-
mode process model on UKL that preserves OCI late binding without
re-inflating the TCB; and (iii) a continuous, hardware-rooted attesta-
tion path that binds code and data flows (I/O, storage, network) to
current measurement state. These ideas break the architectural con-
straints that prevent this combination in other systems and enable
a unikernel-scale TCB with full container support and continuous
attestation. We detail mechanisms in §5 and analyze privacy im-
plications in §8.1. To our knowledge, SEED is the first system to
deliver all three properties simultaneously.

4 Threat Model

SEED protects the confidentiality, integrity, and correctness of code
and data throughout all operational stages—at rest, in transit, and
during execution. It achieves this by relying on a structured trust
framework and deploying defensive measures against powerful
adversaries.

Trusted Components Two primary actors govern the SEED ar-
chitecture: the untrusted cloud provider (P;), who controls the

413

infrastructure and may attempt to compromise the workload, and
the trusted cloud user (P;), who owns the workload and seeks to
ensure its security. Within this context, five trusted components
form the trust foundation (see Figure 1):

&1 CLI: Acts as an administrative interface, managing deploy-
ment, encryption keys, and attestation policies.
CAS: Functions as a secret broker and verifier. It attests
to component integrity, encrypts and signs workloads and
configurations, manages secrets, and authenticates entities
via access keys [3, 10].
vIPM: Derives a hardware root of trust to locally attest and
authenticate components.
TCB: Provides a confidential VM (CVM) enclave with mini-
mized internal attack surfaces and integrated integrity mea-
surement capabilities leveraging &s.
Workload: Represents the containerized instance through-
out its lifecycle, protected by the above components.
The first two components (&; and &;) remain under the control of
the trusted user, ensuring direct oversight and transparency. The
others (&3, &4, and Es) reside in the cloud, where the provider may
run arbitrary code, intercept data, and attempt to exploit vulnerabili-
ties. To mitigate these risks, SEED relies on integrity measurements,
attestation reports, and the continuous verification of component
authenticity.
Certification Authorities (CAs) SEED utilizes three independent
CAs to further solidify trust:

CA; Cloud CA: Issued by the cloud vendor for authenticating and
managing service credentials.

CA; AMD CA: Ensures the hardware’s authenticity and the valid-
ity of attestation reports.

CAs SEED CAS CA: A self-signed authority within SEED that
issues and manages internal certificates independent of ex-
ternal trust anchors.

Scope Limitation for Workload Users External workload users
and systems interacting through application-level interfaces lie
outside SEED’s primary threat model. Application-specific threats
such as deserialization vulnerabilities or advanced hardware-level
attacks—cache [22, 43, 74], [76, 27], power analysis [39, 40], Spectre
[34, 45], and Meltdown [41, 9]—remain unaddressed by SEED itself.
While SEED provides guarantees at the container runtime level,
complete protection requires complementary techniques such as
microarchitectural defenses (i.e., hardware features like Intel CAT
[31] or software mitigations (e.g., page coloring, cache partitioning)
to defend against cache-based side channels), application hardening,
and supply chain security (i.e., container image signing, vulnerabil-
ity scanning, and software bill of materials (SBOM) verification to
ensure trusted workload sources).

&,

&3

&4

&s

Proceedings on Privacy Enhancing Technologies 2026(1)

Server

Jarkas et al.

[Cloud User]

@

[Cloud }
Workload
— — Client
Enclave Runtime
Server
Container-awareLsM | [GNU C Library (glibc)
Function Call Interface
Linux Unikernel (UKL) el
B
| viPM
EK(pub,priv) | [Non-volatile storage
VMPL1
[QEMU/KVM (3) MRO |
[Versioned Chip Endorsement Key |
[Chip Endorsement Key (CEK) |
AMD SEV

@ Temporal: 0 @ @ =
Time ———»
RA: Verifier —S<™®t | Astester

Endpoints: Server, Client

Figure 1: Architectural Overview of SEED’s Software Stack and eRun, highlighting VM privilege levels used for vIPM segregation. While VMPL is AMD-specifc, such privilege level segregation
is transferable across all VM-level encryption technologies, providing a confidential computing solution across various configurations (detailed in §2).

SEED focuses on eliminating the pre-enclave exposure window
and minimizing the TCB while maintaining container compatibil-
ity—it serves as a foundational layer that must be augmented with
these domain-specific protections for comprehensive security.

Algorithm 1 Attested TLS Handshake Protocol

Require: Participants: Client (C), Server (S)
Ensure: Mutual authentication and secure key exchange with attestation

1: procedure ATTESTEDTLS(C, S)
2 Notation and Cryptographic Functions:
3 H (-): Collision-resistant hash function (SHA-256)
4 PRFy (): Keyed pseudo-random function with key k
5: Ency [ad]{-}: Authenticated encryption with key k and associated data
6: Signgy (-): Digital signature using private key sk
7
8
9

g%, gY: Diffie-Hellman ephemeral public keys
cr, sr: Client and server random nonces
ksh kep: Server/client handshake encryption keys

ksm, kem: Server/client MAC keys for handshake
11: kap: Application data encryption key (post-handshake)
12: transcriptg, transcript~: Handshake message transcripts

Stage 1: Initial Handshake - TLS

13: C — S: ClientHello < (ciphers || versions || cr || g*)
14: S — C: ServerHello < (selected_suite || selected_version || sr || g¥)
15: S — C: EncryptedExtensions «— Encg . [ad]{ext}

Stage 2: Endpoint Authentication and Attestation - mTLS

16: S — C: CertificateRequest < Ency, [ad]{cert_req}

17: S — C: Certificate < Encksh [ad] {CertpubTIK-S)

18: S — C: CertificateVerify «— Enc, [ad] {SignprivTIK-S (transcriptg) }

19: S — C: Finished «— Enc, [ad]{PRFg,,, (transcriptg) }

20: C — S: Certificate < Ency [ad]{certpypTik-c }

21: C — S: AttestationEvidence «— Encg_, [ad]{Evidencec} > Attestation integrated in
handshake

22: C — S: CertificateVerify «— Encg_, [ad] {Sig“privTIK—C (transcript~) }

23: C — S: Finished — Ency . [ad] {PRFg.,,, (transcriptc) }

Stage 3: Attestation Evidence (encrypted)

24: > First application-data record after the 2xFinished
25: C — S: Evidence «— E“Ckap [ad]{quote, claims}
26: > 8 MUST verify before accepting/issuing any further app-data

414

5 Design Rationale

SEEDCore revisits the basic assumptions behind confidential-container
deployment. First, production confidential VMs are almost always
single-tenant, so no adversarial processes inhabit the enclave. Sec-
ond, once the VM is encrypted, multi-user Linux baggage—drivers,
UID/GID isolation, ptrace hooks, hundreds of dormant syscalls—only
swells the attack surface, while a third insight shows the top-20
Docker-Hub images (83 % of pulls) rely on a very small syscall set.
Userspace collapse via statically-linked, kernel-resident
erun We link erun—a modified crun—into the kernel at VMPL3, cre-
ating a single address space that (a) removes the enclave-runtime
interface that leaks syscalls, (b) keeps every byte of code and data in-
side encrypted memory, and (c) trims the TCB to 22 MB—about 30x
smaller than a full confidential VM. Third-party runtimes (Python,
JVM, etc.) arrive as ordinary OCI layers, so compatibility is retained
while the host sees no plaintext and no syscall traces. Implementa-
tion required complete container toolchain reimplementation, as
Go-based utilities cannot execute in kernel space (see §7.2.1).
Code reduction methodology. To achieve the 22MB TCB, we
systematically removed subsystems unnecessary for single-tenant
confidential containers. Starting from crun’s 26,529 lines in its core
library, erun eliminates: cgroups (5,500 LOC)—redundant when the
entire VM serves one tenant; eBPF (554 LOC) and seccomp (1,051
LOC)—attack surface with no benefit inside TEEs; CRIU checkpoint-
ing (1,053 LOC)—incompatible with attestation chains; Intel RDT
(369 LOC)—inapplicable to AMD SEV. This surgical removal yields
14,708 LOC in erun’s library (45% reduction) while preserving OCI
compatibility. Combined with kernel-side stripping of unnecessary
drivers and subsystems, the binary measures 22MB—small enough
for line-by-line audit yet enough for production containers.
Container-granular, hardware-rooted attestation. Elevating
containers to first-class kernel objects enables dedicated PCR chains
per container. IMA measures each FILEEXEC event before execution;

SEED: A Minimal-Footprint TEE Framework for Verifiable, Confidential Microservice Deployment

the vTPM quotes chains. Prior container-aware IMA attempts [42,
25] measure from userspace, creating imprecise detection. Only
kernel-integration enables per-container measurement visibility.

Zero-exposure deployment pipeline. Attested-TLS (Algorithm 1)
establishes trust among CAS, vIPM, and kernel before transmitting
OCI layers. Container data never leaves protected DRAM, eliminat-
ing pre-enclave exposure while maintaining standard workflows
on a small TCB with continuous hardware attestation.

Standard TLS provides confidentiality and integrity for data in
transit but cannot prove the code integrity of the endpoints. A
malicious cloud provider could present a compromised TCB that
passes TLS authentication while running tampered code. Attested-
TLS extends the handshake to include hardware-rooted attestation
evidence, cryptographically proving that: (i) the endpoint runs
inside genuine TEE hardware (via VCEK signature); (2) the soft-
ware stack matches expected measurements (via PCR values); (3)
the attestation is fresh and bound to this session (via nonce). Only
after verifying this evidence does sensitive data flow.

Practical deployment through UKL’s hybrid model. Traditional
unikernels achieve small TCBs by specializing for a single purpose
and freezing binaries at build time, which breaks binary/forward
compatibility and precludes dynamic container workflows. SEED
instead adopts UKL (Unikernel Linux), which allows processes to
run at supervisor privilege within a Linux kernel, preserving the
Linux ABI and forward compatibility while retaining a unikernel-
scale TCB. This yields in-practice benefits: (i) Binary compatibility
with unmodified Linux applications; (if) Dynamic container loading
post-boot (late binding); (iii) Multi-workload support within a single
enclave/VM; (iv) Compatibility with existing container tooling.

These choices target host-visible leakage channels (syscall/cgroup
traces, system-wide hash exposure) while retaining OCI workflows
(see §8.1).

We evaluate the design consequences in §8.1 and §9.

6 Privacy-first Deployment Framework

Overview. SEED turns a standard push into a hardware-rooted,
three-step pipeline—push— run— prove (with optional seal)—shown
in Figure 1. A developer drives the process from the CLI (&),
which calls the Configuration & Attestation Service (CAS, &;). The
CAS first authenticates to the cloud control-plane, then launches a
single SEV-SNP VM that contains both the Trusted-Computing Base
(&4) and an in-guest vIPM (&3). Using an attested-TLS handshake
(Algorithm 1) the CAS, vIPM, and TCB build a chain of trust rooted
in AMD’s SNP report: they verify the CPU, the vIPM firmware, and
finally the kernel-integrated runtime erun. Only after that chain
closes does the encrypted OCI image flow into the VM, where
erun executes it, the vTPM continuously re-measures it, and—if
requested—the workload’s state is sealed to hardware-bound keys.

Deployment sequence. The numbered circles in Figure 1 trace
the complete deployment flow: (1) The CLI configures the CAS
with deployment parameters and container references; (2) CAS
authenticates to the cloud control plane and requests a confidential
VM; (3) The hypervisor boots the SEV-SNP VM containing the
vIPM (VMPL1) and TCB (VMPL3); (4) CAS and vIPM establish an

415

Proceedings on Privacy Enhancing Technologies 2026(1)

attested-TLS channel, validating the vIPM via AMD’s VCEK chain;
(5) CAS and TCB establish a second attested-TLS channel for secure
container transfer. Once trust is established, encrypted OCI layers
flow directly into kernel memory where erun executes them while
IMA continuously measures each file operation into per-container
PCRs. This choreography ensures that container data never exists
in plaintext outside the hardware-encrypted VM boundary.

The deployment process begins when the Configuration and
Attestation Service (CAS, &;) is configured via the CLI (&;) (step
@). The CAS obtains a access token from the cloud’s control plane
(CA;) and forms a mutually-authenticated TLS (step 2).

During the confidential runtime-loading phase, the hypervisor
boots the (TCB, &,) and a virtual TPM (VIPM, &;) inside an SEV-
SNP-protected VM (step 3). The vIPM provisions its keys (§7.1)
used for remote attestation, authentication, and sealing. Meanwhile,
the AMD Secure Processor (ASP) generates an SNP attestation report
whose measurement is cryptographically bound to the VM and
signed by a VCEK certified by AMD.

An attested TLS handshake between CAS and vIPM (step @)
validates: (i) the integrity of the vIPM via its AIK-signed quote,
and (ii) the authenticity of the CPU via the SNP attestation report
and the AMD certificate chain CA,. Once trust is established, a
second TLS channel is negotiated between the CAS and the TCB
(step (®) using CAs-issued certificates, ensuring that only attested
components exchange the encrypted container image. The TCB
returns its own SNP report to the CAS, proving that it executes on
genuine hardware and that its measurement matches the hash.

Once attested, CAS streams the encrypted OCI image. erun loads
it in-kernel, while the container-aware IMA logic measures each
executable page and extends the appropriate PCR. Optional seal-
ing (§6.4): a data-encryption key derived from the TLS session
(Data-Encryption Key (DEK)) is sealed under vIPM SRK and bound
to the measured TCB, so only a re-attested SEED instance can
re-hydrate state (§6.4). This flow executes unmodified container
images, maintains continuous attestation, and never exposes secrets
outside encrypted memory turning a normal image push into the
hardware-rooted pipeline shown in Fig. 1: push— run— prove, with
optional seal.

6.1 Push: Environment Setup and Verification

This phase securely prepares and verifies the cloud execution envi-
ronment before any workload is introduced. Unlike a conventional
container “push,” it includes a secure boot sequence and remote
attestation, confirming the trustworthiness of the TCB, &,. Specifi-
cally, it checks both the TCB’s software integrity and the underlying
CPU’s authenticity—thereby establishing a hardware root of trust.
Only after this verification can workloads run in a genuinely confi-
dential, integrity-protected environment.

6.1.1 Authentication. This process begins with &, establishing a
secure, encrypted, and authenticated communication channel via
HTTPS/TLS with the cloud infrastructure. The Configuration and
Attestation Service (CAS, &,) initiates a TLS handshake with the
cloud provider’s API endpoint to establish a secure channel. This
begins with a ClientHello message, in which the CAS advertises
supported cipher suites, protocol versions, and includes a client
random (cr) and an ephemeral public key (¢*). The cloud provider

Proceedings on Privacy Enhancing Technologies 2026(1)

responds with a ServerHello, selecting the cipher suite and protocol
version, plus its own random (sr) and ephemeral key (g¥).

Both parties compute a shared secret k = (¢¥)* = (¢g*)Y, then
derive session keys:

ksh, kcn for handshake encryption.
ksm, kem for secure message transmission.

Mutual authentication follows via mTLS (Stage 2 of Algorithm 1).
The server sends a certificate (encrypted under kg, and signed by
CA;) confirming its identity:

Certificate = Ency,, [ad]{certpupca,-p; }
The CAS then provides its own certificate:
Certificate = Ency, [ad]{cert,upca,-8, }

Upon successful exchange and verification, the CAS has an au-
thenticated, encrypted channel to the cloud services.

6.1.2 Boot/Attest. Upon validating the request, the cloud platform
executes predefined logic to load the necessary components. This
step can be automated with Infrastructure-as-Code (IaC) tools such
as Terraform or Pulumi, allowing developers to manage the cloud
topology from declarative configuration files. In this sequence, the
untrusted hypervisor loads the SEED guest image (pre-staged on
the cloud platform). The image bundles the logic for the vIPM &3
and the TCB &4, but excludes the workload &s, which is injected
later at runtime.

After the guest image is launched, the hypervisor invokes the
LAUNCH_START ioctl exposed by KVM, triggering the AMD Platform
Security Processor (PSP) to enter the SEV-SNP launch flow. During
this instantiation and provisioning phase the PSP:

o allocates a unique ASID and derives a per-VM AES-XTS memory-
encryption key,

o locks the guest’s pages into the RMP so that only the VM can
access them,

o records a cryptographic measurement of the initial guest memory
via LAUNCH_UPDATE commands, and

o finalises the launch with LAUNCH_FINISH, returning an SNP at-
testation report bound to the VM’s measurement and signed by
the (VCEK certified by AMD.?)

SEV-SNP’s hardware state ensures that code running inside the
VM (including the vTPM and TCB) executes at VM Privilege Level 0
(VMPLO0), which is higher than any guest user-space and isolated
from the host hypervisor. All guest memory is transparently en-
crypted in DRAM, and any attempt by lower-privileged entities (e.g.
the hypervisor or another VM) to access protected pages triggers a
hardware fault, preserving confidentiality and integrity even in the
face of a malicious host.

With the launch flow complete, the vIPM and TCB proceed to
remote attestation and secure workload injection as described in
the following sections.

6.1.3 vTPM Provision. Once the vIPM is activated inside the SEV/SNP
VM, it generates:
o EK Pair - Endorsement Key used as the TLS client credential,
o AIK Pair - Attestation Identity Key for signing quotes,
e SRK Pair - Storage Root Key for sealing and binding opera-
tions (§6.4).

2See AMD SEV-SNP specification [30].

416

Jarkas et al.
TD
(Static and runtime measurements) o«
vIPM
3-SNP 4-SNP
REPORT (lgcal Local Att Service (LAS) Attestation
attestation blob SNP firmware inside the AMD PSP (TCB version) eport +tVCEK
= cern
PSP attestation engine
VCEK certificate

| Provisioning logic in PSP &

ASK/VGEK cert chain

‘ CPU microcode + PSP firmware SVbi e
Keys

Figure 2: Overview of layered attester for SEAM-vIPM

All keys are derived from the vTPM’s hardware RNG seed (§7.1).
Immediately after key generation, the vIPM performs a local attes-
tation of the SEV/SNP environment: it requests an SNP attestation
report from the Platform Security Processor (PSP). The report cryp-
tographically binds the VM’s launch measurement to a VCEK signed
by AMD and embeds EK},ub in one of the report’s REPORT_DATA
fields. The full report is persisted in the vIPM’s NVIndex so that
any remote verifier—over an attested TLS channel—can retrieve the
tuple (SNP Report, EKp,up) and validate that the TCB is executing
inside genuine SEV/SNP hardware (§6.1.4, §6.1.5).

6.1.4 Obtain Attestation Report. Figure 2 depicts the local attesta-
tion path when SEED runs on AMD SEV/SNP. Unlike Intel TDX—which
relies on a TD Quoting Enclave (TDQE) and Provisioning Certi-
fication Enclave (PCE)—SEV/SNP delegates report generation to
the on-die Platform Security Processor (PSP). The PSP produces a
hardware-signed SNP_REPORT whose signature chain ultimately ter-
minates at AMD’s Root Key (ARK), removing the need for in-guest
quoting enclaves.

Report Request. The vIPM populates a REPORT_REQ structure in
the Guest-Hypervisor Communication Block (GHCB) and triggers
the VMGEXIT instruction. The request is encrypted and integrity-
protected with the VM-specific Secure Guest Key (SGK) so that
an untrusted hypervisor cannot tamper with it. The report_data
field is filled with a SHA-256 digest that binds the vIPM’s public
endorsement key to the current TLS session:

report_data = SHAZSé(protVerUp || protVerLow || EKpub || nc)

where protVer# encode protocol compatibility, EKpup is the vIPM’s
endorsement key, and n. is the TLS-exported nonce acting as a
channel binder.

SNP_REPORT Generation. Upon the REPORT_REQ, the PSP
verifies the VMPL-0 privileges of the caller,
e measures the guest-owner-supplied pages recorded in the RMP,
and
e returns a 400-byte SNP_REPORT that includes (i) the VM’s mea-
surement hash, (iij) CPU and PSP Security Version Numbers
(SVNs), and (iii) the user-supplied report_data.
The report is MAC-ed and signed with the socket-unique Ver-
sioned Chip Endorsement Key VCEK, which in turn is certified by
AMD’s ASK (AMD Signing Key) and ARK root certificate.

SEED: A Minimal-Footprint TEE Framework for Verifiable, Confidential Microservice Deployment

Remote-Evidence Assembly. The vIPM stores the SNP_REPORT in
an NVIndex and bundles it with the certificate chain:

Evidence = (SNP_REPORT, VCEK, ASK, ARK).

Any external verifier—over the attested TLS channel—can now

e validate the VCEK against AMD’s ASK/ARK hierarchy,

o verify the PSP signature on SNP_REPORT, and

o check that the embedded hash matches EKp,y, and the nonce ne,
thereby confirming both the vIPM’s identity and the live TLS
session.

This flow establishes a strong chain of trust from AMD hardware
(ARK) through the PSP and into the guest VM, culminating in
cryptographic evidence that the vIPM and the broader SEED TCB
execute inside genuine, unmodified SEV/SNP silicon.

6.1.5 Verify. Finally, the CAS (&;) and VIPM (&E3) establish an at-
tested TLS handshake (differing from the earlier “cloud handshake”)
where the vIPM uses EKpyp as its TLS certificate and includes the
TD Quote. Both endpoints incorporate a nonce n. to bind the quote
to the TLS session.

The CAS (&;) and the vIPM (&E;) now perform an attested TLS
handshake—This is distinct from the earlier cloud handshake in
which the CAS authenticated to the provider’s control plane. The
VIPM presents EKj,up as its TLS certificate and embeds the AMD
SNP_REPORT bundle (Evidence) in the first encrypted record. Both
peers insert the nonce n, into their random structures to bind the
report to the session.

Handshake Process. The handshake starts with ClientHello and
ServerHello, both including n.:

&y, — &3 ClientHello — (- -- || n¢)
&3 — &, ServerHello < (- - || nc)

After deriving session keys, mutual authentication follows using
CAs-signed certificates. The vIPM sends its certificate, including
EKpub:

&3 — &; Certificate < Ency,, [ad] {certEKpub}
&; — &3 Certificate — Ency, [ad]{certcAspuh}

SEED treats the TLS channel as provisional until the vIPM-side
verifier validates Evidence®*. Although the handshake already es-
tablishes application-data keys (k,p), no application payload is re-
leased by either endpoint until the attestation quote carried inside
the first encrypted record is checked. The quote thus inherits TLS
confidentiality and integrity, and a failed verification forces a fa-
tal alert—preventing any sensitive bytes from crossing a channel
whose peer lacks hardware attestation.

Attestation Evidence Exchange. Once authenticated, the vIPM
provides attestation evidence—endorsements, reference values, and

the attestation report:
&3 — &; Evidence — Encg, [ad] {SNP_REPORT, VCEK, ASK, ARK}

Verifier Logic. The CAS validates evidence as follows:

o Certificate Chain. Check that the Versioned Chip Endorsement
Key VCEK is signed by AMD’s ASK, which in turn chains to the
AMD ARK root.

o Report Signature. Verify the PSP-generated MAC/signature on
SNP_REPORT with the VCEK.

417

Proceedings on Privacy Enhancing Technologies 2026(1)

e Channel Binding. Ensure report_data inside the report equals
SHA256(protVers || EK,u ||) to bind the report to the live TLS
session and EKpup.

e Security Versions. Compare the PSP and microcode Security
Version Numbers (SVNs) against SEED’s appraisal policy (revo-
cation list, min-SVNis).

o Measurement Match. Confirm that the VM measurement in
the report matches the expected hash for the vIPM + TCB image.
If all checks succeed, the CAS marks the peer as trusted; the

TLS channel transitions from provisional to active, and encrypted

workload transfer can begin. This procedure guarantees that the

vIPM—and by extension the entire SEED TCB—runs inside genuine,
up-to-date AMD SEV/SNP hardware with an untampered software
stack.

6.2 Run: Workload Deployment and Execution

Once the environment is verified, the actual unmodified container
images workload is securely loaded and executed (i.e., Launch con-
tainers inside a hardware-enforced TEE, minimizing TCB footprint).

6.2.1 Container Key Exchange and Image Decryption. A secure
channel must be established between &, and &, to ensure confiden-
tial transmission of the encrypted container image and decryption
keys. SEED’s CAs provides certificates for both components, en-
abling mutual authentication without external dependencies. This
internal trust anchor ensures that only client-approved components
participate in the communication, reinforcing C; from our trust
model.

Following a standard TLS handshake, &, and &, exchange their
CAs-issued certificates, verify each other’s credentials, and execute
the CertificateVerify steps by signing handshake transcripts, proving
private key possession:

&y — &; Certificate < Ency,, [ad]{certppcas-g, }
&z — &y Certificate < Ency, [ad]{cert,ypcas-g, }

&4 — &; CertificateVerify « Ency, [ad]{Sign,ycas-g, (transcripta4)}
&, — & CertificateVerify « Ency_, [ad]{Signyiycas-g, (transcriptgz)}

After mutual authentication, &, provides an attestation report
(Evidence) to &, proving its integrity and that it is running on
genuine hardware. &; verifies this using CA; (AMD CA) and CAs;
similarly, &; may send its own evidence if required.

&4 — &; Evidence < Encg,, [ad] {AttestationReport&l}

With mutual authentication and attestation complete, a shared
secret key kshared is established. Using kshared, &2 encrypts the con-
tainer image and transmits it securely to &4, which can then decrypt
and run it using erun, ensuring the workload’s confidentiality:

&, — &4 EncryptedContainer < Ency ad]{ContainerImage }

shared [

6.3 Prove: Continuous Runtime Verification

The push and run stages attest the SEEDCore TCB only once—at
VM launch. To preserve trust for the remainder of the VM’s lifetime,
SEED must continuously demonstrate that (i) the root container
image loaded by erun is pristine and (ii) every file subsequently
executed inside each container remains unaltered.

Proceedings on Privacy Enhancing Technologies 2026(1)

SEED implements a measure-before-execute policy that cap-
tures all security-critical operations in real-time, preventing any
window for undetected tampering:

o Event capture (in—kernel hooks). All security-sensitive opera-
tions—CONTAINERLOAD and FILEEXEC (see §7.1.1)—are intercepted
synchronously by kernel-level IMA hooks before execution pro-
ceeds. These hooks:

- compute h = SHA256(file);

— block execution if the hash doesn’t match a pre-approved

whitelist (when configured);

— emit (CID, path, k) into an in-kernel ring buffer; and

- extend h into the container-dedicated PCR: PCRc1p «— H(PCRc1p ||

h).
Quote thread. A kernel thread wakes every At (default 1 s)
or when the ring buffer is full to transmit accumulated mea-
surements. It issues TPM2_Quote on all changed PCRs using the
CAS-supplied nonce, packages (QUOTE, log-delta), and streams it
encrypted to the CAS.
The periodic quotes serve as checkpoints rather than detection
points—all malicious activity would already have been blocked
at load time. The CAS can thus verify the complete execution
history: (i) the root image accepted by erun matches expectations
and (ii) the cumulative hash chain proves every executed binary
was measured before running.
e Secure transport. The quote bundle travels inside the same
mutually-authenticated, attested TLS session (Algorithm 1, Stage

3) that established kg Thus the verifier checks freshness (nonce),

integrity (AIK signature), and provenance (EK chain) before releas-

ing further application data, preserving the pipeline’s end-to-end
security invariants.

Security Analysis. This design prevents the attack scenario
where an adversary modifies container state between attestation
quotes. Since every executable must pass through the IMA subsys-
tem before execution, and the measurement occurs synchronously
with mandatory PCR extension, there exists no temporal window
for running unmeasured code. Even if an attacker somehow mod-
ified files on disk between quotes, those modifications would be
caught at the next load attempt.

6.4 Seal: Secure State Persistence

SEED performs dynamic sealing to protect any state that must
out-live a confidential-VM session. At the end of the attested TLS
handshake between the CAS (&;) and the TCB (E4) both parties
hold the shared session secret Ktrs. The TCB invokes an HKDF to
obtain a purpose-bound DEK (see 2). Using a fresh context string
prevents the raw TLS material from being re-used directly for data
encryption. Inside the enclave, the DEK is sealed with TPM2_Seal
under the vTPM’s SRK,;;y and a PCR policy that captures the TCB'’s
trusted measurements. The call returns only the opaque blob Bpgx;
the plaintext DEK never leaves the enclave.

The workload (Es) encrypts its artefacts D with the DEK, yield-
ing Cp = Encpgk (D). Both Cp and Bpgk are written to untrusted,
persistent storage (e.g. object storage or returned to the client).
Compromise of that store reveals no secrets.

As shown in algorithm 2, when the workload terminates, the
enclave zeroises its memory; DEK and all derived keys vanish. What

418

Jarkas et al.

the client regains is sole possession of Bpgk, not the raw key. Upon
redeployment the client supplies Bpgk to a freshly booted TCB and
vITPM. After a new attested TLS session and PCR verification, the
vIPM executes TPM2_Unseal which succeeds only if (i) the same
SRK pair is present and (ii) the current PCR values match the sealing
policy. The recovered DEK then decrypts Cp, restoring application
state transparently. A PCR mismatch—or execution on hardware
lacking the correct SRK—causes unsealing to fail, rendering the
ciphertext permanently opaque.

Algorithm 2 Sealing & Restoration Protocol

Require: Actors: Client (C), TCB & vIPM (inside Server, S)
Ensure: Confidential, integrity-protected snapshot that can be resumed only in a
re-attested TCB
1: procedure SEAL(S, C)
2: /* pre-condition: attested TLS completed; both hold Ktrs */
3 S: DEK « HKDF (KTLS, “seed for container data”)
4: S: Cp « Encpgk[ad]{D} > Encrypt workload data
5 S:Bpgk < TPM2_Seal(SRKpriy, PCRstcB, DEK)
6: S — C: Store or return (Cp, Bpgk)
7 S: zeroise DEK ; power off
8

: procedure UNSEAL(C, S)
9: /* new TCB instance, fresh attested TLS in place */
10: C — S: (Cp, Bpgk)
11: S: DEK « TPM2_Unseal (SRKriv, PCRstcB, BpEK)

12: if unseal fails then

13: S: abort > Wrong SRK or PCRs = data stays locked
14: else

15: S: D « Decpgk[ad]{Cp} > Restore state
16: continue execution

7 Implementation

Implementing SEED involved overcoming challenges such as re-
ducing the TCB while maintain trusted and confidentiality. SEED
achieves its 22MB TCB through five key optimizations: (i) collapsing
the container runtime into kernel space via static linking, (ii) elim-
inating multi-tenant features unnecessary in single-tenant TEEs,
(iii) systematically removing 45% of crun’s codebase (cgroups, eBPF,
seccomp), (iv) replacing heavyweight libraries with minimal al-
ternatives (700+ kLoC reduction), and (v) using static compilation
to eliminate dynamic loading overhead. This section details the
decisions made to address these issues.

7.1 VvIPM and IMA Implementation

TPM core. SEED’s vITPM is built with 1ibtpms and follows the
TPM 2.0specification [66, 67, 68]. It runs inside the SEVSNP Secure-
VM Service Module (SVSM) at VMPLO [49]. The SVSM environment
is bare-metal—no syscalls, timers, or libc—so we statically link only
the required cryptography and replace OS-dependent calls with
thin wrappers that use PSP GHCB services (e.g. monotonic counter,
wall clock).

Entropy source. Key generation relies on the on-die RNG exposed
via RDRAND/RDSEED on Zen 3+. These instructions are serviced by
the PSP, so the entropy never leaves the package, preventing a
malicious hypervisor from influencing or observing the seed [49].

Command buffer isolation. SEEDCore/vIPM traffic uses a sin-
gle shared Guest-Hypervisor Communication Block (GHCB) page
marked Shared in the RMP. Only VMPLO vIPM and VMPL1 (guest

SEED: A Minimal-Footprint TEE Framework for Verifiable, Confidential Microservice Deployment

kernel) can touch the page; any host or VMPL> 1 access raises
an RMP fault. SEV’s inline AES-XTS engine encrypts the page
transparently, while the PSP integrity-tree blocks replay, ensuring
that vIPM state and IMA measurements remain confidential and
tamper-evident throughout VM lifecycle events.

VMPL/RMP protection of PCRs. Because the vIPM’s PCR bank
resides in VMPLO-private pages, neither the cloud operator (hy-
pervisor) nor SEEDCore (VMPL1) can read, reset, or roll back PCR
values [65]. Thus, any attempt to subvert runtime measurements
would need the sealed AIK private key—also locked behind VMPLO
isolation.

Measurement Isolation Guarantees. Pages holding the vIPM’s
code, sealed state, and PCR bank are marked private & VMPLO
in the RMP; hypervisor access triggers an RMP fault. SEEDCore
executes at VMPL1; any VMPL1 read/write to VMPLO pages also
raises an RMP fault, ensuring the guest itself cannot tamper with
PCRs or the AIK key. If a malicious container is introduced, its
code is still hashed and extended into the IMA PCRs. The resulting
quote diverges from policy and is detected by the CAS; forging or
suppressing PCR updates would require the AIK privkey or direct
PCR writes—both infeasible without VMPLO access.

7.1.1 Container Promotion & Per-Container PCRs. By collapsing
erun, IMA, and a lightweight LSM shim into one address-space
image, SEEDCore removes the classic user/kernel split.
During CONTAINERLOAD erun:
e allocates a seed_container_t descriptor,
e stores its pointer in task—cred—security, and
e reserves a dedicated PCR for that container’s runtime measure-
ments inside the vIPM.

IMA hooks with CID context. Existing hooks (bprm_check_security,

file_mmap (PROT_EXEC), do_execve,...)inherit the container iden-
tifier (CID).

7.2

The design of erun begins with a minimal, specification-conformant
subset of the crun code base [20]. All functionality that is superflu-
ous in a single-tenant TEE—namely Linux Security Module hooks
(seccomp, AppArmor, SELinux, keyrings), checkpoint/restore fa-
cilities (CRIU), resource-control subsystems (cgroups, eBPF, I/O
priorities), and terminal handling—was eliminated. These mech-
anisms are valuable in multi-tenant settings, yet they introduce
considerable attack surface inside an enclave whose boundary is
already enforced by the TEE itself. The retained abstractions are lim-
ited to mount, PID, and network namespaces so that OCI containers
continue to observe the expected isolation semantics.
Subsequently, this reduced runtime was ported to a statically
linked, kernel-resident environment. A lightly patched Linux
6.8 and a size-optimised glibc are linked with erun, yielding a sin-
gle 22 MB ELF in the style of Unikernel Linux (UKL) [58, 57]. Static
linkage removes the dynamic loader, shared-library resolution, and
user-space system-call trampolines while preserving forward and
binary compatibility with conventional Linux binaries. The result-
ing unikernel-scale TCB boots within milliseconds, eliminates the
pre-enclave exposure window, and provides the substrate for the

erun implementation

419

Proceedings on Privacy Enhancing Technologies 2026(1)

IMA-namespaced, vTPM-bound, and attested-TLS subsystems that
follow.

7.2.1 Building SEED’s Toolchain. A unikernel-scale TCB keeps
SEED verifiable, but it also removes the rich user-space that conven-
tional container workflows assume. Vanilla crun can still launch a
root file-system, yet it cannot pull, reshape, or lifecycle-manage
images by itself. We therefore crafted a bespoke tool-chain that
couples [58, 57] with a heavily pruned erun, restoring full OCI
semantics without re-inflating the TCB.

OCI compatibility and orchestration. erun remains byte-for-byte
compliant with the OCI Runtime and Image specifications, enabling
transparent use beneath containerd [11], the Moby Engine [46,
47], and Kubernetes [54].

We evaluated three integration paths:

o a C-based gRPC client statically linked into UKL,

e an out-of-enclave Go proxy that terminates gRPC and forwards
flattened messages, and

e a tiny C-native orchestrator embedded in UKL.

Option (ii) is the default: it leaves the Go stack outside the trusted

boundary while adding only a 36 kB proxy inside.

Image-handling utilities. Container creation still needs Buildah,
Skopeo, and Umoci. Because the reference implementations are writ-
ten in Go—whose runtime, garbage collector, and reflection are
unsupported in UKL [21]—we split responsibility: Buildah runs dur-
ing CI outside the enclave [12], while Skopeo [13] and Umoci [71]
must execute inside the TCB. We therefore re-implemented the Reg-
istry V2 pull path [16] and bundle conversion [50, 52] in 4.8 kLoC
of ANSI C, streaming layers directly into OverlayFS.

Lean support libraries. To avoid dragging in glibc-scale bag-
gage we curated BusyBox-style components: a 4 kLoC HTTP client
replaces curl, a hand-rolled JSON parser supplants cJSON, and a
trimmed libarchive covers compression duties. Together these
cuts shed more than 700 kLoC of external code.

Shared-buffer optimisation. At boot the launcher creates a single
64 MiB page-aligned memfd, maps it MAP_SHARED across all enclave
processes, and exports the file descriptor via environment variables
ERUN_SHM_FD and ERUN_SHM_SIZE. A 20-line bump allocator carved
from this region replaces jemalloc, eliminating heap metadata
and steady-state mmap/brk. Because AMD SEV encrypts memory
per-VM, the pool remains opaque to the hypervisor yet delivers
end-to-end zero-copy DMA when registered with io_uring and
vhost-user.

Targeted code reductions. A line-by-line audit of crun excised
feature that added risk but no value inside a single-tenant TEE:

o Archive path: multi-process tar replaced by in-process CPI0+gzip,

slicing peak RAM by 68 % and unpacking a 240 MB Ubuntu image
in 412 ms (vs. 1.2 s);

e Security modules: -DTEE_OPTIMIZED stubs out seccomp, Ap-
pArmor, SELinux, capability dropping, and CRIU;

e Namespaces: keep mount and optional PID/network; drop user,
cgroup, IPC, and UTS namespaces;

e Cgroups, hooks, checkpoint/restore, state-root: removed;
resource policing is delegated to the hypervisor.

Proceedings on Privacy Enhancing Technologies 2026(1)

'“s [

dynamically loads the container
from a root filesystem (rootfs)

Java Runtime

Container

=

Enclave Container Runtime

;E — Libraries compiled into object files (.0) |
= [Runtimespec |[Archive |[2B |
[ImageSpec I[vair |[seen |
[pistospec |[HmP |[Logeing |

Statically Linked
Threading Suppert | | Real-time extensions
Math Operations SSL libraries

GCC low-level runtime

Statically Linked

Figure 3: SEED software stack that to confidential and isolation inside the TCB

The final statically linked binary, including the C puller, weighs
1.7 MB (stripped) and lowers SEED’s kernel-space TCB to ~220 kLoC—
small enough for formal verification yet fully interoperable with
mainstream container ecosystems [8, 75, 4].

7.3 OS-Layer Optimization

To reduce the TCB size and enhance both efficiency and security
without sacrificing general-purpose capabilities, we adopted a hy-
brid strategy. Our approach combines specialized kernel configura-
tions with the integration of UKL [57, 58], as shown in Figure 3.

Building on insights from Lupine [36], which minimized kernel
features for cloud applications, we tailored the Linux kernel for
container runtimes. We removed unnecessary functionality—such
as single-machine administration interfaces, broad hardware ab-
stractions, and redundant synchronization or scheduling mecha-
nisms—thereby reducing system call overhead. Guided by a heuris-
tic methodology, we refined UKL to support the top 20 most down-
loaded Docker Hub applications, significantly decreasing the TCB
while preserving essential services.

However, customizing the OS layer often requires substantial
kernel modifications, risking loss of binary compatibility and com-
plicating broader adoption. Prior efforts, including NetBSD’s Rump
Kernel, Windows’ Drawbridge, and Linux’s LKL, extended kernel
functionality but also struggled with maintainability and compati-
bility [59, 5, 55]. Similarly, while Lupine and X-Containers improved
performance for specific scenarios, they faced challenges in pre-
serving forward compatibility [36].

420

Jarkas et al.

7.4 Linking erun to the Kernel

We address compatibility challenges posed by the architectural dif-
ferences involved in running the container runtime directly within
kernel space. Additionally, we refined our compilation strategies to
enhance workload deployment. This section details the technical
enhancements.

Running the runtime entirely in kernel mode imposes two key
changes. (i) Minimal libc. Unikernel Linux (UKL) ships only a
skeletal 1ibc. Rather than restore a full user-space ABI, we re-
move or inline most system calls; the few still required—e.g. setns
and unshare for namespace management—are invoked directly
viasyscall(SYS_setns,. . .) and syscall(SYS_unshare,. . .).
This approach preserves OCI namespace semantics while avoid-
ing the code and attack surface of a full glibc, with erun provid-
ing the error handling normally hidden inside 1ibc wrappers. (ii)
Kernel-level services. TLS hand-shake logic, vIPM calls, and IMA
namespace hooks are compiled directly into the supervisor binary,
eliminating context switches and userspace helpers.

Static-link build pipeline. First, every C unit in src/ (erun proper),
the pruned crun glue, and a handful of support libraries (cus-
tom HTTP/JSON, libarchive, z1ib) is compiled into position-
independent objects. UKL’s stripped libc, libpthread, librt,
libm, OpenSSL (1ibssl/libcrypto), libcurl and libgcc are built

statically with the same kernel-friendly flags (-static -mcmodel=kernel

-mno-red-zone). The linker then performs a two-stage merge (the

process implemented in UKL [58]):

e relocatable link (1d -r) combines all objects, start-up stubs
(crt1.o,crti.o,crtbeginT.o)and termination stubs (crtend. o,
crtn.o) into temp.o, using -whole-archive to pull every sym-
bol but avoiding duplicate definitions;

o archiving packs temp.o into UKL. a, after which objcopy pre-
fixes every global symbol with seedcore_ and applies a small
renaming map to prevent clashes with kernel symbols.

At kernel build time the Linux image links against UKL . a; the
resulting vmlinuz therefore boots with erun, OpenSSL, vTPM stubs,
and the IMA namespace already resident in ring 0. Because all code
is immutable and address-space-layout-randomisation (ASLR) is
disabled, the measured hash loaded into PCR 0 at boot uniquely
identifies the entire TCB, simplifying remote attestation.

8 Security Evaluation

This section evaluates how SEEDCore achieves privacy through
end-to-end confidentiality and integrity. Our analysis addresses
different privacy dimensions against 11 attacks (A1-A11) from [28].

8.1 Privacy Analysis

Privacy prevents inference about what is running, who is using it,
and how it operates. We examine three privacy dimensions:
Workload privacy. SEED achieves workload privacy by elimi-
nating the pre-enclave window via post-attestation dynamic load-
ing—admitting workloads only after verification. By contrast, Uniker-
nels, though they place a statically linked workload+kernel as a
single ELF entirely inside the TEE, still lack end-to-end privacy:
during deployment the provider can see which specialized image is
being loaded before protections engage; likewise, conventional TEE

SEED: A Minimal-Footprint TEE Framework for Verifiable, Confidential Microservice Deployment

Proceedings on Privacy Enhancing Technologies 2026(1)

Table 2: Resistance to an outside attacker. SEEDCore inherits AMD SEV-SNP; Gramine-TDX relies on Intel TDX.

Attacker move SEEDCore (single container) Gramine-TDX (single process) Why SEEDCore wins for micro-
services
1 Inject / swap layers post-attestation (A3 & A4) @ attested-TLS puller; every layer re-measured € TD never re-pulls; host can replace whole Supports late, on-demand OCI pulls
into per-container PCR = quote fails virtio-fs tree; only manifest is covered without breaking integrity
2 Add a second, malicious container into the same VM @ new namespace set and separate PCR stream; € one process — new TD per side-car Side-cars / service mesh stay in one
(A1 & A6) CAS can withhold secrets only from the bad pod VM
3 Incrementally corrupt files in a running container @ erun — IMA streams deltas; CAS detects <1 s © no runtime measurement; tampering is Continuous run— prove fits rolling
(A2:E9-E12) silent until reboot updates
4 Roll back an old but signed layer (A3:E14) @ layer MAC binds freshness-nonce inside TLS @ files bound to measurement, not time Freshness enforced by CAS, not op-
Finished erator discipline
5 Sniff/alter secrets in flight (A1:E1, E2) @ RA-TLS baked into pull path; host sees only @ RA-TLS helpers exist, but developer must ~ No extra work for app authors / De-
ciphertext use them; vsock leg plaintext on host vOps
6 Abuse K8s control-plane knobs (A1:E6, A6:E22-E30) © dangerous knobs become no-ops under @ black-box VM; spec cannot affect policy Keeps full pod-spec expressiveness
TEE_OPTIMIZED kernel build for benign cases
7 Hypervisor reads plaintext pages (A10:E42) @ SEV-SNP AES-XTS + VMPL / RMP @ TDX AES-XTS + Secure-EPT parity
8 Hypervisor re-maps or replays pages (A8:E37) @ RMP + vIPM quote @ Secure-EPT + RTMRs parity
9 Crash container daemon with bogus requests (A4:E19) @ no user-space daemon; in-kernel ioctl per pod © no runtime removal beats hardening

10 Exploit kernel subsystems inside enclave (A9, A7)
tained for pod networking

© eBPF/cgroups stripped, but minimal TCP/IP re-

Containers need a net-stack; SEED
keeps it with reduced code size

@ no net-stack, no namespaces

containerizations that launch images pre-attestation leak workload
identity across build/pull/launch.

Query and Input Privacy. SEED preserves query/input pri-
vacy by enveloping the entire container stack within the TCB (zero
operational visibility) and using a kernel-integrated runtime that re-
moves syscall visibility, preventing the hypervisor from distinguish-
ing query types or inferring input features. In contrast, LibOS-based
TEEs (Gramine-SGX [23], SCONE [2], Occlum [63]) lack container-
native primitives (namespaces, OverlayFS) and push image/layer op-
erations to the untrusted host; the host can observe pulls, layer diffs,
and runtime telemetry—syscall sequences, memory-access rates,
I/O mix—that fingerprint queries and reveal inputs (e.g., patient-
scan inference vs. transaction-fraud analysis), while the narrow
trusted/untrusted interface enables Iago and side channels.

Metadata and Co-residency Inference. SEED’s limits dis-
closure to the requesting container’s measurements plus shared
dependencies, masking other containers’ PCRs. This cuts metadata
exposure by reducing the file hash to 200-500 container-specific
file hashes vs 10,000-50,000 system-wide. Classic IMA discloses the
node-wide measurement list to verifiers [61], revealing all running
workloads and enabling co-residency inference (business relation-
ships, usage patterns, deployment scale).

8.2 Security Analysis Against External Attacks

For each exploit family listed in the survey we ask: How far can
an outside attacker get before the TEE detects, confines, or prevents
the action. A coarse rating scheme highlights the result (@ blocked,
@ confined/detectable, @ still possible). Table 2 summarises the
outcome; below explains the differences.

Post-attestation tampering (Attacks #1, #3, #4) These at-
tacks not only compromise integrity but enable workload iden-
tification through tampered files. SEEDCore prevents both through:
(i) attested-TLS termination inside the TEE for all registry pulls,
(ii) continuous IMA streaming measuring every file operation into
per-container PCRs with sub-second validation, and (iii) freshness
nonces preventing rollback. Gramine-TDX’s single boot-time mea-
surement cannot detect runtime tampering. Privacy protected: Work-
load privacy & Metadata/co-residency.

421

Container isolation (Attacks #2, #6) Multi-container microser-
vices risk cross-workload inference. SEEDCore enforces separate
namespace sets and PCR chains per container, preventing one con-
tainer from inferring another’s identity or behavior. The CAS can
selectively distribute secrets while maintaining isolation. Gramine-
TDX’s single-process model requires separate TDs per container,
ironically improving isolation but breaking service meshes and in-
creasing observable deployment patterns. Privacy protected: Work-
load privacy & Metadata/co-residency.

Network security (Attack #5) Network patterns reveal work-
load behavior—API calls, model downloads, and communication
patterns fingerprint applications. SEEDCore bakes RA-TLS into the
image pull path with attestation-bound keys, encrypting all observ-
able patterns. Gramine-TDX’s plaintext vsock leg between host and
TD leaks config data and connection metadata. Privacy protected:
Query & Input privacy & (supporting) Metadata/co-residency.

Memory protection (Attacks #7, #8) Both platforms encrypt
memory (SEEDCore via SEV-SNP AES-XTS, Gramine-TDX via Intel
TDX Secure-EPT). However, access patterns remain vulnerable to
cache-timing analysis—an active research area for both systems.
Privacy protected: Workload privacy (contents hidden); residual
side-channels discussed separately.

Runtime integrity (Attacks #9, #10) SEEDCore retains mini-
mal TCP/IP for pod networking while stripping privacy-violating
functions like eBPF (which exposes execution traces) and cgroups
(which leak resource patterns). This trades slightly more code for
compatibility with containerized microservices while maintaining
operational privacy. Privacy protected: Query & Input privacy.

SEEDCore addresses privacy in container-native clouds, it
adds comprehensive privacy protection against workload inference,
query analysis, and metadata leakage—critical for protecting ML
models, algorithms, and business logic in multi-tenant clouds.

Formal verification feasibility. SEED’s reduced codebase sug-
gests formal verification of security-critical components may be
feasible. The erun runtime (~14,708 C LOC) exceeds fully verified
kernels like seL4 (~8,700 LOC) and CertiKOS (~6,500 LOC), as well
as the 10k LOC threshold [33, 24, 26], however, erun modular design
puts verification within reach, container library is (3,700 LOC)
only.

Proceedings on Privacy Enhancing Technologies 2026(1)

0 g erun] 0 crun] O containerd Bl @ docker B W podman ‘

o

k3

P

< -10*

o | |
g 4

3

><

FR]
5

i, loien [lnna |
2

3 MLP Wide_MLP Deep_MLP Tiny_MLP
=

= Model Type

(a) TensorFlow — Neural Network Training

o

b

3

g 1500 : : : :
£ 1,000

E 500 |-

&b 0 T T T T
I 1 2 4 8 16
=

&= Batch Size

(b) TensorFlow — BERT Large Inference

o)

b

e \

£ 60 -

5 40 |~

Dol

3 0 T T T
| 1 2 4 8
[_4

Batch Size
(c) PyTorch - AlexNet Classification

z
=) | |

= 2,000 —

a
< 1,000

=
£ 0

= 1 2 4 8 16 32

Batch Size

(d) OpenVINO - ResNet-50 Inference

Figure 4: Performance of ML confidential workloads across different container runtimes
and virtualization technologies. Each subplot compares the performance of different con-
tainer runtimes (erun, crun, containerd, docker, podman) across various ML workloads: (a)
TensorFlow Neural Network training throughput in examples/sec, (b) TensorFlow BERT
Large inference throughput in tokens/sec, (c) PyTorch AlexNet image classification through-
put in img/sec, (d) OpenVINO ResNet-50 inference throughput in FPS.

9 Performance Evaluation

Our evaluation examines the performance characteristics of our
framework across diverse workloads. We assess both the perfor-
mance of eRun within confidential VMs and the fundamental capa-
bilities of seedcore. Our experiments focus on real-world applica-
tions spanning machine learning (ML) frameworks, programming
language environments, and web servers to provide a comprehen-
sive understanding of performance trade-offs in confidential com-
puting scenarios. We present architecture-consistent comparisons
first, followed by cross-architecture microbenchmarks that serve as
indicative references rather than direct comparisons. ML workloads
represent the most privacy-critical use cases for confidential com-
puting. With the rise of LLMs and Al agents processing sensitive
personal/corporate data, ensuring model confidentiality (prevent-
ing IP theft) and inference privacy (protecting user queries) has

422

Jarkas et al.

0 gerun [0 crun [O containerd Bl B docker B M podman
| | | | | |

TZA7M PSS 718K ops/s 100K OPSTS TIK req/s 673K ops/s 868K ops/s

= 100 0 I M M M M
[}
Q
=)
<
g
S
S
] 50 H
~
L
2
ks
L
~

O U Y gel0 TP op «

CP MemO TFilel HITE gyentbooP o ycurren!
Performance Metric
(a) Node.js Performance
| | | | |

R 1495 req/s 1132 reqls 4199 reqs 2.98% CPU 3981 KB
= 100 [M M M M —
1
Q
=]
]
£
s
o=
5] 50 H
A
|}
2
5
=
L
~

0 ntial | ent rrent jency | jency |

ue yrent u ci ci

Seq ModConC“ H‘ghCDnC C&)Uﬁﬁ‘\ Me mof\lﬁﬁ“

Performance Metric

(b) Go Performance
| | | | | | |

. 287.9K ops/s 143.3 MB/s 5553 MB/S 217.2K ops/s 7692 proc/s 153 factor 246.9 MB/s
S 100 - =51 oM - e e e
<

I

Q

=]

<

g

5

“

3 50 |- -
A~

4

2

=

<

=

4

~

0

T I T I I I I
crU w(“eXO Readlo Memm’Y 9(00655 P a\'a“E\ CTYPtO
Performance Metric

(c) Rust Performance

Figure 5: Runtime micro-benchmarks. (a) Node.js — Docker wins CPU tasks, containerd
leads in HTTP + memory, crun dominates file I/O. (b) Go — erun tops sequential & high-
concurrency throughput, crun excels at moderate concurrency & memory use, containerd
is most CPU-efficient. (c) Rust — Docker leads CPU workloads, Podman excels at disk writes
and parallelism, crun outperforms in fork + crypto, containerd delivers the best memory
throughput.

become paramount. ML training on datasets exemplifies workloads
where both data and model privacy are essential.

Testbed All experiments were conducted on an Azure Confiden-
tial VM (Standard DC4as v5, 4 vCPUs, 16 GiB RAM) hosted in the
East US. This instance is backed by a 3rd-generation AMD EPYC 7763
processor with SEV-SNP enabled. The guest operating system is
Ubuntu 22.04 LTS (kernel 6.8, Canonical confidential-vm build), and
the system disk resides on encrypted Premium LRS NVMe storage.
For each benchmark we execute three independent runs and re-
port the arithmetic mean to smooth out minor runtime variance.
Boot-time logs confirm that both SEV-SNP memory encryption
and Azure Secure Boot are active. Our evaluation explores two
dimensions to assess SEED: Execution environments: We com-
pare (1) Ubuntu VM as the standard baseline, (2) SEEDCore, our
minimal TCB with kernel integration, (3) Gramine-SGX, and (4)

SEED: A Minimal-Footprint TEE Framework for Verifiable, Confidential Microservice Deployment

0@ crun [0 containerd [J 0 docker H @ podman
| | | | | |

. 100 156.32req/s 441.31req/s 0 °0° 44326 req/s 443.07 req/s 441.89 req/s
< | >0~ 441. _ 443.: 445 44l 51
[

Q

£

<

g

S

<

5} 50 H

~

13

=

é=]

<

3

~

0

1! 51 10 20 50 100 |

Concurrency Level

(a) NGINX Performance Across Container Runtimes
| | | | | |

. 100 586.17req/s 1557.63 req/s 00 c4° 154560 req/s 1560.06 req/s 1531.39 req/s
S | 7. - . 0. o1 S|
1
o
=i
<
g
S
S
5 50
(=W
@
=
=
3
~
0

1] 5/ 10 20 50 ' 100 |

Concurrency Level

(b) Apache httpd Performance Across Container Runtimes

Figure 6: Web-server throughput. (a) NGINX: erun is fastest at every concurrency level
(crun ties at 100 conns). Containerd sustains 97 % of peak; Docker and Podman 95 %. (b)
Apache httpd: crun dominates; containerd and Podman reach 93 %, Docker 82-91 %, erun
45-51 %. Note: httpd delivers 3-4x NGINX throughput under identical loads.

Gramine-TDX as state-of-the-art LibOS. This selection spans from
Ubuntu through LibOS partitioning (Gramine) to our unified de-
sign, enabling direct comparison of TCB size versus functionality
trade-offs across process and VM-level TEE architectures.

We evaluate (1) erun (2) crun as the lightweight reference, (3) con-
tainerd as Kubernetes’ standard supervisor, (4) Docker as the most
widely-deployed platform, and (5) podman as the daemonless en-
terprise alternative. This range from minimal (crun) to feature-rich
(Docker) demonstrates that SEED maintains compatibility across
the entire container ecosystem while adding hardware-rooted at-
testation. This multi-dimensional evaluation validates both TCB
optimization approaches and runtime overhead.

9.1 Runtime Performance

We evaluate the performance of five container runtimes—erun, crun,
containerd, docker, and podman—across four ML workloads.

9.1.1 ML Workloads. We benchmark Node.js, Go, and Rust on CPU,
memory, file-I/O, HTTP, and crypto inside an SEV-SNP VM; Fig. 5
normalises throughput to per-test best. Node.js: erun reaches 98%
on CPU/event-loop; containerd leads HTTP; Docker lags on file-
I/O (67-79%). Go: erun leads single-thread and high-concurrency;
containerd ties on CPU-only. Rust: Docker leads raw CPU, crun
fork+crypto, Podman disk writes, containerd memory ops; erun
stays within 5-15%.

9.1.2 Programming-Language Benchmarks. Using Node.js, Go, and
Rust, we benchmark CPU, memory, file-I/O, HTTP, and crypto

423

Proceedings on Privacy Enhancing Technologies 2026(1)

inside an SEV-SNP VM; Fig. 5 normalises throughput to the per-
test best. Node.js: erun hits 98% of the leader on CPU/event-loop;
containerd leads HTTP; Docker lags on file-I/O (67-79%). Go: erun
leads single-thread and high-concurrency; containerd ties on CPU-
only. Rust: Docker leads raw CPU, crun fork,+,crypto, Podman disk
writes, containerd memory ops; erun stays within 5-15% of the
best. Overall, erun’s overhead is negligible, in-kernel deployment
retains near-native while OCI-compatible.

Benchmark Ubuntu VM SEEDCore Gramine-SGX Gramine-TDX
Dhrystone 16.4M Ips 46.7M Ips (2.84x) 331M Ips 332M Ips
Whetstone 881 MFLOPS 1150 MFLOPS (1.31x) 5006 MFLOPS 4987 MFLOPS
Arithmetic 4.26M Ips 738M Ips (173x) 841M Ips 798M Ips
Pipe 705K Ips 3726K Ips (5.28x) 330K Ips 1620K Ips
Recursion 207K Ips 447K Ips (2.16x) 7.7M lps 8.1M Ips
Switching 81K Ips 2 1ps (0.00002x) N/A N/A
System Call 378K Ips Failed 12.7M Ips 9.3M Ips
File Copy 1091K KBps Failed 15-228K KBps 10-137K KBps
Spawn 785 Ips Failed N/A N/A
Execl Failed Failed Failed 0.8K Ips
TCB Size 690 MB 23.4 MB 1.3 -1.5MB 1.2 MB

Table 3: Comparison of UnixBench performance across dif-
ferent execution environments ‘SGX/TDX measurements
use Intel Xeon processors (E-2288G for SGX, 4th-gen "Sap-
phire Rapids" for TDX) while SEEDCore/Ubuntu use AMD
EPYC—see section text for interpretation guidance.

9.1.3 Web Server Performance. We evaluate NGINX (event-driven)
and Apache httpd (process-based) across runtimes at concurrency
1-100. Figure 6 shows normalized throughput. NGINX. erun leads
at all concurrency levels; crun achieves 99-100% (matching at 100
connections); containerd 97%; Docker and Podman 95%. Through-
put plateaus at 442 req/s (>5 connections), indicating runtime—not
NGINX—limits performance. Apache httpd. crun dominates; contain-
erd and Podman reach 93-95%; Docker 82-91%; erun only 45-51%.
Peak 1560 req/s (3.5x NGINX) stabilizes after 5 connections. The
servers expose opposite characteristics: erun excels with NGINX
but struggles with multi-process Apache; crun shows the reverse.

9.1.4 Cross-Architecture Microbenchmarks. We compare AMD EPYC
(SEEDCore, Ubuntu VM) with Intel Xeon (Gramine-SGX, Gramine-
TDX). Due to architectural differences, results are indicative—compare
within platforms, not across; for like-for-like hardware, see prior
SEV-SNP sections. Using UnixBench, we evaluate all four configura-
tions; scores appear in Table 3. Key observations: SEEDCore delivers
strong CPU performance (arithmetic, Dhrystone) with full OS func-
tionality. Gramine variants excel at in-memory tasks but degrade on
1/0O—Gramine-TDX reaches only 5-6% of native on filesystem tests
(simple virtio-fs); Gramine-SGX shows low pipe throughput due
to encrypted host-kernel pipes, while Gramine-TDX retains pipe
performance since pipes remain within the VM. Overall, SEED-
Core preserves functionality with strong compute on AMD, while
Gramine on Intel exhibits higher I/O with workload trade-offs.

10 Concluding Remarks

SEED embeds the erun container runtime in a minimal TCB, im-
proving privacy and efficiency while shrinking the attack surface
for scale. Leveraging TEE trust assumptions, SEED tunes the TCB
to harden security without sacrificing practicality.

Proceedings on Privacy Enhancing Technologies 2026(1)

Acknowledgments

This research received no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors.

The authors used generative Al-based tools to revise the text, im-
prove flow and correct any typos, grammatical errors, and awkward
phrasing.

References

(1]

(4]

(5]

(8]

(]

[10]

(1]
[12]
[13]
[14]

[15]

(18]

[19]

Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang, and Pedro Fonseca.
2023. Veil: A Protected Services Framework for Confidential Virtual Machines.
en. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 4. ACM,
Vancouver BC Canada, (Mar. 2023), 378-393. 1sBN: 9798400703942. por: 10.114
5/3623278.3624763.

Sergei Arnautov et al. 2016. {SCONE}: Secure linux containers with intel {SGX}.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), 689-703. Retrieved May 8, 2024 from https://www.usenix.org/confe
rence/osdi16/technical-sessions/presentation/arnautov.

aws. 2024. AWS Key Management Service - AWS Key Management Service.
(2024). Retrieved Oct. 6, 2024 from https://docs.aws.amazon.com/kms/latest/de
veloperguide/overview.html.

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices
architecture enables devops: Migration to a cloud-native architecture. Ieee
Software, 33, 3, 42-52. Publisher: IEEE. Retrieved May 8, 2024 from https://ieee
xplore.ieee.org/abstract/document/7436659/.

Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding Applica-
tions from an Untrusted Cloud with Haven. en. ACM Transactions on Computer
Systems, 33, 3, (Sept. 2015), 1-26. DOI: 10.1145/2799647.

Christian Brauner. 2020. Seccomp Notify - New Frontiers in Unprivileged
Container Development. (July 2020). Retrieved May 22, 2024 from https://peop
le kernel.org/brauner/the-seccomp-notifier-new-frontiers-in-unprivileged-
container-development.

Stephen Checkoway and Hovav Shacham. 2013. Tago attacks: why the system
call API is a bad untrusted RPC interface. SSGARCH Comput. Archit. News, 41,
1, (Mar. 2013), 253-264. poI: 10.1145/2490301.2451145.

Lianping Chen. 2018. Microservices: architecting for continuous delivery and
DevOps. In 2018 IEEE International conference on software architecture (ICSA).
IEEE, 39-397. Retrieved May 11, 2024 from https://ieeexplore.ieee.org/abstract
/document/8417115/.

Yueqiang Cheng, Zhi Zhang, Yansong Gao, Zhaofeng Chen, Shengjian Guo,
Qifei Zhang, Rui Mei, Surya Nepal, and Yang Xiang. 2022. Meltdown-type
attacks are still feasible in the wall of kernel page-Table isolation. Computers &
Security, 113, 102556. Publisher: Elsevier. Retrieved May 8, 2024 from https://w
ww.sciencedirect.com/science/article/pii/S0167404821003801.

2024. Confidential-containers/trustee. original-date: 2022-04-25T12:45:02Z. (Oct.
2024). Retrieved Oct. 6, 2024 from https://github.com/confidential-containers
/trustee.

2024. Containerd/containerd. original-date: 2015-11-13T00:27:43Z. (Apr. 2024).
Retrieved Apr. 15, 2024 from https://github.com/containerd/containerd.

2024. Containers/buildah. original-date: 2017-01-26T16:59:13Z. (June 2024).
Retrieved June 2, 2024 from https://github.com/containers/buildah.

2024. Containers/skopeo. original-date: 2016-03-07T20:23:29Z. (June 2024).
Retrieved June 2, 2024 from https://github.com/containers/skopeo.

Jonathan Corbet. 2018. Containers from user space [LWN.net]. (Jan. 2018).
Retrieved May 22, 2024 from https://lwn.net/Articles/745820/.

Victor Costan. 2016. Intel SGX explained. IACR Cryptol, EPrint Arch. Retrieved
Nov. 23, 2024 from https://people.cs.rutgers.edu/~santosh.nagarakatte/cs544/re
adings/costan-sgx.pdf.

Docker. 2024. HTTP API V2 | Docker Documentation. (2024). Retrieved June 7,
2024 from https://docker-docs.uclv.cu/registry/spec/api/.

Anna Galanou, Khushboo Bindlish, Luca Preibsch, Yvonne-Anne Pignolet,
Christof Fetzer, and Riidiger Kapitza. 2023. Trustworthy confidential virtual
machines for the masses. en. In Proceedings of the 24th International Mid-
dleware Conference on ZZZ. ACM, Bologna Italy, (Nov. 2023), 316—-328. ISBN:
9798400701771. poI: 10.1145/3590140.3629124.

Xinyang Ge, Hsuan-Chi Kuo, and Weidong Cui. 2022. Hecate: Lifting and
Shifting On-Premises Workloads to an Untrusted Cloud. en. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security.
ACM, Los Angeles CA USA, (Nov. 2022), 1231-1242. 1sBN: 978-1-4503-9450-5.
DOI: 10.1145/3548606.3560592.

Tim Geppert, Stefan Deml, David Sturzenegger, and Nico Ebert. 2022. Trusted
execution environments: Applications and organizational challenges. Frontiers
in Computer Science, 4, 930741. Publisher: Frontiers Media SA. Retrieved Dec. 19,

424

[20]
[21]

[22]

(30]

[31]

(33]

(34]

(35]

(37]

(38]

[40]

[41]

Jarkas et al.

2024 from https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741/ful
L

Scrivano Giuseppe\. 2024. Containers/crun. original-date: 2017-09-13T20:20:58Z.
(May 2024). Retrieved May 26, 2024 from https://github.com/containers/crun.
google. 2024. Golang - Google Search. (2024). Retrieved June 7, 2024 from
https://go.dev/.

Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller. 2017.
Cache Attacks on Intel SGX. en. In Proceedings of the 10th European Workshop
on Systems Security. ACM, Belgrade Serbia, (Apr. 2017), 1-6. ISBN: 978-1-4503-
4935-2. por: 10.1145/3065913.3065915.

[n. d.] Gramine. (). Retrieved May 8, 2024 from https://gramineproject.io/.
Ronghui Gu. [n. d.] CertiKOS: An Extensible Architecture for Building Certified
Concurrent OS Kernels. (). Retrieved Aug. 25, 2025 from https://www.usenix.o
rg/system/files/conference/osdi16/0sdi16-gu.pdf.

Asier Gutierrez. 2023. IMA Namespaces for Containers - Asier Gutierrez,
Huawei - YouTube. (2023). Retrieved May 11, 2024 from https://www.yo
utube.com/watch?v=bs7EcuF4SSo&t=8s&ab_channel=TheLinuxFoundation.
Gernot Heiser. [n. d.] The seL4 Microkernel — An Introduction. (). Retrieved
Aug. 25, 2025 from https://sel4.org/About/seL4-whitepaper.pdf ?utm_source=c
hatgpt.com.

Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side
channel attacks against kernel space ASLR. In 2013 IEEE Symposium on Security
and Privacy. IEEE, 191-205. Retrieved June 5, 2024 from https://ieeexplore.ieee
.org/abstract/document/6547110/.

Omar Jarkas, Ryan Ko, Naipeng Dong, and Redowan Mahmud. 2025. A Con-
tainer Security Survey: Exploits, Attacks, and Defenses. ACM Comput. Surv.,
57, 7, (Feb. 2025), 170:1-170:36. pOI: 10.1145/3715001.

Yuekai Jia, Shuang Liu, Wenhao Wang, Yu Chen, Zhengde Zhai, Shoumeng Yan,
and Zhengyu He. 2022. {HyperEnclave}: An open and cross-platform trusted
execution environment. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22), 437-454. Retrieved Apr. 22, 2025 from https://www.usenix.org/confer
ence/atc22/presentation/jia- yuekai.

David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD memory encryption.
White paper, 13. Retrieved May 8, 2024 from https://www.amd.com/content/da
m/amd/en/documents/epyc-business-docs/white-papers/memory-encryptio
n-white-paper.pdf.

Nguyen Khang T. [n. d.] Introduction to Cache Allocation Technology in the
Intel® Xeon®... en. (). Retrieved May 29, 2025 from https://www.intel.com/con
tent/www/us/en/developer/articles/technical/introduction-to-cache-allocati
on-technology.html.

Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti,
and Vlad Zolotarov. 2014. {OSv—Optimizing} the Operating System for Virtual
Machines. In 2014 usenix annual technical conference (usenix atc 14), 61-72.
Retrieved May 8, 2024 from https://www.usenix.org/conference/atc14/technic
al-sessions/presentation/kivity.

Klein. [n. d.] seL4: Formal Verification of an Operating-System Kernel. (). Re-
trieved Aug. 25, 2025 from https://read.seas.harvard.edu/~kohler/class/cs260r-
17/klein10sel4.pdf ?utm_source=chatgpt.com.

Paul Kocher et al. 2020. Spectre attacks: exploiting speculative execution. en.
Communications of the ACM, 63, 7, (June 2020), 93-101. por: 10.1145/3399742.
T. Kubernetes. 2019. Kubernetes. Kubernetes. Retrieved May, 24, 2019. Retrieved
July 2, 2024 from https://dzone.com/storage/attachments/14131598-dzone-kub
ernetes-bundle.pdf.

Hsuan-Chi Kuo, Dan Williams, Ricardo Koller, and Sibin Mohan. 2020. A Linux
in unikernel clothing. en. In Proceedings of the Fifteenth European Conference
on Computer Systems. ACM, Heraklion Greece, (Apr. 2020), 1-15. IsBN: 978-1-
4503-6882-7. DOI: 10.1145/3342195.3387526.

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovi¢, and Dawn
Song. 2020. Keystone: an open framework for architecting trusted execution en-
vironments. en. In Proceedings of the Fifteenth European Conference on Computer
Systems. ACM, Heraklion Greece, (Apr. 2020), 1-16. ISBN: 978-1-4503-6882-7.
DoI: 10.1145/3342195.3387532.

Shih-Wei Li, Xupeng Li, Ronghui Gu, Jason Nieh, and John Zhuang Hui. 2021.
Formally verified memory protection for a commodity multiprocessor hyper-
visor. In 30th USENIX Security Symposium (USENIX Security 21), 3953-3970.
Retrieved Apr. 22, 2025 from https://www.usenix.org/conference/usenixsecuri
ty21/presentation/li-shih-wei.

Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. {AMD} prefetch attacks
through power and time. In 31st USENIX Security Symposium (USENIX Security
22), 643-660. Retrieved May 8, 2024 from https://www.usenix.org/conference
/usenixsecurity22/presentation/lipp.

Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Eas-
don, Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based
power side-channel attacks on x86. In 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 355-371. Retrieved June 5, 2024 from https://ieeexplore.ieee
.org/abstract/document/9519416/.

Moritz Lipp et al. 2020. Meltdown: reading kernel memory from user space. en.
Communications of the ACM, 63, 6, (May 2020), 46-56. pOI: 10.1145/3357033.

https://doi.org/10.1145/3623278.3624763
https://doi.org/10.1145/3623278.3624763
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/arnautov
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://ieeexplore.ieee.org/abstract/document/7436659/
https://ieeexplore.ieee.org/abstract/document/7436659/
https://doi.org/10.1145/2799647
https://people.kernel.org/brauner/the-seccomp-notifier-new-frontiers-in-unprivileged-container-development
https://people.kernel.org/brauner/the-seccomp-notifier-new-frontiers-in-unprivileged-container-development
https://people.kernel.org/brauner/the-seccomp-notifier-new-frontiers-in-unprivileged-container-development
https://doi.org/10.1145/2490301.2451145
https://ieeexplore.ieee.org/abstract/document/8417115/
https://ieeexplore.ieee.org/abstract/document/8417115/
https://www.sciencedirect.com/science/article/pii/S0167404821003801
https://www.sciencedirect.com/science/article/pii/S0167404821003801
https://github.com/confidential-containers/trustee
https://github.com/confidential-containers/trustee
https://github.com/containerd/containerd
https://github.com/containers/buildah
https://github.com/containers/skopeo
https://lwn.net/Articles/745820/
https://people.cs.rutgers.edu/~santosh.nagarakatte/cs544/readings/costan-sgx.pdf
https://people.cs.rutgers.edu/~santosh.nagarakatte/cs544/readings/costan-sgx.pdf
https://docker-docs.uclv.cu/registry/spec/api/
https://doi.org/10.1145/3590140.3629124
https://doi.org/10.1145/3548606.3560592
https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741/full
https://www.frontiersin.org/articles/10.3389/fcomp.2022.930741/full
https://github.com/containers/crun
https://go.dev/
https://doi.org/10.1145/3065913.3065915
https://gramineproject.io/
https://www.usenix.org/system/files/conference/osdi16/osdi16-gu.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-gu.pdf
https://www.youtube.com/watch?v=bs7EcuF4SSo&t=8s&ab_channel=TheLinuxFoundation
https://www.youtube.com/watch?v=bs7EcuF4SSo&t=8s&ab_channel=TheLinuxFoundation
https://sel4.org/About/seL4-whitepaper.pdf?utm_source=chatgpt.com
https://sel4.org/About/seL4-whitepaper.pdf?utm_source=chatgpt.com
https://ieeexplore.ieee.org/abstract/document/6547110/
https://ieeexplore.ieee.org/abstract/document/6547110/
https://doi.org/10.1145/3715001
https://www.usenix.org/conference/atc22/presentation/jia-yuekai
https://www.usenix.org/conference/atc22/presentation/jia-yuekai
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://read.seas.harvard.edu/~kohler/class/cs260r-17/klein10sel4.pdf?utm_source=chatgpt.com
https://read.seas.harvard.edu/~kohler/class/cs260r-17/klein10sel4.pdf?utm_source=chatgpt.com
https://doi.org/10.1145/3399742
https://dzone.com/storage/attachments/14131598-dzone-kubernetes-bundle.pdf
https://dzone.com/storage/attachments/14131598-dzone-kubernetes-bundle.pdf
https://doi.org/10.1145/3342195.3387526
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity22/presentation/lipp
https://www.usenix.org/conference/usenixsecurity22/presentation/lipp
https://ieeexplore.ieee.org/abstract/document/9519416/
https://ieeexplore.ieee.org/abstract/document/9519416/
https://doi.org/10.1145/3357033

SEED: A Minimal-Footprint TEE Framework for Verifiable, Confidential Microservice Deployment

[42]

[43]

[44]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[62]

Wu Luo, Qingni Shen, Yutang Xia, and Zhonghai Wu. 2019. {Container-IMA}:
A privacy-preserving Integrity Measurement Architecture for Containers. en.
In 487-500. ISBN: 978-1-939133-07-6. Retrieved Apr. 15, 2024 from https://ww
w.usenix.org/conference/raid2019/presentation/luo.

Yangdi Lyu and Prabhat Mishra. 2018. A Survey of Side-Channel Attacks on
Caches and Countermeasures. en. Journal of Hardware and Systems Security, 2,
1, (Mar. 2018), 33-50. po1: 10.1007/s41635-017-0025-y.

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
2013. Unikernels: library operating systems for the cloud. en. ACM SIGARCH
Computer Architecture News, 41, 1, (Mar. 2013), 461-472. po1: 10.1145/2490301
.2451167.

Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.
2019. Spectre is here to stay: An analysis of side-channels and speculative
execution. arXiv:1902.05178 [cs]. (Feb. 2019). Retrieved May 8, 2024 from http:
//arxiv.org/abs/1902.05178.

Dirk Merkel. 2014. Docker: lightweight Linux containers for consistent devel-
opment and deployment. Linux Journal, 2014, 239, (Mar. 2014), 2:2.

Moby. 2024. Moby/moby. original-date: 2013-01-18T18:10:57Z. (June 2024).
Retrieved June 7, 2024 from https://github.com/moby/moby.

Antonio Mufioz, Ruben Rios, Rodrigo Roman, and Javier Lopez. 2023. A survey
on the (in) security of trusted execution environments. Computers & Security,
129, 103180. Publisher: Elsevier. Retrieved Dec. 19, 2024 from https://www.scie
ncedirect.com/science/article/pii/S0167404823000901.

Vikram Narayanan et al. 2023. Remote attestation of confidential VMs using
ephemeral vIPMs. en. In Annual Computer Security Applications Conference.
ACM, Austin TX USA, (Dec. 2023), 732-743. 1sBN: 9798400708862. DOI: 10.1145
/3627106.3627112.

[n. d.] Oci-distribution-spec - Google Search. (). Retrieved June 1, 2024 from
https://github.com/opencontainers/distribution-spec.

opencontainers. 2024. Opencontainers/runc. original-date: 2015-06-05T23:30:45Z.
(Apr. 2024). Retrieved Apr. 15, 2024 from https://github.com/opencontainers/r
unc.

J. Aaron Pendergrass, Nathan Hull, John Clemens, Sarah C. Helble, Mark
Thober, Kathleen McGill, Machon Gregory, and Peter Loscocco. 2019. Runtime
detection of userspace implants. In MILCOM 2019-2019 IEEE Military Com-
munications Conference (MILCOM). IEEE, 1-6. Retrieved May 15, 2024 from
https://ieeexplore.ieee.org/abstract/document/9020783/.

Ronald Perez, Reiner Sailer, and Leendert van Doorn. 2006. vIPM: virtualizing
the trusted platform module. In Proc. 15th Conf. on USENIX Security Symposium,
305-320. Retrieved May 15, 2024 from https://www.usenix.org/event/sec06/tec
h/full_papers/berger/berger_html/.

[n. d.] Production-Grade Container Orchestration. en. (). Retrieved May 13,
2024 from https://kubernetes.io/.

Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. 2010. LKL: The
Linux kernel library. In 9th RoEduNet IEEE International Conference. IEEE, 328—
333. Retrieved May 13, 2024 from https://ieeexplore.ieee.org/abstract/documen
t/5541547/.

Dazan Qian, Songhui Guo, Lei Sun, Haidong Liu, Qianfang Hao, and Jing Zhang.
2020. Trusted virtual network function based on vIPM. In 2020 7th International
Conference on Information Science and Control Engineering (ICISCE). IEEE, 1484~
1488. Retrieved May 8, 2024 from https://ieeexplore.ieee.org/abstract/documen
t/9532194/.

Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drepper,
Richard Jones, Orran Krieger, Renato Mancuso, and Larry Woodman. 2019.
Unikernels: The Next Stage of Linux’s Dominance. en. In Proceedings of the
Workshop on Hot Topics in Operating Systems. ACM, Bertinoro Italy, (May 2019),
7-13. 1sBN: 978-1-4503-6727-1. pOI: 10.1145/3317550.3321445.

Ali Raza et al. 2023. Unikernel Linux (UKL). en. In Proceedings of the Eighteenth
European Conference on Computer Systems. ACM, Rome Italy, (May 2023), 590
605. ISBN: 978-1-4503-9487-1. pO1: 10.1145/3552326.3587458.

2024. Rumpkernel/rumprun. original-date: 2015-02-20T17:55:46Z. (May 2024).
Retrieved May 13, 2024 from https://github.com/rumpkernel/rumprun.
Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: What it is, and what it is not. In 2015 IEEE
Trustcom/BigDataSE/Ispa. Vol. 1. IEEE, 57-64. Retrieved Jan. 1, 2025 from https:
//ieeexplore.ieee.org/abstract/document/7345265/.

Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. 2004.
Design and Implementation of a {TCG-based} Integrity Measurement Architec-
ture. en. In Retrieved Apr. 15, 2024 from https://www.usenix.org/conference/1
3th-usenix-security-symposium/design-and-implementation- tcg-based-inte
grity-measurement.

Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In 2015 IEEE symposium on security and
privacy. IEEE, 38-54. Retrieved May 13, 2024 from https://ieeexplore.ieee.org/a
bstract/document/7163017/.

425

[63]

[64]

[65]

[66]

[67]

[68]

[74]

[75]

[76]

(7]

Proceedings on Privacy Enhancing Technologies 2026(1)

Youren Shen, Hongliang Tian, Yu Chen, Kang Chen, Runji Wang, Yi Xu, Yubin
Xia, and Shoumeng Yan. 2020. Occlum: Secure and Efficient Multitasking Inside
a Single Enclave of Intel SGX. en. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, Lausanne Switzerland, (Mar. 2020), 955-970. 1SBN: 978-1-4503-
7102-5. por1: 10.1145/3373376.3378469.

Zhiming Shen, Zhen Sun, Gur-Eyal Sela, Eugene Bagdasaryan, Christina De-
limitrou, Robbert Van Renesse, and Hakim Weatherspoon. 2019. X-Containers:
Breaking Down Barriers to Improve Performance and Isolation of Cloud-Native
Containers. en. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems.
ACM, Providence RI USA, (Apr. 2019), 121-135. ISBN: 978-1-4503-6240-5. DOI:
10.1145/3297858.3304016.

Brijesh Singh. [n. d.] Confidential Computing with AMD SEV-SNP. (). Retrieved
Apr. 24, 2025 from https://kvm-forum.qemu.org/2021/SEV-SNP- AMD-Brijesh-
Singh.pdf.

[n. d.] Stefanberger/libtpms: The libtpms library provides software emulation
of a Trusted Platform Module (TPM 1.2 and TPM 2.0). (). Retrieved Nov. 14,
2024 from https://github.com/stefanberger/libtpms.

[n. d.] Tpm 2.0: a brief introduction. (). Retrieved Nov. 14, 2024 from https://tru
stedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverv
iew_DRO02web.pdf.

[n. d.] TPM 2.0 specification - Google Search. (). Retrieved Nov. 14, 2024 from
https://www.google.com/search?q=TPM+2.0+specification&oq=TPM+2.0
+specification&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBBzUzNmowajeoAg
CwAgA&sourceid=chrome&ie=UTF-8.

Chia-Che Tsai, Donald E. Porter, and Mona Vij. 2017. {Graphene-SGX}: A
practical library {OS} for unmodified applications on {SGX}. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), 645-658. Retrieved May 8, 2024
from https://www.usenix.org/conference/atc17/technical- sessions/presentat
ion/tsai.

Chia-Che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada Popa,
and Donald E. Porter. 2020. Civet: An efficient java partitioning framework for
hardware enclaves. In 29th USENIX Security Symposium (USENIX Security 20),
505-522. Retrieved Apr. 22, 2025 from https://www.usenix.org/conference/use
nixsecurity20/presentation/tsai.

umoci. 2023. Releases - opencontainers/umoci. en. (2023). Retrieved June 2,
2024 from https://github.com/opencontainers/umoci/releases.

2024. unikernelLinux/ukl. original-date: 2018-06-20T18:34:48Z. (Oct. 2024).
Retrieved Nov. 10, 2024 from https://github.com/unikernelLinux/ukl.

Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia,
and Frank Piessens. 2019. A Tale of Two Worlds: Assessing the Vulnerability
of Enclave Shielding Runtimes. en. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. ACM, London United
Kingdom, (Nov. 2019), 1741-1758. 1SBN: 978-1-4503-6747-9. DoI: 10.1145/33195
35.3363206.

Stephan Van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking data on Intel CPUs via cache evictions. In
2021 IEEE Symposium on Security and Privacy (SP). IEEE, 339-354. Retrieved
June 5, 2024 from https://ieeexplore.ieee.org/abstract/document/9519461/.
Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria Toeroe, and Ferhat
Khendek. 2019. Microservice based architecture: Towards high-availability for
stateful applications with kubernetes. In 2019 IEEE 19th international conference
on software quality, reliability and security (QRS). IEEE, 176-185. Retrieved
May 8, 2024 from https://ieeexplore.ieee.org/abstract/document/8854724/.
Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W. Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning
power {Side-Channel} attacks into remote timing attacks on x86. In 31st USENIX
Security Symposium (USENIX Security 22), 679-697. Retrieved June 5, 2024 from
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yi
ngchen.

Xuyang Zhao, Mingyu Li, Erhu Feng, and Yubin Xia. 2022. Towards a secure
joint cloud with confidential computing. In 2022 IEEE International Conference
on Joint Cloud Computing (JCC). IEEE, 79-88. Retrieved May 8, 2024 from
https://ieeexplore.ieee.org/abstract/document/9898084/.

https://www.usenix.org/conference/raid2019/presentation/luo
https://www.usenix.org/conference/raid2019/presentation/luo
https://doi.org/10.1007/s41635-017-0025-y
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/2490301.2451167
http://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178
https://github.com/moby/moby
https://www.sciencedirect.com/science/article/pii/S0167404823000901
https://www.sciencedirect.com/science/article/pii/S0167404823000901
https://doi.org/10.1145/3627106.3627112
https://doi.org/10.1145/3627106.3627112
https://github.com/opencontainers/distribution-spec
https://github.com/opencontainers/runc
https://github.com/opencontainers/runc
https://ieeexplore.ieee.org/abstract/document/9020783/
https://www.usenix.org/event/sec06/tech/full_papers/berger/berger_html/
https://www.usenix.org/event/sec06/tech/full_papers/berger/berger_html/
https://kubernetes.io/
https://ieeexplore.ieee.org/abstract/document/5541547/
https://ieeexplore.ieee.org/abstract/document/5541547/
https://ieeexplore.ieee.org/abstract/document/9532194/
https://ieeexplore.ieee.org/abstract/document/9532194/
https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3552326.3587458
https://github.com/rumpkernel/rumprun
https://ieeexplore.ieee.org/abstract/document/7345265/
https://ieeexplore.ieee.org/abstract/document/7345265/
https://www.usenix.org/conference/13th-usenix-security-symposium/design-and-implementation-tcg-based-integrity-measurement
https://www.usenix.org/conference/13th-usenix-security-symposium/design-and-implementation-tcg-based-integrity-measurement
https://www.usenix.org/conference/13th-usenix-security-symposium/design-and-implementation-tcg-based-integrity-measurement
https://ieeexplore.ieee.org/abstract/document/7163017/
https://ieeexplore.ieee.org/abstract/document/7163017/
https://doi.org/10.1145/3373376.3378469
https://doi.org/10.1145/3297858.3304016
https://kvm-forum.qemu.org/2021/SEV-SNP-AMD-Brijesh-Singh.pdf
https://kvm-forum.qemu.org/2021/SEV-SNP-AMD-Brijesh-Singh.pdf
https://github.com/stefanberger/libtpms
https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf
https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf
https://trustedcomputinggroup.org/wp-content/uploads/2019_TCG_TPM2_BriefOverview_DR02web.pdf
https://www.google.com/search?q=TPM+2.0+specification&oq=TPM+2.0+specification&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBBzUzNmowajeoAgCwAgA&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=TPM+2.0+specification&oq=TPM+2.0+specification&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBBzUzNmowajeoAgCwAgA&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=TPM+2.0+specification&oq=TPM+2.0+specification&gs_lcrp=EgZjaHJvbWUyBggAEEUYOdIBBzUzNmowajeoAgCwAgA&sourceid=chrome&ie=UTF-8
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://github.com/opencontainers/umoci/releases
https://github.com/unikernelLinux/ukl
https://doi.org/10.1145/3319535.3363206
https://doi.org/10.1145/3319535.3363206
https://ieeexplore.ieee.org/abstract/document/9519461/
https://ieeexplore.ieee.org/abstract/document/8854724/
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://ieeexplore.ieee.org/abstract/document/9898084/

	Abstract
	1 Introduction
	2 Trusted Execution Environments (TEEs)
	2.1 Process-level TEEs
	2.2 VM‑level TEEs

	3 Related works
	4 Threat Model
	5 Design Rationale
	6 Privacy-first Deployment Framework
	6.1 Push: Environment Setup and Verification
	6.2 Run: Workload Deployment and Execution
	6.3 Prove: Continuous Runtime Verification
	6.4 Seal: Secure State Persistence

	7 Implementation
	7.1 vTPM and IMA Implementation
	7.2 erun implementation
	7.3 OS-Layer Optimization
	7.4 Linking erun to the Kernel

	8 Security Evaluation
	8.1 Privacy Analysis
	8.2 Security Analysis Against External Attacks

	9 Performance Evaluation
	9.1 Runtime Performance

	10 Concluding Remarks
	Acknowledgments

