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Abstract
Video identification attacks pose a significant privacy threat that
can reveal videos that victims watch, which may disclose their
hobbies, religious beliefs, political leanings, sexual orientation, and
health status. Also, video watching history can be used for user
profiling or advertising and may result in cyberbullying, discrimi-
nation, or blackmail. Existing extensive video inference techniques
usually depend on analyzing network traffic generated by stream-
ing online videos. In this work, we observe that the content of a
subtitle determines its silhouette displayed on the screen, and iden-
tifying each subtitle silhouette also derives the temporal difference
between two consecutive subtitles. We then propose SilhouetteTell,
a novel video identification attack that combines the spatial and
time domain information into a spatiotemporal feature of subtitle
silhouettes. SilhouetteTell explores the spatiotemporal correlation
between recorded subtitle silhouettes of a video and its subtitle
file. It can infer both online and offline videos. Comprehensive ex-
periments on off-the-shelf smartphones confirm the high efficacy
of SilhouetteTell for inferring video titles and clips under various
settings, including from a distance of up to 40 meters.
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1 Introduction
Video viewing has become increasingly popular. According to a
survey with 528 unique respondents conducted in November 2022,
people on average watch 17 hours of videos per week [69]. Video
identification attacks aim to infer videos that victims are watching
without authorization. They pose an increasing privacy threat, as
an individual’s video viewing history or preference may reveal
their political, financial, and personal interests [19], and others may
judge them based on such data [31], causing cyberbullying and dis-
crimination. Moreover, scammers may use sensitive video viewing
history to conduct blackmail, threatening to release it to victims’
families, friends, coworkers, or social network contacts [24, 30]. In
the United States, the Video Privacy Protection Act (VPPA) [15]
was enacted in 1988 after Robert Bork’s video rental history was
published during his Supreme Court nomination, making it illegal
to disclose video viewing history without the watchers’ consent [1].
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A traditional and naive method to identify a video is video con-
tent matching (e.g., [44]). An adversary may steal frames or audio
data from a video snippet (e.g., via shoulder surfing attacks or
recording with a camera or microphone), using them to generate
features (i.e., video fingerprints) to characterize the video clip. Such
features are then matched with a database of video fingerprints
built with known videos. Videos containing content similar to the
snippet are thus identified. However, such attacks rely on direct
views of the victim’s screen by capturing a clear view of the video
content or eavesdropping accompanying audio information.

Recent research focuses on developing video identification at-
tacks by analyzing streaming video traffic. Each video generates a
distinct traffic pattern due to its unique content. Such amapping can
be pre-built for inferring what video is currently streaming. Those
attacks, however, often require the attacker to either compromise
the router that the victim’s device connects to [35, 36, 75] or infect
the victim’s device with malware (e.g., via rogue websites [64])
to capture streaming traffic. Both requirements impose practical
hurdles, making such invasive attacks no longer viable, as modern
networks usually adopt anti-malware tools and are also secured
with a password unknown to the sniffer. Some attacks (e.g., [19, 43])
using passive network reconnaissance are non-invasive, while they
require special equipment such as Universal Software Radio Pe-
ripheral (USRP) to measure traffic. Moreover, most video streaming
services (e.g., Netflix [53]) offer offline viewing, generating no traffic
and failing all existing traffic analysis based techniques.

Individuals often take precautions to protect video privacy, in-
cluding preventing others from directly viewing the video content
or hearing the audio, securing the video streaming network, or pre-
downloading videos. In this paper, we investigate whether users are
vulnerable to video identification attacks in general settings, after
taking the aforementioned precautions. We discover it is possible
to infer the video a victim is watching, whether online or offline, by
pointing a single RGB camera at the victim’s screen from a distance
and obtaining the subtitle silhouettes of the video. We refer to the
proposed attack as SilhouetteTell. The silhouette (e.g., height or line
count) of the video’s subtitle on screen varies with the subtitle
content. Such information can be captured by a camera at a dis-
tance, where the video frames, audio, and subtitles are completely
illegible. The obtained coarse information related to subtitles can
be exploited to infer videos, as shown in Figure 1.

Subtitles are text representing the contents of the audio in a
video, often displayed with each scene at the bottom of the screen.
They are necessary for people with hearing impairments, facilitat-
ing following the dialog. Also, translated subtitles are necessary
for media in a foreign language [26, 42]. According to a survey
conducted in 2023, 63% of young adults under 30 prefer watching
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Figure 1: Subtitle silhouette information for inferring videos.

videos with subtitles even in a language they know, and only 27%
choose subtitles off [20]. Another study of 5,616 participants shows
that 69% view video with sound off in public places and 25% watch
with sound off in private places, and instead, they turn on subtitles
for understanding videos in these scenarios [49]. It has been well
known that subtitles can be utilized to classify movie genres [58],
improve movie recommender systems [29], and retrieve relevant
videos from a large corpus [45]. However, in our general threat
model, due to the long shooting distance and non-specific viewing
angle, the attacker cannot record the content of the video that the
victim is watching, nor can they obtain the subtitle content. Typi-
cally, when a user is watching videos that they wish to keep private,
they tend to take actions, such as adjusting the screen away from
the bystander. However, if others are too far away to see the screen,
they often pay less attention and become less vigilant.

Intuitively, Optical Character Recognition (OCR) algorithms
may help recognize subtitles, by converting optically sensed docu-
ment text (i.e., typed, handwritten, or printed text in images) into
machine-encoded text [52]. We pick two most popular and state-of-
the-art algorithms, Tesseract OCR Engine [66] and Convolutional
Recurrent Neural Network (CRNN) [65], which are deep learning-
based and open-source. They both fail due to the poor recording
quality. For the frame in Figure 1, the subtitle is: “You know, there are”
(first line), “biochemists everywhere,” (second line), and “military.
I hate them.” (third line). By running the latest Tesseract version
5.0 [12] to this frame, the recovery result is “vou eon few ow" (first
line), “Scien" (second line), and “rata | hate Pam" (third line). Also,
with the current CRNN implementation [3], the recognition output
of the frame is nothing. Incorrect or empty extraction shows the in-
ability of OCR methods to recover subtitles from blurry recordings.

We also wonder whether image captioning techniques, which
generate natural language descriptions of images [41], can gather
useful information for inferring videos. Vision-language pre-training
(VLP) is currently the dominant training method using pre-trained
large-scale models for visual recognition tasks [32]. One widely
used pre-trained model is CLIP (Contrastive Language-Image Pre-
Training) [55]. We utilize ClipCap [50], a recent work based on CLIP
and a pre-trained language model (GPT-2 [56]), to generate cap-
tions for images. Similar to the challenges faced by OCR methods
in recognizing blurry subtitles, it becomes evident that no correct
caption can be produced for those blurry recordings. For example,
in Figure 1, the true caption is “Two men are talking to each other",
while the result of applying the ClipCap implementation [2] is “a
scene from the movie", providing no help in video identification.

Traditional ML-based techniques (e.g., OCR, CRNN, and ClipCap)
have inherent limitations in recognizing subtitle or image content

from blurry frames captured at a distance. In contrast, contentless
subtitle silhouettes are much easier to distinguish under such con-
ditions. Building on this observation, SilhouetteTell extracts spatial
and temporal features for inferring videos. First, we normally can
observe a seemingly “continuous white area” in each video frame
when a subtitle is present. We refer to this area as the “subtitle
area”. Different lengths of subtitles may result in subtitle areas with
different shapes (silhouettes). This allows us to compare line counts
among subtitles. Meanwhile, the duration of a subtitle may span
multiple frames, that is, the subtitle remains unchanged while the
video scene changes. We extract the line count of each subtitle as
its spatial feature. Second, identifying subtitle areas for each frame
helps derive the temporal difference between two successive frames.
As aforementioned, the shape of the subtitle area varies with the
subtitle content. However, for some subtitles with similar lengths,
the shapes of their subtitle areas would be quite similar. For such
cases, we observe that the overall brightness (i.e., the sum of image
pixel values) of subtitle areas would differ as the subtitle contents
change. Accordingly, we utilize both the shape and brightness of
subtitle areas to distinguish whether the subtitle changes across
neighboring frames. Such pattern variation of subtitle areas over
time is referred to as temporal feature of subtitles, which discloses
how long (or how many frames) a subtitle appears on the screen.

SilhouetteTell initially needs to extract correct subtitle silhou-
ettes in blurry videos, from where we barely identify any texts. As a
blurry subtitle in videos recorded from a far distance often appears
as a white chunk, we change the problem from recognizing texts
to localizing white areas for obtaining subtitle areas, and design
a subtitle silhouette extraction scheme using Mask Region-based
Convolutional Neural Network (Mask R-CNN), a deep learning
technique that can segment and identify the pixel-wise bound-
aries of each object [38]. Moreover, an attacker must compare the
correlations among subtitles with those among observed subtitle
silhouettes. This requires a self-contained spatiotemporal feature
that can quantify such correlations and be compared against others.
We create such a feature and corresponding approaches to compare
observed subtitle silhouettes to possible candidate videos using this
feature. Our technique incorporates a mechanism to retain high
accuracy in the presence of subtitle silhouette recognition errors.

In summary, we mainly make the following contributions.
• We propose a new type of video identification attack using
only video captured from a distance through commodity
phone cameras. Our method does not require online video
viewing, professional equipment, or a connection to the same
network as the playback device.

• We develop an algorithm to map obtained contentless sub-
title silhouettes in recorded blurry videos into a video clip,
and achieve video inference by modeling, extracting, and
correlating their self-contained spatiotemporal features.

• Extensive real-world experiments on top of 300 movies from
YouTube, Amazon Prime Video, and Netflix, show that with
a 2-minute blurry video clip, the average probabilities of
recognizing videos in the top 1, 5, and 10 candidates can
reach as high as 91.1%, 98.7%, and 99.8%, respectively.
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2 Preliminaries
Subtitles: A subtitle, in the form of one or more lines of written
text, typically appears at the bottom center of the screen in sync
with a video’s audio [23, 34]. It may appear in a rectangular overlay
with a colored or opaque background.

Subtitles can be open or closed. Open subtitles are embedded in
the video and cannot be turned off, whereas closed subtitles are on a
separate text track and can be turned on/off by the viewer. Subtitles
can be downloaded in specific formats, e.g., SubRip text (.srt), Web
Video Text Tracks Format (.vtt), and SubStation Alpha (.ssa) [74].
The .srt format, as one of the most popular and almost a de facto
standard in the web [37, 74], contains the subtitle index, start time,
end time, and text content. In a .srt file, subtitles are numbered se-
quentially, and the timecode format used is hours:minutes:seconds,
milliseconds, with time units fixed to two zero-padded digits and
fractions fixed to three zero-padded digits (00:00:00,000).

Mask R-CNN: Object detection deals with the task of segment-
ing instances of semantic objects in digital images and videos. We
input an image to an object detection model, which generally out-
puts coordinates of bounding boxes in the input image that contains
specific objects. Faster R-CNN [60] makes a series of improvements
on the initial object detection algorithm of Regions with CNN fea-
tures (R-CNN) [33]. Mask R-CNN is an extension of Faster R-CNN
and augments object detection by adding object segmentation.

3 Threat Model and Assumptions
We consider a general user (victim) who might be vulnerable while
watching subtitled videos on computers/tablets/phones in open
places such as libraries, airports, cafes, and cubicles. An adversary
records the scenario where the victim is watching videos from
a distance via a single RGB camera (e.g., a phone camera) and
processes the recorded blurry video to identify videos the victim
watches. An attacker is assumed to have access to the victim’s space,
either physically or remotely, to monitor their screen activity.

No Traffic Access: Our work differs significantly from prior
work (e.g., [19, 28, 35, 43, 46, 59]) in that we do not rely on traffic
information of video streaming sessions. SilhouetteTell thus works
even in scenarios where the victim watches videos offline, while all
previous traffic analysis based video identification attacks fail.

No User-specific Training and Directly Observing Video
Content: We assume that the attack is opportunistic, requiring no
labeled data or prior observation of the victim, and the victim is
alert to conventional shoulder-surfing attacks in the sense that the
attacker cannot get too close to them when watching a video.

Recording Required: While directly observing an individual
may sometimes reveal sensitive information (e.g., their lifestyle),
such inferences typically require prolonged observation and may
be ineffective if the victim does not outwardly exhibit personal
traits. The attacker does not need her recordings to contain the full
screen of the target device on which the victim watches the video,
while we assume that the attacker can observe at least a partial
blurry view of the screen containing the subtitles. Such scenarios
are quite common in practice as it is challenging for the victim to
block observing the screen from all angles.

Subtitle Library:We also assume that the attacker has access
to the subtitles of all videos in the suspect set. Such knowledge can
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Figure 2: Overview of SilhouetteTell.

be easily acquired as subtitle files are often available and down-
loaded from subtitle websites (e.g., [11]) or video streaming services.
Appendix A discusses specific methods for crawling subtitle files.

4 Video Inference Attack
4.1 Attack Overview
SilhouetteTell performs a two-phase process to infer videos from
observed blurry videos: training and inference.

Figure 2 plots an overview of SilhouetteTell. Figure 2a depicts the
offline training phase, where a Mask R-CNN model is trained for
accurately detecting subtitle silhouettes. The attacker first divides
the recorded video into frames, and pre-processes them to focus on
the subtitle areas on the victim’s screen. The pre-processed frames
are input into a module of Coarse Silhouette Extraction, built on
Maximally Stable Extremal Regions (MSER) [48] and GrabCut [62],
to obtain raw training data, which are then sanitized via a module
of DataWinnowing. Figure 2b shows the inference phase, consisting
of two modules, Refined Silhouette Extraction and Subtitle Demod-
ulation. For the initial module, the attacker obtains pre-processed
frames using the same procedure in the training phase, and inputs
them to the trained Mask R-CNN model. In the second module,
we separate the captured silhouettes originating from different
subtitles, and obtain a silhouette sequence. Each element of the
sequence belongs to a corresponding distinguishable subtitle. Next,
we extract the spatiotemporal feature of the silhouette sequence,
and correlate it with a subtitle sequence presented in subtitle files,
shrinking the candidates of the target video title and clip.

4.2 Training Phase
4.2.1 Frame Division & Pre-processing. We divide the recorded
video clip into individual raw video frames using OpenCV, an open-
source library for computer vision [6]. A frame may record the
background beyond the victim’s screen, where certain video scenes
may confuse the subtitle area recognition. Accordingly, we perform
a dual-cropping operation on each frame uniformly to eliminate
interference and only include the area where subtitles may appear.

First-cropping: If the victim’s screen is notmoved in the recording,
we canmark the screen’s four corners to designate the portion of the
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video frame and clip the corresponding area. If the screen’s location
varies in the recording (e.g., when the recording camera is not
stationary), the manual cropping may be laborsome. Alternatively,
we use an existing object detection method (i.e., a pre-trained Mask
R-CNN model [17]) to crop out the screen area efficiently.

Perspective Transformation: We may record the screen from dif-
ferent angles. Thus, the subtitle area in the raw recording may be
skewed or compressed. To reduce such effects, we apply perspective
transformation to convert an original screen recording image into
the plane of the screen (i.e., the bird’s eye view) before applying the
second cropping. Specifically, we first mark the 4 points on the video
to indicate the target screen’s planar surface. We later compute a
homography matrix H between this planar surface and the video
frame’s perspective, and finally transform the source image with
the matrixH, using two OpenCV functions, 𝑝𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚
and𝑤𝑎𝑟𝑝𝑃𝑒𝑟𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 [9]. Let (𝑥,𝑦) denote the 2D coordinate of a
point in the source image. By multiplying (𝑥,𝑦) with H, we obtain
its corresponding point in the plane of the screen.

Second-cropping: Occasionally, the screen may have regions that
appear similar to a subtitle area. Minimizing such similarity would
be beneficial for recognizing subtitle areas. Empirically, we observe
that the subtitles of videos for popular video streaming services (e.g.,
YouTube, Netflix, and Amazon Prime Video) are usually displayed
in the bottom quarter of the screen. We then crop this area as the
input to the next step for subtitle silhouette extraction. If subtitles
appear in other parts of the screen, the second cropping will target
that area, adapting to corresponding subtitle displacements.

4.2.2 Coarse Silhouette Extraction. This step aims to extract subti-
tle silhouettes leveraging the MSER feature extractor and GrabCut-
based segmentation. Such a process still suffers from segmentation
errors, and we refer to it as coarse silhouette extraction.

MSER Feature Extractor: In the pre-processed frames, normally,
the subtitle area and non-subtitle area (i.e., background) differ in
color, while within each area, the color is nearly constant. MSER is a
blob detector that finds the stable connected regions in a gray-scale
image over a wide range of thresholds. To transfer an RGB image
into a gray-scale one, we utilize an OpenCV function 𝑐𝑣𝑡𝐶𝑜𝑙𝑜𝑟 [7],
which represents each pixel in the original image with a single
grayscale intensity according to its RGB values. The intensity is
denoted with an 8-bit integer giving 256 possible different shades
of gray from black to white. After applying MSER to each pre-
processed frame (with the grayscale format) with another OpenCV
function - 𝑀𝑆𝐸𝑅_𝑐𝑟𝑒𝑎𝑡𝑒 [8], a sequence of rectangular bounding
boxes will be obtained. Next, for each bounding box, we calcu-
late the corresponding edge-to-edge distances of the pre-processed
frame and this box, resulting in four distances. If any of the dis-
tances is smaller than an empirically pre-defined threshold, we
determine that this box is near the edge of the pre-processed frame,
and then filter it out, as it usually may not contain the subtitle.

To select the most relevant bounding box corresponding to the
subtitle area, we propose a bounding box selection algorithm based
on the Non-Maximum Suppression (NMS) method [40, 54]. Let 𝐴
and 𝐵 denote two bounding boxes. Their Intersection over Union
(IoU) is the ratio between the area of overlap to the area of union
between 𝐴 and 𝐵, i.e., 𝐴∩𝐵

𝐴∪𝐵 . We use the standard IoU threshold of
0.5 [40] and perform the following steps. First, a confidence score 𝜇

for each bounding box is defined as the ratio of its height to its width.
We sort the boxes in descending order of 𝜇, and denote the one with
the highest 𝜇 as 𝐻 . Empirically, we find 𝐻 usually recognizes the
object more accurately than the rest. Next, we compute 𝐼𝑜𝑈 of 𝐻
with every remaining box. Let𝐶 denote one of the remaining boxes.
If 𝐼𝑜𝑈 of 𝐻 and𝐶 is greater than 0.5, we remove𝐶 . After traversing
all boxes, if it ends up with two or more unique ones, we observe
this case often appears when there are some small bounding boxes
encapsulating inference of white points, rather than the subtitle.
Accordingly, we keep the one with the largest size.

GrabCut-based Segmentation: The next step is to obtain subtitle
silhouettes from the bounding boxes. GrabCut is often used to
segment the foreground of an image from the background, while it
is required to first manually frame and select the target area [62].
Instead, we utilize the module of the MSER feature extractor to
automatically generate the input of GrabCut, replacing the low-
efficiency process of manually choosing the segmentation range.
Generally, for each bounding box, the segmentation results using
an OpenCV function - 𝑔𝑟𝑎𝑏𝐶𝑢𝑡 [5], return the subtitle silhouette as
the foreground and the rest as the background.

4.2.3 Data Winnowing. The results of coarse silhouette extraction
may contain errors. We thus perform a consistency check to see
whether the segmented subtitle silhouettes are correct. Particularly,
we winnow out the pre-processed frames, whose subtitle silhou-
ettes are incorrectly recognized. Meanwhile, the rest pre-processed
frames, together with their corresponding detected subtitle silhou-
ettes, become training data for building a Mask R-CNN model.

4.2.4 Mask R-CNN Model Building. We utilize a commercial smart-
phone (Samsung Galaxy Z Fold4) to record a laptop playing movies
on three streaming services (YouTube, Amazon Prime Video, and
Netflix) at distances larger than 4 meters. In these recordings, both
the movie and the subtitle contents appear blurry.

Dataset Splitting: For each streaming service, we select 10 popu-
lar movies, and for every movie, we randomly record a 2-minute
clip with 60 FPS for processing. As a result, we have a total of
3 × 10 × 120 × 60 = 216, 000 raw video frames as input. The coarse
silhouette extraction recognizes 109,326 frames that contain subti-
tle areas. After applying data winnowing, we obtain 78,591 pieces
of correctly labeled data (referred to as silhouette-contained data).
Also, among falsely labeled data, we obtain 3,244 pieces, in each of
which the corresponding pre-processed frame actually has no subti-
tle silhouette. For such data, we replace the incorrect original label
with a segmentation result of no subtitle silhouette, and refer to
these revised data as silhouette-free data. The only component that
requires training is the Mask R-CNN model. With the two obtained
datasets, silhouette-contained and silhouette-free, we split each
of them using the common 80:20 train-test ratio for fine-tuning a
Mask R-CNN model. We use ResNet50 [38, 39] as the backbone and
stochastic gradient descent (SGD) [22] for optimization.

4.3 Inference Phase
4.3.1 Refined Silhouette Extraction. Compared with coarse silhou-
ette extraction, refined silhouette extraction can achieve higher
accuracy. We verify this with a new dataset. For this dataset, we
randomly select 15 new movies (not shown in the training dataset)
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from the three streaming services, with 5 for each. We then record
a randomly picked 2-minute video for every movie with 60 FPS. In
total, we have 15× 2× 60× 60=108, 000 frames. This dataset is only
used to validate the superior performance of the refined silhouette
extraction method over the coarse one.

Figure 3 compares the recognition rates of coarse and refined
silhouette extraction methods applied to silhouette-contained and
silhouette-free frames. We can observe that the refined silhouette
extraction method consistently achieves higher recognition accu-
racy compared to the coarse one. Also, it always maintains high
recognition accuracy regardless of the streaming service or whether
the input frame has a subtitle. Specifically, the overall recognition
accuracy for refined silhouette extraction is consistently above 95%,
whereas for coarse silhouette extraction, this value is consistently
below 86%. These results convincingly demonstrate the necessity of
building a Mask R-CNN model for recognizing subtitle silhouettes.
Also, Appendix B shows example cases where refined silhouette
extraction works while coarse silhouette extraction fails.

4.3.2 Subtitle Demodulation. Subtitle demodulation converts a se-
quence of consecutive subtitle silhouettes into corresponding sub-
titles of a video, enabling video identification. We start by distin-
guishing silhouettes originating from the same subtitle and design-
ing a spatiotemporal feature to be applied to a subtitle silhouette
sequence. This feature must be suitable for narrowing down the
search space of possible candidates. Subsequently, we demonstrate
how to apply this feature to multiple subtitle silhouette sequences.

Same-subtitle Silhouette Separation: The same subtitle usually
generates highly similar silhouettes at the same positions of a frame.
If two silhouettes are different, they normally come from different
subtitles. Figure 4 presents typical scenarios involving two con-
secutive silhouettes. Intuitively, it is easy to determine that in the

first three cases, the two silhouettes, which either have no overlap
or partially overlap, come from different subtitles. Specifically, to
reduce the impact of the no-silhouette area, we place two marked
silhouettes 𝑆1 and 𝑆2 into the same frame, and then compute their
IoU, which is denoted as 𝐼𝑜𝑈𝑠 =

𝑆1∩𝑆2
𝑆1∪𝑆2 , ranging from 0 to 1.

Let 𝐼𝑜𝑈 𝑑𝑖 𝑓 𝑓
𝑠 and 𝐼𝑜𝑈 𝑠𝑎𝑚𝑒

𝑠 denote the IoU of two neighboring sil-
houettes coming from different and the same subtitles. To explore
their practical values, we randomly select 10,000 pairs of neigh-
boring silhouettes coming from the same and different subtitles,
respectively. Figure 5 plots the empirical cumulative distribution
functions (CDFs) of 𝐼𝑜𝑈 𝑑𝑖 𝑓 𝑓

𝑠 and 𝐼𝑜𝑈 𝑠𝑎𝑚𝑒
𝑠 . We see that 𝐼𝑜𝑈 𝑠𝑎𝑚𝑒

𝑠 is
always near 1 (above 0.93), while 𝐼𝑜𝑈 𝑑𝑖 𝑓 𝑓

𝑠 is less than 0.93 with a
probability of 97%. Thus, with an IoU threshold of 0.93 for distin-
guishing silhouettes, the true positive (i.e., silhouettes originating
from the same subtitle are correctly identified) and true negative
(i.e., silhouettes from the different subtitle are correctly identified)
would be 100%, while the false positive (silhouettes from differ-
ent subtitles are incorrectly identified as from the same subtitle)
is 3%. This appears as the IoU-based method cannot distinguish
between two silhouettes from different subtitles when they have
similar sizes and appear at similar locations. For example, in case
4 of Figure 4, both silhouettes are similar with IoU equaling 0.95,
while the corresponding subtitles differ. We further compare per-
spective pre-processed frames associated with them. This is based
on the observation that different subtitles have distinct words and
sentence structures, leading to variation in pixel value distribution
in subtitle areas (i.e., difference in pre-processed frames).

When the IoU of two neighboring silhouettes is above or exceeds
the threshold, we first put two marked silhouettes into the same
frame, and identify the area of intersection. We then extract the
portion marked by this intersection area in each of the two cor-
responding pre-processed frames. We refer to the extracted two
regions as 𝐴1 and 𝐴2, respectively, and calculate the absolute differ-
ence between every pixel in 𝐴1 and the corresponding pixel in 𝐴2.
Finally, we sum all such pixel differences and denote the sum as P.
We set up another threshold T = T0 · 𝑁 , where 𝑁 is the number of
pixels in 𝐴1 or 𝐴2 and T0 indicates the mean maximum allowable
pixel variance along two neighboring frames for the same subtitle.
We introduce a new metric, called similarity ratio, and denoted as
𝑅 = P

T to compare P and T . If 𝑅 > 1, we have P > T , and regard
that the silhouettes originate from different subtitles; otherwise,
when 0 ≤ 𝑅 ≤ 1, they are determined as from the same subtitle.

Empirically, we choose T0 = 1.5, achieving high accuracy. We
also pick another 10,000 pairs coming from different subtitles while
each such pair has an IoU larger than 0.93. Figure 6 presents the
CDFs of 𝑅𝑠𝑎𝑚𝑒 and 𝑅𝑑𝑖 𝑓 𝑓 that denote the similarity ratio for a pair
of neighboring silhouettes coming from the same and different
subtitles, respectively. We can see that 𝑅𝑠𝑎𝑚𝑒 is always below 1
while 𝑅𝑑𝑖 𝑓 𝑓 is consistently above 1, indicating a 100% success rate
in distinguishing silhouettes originating from the same or different
subtitles. Particularly, for case 4 in Figure 4, we have T = 17, 145,
and P = 20, 298 > T , where the two silhouettes are correctly
determined as coming from different subtitles.

Spatiotemporal Feature Extraction: Ideally, the feature extracted
from a subtitle silhouette sequence would enable us to uniquely
determine the video clip (and thus the video title). Suppose the

474



SilhouetteTell Proceedings on Privacy Enhancing Technologies 2026(1)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l 
C

D
F
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Figure 6: CDFs of similarity
ratio of two silhouettes.

duration of the recorded clip is 𝑇 and we can accordingly extract
𝐶 clips with a period of 𝑇 within the suspect library of videos. A
perfect feature would classify the 𝐶 video clips into 𝐶 groups, each
having one member only, such that an input subtitle silhouette
sequence can uniquely match a video clip based on this feature. Our
strategy is thus to figure out a feature that can divide all video clips
into as many groups as possible, to achieve high distinguishability.

To quantify the distinguishability of a feature in dividing all
candidates, we define uniqueness score as a new metric, as the ratio
𝐶𝑠/𝐶0, where𝐶0 is the number of considered video clips and𝐶𝑠 rep-
resents the number of sets obtained by dividing𝐶0 video clips with
the selected feature. The uniqueness score should be maximized for
the best partitioning of the video clips. To calculate the number of
sets divided by each, we randomly select 10,000 different clips with
a duration of 𝑇 from 100 movies streaming on YouTube, Amazon
Prime Videos (Amazon for short), and Netflix respectively. We vary
𝑇 from 1 to 3 minutes, in increments of half a minute.

Temporal Feature Representation: From a temporal perspec-
tive, the intuitive feature of a video clip is the number of subtitles
displayed, i.e., the length of the subtitle silhouette sequence. The
sequence length can be obtained by counting the number of varying
subtitle silhouettes within the period of the video clip since two
successive frames showing the same subtitle would exhibit the same
subtitle silhouettes. We find that all selected 2-minute 10,000 video
clips for Netflix are 1-94 subtitles long. If we choose the sequence
length as the only feature, we can divide all suspect Netflix video
clips into 94 sets. On average, each set has 10, 000/94 ≈ 106.4 video
clips. The uniqueness score is then 94/10, 000 = 0.0094.

Spatial Feature Representation: From a spatial perspective,
the shapes of subtitle silhouettes disclose how they differ in terms
of their width or height. Normally, the video subtitles have no
more than three lines, avoiding obstructing the video scene. Also,
the height of a subtitle silhouette is proportional to the line count.
Thus, we use it to characterize each subtitle silhouette. Silhouettes
with similar heights are clustered in the same group. Next, we
sort and index all groups in ascending order of their heights. We
denote the height similarity information of a silhouette sequence
as [𝑠1, · · · , 𝑠𝑟 ], where 𝑟 is the number of distinct silhouette height
groups that appear, and 𝑠𝑖 (𝑖 ∈ {1, · · · , 𝑟 }) denotes how many times
a silhouette in the group with the 𝑖𝑡ℎ smallest index appears.

Considering that a subtitle has up to three lines, we have up to
three categories according to the silhouette height. For instance, for
a sequence of 5 subtitles whose lines are 2, 2, 1, 2, and 1, respectively,
its height similarity information is [2, 3], as there are two different
line counts, with the smaller one appearing twice and the other
appearing three times. Using the height similarity information, we
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Figure 7: Uniqueness scores of video clips.

can divide all selected 10,000 2-minute Netflix video clips into a
total of 789 sets. The uniqueness score equals 789/10, 000 = 0.0789.

Spatiotemporal Feature Characterization: The height sim-
ilarity information has better distinguishability than the length
feature, as its larger uniqueness score yields a smaller set cardinal-
ity, and hence a reduced search space to map an input silhouette
sequence to a video clip. The feature of height similarity informa-
tion gives the statistics of subtitles with varying lines/heights, while
it does not consider their exact positions in the sequence. We expect
a more advanced feature can further increase the uniqueness score
by indicating both the length and height similarity information
of the silhouette sequence, as well as the height variation from
silhouette to silhouette. Let s = [𝑠1, 𝑠2, · · · , 𝑠𝑛] denote a sequence
of 𝑛 different subtitles or subtitle silhouettes within a video clip of
a period of 𝑇 . We define its spatiotemporal vector as

𝑉 : s = [𝑠1, 𝑠2, · · · , 𝑠𝑛] ↦−→ l = [𝑙1, 𝑙2, · · · , 𝑙𝑛], (1)

where 𝑙𝑖 (𝑖 ∈ {1, 2,· · ·, 𝑛}) denotes the mapping of 𝑠𝑖 in the spatiotem-
poral vector. To construct 𝑉 , the following steps are performed.

• We first cluster 𝑛 subtitles or silhouettes based on the line
count of subtitles or the silhouette’s height, and thus obtain
𝑟 sets. Subtitles with the same line count, or silhouettes with
comparable height, aggregate into a separate set.

• Each set is associated with a line count or height as a label.
Sort 𝑟 sets based on this label and index them from 1 to 𝑟 .

• Finally, 𝑠𝑖 (𝑖 ∈ {1, 2, · · · , 𝑛}) will be mapped into the index of
the set that 𝑠𝑖 belongs to, i.e., 𝑙𝑖 .

We build the spatiotemporal vector for each video clip and ulti-
mately partition the 10,000 2-minute Netflix video clips into 9,271
sets. The corresponding uniqueness score is 9, 271/10, 000 = 0.9271,
much larger than those of the previously discussed two features.

Empirically, we find that the uniqueness scores for video clips
of varying durations are not evenly distributed. Figure 7 compares
the uniqueness scores when we search candidates using sequence
length (i.e., temporal feature or “Tp”), height similarity (i.e., spatial
feature or “Sp”), and spatiotemporal vector (i.e., spatiotemporal
feature or “St”). For all cases, the spatiotemporal vector greatly
outperforms the other two. There is no significant difference in
uniqueness scores among different streaming services. However, it
is evident that as the video clip becomes longer, it becomes more
uniquely structured, resulting in a higher uniqueness score for each
feature. For example, with the spatiotemporal vector as the feature
to divide chosen Netflix videos, the uniqueness score for a one-
minute video clip is 0.81, while that for a three-minute video clip
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Figure 8: A sliding window of𝑚 subtitle.

reaches 0.95. Across all streaming services, video clips of 2 minutes
or longer, maintain uniqueness scores above 0.93.

Spatiotemporal Correlation: Suppose the suspect library has 𝐾
videos. With the subtitle file of the 𝑞𝑡ℎ (𝑞 ∈ {1, 2, · · ·𝐾}) video, we
can obtain its subtitle sequence [𝑠1, 𝑠2, · · · , 𝑠𝑤𝑞 ], which𝑤𝑞 denotes
the video’s total amount of subtitles, as well as the starting and
ending time points of each subtitle, i.e., 𝑡𝑠𝑖 and 𝑡

𝑒
𝑖 (𝑖 ∈ {1, 2, · · · ,𝑤𝑞}).

For a recorded blurry video clip with a duration of 𝑇 , its subtitle
silhouette sequence is denoted with S = [𝑆1, 𝑆2, · · · , 𝑆𝑚], where𝑚
denotes the total number of silhouettes. We can then obtain its spa-
tiotemporal vector as V𝑜 =𝑉 (S). Let C represent the demodulated
set containing the candidates for this recording.

We utilize a sliding window of𝑚 subtitles, with a step size of one
subtitle, applied to the entire subtitle sequence of each video. Thus,
the 𝑞𝑡ℎ video will be divided into𝑤𝑞 −𝑚+1 segments, and each can
be denoted with G = [𝑠 𝑗+1, 𝑠 𝑗+2, · · · , 𝑠 𝑗+𝑚] ( 𝑗 ∈ {0, 1, · · · ,𝑤𝑞 −𝑚}).
Figure 8 illustrates how we extract a segment with𝑚 subtitles, i.e.,
𝑠 𝑗+1, · · · , 𝑠 𝑗+𝑚 . The starting and ending time points are denoted
with 𝑡𝑠 and 𝑡𝑒 . Accordingly, we obtain the following two constraints
for them, 𝑡𝑒𝑗 < 𝑡𝑠 ≤ 𝑡𝑒𝑗+1, and 𝑡𝑠𝑗+𝑚 ≤ 𝑡𝑒 ≤ 𝑡𝑠𝑗+𝑚+1. Particularly, we let
𝑡𝑒0 and 𝑡

𝑠
𝑤𝑞+1 be 0 and 𝑇 , indicating the start and end of the video,

respectively. Beginning with searching from the first suspect video,
we perform the following steps to decode the recorded blurry video.
Initially, we set 𝑞 = 1, 𝑗 = 0, and C = ∅.

(1) When the time constraints for the recording are not satisfied,
i.e., 𝑡𝑠𝑗+𝑚+1−𝑡𝑒𝑗 < 𝑇 or 𝑡𝑠𝑗+𝑚−𝑡𝑒𝑗+1 > 𝑇 , this𝑚-subtitle window
has no way to exhibit an𝑚-silhouette sequence of duration
𝑇 . We will thus skip this no-candidate segment.

(2) When the two time constraints are satisfied, we calculate
the spatiotemporal vector of G as V𝑐 =𝑉 (G). If V𝑐 matches
with V𝑜 , this segment G would be a candidate and we add it
into the set C; otherwise, we skip this segment.

(3) If 𝑗 equals 𝑤𝑞 , jump to step (4); otherwise increase 𝑗 by 1,
and jump to step (1).

(4) If 𝑞 < 𝐾 , we increment 𝑞 by 1, reset 𝑗 = 1, and jump to step
(1); otherwise, return.

With the video clip candidates in C, we can then retrieve their video
titles to achieve video identification.

Joint Demodulation: While watching a video, the victim may
move their body to cover partial or all screen, leading to the attacker
not recording the subtitle area on the victim’s screen. Also, a pedes-
trian or obstacle may block the line-of-sight between the attacker
and the victim’s screen. Under these circumstances, the attacker
may miss recording certain subtitle silhouettes, resulting in obtain-
ing several discontinuous clips. In a general case, we assume that
the attacker obtains𝑀 clips, denoted as A = [S1, S2, · · · , S𝑀 ]. The
duration of these𝑀 clips are represented by𝑇1,𝑇2, · · · , and𝑇𝑀 . Also,

the duration between two neighboring clips (referred to as the inter-
sequence interval) is denoted by 𝑇𝑖,𝑖+1 (𝑖 ∈ {1, 2, · · · , 𝑀 − 1}). Our
goal is to find a long video clip with duration

∑𝑀−1
𝑖=1 (𝑇𝑖 +𝑇𝑖,𝑖+1) +𝑇𝑀

that corresponds to the𝑀 subtitle silhouette sequences. While each
silhouette sequence could have several candidate short video clips
with a matching structure, the combination of respective candi-
dates for neighboring clips should satisfy the following two re-
quirements: (1) both candidates come from the same video; (2)
the interval between the two candidates within the video should
match the inter-sequence interval observed by the attacker. Accord-
ingly, the attacker first finds initial candidate short video clips for
each subtitle silhouette sequence S𝑗 ( 𝑗 ∈ {1, 2, · · · , 𝑀}), denoted
as G𝑗 = [G1

𝑗 ,G
2
𝑗 , · · · ,G

𝑁 𝑗

𝑗
], where 𝑁 𝑗 denotes the total amount

of the candidates. The starting and ending time points for G𝑛
𝑗

(𝑛 ∈ {1, 2,· · ·, 𝑁 𝑗 }) are denoted with 𝑇 𝑠
𝑗 and 𝑇 𝑒

𝑗 . The attacker then
iterates over all 𝑀 clips with 𝑗 = 2 initially, and performs the
following steps, returning when 𝑗 > 𝑀 .

(i) Concatenate the candidates for S𝑗−1 and S𝑗 , obtaining 𝑁 𝑗−1 ·
𝑁 𝑗 candidates.

(ii) For each concatenated candidate, ifG𝑛
𝑗 andG

𝑚
𝑗−1 (𝑚 ∈ {1, 2,· · ·,

𝑁 𝑗−1}) come from two different videos (i.e., with varying
video titles), this candidate will be discarded; otherwise, we
further compare 𝑇𝑗−1, 𝑗 and 𝑇 𝑠

𝑗 −𝑇 𝑒
𝑗−1.

(iii) If |𝑇𝑗−1, 𝑗 − (𝑇 𝑠
𝑗 −𝑇 𝑒

𝑗−1) | > 𝛿 , where 𝛿 denotes the sum of
the durations of the last and first subtitles of G𝑗−1 and G𝑗 ,
respectively, the candidate will also be discarded.

(iv) Update S𝑗−1=S𝑗−1 | |S𝑗 (the concatenation of two sequences),
and G𝑚

𝑗−1 with candidates survive steps (ii) and (iii).
(v) Increase 𝑗 by 1 and jump to step (i).

4.3.3 Error Tolerance. The built Mask R-CNNmay introduce errors
in subtitle silhouette extraction due to model imperfections and
interference from contents in the recordings. Such errors may fur-
ther lead to inaccurate spatiotemporal vectors, generating invalid
or even no candidates. We consider three types of errors: (i) Type 1
(Substitution), which involves classifying silhouettes into inaccurate
categories; (ii) Type 2 (Deletion), where valid subtitles are missed;
(iii) Type 3 (Insertion), which extracts non-existed silhouettes.

For Type 1 errors, we handle them by adjusting the criterion of
determining the consistency between spatiotemporal vectors (V𝑜

and V𝑐 ) of the target silhouette sequence and a potential candidate
video clip. Particularly, for step (2) of Spatiotemporal Correlation,
as presented in Section 4.3.2, we calculate the Euclidean distance
𝑑 between the two spatiotemporal vectors, i.e., the square root of
the sum of the squared differences between the two vectors. We
can then set up a threshold 𝑑0, and if 𝑑 > 𝑑0, both vectors are
regarded as inconsistent; otherwise, they will be regarded as con-
sistent. Thus, we can control 𝑑0 to adjust the tolerance against type
1 errors. Empirically, we enable 𝑑20 = ⌈0.1 × |V𝑜 |⌉, always succes-
sively overcome substitution errors, where |V𝑜 | denotes the total
number of silhouettes, and ⌈𝑥⌉ denotes the ceil function, returning
the smallest integer greater than or equal to 𝑥 .

To handle Type 2 or 3 errors, we develop a heuristic solution
by guessing and adding or deleting erroneous elements in the sil-
houette sequence. We assume there are 𝐷 deletion errors and 𝐼
insertion errors. For deletion errors, we consider that each missing

476



SilhouetteTell Proceedings on Privacy Enhancing Technologies 2026(1)

silhouette can be at any position in the sequence, and it can be
divided into any cluster according to its height. When we add a
missing silhouette into a silhouette sequence with length𝑚, there
are𝑚+1 positions to choose from, and its mapping 𝑙𝑚𝑖𝑠𝑠 in the spa-
tiotemporal vector of the new silhouette sequence will match with
any value, i.e., |𝑙𝑚𝑖𝑠𝑠 − 𝑙 | = 0, where 𝑙 denotes any value. Similarly,
regarding insertion errors, we consider that the extra incorrectly
recognized silhouette can be any element in the silhouette sequence.
For each insertion error, we thus iteratively remove one element
from the silhouette sequence, starting from the first and proceeding
to the last. In general, 𝐷 and 𝐼 are bounded. We demodulate all
resultant possible silhouette sequences and combine their returned
results to form the set of final candidates.

4.3.4 Impact of User Operations. If the victim pauses the video and
resumes later, a complete silhouette sequence can still be obtained,
while the recording duration𝑇 no longer reflects the actual duration
of uninterrupted video playback. The attacker can detect pauses
(e.g., by comparing pixel differences of successive frames) and get
the pause interval (𝑇 ′). Next, the duration of the silhouette sequence
will be updated as 𝑇 −𝑇 ′, eliminating the impact of pausing.

When the victim rewinds or fast-forwards a video from time
𝑡1 to 𝑡2, the attacker would obtain two separate video clips with
respective silhouette sequences, one before time 𝑡1, and one after 𝑡2.
The inter-sequence duration𝑇1,2 = 𝑡2−𝑡1 no longer correctly reflects
the duration between the two clips when the video plays normally.
However, the candidates for the two silhouette sequences should
belong to the same video. Also, for rewinding and fast-forwarding,
the starting time of the second clip should be smaller and larger
than the ending time of the first clip, respectively. Thus, we need to
revise the joint demodulation algorithm. We first demonstrate each
silhouette sequence. With each candidate pair (G1, G2), where G𝑖

(𝑖 ∈ {1, 2}) is one candidate for the 𝑖𝑡ℎ silhouette sequence, we check
whether bothG1 andG2 belong to the same video. If not, we discard
this candidate pair; otherwise, we continue to check whether the
starting time of G2 and the ending time of G1 satisfy the above
requirement. If not, we discard the candidate pair, otherwise, this
candidate pair will be then added to the final candidate set.

5 Evaluation
We develop an app to implement SilhouetteTell, which can run on
an off-the-shelf Android/iPhone smartphone.

5.1 Experimental Setup
The attacker aims to identify a victim’s video in a known set. This
problem aligns with existing video identification studies (e.g., [19,
43, 64]). We construct the dataset by capturing 300 subtitle files
from the three most popular media providers (YouTube, Amazon
Prime Video, and Netflix). For each provider, we randomly select
100 movies. The duration of a selected movie ranges from 33 to 200
minutes, with the number of subtitles varying between 413 and
4,071. This 300-video dataset is solely for evaluation. The victim
watches a video in the dataset, whether online or offline, on a
typical personal device using the corresponding streaming service.
We consider an attacker who is at a distance (4 meters or above)
from the victim and uses their smartphone camera to record a
video of the victim’s screen. The recorded video is consistently set

0 5 10 15 20 25 30

Number of subtitles

10
0

10
1

10
2

10
3

10
4

10
5

C
o
u
n
t 
o
f 
c
a
n
d
id

a
te

s

Returned moive titles

Returned clips

Figure 9: The evolution of the count of candidates.

to 1080p (1920 × 1080 pixels) at 60 FPS, which is a common camera
setting for today’s phones. We also investigate the impact of the
recording resolution in Appendix C.

We calculate top-k accuracy in terms of video title or clip, which
is defined as the probability that the top 𝑘 guesses from the obtained
𝑁 candidates contain the target. If 𝑘 > 𝑁 , we have 𝛼 = 1; otherwise,

𝛼 =
1𝐶1 · (𝑁 −1)𝐶 (𝑘−1)

𝑁𝐶𝑘
= 𝑘

𝑁
, where 𝑁𝐶𝑘 is the number of combinations

by choosing 𝑘 from 𝑁 numbers.
Meanwhile, we also utilize traditional text/image recognition

algorithms (Tesseract OCR and CRNN for text recognition, and
ClipCap for image recognition) to test whether they can identify
meaningful information from the recorded blurry videos.

5.2 Case Study
In this example, the victim watches a movie (“The Tomorrow War")
on Amazon Prime Video with a 16-inch MacBook Pro. The attacker
uses a Samsung Galaxy Z Fold4 smartphone to record a 2-minute
video targeting the victim’s screen while the video plays from its
2, 208𝑡ℎ to 2, 327𝑡ℎ second. The attacker thus obtains a sequence of
30 subtitle silhouettes. The returned results from OCR are always
nonsensical strings; the results of CRNN are empty; by enforcing
ClipCap, the results are irrelevant to the scene of the frame.

Figure 9 presents the counts of returned video titles and clips
using SilhouetteTell during the processing of the silhouettes. For a
video with 𝑇0 seconds, we consider that it contains 𝑁𝑐 𝑇 -second
video clips, with a second as the basic unit, i.e.,𝑁𝑐 =𝑇0−𝑇+1.We see
for the initial 7 silhouettes, the number of returned video titles has
almost no change, remaining equal to or slightly smaller than the
total size (i.e., 300) of the suspect video library. This is because the
spatiotemporal structure of a short sequence with fewer silhouettes
is common, leading to the failure of using it to distinguish varying
videos. On the clip level, as different clips with varying subtitles
have different periods, the number of returned video clips decreases
accordingly. Also, with the number of silhouettes increasing, the
numbers of matching video titles and clips both gradually converge
to 1, i.e., the correct match, indicating successful recognition.

5.3 Robustness to Influential Factors
The recording duration/distance/angle/device may vary for the at-
tacker; the victim may use different watching devices and playback
speeds. We evaluate their impact. For recorded videos, we also use
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Figure 10: Average top-𝑘 accuracy vs. recording duration.
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Figure 11: Average top-𝑘 accuracy vs. recording distance.

traditional recognition methods (OCR, CRNN, and ClipCap) to ex-
tract meaningful information, and none achieves video inference.
The impact of the playback speed is presented in Appendix D.

5.3.1 Impact of Recording Duration. We vary the duration of the
recorded video clip from 1 to 3 minutes, in increments of 30 seconds.
For each clip duration, we randomly record 100 clips. Figures 10a
and 10b present the inference performance in terms of the video
title and clip. We see from 60 to 120 seconds, the inference accuracy
proportionally increases with time, and it maintains high when
the duration is 120 seconds or above. When the recording period
reaches 2 minutes, the top-10 accuracy stays 100%, and the top-1
accuracy is above 93.7%. Some selected video clips have fewer subti-
tles due to scenes containing no subtitles (such as gunfight scenes).
The spatiotemporal feature of such a video clip may not be rich
enough to make the clip distinct, generating multiple candidates.
To achieve a desirable inference performance, we employ 2 minutes
as the recording period for the following discussion.

5.3.2 Impact of Recording Distance. A traditional shoulder surfer
must stay close (e.g., within 2 m) to the victim to directly observe
their screen, but this proximity is likely to raise suspicion [73]. To
avoid suspicion, we vary the recording distance from 3 to 8 m, in
increments of 1. For each recording distance, we randomly record
100 clips. Figure 11 shows the inference performance for different
recording distances. We see the inference accuracy remains high for
varying distances. Also, with the distance increasing, the average
top-1, top-5, and top-10 accuracy values for both video titles and
clips slightly decrease. When the distance is 7 m, the average top-1
accuracy values for video titles and clips both exceed 90%. Besides,
the top-20 and top-50 accuracy values are always 100%.

Long Recording Distance Tests: Unlike digital zoom, which
merely enlarges pixels without enhancing resolution, some smart-
phones feature optical zoom lenses that adjust the optics to bring
the target closer while preserving image clarity. We employ a Sam-
sung S23 Ultra smartphone with 10 times optical zoom [63]. Our
long-distance tests were conducted on a 40 m long corridor, as
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Figure 12: Inference accuracy in long recording distance tests.
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shown in Appendix E. We vary the recording distance from 20 to
40 m, in increments of 5, and perform 30 trials for each distance.
Figure 12 shows the obtained average top-𝑘 accuracy. We see that
the top-1 accuracy values for video titles and clips slightly decrease
with the recording distance but still exceed 92% even at a distance of
40 m. For both video titles and clips, the top-10, top-20, and top-50
accuracies stay at 100% across all distances; the top-5 accuracy is
near 100% when the distance ranges from 20 to 30 m and slightly
drops to about 97% when the distance equals 35 or 40 m.

5.3.3 Impact of Recording Angle. As shown in Figure 13, the op-
tical axis of the camera intersects the screen at point 𝑂 ; the angle
between the projection of the optical axis in the 𝑥𝑧-plane and the
vertical line (i.e., 𝑧 axis), which passes through the point𝑂 and also
is perpendicular to the screen, is referred as horizontal angle (𝜙);
the angle between the projection of the optical axis in the 𝑦𝑧-plane
and the vertical line is referred as vertical angle (𝜓 ). We vary 𝜙 and
𝜓 both from -60° to 60°, in increments of 30°. We maintain one of
two angles fixed and perform 100 trials of SilhouetteTell for each
value of the other angle, with each trial randomly recording a video
clip. Figures 14 and 15 present the corresponding average top-𝑘
accuracy. “Top-𝑘 , t” and “Top-𝑘 , c” refer to top-𝑘 accuracy for video
titles and clips, respectively. We see the top-𝑘 accuracy values for
video titles and clips are consistently high. This appears as there is
usually one video clip in a video emerging as the candidate. Also,
as the recording angle (𝜙 or𝜓 ) increases, the top-1 and top-5 accu-
racies for video titles and clips all slightly decrease. This is because
a larger recording angle may result in more distortion of subtitle
silhouettes, making the spatiotemporal features of the extracted
silhouette sequence less distinguishable and thus producing more
candidates. When |𝜙 | ≤ 30° or |𝜓 | ≤ 30°, SilhouetteTell achieves a
top-1 accuracy exceeding 91% for either video titles or clips. Besides,
the top-10, top-20, and top-50 accuracy values for all cases are 100%.

5.3.4 Impact of Recording Device. We experiment with three pop-
ular smartphones, Samsung Galaxy Z Fold4, iPhone 15 Pro Max,
and OnePlus 12 (referred to as Samsung, iPhone, and OnePlus, re-
spectively), and use each to randomly record 100 video clips. Other
factors (e.g., recording distance, angle, and resolution) maintain the
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Figure 15: Impact of vertical angles.
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Figure 16: Impact of recording devices.

same. Figure 16 shows the obtained inference accuracy. We see that
top-𝑘 accuracy values of all recording devices for video titles and
clips are consistently high, and there is no obvious difference in
attack performance among varying recording devices.

5.3.5 Impact of Watching Device. A victim may watch videos on
different devices, with varying screen and subtitle sizes.We test four
common watching devices, a mobile phone (Samsung S23 Ultra)
with a 6.8-inch screen, a tablet (iPad Pro) with a 12.9-inch screen, a
laptop (MacBook Pro) with a 16-inch screen, and a desktop with
a 23.8-inch ACER monitor. For each device, we randomly record
100 video clips. During recordings, we control all the rest factors
consistently. Figure 17 plots the resultant inference performance.
We see that for both video titles and clips, the top-1 and top-5
accuracy values increase with the screen size, while the top-10, top-
20, and top-50 accuracy values maintain 1. Particularly, when the
victim watches videos with a smartphone, our attack still achieves
top-1 accuracy of above 81% for inferring video titles or clips.

5.4 Overall Attack Impact
We perform 5 different attack trials for watching each video in the
built dataset, and thus have 5×3×100=1, 500 video clips in total.
For comparison, we also decode these blurry video clips with OCR,
CRNN, and ClipCap, and fail to extract any useful information.

We sort the movies in ascending order of the candidate video
title number, and for movies whose candidate video titles are the
same, we further sort them in ascending order of the candidate
video clip number. We then index the sorted movies from 1 to 300
in increments of 1. Figure 18 presents the corresponding average
numbers of video title and clip candidates when the victim watches
each movie. We see that the average video title and clip candidate
counts are consistently low (under 4.6). Particularly, there are 143
movies whose video title and clip candidate counts are both 1, indi-
cating that our attack can uniquely identify the video title and clip.
Figure 19 shows the average top-𝑘 accuracy across different stream-
ing services. We see that all top-𝑘 accuracy (𝑘 ∈ {1, 5, 10, 20, 50})
values for both video titles and clips are consistently high (above
91%). Also, there is no obvious performance difference for varying
streaming services. These results convincingly indicate that our
attack is robust against different movies and service providers. In
addition, we also examines the effects of video libraries of different
sizes, as presented in Appendix F.

Side-Channel Entropy Analysis: We use a subtitle silhouette
sequence within a 2-minute sliding time window as the analysis
unit to evaluate the entropy of the proposed subtitle silhouette

Table 1: False positive rates by duration in open-world setting
(“Avg." denotes average; “#" represents “number").

Duration
(sec)

# of FP
Clips

FP
Rate (%)

Avg. # of
Matched Clips

Avg. # of
Matched Titles

60 312 10.4 7.33 3.85
90 216 7.2 5.27 2.30
120 109 3.6 1.39 1.38
150 40 1.3 1.30 1.15
180 29 1.0 1.24 1.10

side channel. Let 𝑇𝑣 denote the total number of distinct subtitle
sequences. The corresponding 𝑇𝑣 subtitle silhouette sequences re-
sult in 𝑇𝑣 spatiotemporal vectors. By clustering the same vectors
into the same class, we obtainU unique classes. Consequently, the
subtitle silhouette sequence 𝑋 ’s entropy 𝐻 (𝑋 ) can be computed as
−∑U

𝑖=1 𝑃 (𝑥𝑖 )𝑙𝑜𝑔2𝑃 (𝑥𝑖 ), where 𝑃 (𝑥𝑖 ) represents the probability that
𝑋 = 𝑥𝑖 holds. From our dataset of 300 videos, we extract 731,228
unique classes of spatiotemporal vectors. The largest class contains
14,370 elements, while the smallest class contains only a single ele-
ment. Accordingly, the maximum entropy is log2 (14, 370) ≈ 13.81
bits, and the minimum entropy is 0 bits. Also, the average entropy
equals 2.58 × 10−5 bits, indicating low uncertainty and a highly
predictable structure in the subtitle silhouette side channel.

Open-World Scenario: We also investigate the performance of
SilhouetteTell in an open-world setting, where the target video is not
present in the fingerprint database. Specifically, we randomly divide
the 300 videos into 10 groups, each containing 30 videos. We then
iteratively use each group as the fingerprinting target set, while
the remaining nine groups serve as the open-world database. For
each target video, we randomly sample 10 clips at a given recording
duration, resulting in a total of 10 × 30 × 10 = 3, 000 clips per
duration. We consider five different recording durations, including
60, 90, 120, 150, and 180 seconds.

For each target clip, we find that the inference result is either
empty or consists of a list of clips from the open-world database. A
clip is considered a false positive if it matches any clip in the open-
world database. Table 1 presents the false positive rates and the
averagematched clips and titles for false positives in the open-world
setting. We observe that with the recording duration increasing, the
FP rate significantly decreases. For a recording duration of 60 sec-
onds, 312 out of 3,000 clips are incorrectly matched, resulting in a
false positive (FP) rate of 10.4%. As the recording duration increases
to 120 and 180 seconds, the FP rate decreases to 3.6% and 1.0%,
respectively. In addition, the average number of matched clips and
titles per false positive case also decreases with longer recording
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durations. These results indicate that increasing the recording du-
ration reduces the ambiguity in spatiotemporal patterns of subtitle
silhouettes, leading to lower FP rates.

In the closed world, SilhouetteTell achieves 90.9% top-1 accuracy
for clip recognition, indicating that for most library videos, Silhou-
etteTell can correctly recognize it, even when provided with only
a single candidate. Meanwhile, in the open world, with a record-
ing duration of 120 s, SilhouetteTell outputs a non-empty candidate
list for only 109 out of 3,000 clips that are not in the library, and
correctly determines that the remaining are absent from the library.

5.5 Controlled Experiments
We recruited 10 volunteers (U1-U10; aged 23-32 years old; 5 fe-
males and 5 males).1 We perform experiments in a cafeteria-like
environment, where people may walk around or move chairs. Each
participant was instructed to sit at a table and watch a movie from
the suspect library on a 16-inch MacBook Pro laptop. Two typical
cases are considered, as shown in Figure 20: (a) a general scenario
where there is no need to have the optical zoom and adjust it to
bring the target closer and we run SilhouetteTell on a Samsung
Galaxy Z Fold4 smartphone at a distance above 4 m behind the
victim; (b) a long-distance scenario, where we run SilhouetteTell
on a Samsung S23 Ultra smartphone and turn on 10 times optical
zoom towards the target at a distance of above 20 m away from the
victim, making the attack more difficult to be noticed by the victim.

Participants can freely adjust their sitting positions and choose to
pause, fast-forward, or rewind videos as usual. For each participant,
we performed 20 independent attempts with random video clips
selected by the participant. Similarly, for comparison, we utilize
OCR, CRNN, and ClipCap to process each recording and generate no
meaningful information related to the target video. We present the
results of SilhouetteTell to the participant, who determines whether
the watched clip is in the inferred list. For all trials, the target clip
is always in the inferred result. Figure 21 plots the CDFs of the
1This study has been reviewed and approved by our institution’s IRB.
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Figure 22: Average top-𝑘 accuracy in typical scenario.
numbers of obtained candidates per user for video titles and clips.
We see that the maximum numbers of candidates among all users
for video titles and clips are 13 and 14, respectively. Also, regardless
of users, the probabilities of uniquely inferring the target video
title and clip are both at least 75%. Figure 22 presents the inference
performance. We observe that our attack consistently achieves high
average top-1 and top-5 accuracies (above 83% and 97% respectively)
for all users in terms of video titles and clips; the average top-10,
top-20, and top-50 accuracies are all near or equal to 100%.

We have similar observations in the long-distance scenario: for
all users, the numbers of candidate video titles and clips range from
1 to 13, and from 1 to 15, respectively; the minimum average top-1
accuracies for video titles and clips are 88.9% and 88.6%, respectively.

Comparison with Baselines: For comparison, we evaluate the
performance of human attackers using the two baseline methods: (i)
Bare-eye recognition: 10 participants with normal or corrected-to-
normal vision (either unaided or with glasses) attempt to recognize
the videos from a distance of 40 meters, relying solely on their
vision. (ii) 10× zoom recognition: The same participants repeat the
above experiment using the 10× zoom lens of a Samsung Galaxy
S23 Ultra phone. In each trial, we randomly select a video from
the 300-movie dataset and play a 2-minute clip. Each participant
performs 30 attempts per above baseline. The results show that no
participant correctly identifies any movie under bare-eye or 10×
zoom conditions, yielding a 0% success rate for video identification.
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In addition, we also test a visual input attack, i.e., CNN-LSTM
based recognition. The CNN-LSTM hybrid architecture [27, 70] is
a well-established model for spatiotemporal visual understanding
tasks. We use the ResNet-50 network as the backbone of the spatial
feature extractor. The extracted spatial features are fed into an
LSTM layer to capture temporal dependencies. We fine-tune the
LSTM and final classification layers using our dataset of 300 videos.

To generate the dataset for building the model, we adopt a grid-
based multi-angle recording strategy. We vary the horizontal view-
ing angle across five settings (0°, ±30°, ±60°), and the vertical angle
similarly across five settings (0°, ±30°, ±60°), resulting in 25 distinct
camera viewpoints. Also, we vary the recording distance from the
target screen between 2 and 5 meters, in 1-meter increments. At
each spatial configuration (i.e., a unique combination of angle and
distance), we record each video once, yielding 100 recordings per
video. We then get 300×100=30, 000 recordings in total. We experi-
ment with varying the number of recordings per video. To increase
the dataset size, we randomly select 25 or 50 spatial configurations
and add one new recording at each, resulting in 25 or 50 additional
recordings per video. To reduce the dataset size, we similarly select
25 or 50 configurations at random and remove the existing record-
ings at those locations. This allows us to evaluate performance
under different dataset sizes of 50, 75, 125, and 150 recordings per
video. For each dataset size, we apply the standard 80:20 train-test
split to the data of each video, ensuring that the CNN-LSTM model
is trained with samples from all 300 videos (i.e., classes).

Figure 23 presents the obtained train and test accuracies of the
CNN-LSTM model. We see that both train and test accuracies im-
prove as the dataset size increases. With 100 recordings per class,
the model achieves 83.3% and 71.0% accuracy for training and test-
ing, respectively; increasing to 150 recordings per class raises these
to 91.0% and 81.0%. To evaluate the model’s performance for longer
recording distances, we record 20 different videos at distances of
6, 7, and 8 meters, respectively. The results show that inference
accuracy declines as recording distance increases. The top-1 accu-
racies at 6, 7, and 8 meters are 0.60, 0.35, and 0.25, respectively. This
decline is likely due to reduced spatial resolution and increased
noise at greater distances, which degrade the model’s ability to
extract meaningful features. These results demonstrate that the
CNN-LSTM model, when trained with sufficient data, achieves
high accuracy on configurations seen during training. However, its
performance drops significantly under unseen recording conditions.
Moreover, the data collection and training process is costly, which
further limits the model’s scalability.

For clip-level recognition, SilhouetteTell can achieve a top-1 ac-
curacy of 0.91, while when 150 recordings per class are used for
training, the top-1 accuracy for testing of CNN-LSTM attains is just

0.81. Meanwhile, with the recording distance increasing, the CNN-
LSTM degrades sharply (top-1 = 0.60/0.35/0.25 at 6/7/8meters). In
contrast, SilhouetteTell shows only a slight decline, achieving top-1
accuracies of 0.91, 0.90, and 0.87, respectively.

6 Discussions
6.1 Limitation

Necessity of Turning on Subtitles: SilhouetteTell does not
work for cases when the victim watches a video without subtitles
enabled. A recent survey shows that 50% of Americans, and par-
ticularly 70% of young viewers aged 18 to 25, watch content with
subtitles most of the time [51]. Also, subtitles are almost a prereq-
uisite for following videos with foreign language content or in a
noisy environment [67]. Our attack thus poses a serious practical
privacy threat.

Unknown Subtitle Files: SilhouetteTell builds a suspect video
library by downloading subtitles files and can only infer videos in
the built library. Our experimental scale is comparable to that in
most recent studies (e.g., [19, 35, 75]) but still limited. If the victim
watches a subtitled video that does not appear in the library, the
inference may fail. However, conducting larger-scale experiments
by pre-downloading or pre-extracting subtitle files of more videos
may further evidence the efficacy of SilhouetteTell.

6.2 Defense Strategies
6.2.1 Disabling Subtitles. Intuitively, to thwart SilhouetteTell, a
user may close subtitles, which, however, are necessary in many
cases, e.g., for translating foreign-language content. Also, disabling
subtitles may reduce viewing experience.

We randomly select 25 2-minute video clips and play each with
subtitles off. As no subtitle silhouettes appear in the recorded video,
SilhouetteTell fails to recognize the video title/clip across all trials.

6.2.2 Rendering Obfuscated Subtitle Silhouettes. We may confuse
the attacker by rendering the same or randomized subtitle silhou-
ettes. Currently, the shapes (e.g., line counts) of a video’s subtitles
display on the screen strictly following the video’s subtitle file.
We can pad each subtitle of a video frame with special characters,
which aims to prevent disclosing the original true subtitle silhou-
ettes. As a result, there is no confirmed correlation between a video
clip’s subtitles and the observed corresponding subtitle silhouettes.
SilhouetteTell would thus fail. This method, however, may increase
the complexity of rendering subtitles and also degrade the viewing
experience. To further mislead attackers, the video can generate
and insert fake subtitle silhouettes into frames that originally con-
tain no subtitles. These artificial subtitles are designed to appear
visually similar to real ones but do not contain meaningful text,
ensuring they do not impact user comprehension.

To evaluate this defense, we modify the original subtitle (.srt)
files by appending padding characters (“#”) at the end of each subti-
tle line. This ensures that every frame containing subtitles displays
two lines of subtitles, each consisting of 40 characters. This modifi-
cation preserves the readability of the subtitles while significantly
altering their visual appearance. As a result, the subtitles in the
recorded videos produce identical silhouette patterns, and Silhouet-
teTell consistently misclassifies these modified silhouettes, incor-
rectly identifying all randomly selected 25 video clips. Figure 24
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Figure 24: Illustration of padded subtitles.

shows the impact of subtitle padding. Without padding, the origi-
nal two frames contain one and two lines of subtitles, respectively,
resulting in distinguishable subtitle silhouettes in blurry record-
ings. In contrary, with padding, both blurry frames exhibit identical
subtitle silhouettes, effectively confusing SilhouetteTell.

6.2.3 Applying privacy screen protectors. Another defense is to use
privacy screen protectors (e.g., [16]) with special filters that allow
light to pass through from certain angles (e.g., narrow front angles),
which could be further blocked by the victim’s body. It would be
then difficult for the attacker to find a workable recording angle to
video-record clear subtitle silhouettes. However, putting privacy
films on screens would reduce the viewing quality for the victim,
as the screen’s brightness and color may be deteriorated. It also
requires the victim to cooperate to help block the angles fromwhich
the light is not filtered by the films and can pass through.

We evaluate a common privacy screen protector [14] on a 16-
inch MacBook Pro. This protector is designed to reduce screen
brightness and limit visibility beyond a horizontal viewing angle
of ±30°. When the attacker records from outside this range, the
captured video appears nearly black, rendering subtitle silhouette
extraction infeasible. In this setting, across 25 randomly selected
video clips, SilhouetteTell again consistently fails to identify the
correct videos. Figure 25 shows the privacy screen protector’s im-
pact. When the protector is in place, the screen becomes effectively
invisible from side angles, revealing no subtitle silhouettes.

6.3 Potential Extensions
While SilhouetteTell is specifically designed to leverage the spa-
tiotemporal feature of subtitle silhouettes, the underlying method-
ology can be generalized to other forms of on-screen text. For
instance, news tickers commonly appear as horizontally or verti-
cally scrolling text, typically located at the bottom or top of the
screen. By tracking the appearance frequency, shape, and position
of these text regions over time, we can construct spatiotemporal
fingerprints similar to those used for subtitles. Such fingerprints
can then be used for video identification.

7 Related Work
CV-based Text/image Recognition: By recognizing images or
text (e.g., subtitles) in a video, we may infer the video by con-
tent matching. Computer Vision (CV) based recognition methods
exploit the features from video data and achieve recognizing per-
sonnel or objects within images (e.g., [47, 61]). OCR and Scene Text
Recognition (STR) [25, 68] are two widely used methods for text
recognition. However, all of these methods require clear, detailed,
and high-quality recordings to extract text or images accurately,
rendering them incapable of handling scenarios when recordings

(a) Without a screen 
protector

(b) With a screen 
protector

Figure 25: Illustration of the privacy screen protector defense.

are blurred. On the contrary, our work is the first practical video
inference technique that can handle scenarios with blurring record-
ings when traditional CV-based methods fail.

Besides, analyzing reflections from nearby objects has been ex-
plored to recover sensitive content displayed on a screen [18, 57, 71,
72]. For example, [18] is one pioneering study to infer on-screen
content from blurred images, while it requires using an astronom-
ical camera that costs over 6,000 USD. In contrast, SilhouetteTell
works with a low-cost RGB camera. Meanwhile, [57] and [72] target
keystroke inference leveraging key pop-out events and fingertip
motion, respectively. These techniques study a different privacy
threat from ours. Also, [71] infers TV content by leveraging flicker-
ing patterns caused by brightness changes due to scene transitions.
However, this method is limited to nighttime conditions with no
ambient lighting and has only been evaluated on large displays
(24/30/50 inches). Conversely, SilhouetteTell has no such restrictions
and remains effective on small screens (e.g., 6.8 inches).

Traffic Analysis based Video Inference: There have been ex-
tensive studies using traffic analysis to infer videos. Different videos
may thus result in distinct traffic patterns. In general, traffic-assist
video inference attacks can be divided into the following categories
according to the source of traffic. (1) Wired-based: the attacker
may hack the router that the victim connects and then connect to
the router through an Ethernet cable for traffic sniffing [35, 75].
(2)WiFi-based: the attacker may connect to the same WiFi as the
victim to capture wireless traffic [28, 46]. (3) Cellular-based: re-
cent studies (e.g., [19, 43]) also show success in achieving video
identification by collecting and analyzing LTE traffic. In contrast,
our attack does not rely on traffic for video inference and works
regardless of whether the victim watches videos online or offline.

8 Conclusion
We propose SilhouetteTell, a novel and practical video inference
technique, with the following advantages over previous methods.
(1) Non-invasive: there is no need to pre-infect the victim’s device
with malware. (2) Traffic-independent: it works for both online and
offline video streaming. (3) No user-specific training is needed: no
labeled data is needed from the victim and it can handle cases when
traditional text/image recognition algorithms fail. (4) It requires
no close proximity: it can be launched several meters, even tens of
meters, away from the target. SilhouetteTell is the first to identify and
build the spatiotemporal correlation between the captured blurry
video frames and embedded subtitles. Our extensive evaluation
on top of off-the-shelf smartphones verifies that SilhouetteTell can
achieve high accuracy in identifying video titles and clips that the
victim is watching from a distance of up to 40 meters.
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Table 2: Average top-𝑘 accuracy for video titles and clips
(referred to as “T" and “C") vs. recording resolution.

Resolution Top-1 Top-5 Top-10 Top-20 Top-50
T C T C T C T C T C

4k 0.953 0.953 0.995 0.995 1.0 1.0 1.0 1.0 1.0 1.0
1080p 0.937 0.937 0.995 0.995 1.0 1.0 1.0 1.0 1.0 1.0
720p 0.903 0.901 0.995 0.994 1.0 1.0 1.0 1.0 1.0 1.0

A Subtitle Data Crawling
We can directly copy the URL of a YouTube video to web applica-
tions such as DownSub [4], and then download its subtitles. We
can also write a script to automatically get the subtitles for a given
YouTube video using a PythonAPI (i.e., youtube-transcript-api [13]).
Besides, the following steps can be performed to obtain subtitle
files from Amazon Prime Video and Netflix: (1) open DevTools (i.e.,
a set of web developer tools) from Chrome menus [21]; (2) in the
Network tab, filter “.ttml2" (for Amazon Prime Video) or a string
“?o=" (for Netflix) when playing a video online; (3) capture subtitle
files from the returned results and further convert them into .srt
files via a subtitle converter tool (e.g., [10]).

B Silhouette Extraction Comparison
Figure 26 compares coarse and refined silhouette extraction meth-
ods in dealing with five different cases, where coarse silhouette
extraction fails while refined silhouette extraction manages to gen-
erate correct recognition results. In cases 1-3, coarse silhouette
extraction makes errors in recognizing silhouette width, height,
and both width and height, respectively; in cases 4-5, the input
frames have no subtitles, while coarse silhouette extraction incor-
rectly recognizes interference shapes as subtitle silhouettes.

C Impact of Recording Resolution
Usually, external subtitles (e.g., SRT files) of a video are independent
and separate from the video, and their resolution (i.e., quality) will
not change with the resolution of the video being played. Therefore,
if the video resolution changes, the silhouettes of the subtitles of this
video may not change accordingly. On the contrary, the adversary
may utilize different resolutions to do recording, capturing silhou-
ettes that may have inconsistent clarity. We consider three typical
recording resolutions for the recording device (Samsung Galaxy Z
Fold4): 720p (1280×720), 1080p (1920×1080), and 4k (3840×2160).
For each resolution, we randomly record 100 video clips.

Table 2 presents the top-𝑘 accuracy for inferring video titles
and clips under different recording resolutions. We can see our
attack can consistently obtain pretty high (above 90%) inference
performance. Particularly, the top-10, top-20, and top-50 accuracy
values are always 1 regardless of the recording resolution. Also, with
the resolution decreasing, the top-1 accuracy slightly decreases,
and top-5 accuracy almost maintains a high value (i.e., 99.5%).

D Impact of Playback Speed
We test four different playback speeds: 0.5×, 1.0×, 1.5×, and 2.0×.
For each playback speed, we randomly record 100 2-minute video
clips while keeping other factors (e.g., recording distance, angle, and
resolution) consistent. Figures 27 present the resultant inference
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Figure 26: Comparison of extraction results between coarse and refined silhouette extraction.
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Figure 27: Impact of playback speed.

Blurry subtitles

40 m

Figure 28: Recording the target across the 40 m corridor.

performance. We observe that for both video titles and clips, the top-
1 and top-5 accuracy values slightly increase as the playback speed
increases, while the top-10, top-20, and top-50 accuracy values
remain at 100%. This improvement mainly results from an increase
in the length of the obtained subtitle vector at higher playback
speeds, which reduces the number of candidates. Particularly, the
top-1 accuracy for video titles ranges from 93.3% to 95.7% regardless
of the playback speed.

E Long-distance Testing Environment
Figure 28 shows our long-distance testing environment.

F Scalability Analysis
Scalability Analysis In existing video inference studies [19, 35,
59, 75], the number of videos used typically ranges from 100 to 300.

(a) Video titles (b) Video clips

Figure 29: Average top-k accuracy vs. library size.

Due to the widespread availability of subtitle files, SilhouetteTell can
easily expand its video database for matching. We examine the ef-
fects of video libraries of five different sizes: 300, 600, 900, 1,500, and
2,100. Accordingly, we randomly select 100, 200, 300, 500, and 700
videos from each video provider. The video durations range from
24 to 242 minutes. Figure 29 (a) and (b) illustrate the corresponding
average video titles and clips inference accuracy. We observe that
increasing the library size does not significantly impact inference
accuracy. Particularly, the top-1 and top-20 accuracy values remain
above 85% and 96%, respectively, across all video library sizes.
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