
Securing Private Federated Learning in a Malicious Setting: A
Scalable TEE-Based Approach with Client Auditing

Shun Takagi
∗

LY Corporation

Japan

shutakag@lycorp.co.jp

Satoshi Hasegawa

LY Corporation

Japan

satoshi.hasegawa@lycorp.co.jp

Abstract
In cross-device private federated learning, differentially private

follow-the-regularized-leader (DP-FTRL) has emerged as a promis-

ing privacy-preserving method. However, existing approaches as-

sume a semi-honest server and have not addressed the challenge

of securely removing this assumption. This is due to its stateful-

ness, which becomes particularly problematic in practical settings

where clients can drop out or be corrupted. While trusted execu-

tion environments (TEEs) might seem like an obvious solution, a

straightforward implementation can introduce forking attacks or

availability issues due to state management. To address this prob-

lem, our paper introduces a novel server extension that acts as a

trusted computing base (TCB) to realize maliciously secure DP-

FTRL. The TCB is implemented with an ephemeral TEE module

on the server side to produce verifiable proofs of server actions.

Some clients, upon being selected, participate in auditing these

proofs with small additional communication and computational

demands. This extension solution reduces the size of the TCB while

maintaining the system’s scalability and liveness. We provide for-

mal proofs based on interactive differential privacy, demonstrating

privacy guarantee in malicious settings. Finally, we experimentally

show that our framework adds small constant overhead to clients

in several realistic settings.

Keywords
differential privacy, federated learning, malicious security

1 Introduction
Cross-device Private Federated Learning (PFL) has recently gar-

nered significant attention as a privacy-preserving learning frame-

work across distributed clients’ data [22, 43, 84]. In a typical cross-

device PFL setting, a single central server (referred to simply as a

server hereafter) aims to train a unified machine learning model by

collecting model updates instead of raw data from numerous light-

weight clients. To provide a provable guarantee that privacy leakage

from model updates is bounded, a differential privacy (DP) [31]

mechanism injects noise into the (aggregated) updates.

The FL systems should be designed to uphold key privacy princi-

ples [14, 39]. DP supports this goal by enforcing data minimization

∗
Corresponding author.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2026(1), 486–508
© 2026 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2026-0025

and anonymization. However, many current DP FL methods lack

mechanisms to ensure transparency, verifiability, and auditability

from the clients’ perspective [25]. That is, they heavily rely on the

assumption that the server behaves honestly. A dishonest server or

an external attacker (i.e., an adversary) might gain sensitive infor-

mation more than clients expect, without their awareness, causing

the DP guarantee to fail.

To address this gap, we adopt a malicious adversarial model (i.e.,

the Dolev-Yao model [29]) rather than the weaker semi-honest

model. A semi-honest adversary correctly follows the protocol spec-
ifications but attempts to glean sensitive information from the

execution. A malicious adversary, however, poses a greater threat
as they are not bound by the protocol; they can deviate from it arbi-

trarily, which includes corrupting the server or a subset of clients.

Among the various DP approaches, methods based on differ-

entially private stochastic gradient descent (DP-SGD) [1], such

as DP-FedAvg [59] and DP-SCAFFOLD [67], have been widely

used. Extensive research has focused on making these methods at

least partially secure in settings with an untrusted server. Secure

Multiparty Computation (SMPC) [13] can ensure the secure ag-

gregation of updates and can be adapted for PFL, such as through

distributed differential privacy [2, 45]. However, these methods as-

sume the honesty of clients, and corrupted clients—such as in Sybil

attacks [30]
1
—can reduce the noise added for privacy. Moreover,

achieving essential privacy amplification with subsampling [1]

requires complex random device sampling protocols, which are

challenging to securely implement in a distributed environment

(e.g., relying on non-colluding servers [76]). Another approach,

shuffling [36], involves client-side perturbation and anonymiza-

tion [34] of updates. Shuffling is also susceptible to Sybil attacks,

compromising the privacy of remaining clients’ updates if a large

number of clients are corrupted [47]. Additionally, shuffling often

results in a worse utility-privacy trade-off or higher communication

costs compared to other methods [8].

That is, these approaches require subsampling [1] or shuffling [34]

of updates, which are difficult to implement effectively in malicious

settings. Even in semi-honest settings, these approaches are im-

practical in a cross-device environment since the server has lim-

ited control over the subset of training data it encounters at any

time [47]. In this context, DP-FTRL (Differentially Private Follow-

the-Regularized-Leader) [46] has emerged as an alternative to DP-

SGD-based methods, eliminating the need for such techniques.

Moreover, recent studies have demonstrated, both theoretically and

1
In this paper, we define Sybil attacks as scenarios where an adversary controls multiple

client identities (i.e., Sybils) by possessing their secret keys, which allows a portion of

the clients to collude under the adversary’s direction.

486

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2026-0025

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

empirically, that DP-FTRL may offer a better privacy-utility trade-

off than DP-SGD [18, 19]. Therefore, DP-FTRL appears promising

for PFL in malicious settings.

However, implementing DP-FTRL in malicious environments

introduces new challenges due to its stateful nature [25]. Unlike

DP-SGD, which aggregates updates with DP independently in each

round, DP-FTRL requires maintaining state throughout the training

process, leading to a more complex server implementation that is

difficult to verify for clients. Specifically, DP-FTRL requires two

steps for planning and aggregation that takes previous rounds into

account. During the planning phase, the server selects a new set of

participants, referred to as a cohort, based on the clients’ participa-

tion history to manage privacy leakage by bounding contribution.

In the aggregation phase, the server integrates the cohort’s up-

dates with noise that is correlated with noise used in earlier rounds,

reducing the total noise required.

Recent work [7, 12] has attempted to bridge this gap by proposing

SMPC for such noise, but this relies on the assumption that the

planning phase honestly determines the majority cohort. These

approaches do not effectively protect against a malicious server that

can freely select corrupted clients (i.e., Sybils) during the planning

phase to conduct Sybil attacks. Notably, a malicious server could

exploit the planning phase with Sybils to repeat an iteration with

different cohorts to uncover previous noise from correlations, thus

recovering raw past updates. Since clients cannot detect repeated

iterations due to changes in cohorts, preventing such attacks is

impossible without communication. Consequently, achieving DP-

FTRL in a malicious setting remains a challenging issue.

Contributions
Problem Formulation. To address this challenge, we begin research

on developing a maliciously secure system long-running FL with

DP-FTRL that supports adaptive
2
client participation. We pose the

following research question:

What constitutes ideal security for a maliciously secure DP-FTRL
system for long-running FL involving lightweight devices that can

drop out, and how can we achieve it at a low cost?

To formalize this problem, we adopt interactive DP [79] in a

distributed manner. The (𝜀, 𝛿)-interactive DP framework assumes

only predefined client algorithms, while the server protocol can

be arbitrary. This ensures that any server protocol concurrently

interacting with client algorithms (i.e., star topology) cannot infer

distributed data beyond what is guaranteed by (𝜀, 𝛿)-DP. Therefore,
this formalization accurately reflects our malicious setting.

As described above, DP-FTRL needs to manage its state through-

out the execution process. Therefore, we envision the set of client

algorithms as a concurrent system that maintains a shared object

with all clients, representing the state, such as participation history.

In this framework, we view DP-FTRL as a series of sequential oper-

ations composed of two key steps on the concurrent system with

consistent state: planning with consistent participation history and

2
Adaptivity is crucial because a static client selection strategy risks losing large

amounts of data due to client dropouts, which can severely degrade model qual-

ity. Furthermore, in applications where users adaptively gather data, those who have

collected data should participate [43].

Figure 1: The process overview of each round of our system.

secure aggregation with consistent noise. Within the concurrent sys-

tem, these two steps constitute a process initiated by a (potentially

malicious) server, which updates the shared object.

Since breaking consistency can lead to privacy leaks as men-

tioned above, a necessary condition for the concurrent system to

satisfy interactive DP is to maintain process consistency with re-

spect to the shared object, ensuring that a malicious server cannot

complete any process that compromises this consistency. Thus,

we focus on ensuring the consistency of the concurrent system.

Specifically, the system must uphold:

• Integrity: The process loads the shared object and adhere

to the intended protocol (i.e., secure aggregation with the

correct clients and correct noise).

• Linearizability [38]: The history of concurrent processes is

equivalent to a history of sequential processes with respect

to the shared object (i.e., participation history and noise

added in the past rounds).

Implementing a linearizable system in a malicious environment

requires global consensus (involving all clients) at each iteration,

which is prohibitively expensive for large-scale FL. Without global

consensus, fork linearizability is the strongest consistency that can

be achieved [58], but it is not sufficient for DP-FTRL because it

still permits the aforementioned Sybil attack. Instead, we rely on a

probabilistic linearizability guarantee, which is sufficient for our

purpose.

Proposed Method. To address the aforementioned problem, we in-

corporate Trusted Execution Environments (TEEs), which are gain-

ing attention as future solutions for secure infrastructure [5, 33, 72]

in private data analytics, including FL infrastructure
3
[25, 87]. Al-

though this paper focuses on Intel SGX [21] as a concrete example

of a TEE, our method is applicable to any TEE that supports at-

tested execution [70]. While running the entire FL logic within a

TEE could serve as a potential solution, functioning as a trusted

third party, naive designs are susceptible to forking attacks on the

TEE-managed state [82], which breaks the consistency.

To tackle this issue, we propose a novel system that integrates

TEEs with client auditing. Figure 1 illustrates the overview of our

system during each update. (1) For each round, the server feeds

3
https://research.google/blog/advances-in-private-training-for-production-on-

device-language-models/

487

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

Table 1: Comparison of TEE-based systems for stateful applications. Our approach achieves consistency and liveness guarantees
with a small TCB and without requiring external trusted hardware.

Approach Consistency Liveness No External Trusted Hw. Formal Verification TCB Size

TEEs without sealing ✓ × ✓ n/a Small

TEEs with sealing × ✓ ✓ n/a Small

SMR on TEEs without sealing [4, 40, 57] ✓ ×† ✓ n/a Medium

SMR on TEEs with sealing [66, 81] ×‡ ✓ ✓ n/a Large

TEEs + external trusted hardware [75] ✓ ✓ × ✓ Small

Ours ✓* ✓* ✓ ✓ Small

* Ours provides probabilistic guarantees; These properties hold with high probability, failing only with a small chance (e.g., 10
−8
).

† Liveness is achieved under the assumption that a majority of TEEs do not experience faults (i.e., disaster).

‡ Consistency is achieved under the assumption that a majority of TEEs remain uncompromised by adversaries.

n/a: Not addressed or not available in the literature.

the current system state, along with the arguments for secure ag-

gregation, into the TEE. (2) Upon successful client auditing of the

state within the TEE with remote attestation, the TEE generates

proofs of integrity and linearizability. (3) These proofs, bundled

with the newly validated state, are then saved to untrusted storage.

(4) Then, the secure aggregation process within the TEE with the

input arguments is completed only after clients have successfully

verified it. Should an adversary attempt a fork or rollback attack by

inputting a fraudulent state, the client-side verification would fail,

thus preventing the secure aggregation from executing.

However, guaranteeing linearizability poses a significant hurdle,

as it would still necessitate consensus among all clients. A malicious

server could otherwise exploit any set of corrupted auditors to ap-

prove a proof that violates consistency. Our system mitigates this

vulnerability by employing randomized auditing. In each round, a

random subset of clients is tasked with auditing the server’s proof,

which makes it infeasible for an adversary to ensure its colluders

are selected. As a result, the probability of a forged proof being

successfully validated becomes small (e.g., 10
−8
). Consequently, our

protocol forgoes a linearizability guarantee in favor of a probabilis-

tic one, with a failure rate small enough for practical applications.

This system acts as an extension to the existing FL system, where

the server merely appends proof to an original message, which each

client verifies. Moreover, the additional computation and commu-

nication costs for the client are constant and small, enabling the

system to preserve the scalability and liveness of the original ar-

rangement.

Related Work. While TEEs provide a powerful primitive for attested

execution—conceptually abstracted as Grollback

att
[11], they are not

known to offer a self-contained solution for preventing rollback

attacks. One strategy to this problem avoids TEE sealing capabili-

ties, reducing the TEE to a stateless primitive (i.e., Gatt [70]) that
ensures consistency at the cost of liveness. Another major strat-

egy augments the TEE with an external source of trust, such as an

external hardware monotonic counter like Trusted Platform Mod-

ule (TPMs). In Table 1, we compare our proposed system against

these existing approaches based on five key properties important

for secure, long-running FL with DP-FTRL on TEEs in a malicious

setting.

First, the most straightforward TEE-based implementations ei-

ther forgo state persistence or use native sealing. An implemen-

tation without sealing maintains consistency and a small trusted

computing base (TCB) (i.e., the small size of code in the TEE, which

reduces the need to implicitly trust its correctness) but fails to pro-

vide liveness; the state is irrevocably lost if the TEE instance crashes.

Conversely, an implementation with sealing ensures liveness by

persisting the state to untrusted memory, but it becomes vulnera-

ble to forking and rollback attacks [82], thus failing to guarantee

consistency.

Recent work has sought to address both consistency and liveness

by implementing State Machine Replication (SMR) across multiple

TEEs. Systems like Engraft [81] and Narrator [66] achieve con-

sistency, but their guarantees rely on an honest majority of TEE

replicas. This assumption does not hold in our threat model, where

an adversary may control (e.g., rollback) the majority of nodes.

Nimble [4], CCF [40], and ROTE [57] operate under a threat

model similar to ours. They provide consistency even in the pres-

ence of a malicious majority, not by relying solely on sealing APIs

for node recovery, but by leveraging consensus among the live

nodes. However, this design choice means they cannot guarantee

liveness in the face of catastrophic failures (e.g., a crash of the ma-

jority of TEEs). Furthermore, these systems inherit the complexity

of SMR protocols inside TEEs, leading to a large TCB, which is unde-

sirable according to the principles of TEEs [6]. As a result, formally

verifying their security is challenging
4
, and complex in-enclave

implementations are more susceptible to bugs. Indeed, vulnerabili-

ties related to consistency have been discovered in some of these

systems [66, 81].

Another line of work combines TEEs with additional trusted

hardware components (e.g., TPMs) external to the TEE to enforce

state integrity [69, 75]. These solutions are often simple, formally

verifiable, and feature a small TCB. However, they depend on the

availability of specialized hardware or a trusted monotonic counter,

and securely integrating it with a TEE can be challenging. For ex-

ample, the SGX-native monotonic counter is now deprecated, and

combining SGX with an external TPM is susceptible to man-in-the-

middle attacks like the Cuckoo attack [68], where a TEE is tricked

4
Nimble [4] made considerable efforts in this area but did not fully verify functions

such as reconfiguration. https://github.com/microsoft/Nimble/issues/6

488

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

into communicating with a remote, adversary-controlled TPM in-

stead of the local one, allowing forking attacks. The vulnerability

arises because, as explicitly described in the paper [75], the method

requires the TEE to be locally bound (i.e., on the same machine) to

the TPM to prevent forking attacks. However, an enclave cannot

verify this local binding due to the threat of the Cuckoo attack. A

proposed countermeasure, verifying adjacency by measuring com-

munication timing as proposed by Fink et al. [35], is ineffective in

our setting, which may involve high-speed networks like a LAN.

Therefore, establishing a truly secure and trusted channel between

a TEE and a TPM has another challenging problem.

Conceptually, our method for achieving consistency is analogous

to TPM-based solutions. However, instead of relying on external

trusted hardware, our system leverages client auditing. This ap-

proach inherits the benefits of a simple and small TCB, enabling

formal verification. It provides recovery from fault (i.e., liveness)

and requires only a single TEE-enabled server, thereby reducing

management overhead. More general related work is provided in

Appendix C.

Contributions. In summary, our proposed system realizes DP-FTRL

with the following desired characteristics:

• Privacy: Our approach preserves interactive DP (i.e., DP un-

der the malicious setting). Smaller reliance on TEE (i.e., small

TCB size) reduces security risks and enhances verifiability.

• Availability: Our system retains its standard resilience to

dropouts—training can continue even if some devices be-

come nonresponsive, and it is possible to recover from crashes

(i.e., liveness). A malicious client cannot halt the system via

fraudulent audits.

• Scalability: Clients perform only constant lightweight audit-

ing, incurring small computation and communication over-

head. The system operates with large-scale clients that can

drop out and progresses multiple processes concurrently.

Outiline. The remainder of this paper is structured as follows. In

Section 2, we provide the necessary background on key concepts,

including TEEs, DP-FTRL, and the security models we employ. We

then formalize our problem in Section 3, defining the requirements

for a maliciously secure DP-FTRL system in terms of integrity and

linearizability, and introduce our simulation-based proof frame-

work. Section 4 details the core design of our proposed system. We

provide a thorough analysis of our system in Section 5, covering its

privacy guarantees, liveness under client dropouts, scalability, and

guidance on parameter selection. In Section 6, we present experi-

mental results that demonstrate the practical performance of our

system, focusing on the trade-offs between communication cost,

security, and liveness, as well as the concrete overhead of our im-

plementation. We discuss side-channel attacks and implementation

challenges in Appendix A and situate our work within the existing

literature in Appendix C.

2 Preliminaries
In this section, we review some key concepts and frameworks rele-

vant to our proposed method, including Trusted Execution Environ-

ments (TEEs), Differentially Private Follow-the-Regularized-Leader

(DP-FTRL), the concurrent system model, and security notions.

2.1 Trusted Execution Environments (TEEs)
Although this paper focuses on Intel SGX [21] as a concrete example

of a TEE, our method is applicable to any TEE that provides attested

execution [11, 70] like AMD SEV-SNP [3] (i.e., confidentiality and

integrity of execution). Below, we offer a high-level overview and

refer the reader to [24] for more intricate details.

2.1.1 Enclaves. TEEs utilize trusted hardware to provide isolated

environments known as enclaves. Enclaves protect memory by

restricting access, thereby ensuring data confidentiality from unau-

thorized processes, including the operating system. Enclaves can

produce an attestation report, which we call evidence. This report

typically includes a hash of the running code (to verify its integrity),

additional data related to the enclave’s execution, and a signature

using a key endorsed by the TEE manufacturer. In this paper, an

enclave can be seen as an entity with functions that generate evi-

dence. Due to confidentiality guarantees, only the final evidence is

visible. Moreover, enclaves can generate a secure nonce valid for

the duration of the function’s execution to thwart replay attacks.

Sealing. Enclaves are volatile but can be made persistent through

sealing. Specifically, they can securely encrypt and store states

outside the enclave, allowing replication by an enclave with the

same binary.

2.1.2 Remote Attestation. The signature in the evidence allows a

remote party to verify that the evidence was generated by a genuine

enclave running on authentic TEE hardware. A client can authenti-

cate this evidence through various methods, including certificate

chains or contacting an attestation service. The included hash of

the code and computation results enable clients to affirm integrity.

2.1.3 Secure Aggregation. TEEs can perform secure aggregation

of distributed data 𝑥𝑖 [16, 41, 48], enabling computation of

∑𝑛
𝑖=1 𝑥𝑖

without exposing individual values 𝑥𝑖 to a potentially malicious

server. Compared to SMPC [13], which provides similar function-

ality, TEE-based secure aggregation requires smaller client-side

operations, maintains constant complexity, and offers the flexibility

to add complex noise without Sybil attacks. The core idea is using

an enclave as a trusted computing entity through remote attestation.

Each client sets up a secure channel to the enclave using the Diffie-

Hellman key exchange protocol. Client 𝑖 generates a symmetric key

to encrypt 𝑥𝑖 and then transmits this symmetric key securely to

the enclave. Since loading large data (i.e., encrypted model parame-

ters) into an enclave can be time-intensive, methods such as stream

ciphers [48] like homomorphic one-time pad [41] can enhance

efficiency. See Section B.3 of [41] for a detailed methodology.

2.2 Threat Model
We consider a system comprising 𝑛 + 1 parties: one server and 𝑛
clients. The server has significant computational resources. Each

client holds private input data 𝑥 and a pair of private and public

keys. Clients can only communicate with the server, reflecting a

star network topology. These clients are lightweight and can drop

out, meaning they may have limitations in connectivity, bandwidth,

and computational power.

An adversary aims to compromise the privacy of clients’ sensi-

tive values. We adopt the Dolev-Yao model [29] as our model of the

489

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

malicious adversary. That is, an adversary can eavesdrop on all com-

munication, inject messages, and corrupt parties by obtaining their

private keys. However, the adversary cannot break cryptographic

primitives, in this paper, digital signatures, nonces, Diffie-Hellman

key exchanges, and the symmetric encryption.

In our threat model, we include a fixed server and clients listed

in a public key list, assuming the following conditions with 𝛾, 𝜅, 𝛽 ∈
[0, 1]:
• The adversary can corrupt the server and a fraction 𝛾 of all
clients. The compromised clients are fixed.

• At any given time, at least a fraction 𝜅 of all clients are
available, with this availability being variable.

• A fraction 𝛽 of all available clients may drop out, failing

to fulfill their roles in the protocol.

This model specializes the (𝛾, 𝛽) secure federated MPC para-

digm [7], tailoring it to more realistically account for the fraction

of all clients rather than just any single cohort. No party, apart

from an adversary, can distinguish corrupted clients. No party can

discern which clients will drop out.

We presuppose a trusted Public Key Infrastructure (PKI). While

clients do not communicate with each other directly, they leverage

the PKI to validate the public key list. Specifically, a client sends a

hash of a client list to the PKI, and the PKI certifies whether the list is

valid. A valid list is one where the proportion of malicious clients is

at most𝛾 and the total number of clients is above a certain threshold.

This circumscribed role for the PKI reduces our dependency on it

compared to other SMPC frameworks [7, 13].

We assume that enclaves provide confidentiality and integrity

as described in Section 2.1.1. Thus, vulnerabilities against TEEs,

such as side-channel attacks, are out of scope; however, a detailed

discussion about side-channel attacks on our system is provided in

Appendix A.1.

2.3 Concurrent System
In the threat model outlined above, we consider a distributed con-

current system of clients working cooperatively with a server, all

operating on a single object with one type of operation. Generally,

an operation is denoted as <q op(args) A><OK(response) A>,
where A is the process name, op is the type of operation, args is the
list of arguments, and 𝑞 is the object. OK indicates the completion

of process A and outputs the response.

For example, let 𝑞 be an ordered list, and consider an oper-

ation that appends an element 𝑎 to this list, outputting the re-

sult of 𝑓 (𝑞, args). This could be denoted as <q append(a, args)
A><OK(f(q, args)) A>with some given function 𝑓 and arguments

args. In the concurrent system, processes are invoked concurrently,

meaning that process B can complete before process A, even if

process A was invoked prior to process B.

2.3.1 Integrity and Linearizability. The properties of the concurrent
system that we focus on are integrity and linearizability.

Integrity of execution. Integrity is the property that each individ-

ual operation behaves according to its specification. For the above

example, given a object 𝑞, element 𝑎, and arguments args for a

function 𝑓 , a system with integrity correctly appends 𝑎 to 𝑞 and

computes and returns the result of 𝑓 (𝑞, args). This implies that

the object’s state, the arguments, and the operation itself are not

tampered with, and the computation is performed as intended.

Linearizability [38]. Linearizability is a correctness condition for

concurrent objects which ensures that each process appears to take

effect instantaneously at some point between its invocation and

response. If a concurrent system respects linearizability, it ensures

that the result of concurrent processes is equivalent to a result of

sequential processes that are produced by the system that satisfies

integrity and respects real-time precedence ordering. See [38] for

the more formal definition. For instance, consider 𝑓 as a function

that outputs 𝑞:

• If a system produces <q append(a_1) A> <q append(a_2)
B><OK([a_1, a_2]) B> <OK([a_1]) A>, it respects lineariz-
ability; this is consistentwith <q append(a_1) A><OK([a_1])
A><q append(a_2) B><OK([a_1, a_2]) B>.
• However, a system that produces <q append(a_1) A><q
append(a_2) B><q OK([a_2]) B><q OK([a_1]) A> does

not, because the output of process B does not account for the

update made by A, and thus it is not equivalent to a result

of any sequential processes.

• Also, a system that produces <q append(a2) B> <OK([a1,
a2]) B> <q append(a1) A><q OK([a_1]) A> does not

respect linearizability. Here, B completes before A invokes,

establishing a real-time order where B precedes A. However,

B’s response depends on A’s input, requiring A to precede

B in any sequential explanation. This contradiction violates

the real-time precedence condition.

Unfortunately, under the threat model described in Section 2.2,

achieving linearizability is infeasible without the agreement of all

clients in each process. The strongest consistency notion achievable

under these conditions is captured by fork-linearizability [53, 58].

However, this is insufficient for DP-FTRL as it remains vulnerable

to the Sybil attack mentioned in Introduction. Instead, we rely on a

probabilistic linearizability guarantee, which is sufficient for our

purpose.

2.4 Interactive Differential Privacy (Interactive
DP)

DP provides a privacy framework for randomized mechanisms

that release outputs [32, 77]. It measures how close the probability

distributions of a mechanism’s outputs are when applied to two

adjacent datasets. The definition of adjacency is crucial. While it can

be broadly defined by the addition/removal of a single user’s record,

in the context of FL where the participants are fixed, we adopt a

more specific definition known as zero-out adjacency [19, 46]. In

this setting, two datasets 𝐷 and 𝐷 ′, which are multisets over a data

universe X, are called adjacent if they differ in the participation of

a single client. Here, the participation means containing the client’s

true contribution, while in the other, that contribution is replaced

with a vector of zeros to represent the client’s non-participation.

Definition 2.1 (Differential Privacy [31]). For 𝜀, 𝛿 ≥ 0, a random-

ized mechanism 𝑀 : X𝑛 →Z is (𝜀, 𝛿)-differentially private if for

every pair of adjacent datasets 𝐷, 𝐷 ′ ∈ X𝑛
and all subsets 𝑇 ⊆ Z,

the following holds:

Pr[𝑀 (𝐷) ∈ 𝑇] ≤ 𝑒𝜀 · Pr[𝑀 (𝐷 ′) ∈ 𝑇] + 𝛿
490

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

where the randomness is over the internal coin flips of the algorithm

𝑀 .

Recently, the concept of interactive DP [78] was developed to

handle scenarios where multiple DP mechanisms operate concur-

rently. Originally, this was explored in a centralized DP context,

where a single party holds all sensitive data, to examine properties

like the concurrent composition theorem [79]. In our setting, we

consider the distributed setting of DP, where each client manages

their own data [9]. Note that we do not require each mechanism to

meet the criteria of local DP [49], instead focusing on interactive

DP.

Here we present interactive DP applicable to our context. We

focus on an interactive protocol 𝑆 for the concurrent composition

of client mechanisms𝑀1, 𝑀2, . . . , 𝑀𝑛 , where 𝑀𝑖 has sensitive input

𝑥𝑖 for 𝑖 ∈ [𝑛], denoted by 𝑀 = ConComp(𝑀1, 𝑀2, . . . , 𝑀𝑛) [79].
Within this interactive protocol, 𝑆 can send messages to any client

(i.e., 𝑖 ∈ [𝑛]) and receive responses from𝑀𝑖 . Each party can store

received messages for crafting future responses. The view of the in-

teractive protocol, View⟨𝑆,𝑀 (𝐷)⟩, is defined as the sequence ofmes-

sages that 𝑆 receives from𝑀1, 𝑀2, . . . , 𝑀𝑛 , where𝐷 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈
X𝑛

. For a more formal definition, see [78].

Interactive DP is defined as follows:

Definition 2.2 (Interactive Differential Privacy [78]). A random-

ized algorithm𝑀 is an (𝜀, 𝛿)-differentially private interactive mech-

anism if, for every pair of adjacent datasets 𝐷, 𝐷 ′ ∈ X𝑛
, for ev-

ery adversary algorithm 𝐴, and for every possible output set 𝑇 ⊆
Range (View⟨𝐴,𝑀 (·)⟩), the following holds:

Pr [View⟨𝐴,𝑀 (𝐷)⟩ ∈ 𝑇] ≤ 𝑒𝜀 Pr [View⟨𝐴,𝑀 (𝐷 ′)⟩ ∈ 𝑇] + 𝛿
where the randomness is over the internal coin flips of both the

algorithm𝑀 and the adversary 𝐴.

Simulation Based Proof. Proving interactive DP is not straightfor-

ward because we cannot assume a semi-honest server-side protocol

(e.g., the server can invoke processes concurrently). To address this,

we adopt an approach similar to Braun et al. [15] and Ball et al. [7],

using a simulation-based method [54] to prove the interactive DP

of ConComp(𝑀1, 𝑀2, . . . , 𝑀𝑛). This proof technique compares our

real-world protocol to an idealized version. The proof framework

consists of two main steps: defining the ideal functionality and

proving the emulation of the ideal functionality by the real-world

protocol.

First, we define an ideal functionality that is executed by a trusted
party in a hypothetical ideal world. This functionality specifies the

perfect, secure execution of DP-FTRL. It interacts with a Simulator,
which represents the adversary in this ideal world. By design, the

view of the simulator in this interaction is guaranteed to be DP. The

ideal functionality is designed to allow the simulator to influence the

protocol on behalf of corrupted parties, for example, by providing

malicious inputs or choosing the order of round completion, thus

modeling the power of a real-world adversary.

Second, we demonstrate that our proposed concurrent system,

ConComp(𝑀1, 𝑀2, . . . , 𝑀𝑛), emulates this ideal functionality when

interacting with any real-world adversary 𝐴. This is shown by con-

structing a simulator, Sim, that can produce a view computationally

indistinguishable from the real adversary’s (i.e.,𝐴) view, using only

its interaction with the ideal functionality. This ensures that any

view created by 𝐴 matches the DP-compliant view in the ideal

functionality, thereby ensuring compliance with interactive DP.

2.5 Differentially Private
Follow-the-Regularized-Leader (DP-FTRL)

Kairouz et al. [46] proposed DP-FTRL as a DP optimization mecha-

nism that avoids the need for subsampling [1] and shuffling [34]

which are difficult due to client dropouts. Subsequent research

expanded DP-FTRL with the matrix mechanism [28], called MF-DP-

FTRL. This approach enables useful techniques such as multi-epoch

training, amplification, and runtime efficiency due to its flexibil-

ity [19, 20, 60]. Recent studies indicate that MF-DP-FTRL can gen-

eralize DP-SGD and demonstrate its superiority in terms of the

utility-privacy trade-off [18, 19].

We employ MF-DP-FTRL in our research to align our method

with those operating within this framework. The pseudocode for

the MF-DP-FTRL framework is located between Line 6 and Line 17

(where the simulator assigns𝑘 as 𝑖 ,𝐶cohort as valid client indices, and

˜𝜃 as
˜𝜃𝑖) in Algorithm 1. While resembling DP-SGD with gradient

computation, clipping, and gradient-noise summation for updates,

it deviates in the following key ways:

(1) Participation schema: client indices are arbitrarily chosen

from those meeting the participation schema based on his-

torical participation with an option for sampling.

(2) Stateful aggregation: noise is correlated with noise used in

previous rounds.

Due to these differences, unlike DP-SGD, each iteration in DP-FTRL

cannot be treated as an independent DP mechanism. Thus, the

server must handle participation history and noise management as

detailed below.

Participation Schema [19]. Participation history 𝐻 is a sequence

of sets, each representing a client’s participation record. Specifi-

cally, 𝐻𝑖 is a set representing client 𝑖’s participation pattern 𝜋 ⊆
[𝑛round], where 𝑛round is the number of total rounds. For instance,

𝐻 = ({0, 2}, {1, 3}) indicates that client 0 participates in the 0th and

2nd rounds, while client 1 participates in the 1st and 3rd rounds.

The participation schema is defined as follows:

Definition 2.3. A participation schema Π is defined as the set of

possible participation patterns 𝜋 ⊆ [𝑛round]. A participation history

𝐻 adheres to a participation schema Π if for all 𝑖 ∈ [𝑛], there exists
𝜋 ∈ Π such that 𝐻𝑖 ⊆ 𝜋 .

Updating 𝐻 with 𝐶 ⊆ [𝑛] and index 𝑖 involves adding 𝑖 to 𝐻 𝑗

for each 𝑗 ∈ 𝐶 . In this context, the current participation history

𝐻 is used to determine which clients are eligible to participate in

the 𝑖th round by using the function 𝑓qualify (Π, 𝐻, 𝑖), defined below.

The function 𝑓qualify (Π, 𝐻, 𝑖) returns the set 𝐶qualify ⊆ [𝑛] such that

even if 𝐻 is updated with 𝐶qualify and 𝑖 , 𝐻 continues to adhere to

the participation schema Π.
For example, if a client’s participation is limited to just once, Π =

{{1}, {2}, . . . , {𝑛iter}}. Recent works have demonstrated that the Π𝑏

schema is both practical and attains utility comparable to DP-SGD

by permitting multi-epoch training and amplification [19]. This

schema permits participation at intervals of 𝑏 between submissions.

491

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

Stateful Aggregation. In stateful aggregation, a noise matrix Z ∈
R𝑛

round×𝑑 is employed throughout the DP-FTRL execution, with its

elements independently drawn from a Gaussian distribution.
5
The

noise added in the 𝑖-th execution relies on Z𝑗𝑘 for 𝑗 ∈ [𝑖] and
𝑘 ∈ [𝑑]. This method, which depends on noise from prior rounds,

is termed correlated noise. The particular approach for calculating

this noise is given by C. Specifically, the noise for 𝑖th round is

𝜁 (C−1Z) [𝑖, :] where 𝜁 is the clipping bound.

This method of noise integration is called the matrix mechanism

in the adaptive streaming [28], and in the context of DP-FTRL, C
is optimized according to a participation schema. Intuitively, this

optimization minimizes the introduced error by controlling the sen-

sitivity of participating clients based on the schema. Refer to [19, 28]

for more details. Therefore, if clients deviate from the participation

schema, their sensitivity may surpass allowable thresholds, risking

privacy breaches.

3 Problem Statement
This section aims to formalize the problem of implementing DP-

FTRL in our malicious setting.

3.1 DP-FTRL in the Malicious Setting
In our threat model (see Section 2.2), the server interacts with

client algorithms𝑀1, 𝑀2, . . . , 𝑀𝑛 to update the model. The server

is malicious, so it can deviate from a predefined protocol, making

it impractical to presume any specific server behavior. This sit-

uation corresponds to concurrent composition in interactive DP

(see Section 2.4). Therefore, our goal is to construct a concurrent

composition mechanism𝑀 = ConComp(𝑀1, 𝑀2, . . . , 𝑀𝑛) that can
execute DP-FTRL with an appropriate server protocol, while also

ensuring that 𝑀 maintains interactive DP to provide robustness

against a malicious server.

3.1.1 Strawman Approaches. It might seem that a straightforward

implementation of DP-FTRL within a TEE could serve as a solution,

as the TEE can act as a trusted third party to correctly manage the

state. However, naive implementations fail to provide both liveness

and the interactive DP guarantee. We illustrate this by presenting

two strawman approaches.

With Sealing. Since an enclave is volatile, its state is lost when it

crashes. To prevent this, the server needs to seal the enclave’s state
after each round is completed, allowing the state to be recovered

even after a crash. However, this approach introduces a fatal vul-

nerability: it does not provide interactive DP because the server can

clone (i.e., fork) the sealed enclave state at will [82]. If an adversary

can fork the process, they can observe outcomes related to step

𝑖’s noise more than once using the Sybil clients. This leads to a

critical privacy breach even if the 𝑖th input does not include the

target client’s values. This is because the noise added at step 𝑖 is

correlated with the noise from earlier steps. This correlation can

leak information about the noise at earlier steps and, consequently,

the earlier private inputs that include the target value.

Even if the sequence of noise values is predetermined (e.g., from

a fixed seed), a malicious server could perform the following forking

5
Not all elements of Z need to be sampled initially; they can be incrementally sampled

as required.

attack. Suppose the server forks the computation at step 𝑖 . It first

executes step 𝑖 on one fork with a cohort that includes a target

client’s value alongside values from corrupted clients (e.g., all zeros).

It then executes step 𝑖 on a second fork using a different cohort

containing only corrupted clients (all zeros). By comparing the

outputs from these two forks, the server can isolate the contribution

of the target client. The difference between the outputs effectively

removes the common, correlated noise component, thus breaking

the privacy guarantee.

While combining a TEE’s sealing capabilities with a trusted

hardware like TPM can enforce state integrity [75], this integration

creates its own security challenges. Securely linking the two trusted

components expands the attack surface and opens the door to man-

in-the-middle attacks. A prime example is the integration of Intel

SGX with a TPM, as explored by Strackx et al. [75]. However, this

method is vulnerable to the Cuckoo attack [68] as mentioned in

Introduction.

Without Sealing. To circumvent forking attacks, one might consider

an approach without sealing, where the server restarts the entire

process from its initial state if a crash occurs. However, this strategy

faces a different, equally critical problem in a malicious server

model.

The core issue is that honest clients cannot distinguish whether

the server has genuinely crashed or is merely pretending to have

crashed. A malicious server can declare a crash to honest clients

while secretly continuing to run the remaining planned iterations

with only the corrupted clients it controls. This raises the same issue

as the case with sealing. That is, because DP-FTRL uses correlated

noise, running these extra, secret iterations leaks further informa-

tion about the inputs used in the earlier iterations that involved

honest clients.

Consequently, the privacy analysis must account for the worst-

case leakage. This forces a conservative accounting of the privacy

budget for the maximum number of iterations the server could

potentially run with its corrupted clients after the apparent stop.

This results in an inherent and significant privacy loss. Furthermore,

DP-FTRL’s correlated noise mechanism is optimized based on the

total number of iterations planned in advance. An early stop and

restart breaks the optimality of this noise structure, potentially

leading to a much worse total privacy loss than originally intended.

Even using SMR [4, 40, 57] without sealing suffers from the same

problem if a majority of TEEs experience a fault (i.e., disaster).

3.1.2 Ideal Functionality. As discussed in Section 2.4, we adopt

a simulation-based proof framework to prove interactive DP of

our system. To do so, we first define an ideal functionality that

acts as a trusted party and is designed to avoid the issues of the

strawman approaches. We then show that our system emulates this

ideal functionality with some simulator.

Ideal Functionality. Algorithm 1 outlines the pseudocode for

the trusted party in our ideal model. Two main differences exist

when compared to a standard DP-FTRL system, both tailored to the

practical needs of a real model implementation. First, in Lines 2-5,

the ideal functionality allows for a small probability of failure that

is independent of 𝐷 , indicating a small but non-zero of catastrophic

privacy leakage, contributing to 𝛿 in (𝜀, 𝛿)-DP. This adjustment

492

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

Algorithm 1 Ideal Functionality By a Trusted Party

Require: Participation schema Π, the number of rounds 𝑛round,

matrixC ∈ R𝑛
round

×𝑛
round , clipping parameter 𝜁 ∈ R, the number

of clients 𝑛, indices of corrupted clients 𝐶corrupted.

1: Receive 𝐷 from clients.

2: 𝑙 ← a sample from a Bernoulli distribution with success proba-

bility 𝛿privacy.

3: if 𝑙 = 1 then
4: send 𝐷 to Sim. // Leakage
5: else
6: Initialize the participation history 𝐻 .

7: Initialize model parameters 𝜃0 ∈ R𝑑
.

8: Make the matrix with all zeros 𝜃1:𝑛
round
∈ R𝑛

round
×𝑑
.

9: Sample 𝑍 [𝑖, 𝑗] ∼ N (0, 𝜎2) for 𝑖 ∈ [𝑛round], 𝑗 ∈ [𝑑].
10: for 𝑖 ∈ [𝑛round] do
11: Receive 𝐶cohort ⊆ [𝑛], 𝑘 ∈ [𝑛round], ˜𝜃 ∈ R𝑑

from Sim.

12: Restart from LINE 10 if any input is invalid. // Valid
if 𝐶cohort ⊆ 𝑓qualify (Π, 𝐻, 𝑘) and if 𝑘 ∈ [𝑛round] is not in 𝐻 yet.

13: Update 𝐻 with 𝐶cohort and 𝑘 .

14: Compute 𝑔 𝑗 = clip(∇𝜃 loss(𝑋 𝑗 , ˜𝜃), 𝜁) for 𝑗 ∈ 𝐶cohort

where clip(𝑑, 𝜁) =min(1, 𝜁 /|𝑑 |)𝑑
15: For 𝑗 ∈ 𝐶cohort ∩𝐶corrupted, set 𝑔 𝑗 as received from Sim

16: Set
˜𝜃𝑘 :=

∑
𝑗∈𝐶

cohort

𝑔 𝑗 + 𝜁 (C−1Z) [𝑘, :].
17: send ˜𝜃1:𝑖 to Sim // Leakage.
18: end for
19: end if

enables the real model to be designed without requiring exhaustive

client interactions for each update (i.e., probabilistic relaxation

of linearizability), as discussed in Section 2.3.1. Second, in Line

11, the simulator (i.e., an adversary) can modify indices during

secure aggregation. This is due to the non-blocking attribute of

linearizability [38], which permits concurrent execution. Also, the

adversary can modify the values received from the corrupted clients

(Line 15).

Despite these variations, the following theorem confirms that

the original DP guarantee of DP-FTRL is preserved:

Theorem 3.1. Assume that if Sim sets 𝑘 to 𝑖 , 𝐶cohort to be a subset
of 𝑓qualify (Π, 𝐻, 𝑘), ˜𝜃 to ˜𝜃𝑖−1, and 𝑔 𝑗 as defined in Algorithm 1 (i.e.,
the original DP-FTRL), the view of Sim satisfies (𝜀, 𝛿 + 𝛿privacy)-DP.
Then, the view of any other Sim′ satisfies (𝜀, 𝛿 + 𝛿privacy)-DP.

The proof is detailed in Appendix D.1. Therefore, our goal is

to create a concurrent system capable of emulating the ideal func-

tionality within our threat model, whose 𝛿privacy is a sufficiently

small probability. In parallel, the system should be designed to offer

availability with small communication and computation overhead

for clients.

3.2 Overview of Our Approach
We model ConComp(𝑀1, 𝑀2, . . . , 𝑀𝑛) as a distributed concurrent

system (see Section 2.3) to formulate the problem. In this model,

the concurrent system maintains a state object 𝑞, which includes

iteration number 𝑖 , participation history 𝐻 and noise matrix Z
explained in Section 2.5. This state is shared among all clients,

Algorithm 2 The Process

1: The server initializes an enclave or replicates the enclave with

𝑞, 𝐶cohort, and 𝑖 .

2: The enclave sends evidence to the clients.

3: (Audit request) Clients verify the integrity and linearizability

using the evidence and send their signatures to the enclave.

4: if the enclave was initialized then the enclave validates these

and, if it is the initial enclave, the enclave makes 𝑞.Z, is sealed,
and stops this process.

5: end if
6: The enclave verifies 𝐶cohort and sends evidence to the 𝐶cohort.

The server updates 𝑞.𝐻 with 𝐶cohort and 𝑖 .

7: (SecAgg request) Clients in𝐶cohort verify the evidence and send

encrypted data with MAC to the enclave.

8: The enclave verifies these and outputs the result of SecAgg𝑞.Z.

and processes are concurrently invoked by the server. The pro-

cess with 𝐶cohort ⊆ [𝑛] and args
secagg

(i.e., indices of participat-

ing clients and settings such as current model parameters
˜𝜃 re-

spectively) increments 𝑞.𝑖 , updates 𝑞.𝐻 with 𝐶cohort ⊆ [𝑛] and
𝑞.𝑖 , and outputs the result of stateful aggregation SecAgg𝑞.Z only

if 𝐶cohort ⊆ 𝑓qualify (Π, 𝑞.𝐻, 𝑞.𝑖), denoted by <q update(𝐶cohort,
𝑞.𝑖, argssecagg) A><OK(SecAgg𝑞.Z (𝐶cohort, 𝑞.𝑖, argssecagg)) A>.
SecAgg𝑞.Z is a function that computes the summation with noise

𝜁 (C−1 (𝑞.Z)) [𝑞.𝑖, :] for𝐶cohort using the settings specified by argssecagg.
Assume that given Π, a system executes the process update

with integrity and linearizability. That is, due to the integrity, each

process does not break the participation schema Π and get the

correct result of SecAgg𝑞.Z (𝐶cohort, 𝑞.𝑖, argssecagg). Due to the lin-
earizability, the result of the processes is equivalent to a sequential

processes that respect real-time precedence ordering (i.e., the order

of 𝑖). That is, an adversary cannot get multiple
˜𝜃𝑖 with the same 𝑖

and cannot define 𝑖th 𝐶cohort and args
secagg

after knowing
˜𝜃𝑘 for

𝑖 ≤ 𝑘 . Thus, by achieving integrity and linearizability, the system

emulates the ideal functionality in Algorithm 1 with a simulator.

Therefore, integrity and linearizability of the update process are

sufficient conditions for the system to achieve interactive DP.

Here, we present the high-level concept of our approach in

the real world to achieve integrity and linearizability. The pseu-

docode for the process is provided in Algorithm 2. The server is-

sues two types of the requests to clients: audit request and secure

aggregation request. Intuitively, before outputting the result of

SecAgg𝑞.Z—which involves private data and may thus compromise

privacy—the server must provide proof of linearizability and in-

tegrity with enclaves in the audit request. Clients must verify this

during the audit request, and only upon successful verification can

the server complete the process to obtain the result. Due to the

linearizability and integrity checks enforced by clients, a malicious

server can only complete linearizable processes. Thanks to the con-

fidentiality provided by the enclave operations, a malicious server

cannot access any information beyond the output.

For verification purposes, a client requires remote attestation

and validation of certain values. The number of clients needed for

auditing is modest (e.g., 129 for 𝛽,𝛾 = 0.1) as demonstrated in Sec-

tion 6.1. Hence, the additional computational and communication

493

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

Figure 2: Overview of the core idea behind planner enclaves.

overhead is both low and constant. Moreover, since a different en-

clave is used for each process, it allows for concurrent execution,

enhancing scalability. Also, even if an enclave fails, the entire DP-

FTRL execution does not halt because the server can make a new

process with a new enclave, thereby providing liveness.

This is achieved by enforcing integrity and linearizability through

TEEs combined with client auditing. The challenge lies in proving

integrity and linearizability to the clients, a topic that is thoroughly

explained in Section 4.

4 Design of Planner
In this section, we explain how to ensure integrity and lineariz-

ability in the presence of enclaves and client auditing. We start

by detailing a system that achieves integrity and linearizability

under the assumption that all clients are honest and available (i.e.,

(𝛾 = 0, 𝜅 = 1, 𝛽 = 0)), to highlight the core of our proposed method.

Then, in Section 4.2, we propose modifications to the system to

accommodate scenarios where (𝛾 > 0, 𝜅 ≠ 1, 𝛽 > 0).

4.1 Design Under (𝛾 = 0, 𝜅 = 1, 𝛽 = 0)
Figure 2 illustrates the basic concept of the system. We employ an

enclave that deploys our code, which we call a planner enclave. The

planner enclave initially secures consensus from all clients on the

shared object 𝑞 and seals (see Section 2.1) the states. In subsequent

processes, replicated planner enclaves load the shared object 𝑞 from

an evidence chain, after which a client audits whether the correct

shared object was loaded. If verified by the client, the planner en-

clave continues the process and generates evidence designating

the next client to audit the subsequent planner enclave. This iter-

ative process ensures linearizability, as planner enclaves always

load the latest state due to designated client audits (a rollbacked

enclave is rejected), and integrity is maintained through the TEE

characteristics.

4.1.1 Server-side Algorithm. Algorithm 3 provides pseudocode for

the server and planner enclave protocols. At each process (i.e., iter-

ation), the server-side algorithm establishes proofs of linearizability

and integrity in Lines 11-16 (i.e., Lines 1-3 of Algorithm 2) to conduct

secure aggregation in Line 19 (i.e., Lines 4 and 6 of Algorithm 2).

Here, 𝑓 (args
selection

) is a function that outputs args
selection

⊆
[𝑛] when |args

selection
| ≥ 1; otherwise, it aborts, and we set 𝜏 =

|args
selection

|. We use this function as a placeholder for now and

will change it later to accommodate the case where 𝛽 > 0 and 𝛾 > 0

(i.e., Section 4.2).

Algorithm3Algorithm for the Server-side and the Planner Enclave

1: Initialization
2: The server initializes a planner enclave with the public keys of

all clients 𝐶all = [𝑛], and sets args
selection

⊆ 𝐶all.

3: The enclave generates random seeds for Z and a nonce as ID.

4: if the enclave verifies agreement on 𝐶all then
5: The enclave computes 𝐶audit = 𝑓select (argsselection).
6: The enclave seals the states.

7: The enclave generates evidence including 𝐶audit and ID.

8: end if
9: The server initializes an evidence chain (𝐸𝐶) with the generated

evidence.

10: Iteration (concurrent)
11: The server selects a cohort 𝐶cohort ⊆ 𝐶all.

12: The server replicates the sealed planner enclave and inputs 𝐸𝐶 ,

𝐶cohort, argssecagg
, and args

selection
.

13: if the enclave verifies 𝐸𝐶 , 𝐶cohort, and args
selection

then
14: The enclave retrieves 𝐶audit from the latest evidence.

15: The enclave computes 𝐶next = 𝑓select (argsselection).
16: if the enclave verifies agreement on 𝜏 clients in𝐶audit then
17: The enclave generates evidence including 𝐶next as audi-

tors, 𝐶cohort, the hash of args
secagg

, and the digest of 𝐸𝐶 .

18: The server appends the new evidence to the 𝐸𝐶 .

19: The enclave does SecAggZ on 𝐶cohort with args
secagg

.

20: The server updates the global model.

21: end if
22: end if

Planner enclaves require the server to pass three types of verifi-

cations to ensure integrity and linearizability, which are as follows:

(1) Initialization (Line 4) verifies that all clients have reached

consensus on a shared object 𝑞. This ensures that clients can

deny planner enclaves that load a different shared object 𝑞′

for future auditing.

(2) Approval of auditors𝐶audit (Line 13) verifies that clients𝐶audit

have been approved as auditors by a planner enclave. This

means auditors can verify whether a planner enclave loads

the correct shared object and will correctly perform secure

aggregation (i.e., integrity).

(3) Agreement on a planner enclave (Line 16) verifies that the
enclave is the planner enclave agreed upon by auditors𝐶audit.

This ensures the enclave maintains integrity and is the sole

enclave loading the current shared object (i.e., linearizabil-

ity).

Next, we discuss the evidence chain that manages a shared ob-

ject 𝑞, followed by detailed explanations of the three verifications,

illustrated in Figure 3.

Evidence Chain. We introduce the evidence chain as the state

management method for our concurrent system. It consists of a

sequence of evidence pieces generated by planner enclaves, with

evidences linked via hashes like blockchain [64] (i.e., evidence in

the evidence chain has the hash of the previous evidence). The

digest of the evidence chain is the hash of the latest evidence. The

ID of the evidence chain is the ID included in the initial evidence.

494

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

Figure 3: The flow of evidence-related proofs by the server. A
dotted line indicates indirect communication via the server.

Each piece of evidence includes updates to 𝑞.𝐻 (in our context,

𝐶cohort, 𝑖).

Verification of the evidence chain involves confirming that the

latest evidence remains untampered (verified via remote attestation)

and that the hash chain is valid.

When a planner enclave successfully verifies an evidence chain

and is agreed upon by the auditors 𝐶audit (explained later) docu-

mented in the latest evidence, it implies that the enclave reads the

latest state by sequentially updating 𝑞.𝐻 with the evidence chain.

This occurs because if consensus on𝐶audit is reached, it is concluded

that the current auditors are the most recently approved.

Approval of Auditors (verified in Line 13). "Approval of auditors"
is a process where a planner enclave designates clients 𝐶audit as

auditors just once. As shown in Figure 3, the server validates this

approval through evidence generated by a previous planner enclave

(i.e., the latest evidence of the evidence chain). A planner enclave

is designed to designate clients and produce evidence just once

only after it has obtained consensus from the designated auditors.

Therefore, verification of code via remote attestation establishes

that the clients listed as auditors were indeed approved.

Agreement on a Planner Enclave (verified in Line 16). "Agreement

on a planner enclave" is the consensus process where auditors

designate a specific planner enclave. This implies:

• Any planner enclave not agreed upon by auditors is invalid.

• The planner enclave correctly loads the shared object and

will perform secure aggregation without disrupting the par-

ticipation schema.

As illustrated in Figure 3, the server first generates evidence using

a planner enclave, containing a nonce, the hash of inputs (i.e., the

hash of 𝐶cohort and args
secagg

), the digest of the evidence chain,

and the ID of the evidence chain. This evidence is provided to the

approved auditors retrieved from the evidence chain (i.e., 𝐶audit).

Approved auditors perform remote attestation to verify the integrity

of the evidence and the code. If auditors verify the ID and that

the digest has not been seen before (to prevent replay attacks),

they sign the nonce in response. The server sends all signatures of

𝐶audit (i.e., 𝜏 signatures) to the planner enclave to generate further

evidence (Lines 17 and 18), which proves the "agreement on a

planner enclave".

Initialization (verified in Line 4). "Initialization" is a process by
which a planner enclave designates the shared object 𝑞 to all clients.

Specifically, it implies:

• Consensus on the shared object and initial auditors by all

clients.

• Correct loading of the public key list by the planner enclave.

The process is similar to the "agreement on a planner enclave,"

though the evidence now includes the digest of the public key list,

nonce, and the ID of the enclave. Each client checks the digest

against their known hash of the public key list through PKI, as

described in Section 2.2, before registering the nonce as the evidence

chain ID and responding with a signature.

Note that "initialization" means all clients agree on 𝑞.Z because a

replicated planner enclave possessing the ID as the evidence chain

ID also possesses the random seeds for Z.

Secure Stateful Aggregation. Here, we explain the secure aggre-

gation of Line 19 (i.e., SecAgg𝑞.Z). Due to three prior verifications

conducted before Line 19 of Algorithm 3, the planner enclave loads

the shared object correctly and thus possesses the correct Z, 𝑖 , and
𝐶cohort, where 𝑖 is the number of entries in the evidence chain. This

allows precise computation of Line 16 of Algorithm 1.

We primarily adhere to the secure aggregation method outlined

by Huba et al. [41]. However, as discussed in Section 2.1.3, given

that the original formulation didn’t include noise, additional mod-

ifications are required to incorporate stateful noise. A simplistic

extension suffices; while carrying out secure aggregation method

from Huba et al., the enclave adds 𝜁 (C−1Z) [𝑖, :]. Then, aggregated
data with the noise is decrypted only when data from 𝐶cohort is

collected with verified MAC.

4.1.2 Client-side Algorithm. The client-side algorithm is depicted

in Algorithm 4. The client-side algorithm is stateful, storing evi-

dence_chain_id and signed_digests. It employs two functions: Au-

dit and SecureAggregation.

Audit is involved in Lines 4 and 16 of Algorithm 3 (i.e., Initial-
ization and Agreement on a planner enclave). Acting as an auditor, a

client verifies whether the planner enclave establishes or reads the

shared object. During Line 3 of Algorithm 4, a client performs re-

mote attestations to verify that the evidence originated from a plan-

ner enclave. The evidence may encompass the ID of the evidence

chain, a nonce, and the digest of the evidence chain. The client veri-

fies whether this matches the stored evidence_chain_id (Line 10).
If not previously registered (i.e., evidence_chain_id=None), it is
stored accordingly (Line 8). Then, after ensuring that signed_digests
does not contain the digest to prevent replay attacks (Lines 13), the

client responds with the signature to the nonce.

SecureAggregation is initiated in Line 19 of Algorithm 3. First,

the client performs remote attestation to verify the integrity of

the evidence (i.e., to ensure that it is generated by the enclave that

has passed the three verifications). The client then extracts the

peer’s public key for the Diffie-Hellman (DH) key exchange from

the evidence. Using this key, the client sends the update encrypted

by a symmetric key, the symmetric key encrypted with the DH

key, and the MAC generated from the DH key (see Section 2.1.3 for

more details).

495

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

Algorithm 4 Client-side Algorithm

1: Initialize evidence_chain_id← None and signed_digests← ∅
2: procedure Audit(evidence)
3: If RemoteAttestation(evidence) fails Then abort

4: Extract nonce, digest_of_evidence_chain, evi-

dence_chain_id from evidence

5: if self.evidence_chain_id =None then
6: self.evidence_chain_id← evidence_chain_id

7: end if
8: If evidence_chain_id ≠ self.evidence_chain_id Then abort

9: If digest_of_evidence_chain ∈ self.signed_digests Then
abort

10: Append(self.signed_digests, digest_of_evidence_chain)

11: return Sign(nonce)

12: end procedure
13: procedure SecureAggregation(evidence)
14: If RemoteAttestation(evidence) fails Then abort

15: Extract nonce, args
secagg

, ec_peer_pub_key from evidence

16: update← ComputeLocalUpdate(args
secagg

)

17: encrypted_update, encrypted_decryption_key,

ec_pub_key, MAC←
18: MakeSecureAggregationMessage(update, nonce,

ec_peer_pub_key)

19: return encrypted_update, encrypted_decryption_key,

ec_pub_key, MAC

20: end procedure

4.1.3 Property of The System. In our concurrent system, each pro-

cess involves an object 𝑞 virtually shared with all clients. The sin-

gular operation applicable to this object is "update" with secure

aggregation output, denoted by

⟨𝑞 update(𝐶cohort, 𝑖) 𝐴⟩⟨OK(SecAggq.Z (𝐶cohort, 𝑖, auxsecagg∗)), 𝐴⟩.
While producing SecAggq.Z (𝐶cohort, 𝑖, auxsecagg∗) as output, the pro-
cess updates 𝐻 with 𝐶cohort and 𝑖 . This means that Algorithm 3

concurrently performs the process described in Algorithm 2.

Theorem 4.1. Algorithms 3 (server-side) and 4 (client-side) achieve
both integrity and linearizability with respect to the process described
in Algorithm 2 when 𝛾 = 0.

The proof is presented in Appendix D.2. Also, we formally veri-

fied this by the Tamarin prover. See Appendix E for details.

4.1.4 Vulnerability of the System Under (𝛾 > 0, 𝛽 > 0). Theo-
rem 4.1 demonstrates integrity and linearizability, but its assump-

tions overlook any client dropouts or dishonest behavior (i.e., (𝛽 =

0, 𝛾 = 0)). Here, we evaluate the more realistic scenario where

𝛽,𝛾 > 0, and 𝜅 ≠ 1, outlining the vulnerabilities introduced under

these conditions.

Sybil Selection. The inability to differentiate between malicious

and honest clients enables Sybil attacks, where Sybils break lin-

earizability. A malicious server might select args
selection

composed

entirely of corrupted clients, allowing corrupted auditors to deviate

from the protocol, which leads to linearizability violations. Specifi-

cally, in Line 16 of Algorithm 3, corrupted auditors could agree on

multiple enclaves, causing arbitrary state forks.

Interruptions Caused by Dropouts. In Line 16, the planner enclave

requires the collection of signatures from all auditors 𝐶audit to vali-

date and proceed with secure aggregation, as 𝜏 = |𝐶audit |. However,
an auditor dropping out before signing disrupts the entire process

outlined in Algorithm 3. The secure aggregation phase in Line 19

is similarly susceptible to disruptions.

4.2 Adaptation for (𝛾 > 0, 𝜅 ≠ 1, 𝛽 > 0)
To address the aforementioned vulnerabilities, we propose neces-

sary modifications to Algorithm 3.

4.2.1 Preventing Interruptions byDropout. As outlined in Section 4.1.4,
client dropouts can halt a process at Line 16 of Algorithm 3. To

alleviate this issue, we modify the value of 𝜏 . As discussed in Sec-

tion 4.1.1, the process of "agreement on a planner enclave" on𝐶audit

must ensure that no alternative planner enclave gains agreement

on 𝐶audit. To meet this requirement, we can set 𝜏 > |𝐶audit |/2, re-
quiring agreement from the majority of 𝐶audit. By setting a larger

𝑛audit = |𝐶audit | and a smaller 𝜏 , the probability of interruptions

occurring can be minimized, as described in Section 5.2.2.

Interruptions may occur during the secure aggregation process

(i.e., Line 19 of Algorithm 3) as well. However, these interruptions

are not catastrophic since they occur post-Line 17, where evidence

for the next process is generated. This is a feature of linearizability

known as non-blocking characteristics [38]. The process, however,

loses utility as it fails to output results. To tackle this issue, we can

utilize an overselection strategy. Overselection involves selecting

a large pool of candidate clients for secure aggregation, allowing

available clients from these candidates to participate.

Remark. The overselection strategy could result in a disparity

between 𝐶cohort and the clients that actually participate, possibly

causing data loss since participation schemes are based on 𝐶cohort.

For simplicity, this paper does not consider this utility loss. However,

this problem is not insurmountable; it can be resolved by creating

evidence that includes 𝐶part at Line 19, where 𝐶part is the set of

clients that actually partake in secure aggregation. By adding this

evidence to the evidence chain, linked to the evidence generated in

Line 18, participation scheme verification can be employed to avert

data loss while accommodating client dropouts.

4.2.2 Preventing Sybil Selection. Within Algorithm 3, corrupted

clients can only influence the agreement parts at Lines 4 and 16 of

Algorithm 3. These clients could potentially send signatures without

conducting verification during Audit, permitting multiple enclaves

to exist carrying the same shared object, disrupting linearizability.

To counter this, it is crucial to establish that the majority of honest
clients in the auditors have reached an agreement. However, since

corrupted clients cannot be differentiated from honest ones, proving

this becomes impossible when the number of corrupted clients

exceeds the cohort size.

To avoid this issue, we restrict the server’s ability to arbitrarily

choose auditors. The server is allowed to choose a sufficient number

of candidates for auditors, but the actual selection of auditors is

done randomly by the enclave. Specifically, the enclave instead

employs 𝑓selection (argsselection), which is a randomized function that

returns a random subset 𝐶audit of argsselection
such that |𝐶audit | =

496

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

𝑛audit where 𝑛audit ∈ [𝑛] is an adjustable parameter and aborts if

|args
selection

| < 𝑛𝜅.

Despite the random selection, auditors may still include some

corrupted clients, making it impossible to unequivocally prove that

a majority of honest clients are in agreement. Therefore, we set 𝜏

to be a value larger than 𝑛audit/2, ensuring that the probability of

honest clients being in the majority becomes sufficiently high. Note,

however, that setting a higher 𝜏 increases the likelihood of inter-

ruptions, presenting a trade-off, which is optimized in Section 5.4.

Assuming the server sets args
selection

as the available clients

𝐶available (i.e., |𝐶available | = 𝑛𝜅 as per Section 2.2), and considering

that up to a ratio of 𝛾 of all clients may be corrupt, the probability

of having a certain number of corrupted clients in 𝐶audit can be

calculated. By combining this with 𝜏 and 𝑛audit, the probability of a

Sybil attack occurring can be estimated, and this is the probability

that breaks integrity and linearizability.

Theorem 4.2. When 𝛾 > 0, Algorithm 3 maintains linearizability
and integrity with a probability of 1 − 𝛿privacy =

1−
(
1 −

2(𝑛audit−𝜏)∑︁
𝑖=1

(
𝑛𝛾

2𝜏 − 𝑛audit + 𝑖

) (
𝑛(𝜅 − 𝛾)

2𝑛audit − 2𝜏 − 𝑖

)/ (
𝜅𝑛

𝑛audit

))𝑛round
.

In other words, with probability 1 − 𝛿privacy, our protocol main-

tains Theorem 4.1 that is formally verified. The proof can be found

in Appendix D.3. The relationship between 𝛿privacy and parameters

is shown in 6.1.

5 Analysis of Our System
In this section, we analyze our system from the perspectives of

privacy, correctness, liveness, and scalability.

5.1 Privacy and Correctness
We first present the main theorem of this paper, which clarifies the

privacy and utility aspects of our system.

Theorem 5.1. Let𝑀𝑖 be Algorithm 4 for 𝑖 ∈ [𝑛]. The interactive
protocol ConComp(𝑀1, . . . , 𝑀𝑛), when used with any server protocol,
emulates the ideal model (i.e., Algorithm 1) with some simulator.

The proof is presented in Appendix D.4. From this theorem,

the server protocol can derive the output of MF-DP-FTRL from

ConComp(𝑀1, . . . , 𝑀𝑛), since Algorithm 1 reflects theMF-DP-FTRL

approach by setting 𝑘 = 𝑖 and ˜𝜃 = ˜𝜃𝑖 .𝑀 = ConComp(𝑀1, . . . , 𝑀𝑛)
meets the criteria of (𝜀, 𝛿 + 𝛿privacy)-interactive DP. This is because
any server protocol interacting with𝑀 fulfills (𝜀, 𝛿 + 𝛿privacy)-DP,
given that the corresponding simulator itself adheres to (𝜀, 𝛿 +
𝛿privacy)-DP, as concluded in Theorem 3.1.

5.2 Liveness
In our context, liveness refers to the capability to complete a process

(i.e., Algorithm 2). We analyze three potential issues that might

stop the process: crashes, interruptions, and attacks.

5.2.1 Crashes. If an enclave crashes for any reason, there is no

straightforwardway to recover the process. This is because allowing

such recovery would enable an adversary to fork the enclave’s state.

Maintaining linearizability would require verification, which is

not possible. However, it is important to note that while a single

enclave crash may disrupt a process (i.e., Algorithm 2), it does not

necessarily mean that the entire system (i.e., Algorithm 3) will come

to a halt. As described in Appendix B, even if an enclave crashes,

the system can initiate another process to recover the state. This is

an advantage of our system compared to systems relying on SMR

that cannot securely recover from disasters [4, 40].

5.2.2 Interruptions by Dropouts. In our system, auditors may drop

out, which could potentially cause the system to halt as discussed

in 4.1.4. Here, we analyze the probability associated with client

dropouts.

Proposition 5.2. The probability 𝛿interrupt of interruption of au-

diting is 1 −
(
1 −∑𝜏

𝑖=1

(𝑛𝜅𝛽
𝑛audit−𝜏+𝑖

) (𝑛𝜅 (1−𝛽)
𝜏−𝑖

) / (𝑛𝜅
𝑛audit

))𝑛round
.

The proof is presented in Appendix D.5. As shown in Section 6.1,

the probability can be small if we set large 𝑛audit.

5.2.3 Attacks. We consider scenarios where a malicious client at-

tempts to disrupt the process. In our system, a malicious client

might send invalid values. However, this does not halt the system

since the enclave can disregard invalid inputs, similar to handling

dropouts. Given our system’s resilience to dropouts, a single mali-

cious client lacks the capability to stop the process.

5.3 Scalability
We evaluate the scalability of our concurrent system from two

perspectives. First, we examine server-side scalability concerning

throughput [65]. Second, we analyze client-side costs, considering

that clients are lightweight and can drop out.

We evaluate the additional communication and computation

costs incurred by clients due to our planner. In both Audit and

SecureAggregation, the communication cost is constant, influ-

enced only by security parameters such as the size of the signature.

This is discussed in detail in Section 6.2. The computation cost is

also constant; the encryption method used is part of the standard

communication process and does not necessitate additional com-

putational resources. Although the frequency of Audit depends

on parameters like 𝛽, 𝜅, and 𝛾 , it remains low, as demonstrated

in Section 6.1. On the contrary, if 𝑛 becomes large, the frequency

of Audit decreases. Consequently, the costs incurred by clients

remain constant even as the system scales.

5.4 Parameter Selection
In our system, we have two adjustable parameters: 𝜏 and 𝑛audit.

Here, we discuss how to determine these parameters. The goal is

to minimize 𝑛audit to reduce communication costs (i.e., frequency

of Audit) while ensuring 𝛿interrupt ≤ 𝑝1 ∈ [0, 1] and 𝛿privacy ≤ 𝑝2 ∈
[0, 1] for livenss and security requirements. This can be formulated

as the following optimization problem:

min

𝜏,𝑛
audit

𝑛audit s.t. 𝛿privacy (𝑛audit, 𝜏) ≤ 𝑝1 𝑎𝑛𝑑 𝛿interrupt (𝑛audit, 𝜏) ≤ 𝑝2,

where 𝛿privacy (𝑛audit, 𝜏) and 𝛿interrupt (𝑛audit, 𝜏) represent the proba-
bilities of 𝛿interrupt and 𝛿privacy when 𝜏 and 𝑛audit are provided. Since

𝑛audit ≤ 𝑛 and 𝜏 ≤ 𝑛audit are integers, and the probabilities can be

calculated from Proposition 5.2 and Theorem 4.2, this problem is

solvable using binary search.

497

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

Figure 4: The trade-off between communication cost and
privacy for various 𝛾 with 𝛽 = 0 and 𝜅 = 1 (left) and various 𝛾
with 𝛽 = 0 and 𝜅 = 1 (right).

Figure 5: Communication cost for various settings of (𝛽,𝛾)
with the constraint of (𝛿privacy, 𝛿interrupt)=(10−8,10−8), 𝜅 = 1

(left), and𝜅 = 0.5 (right). Results larger than 10000 are omitted.

6 Experiments
In this section, we first examine the effects of various parameters.

Then, we present the TCB size and actual communication overhead

associated with the implementation.

6.1 Communication, Liveness, and Privacy
Trade-offs

In this section, we analyze the trade-offs among communication

cost, liveness, and privacy. Here, 𝑛audit represents the minimum

number of auditors required for each process derived in Section 5.4,

which in turn correlates with the entire communication cost. Live-

ness is quantified by 𝛿interrupt, as described in Proposition 5.2; it

represents the probability of system failure in conducting DP-FTRL.

Privacy is measured by 𝛿privacy, as defined in Theorem 4.2; it de-

notes the additional overhead to 𝛿 for approximate DP. By vary-

ing 𝑛audit, we explore the balance among these factors. Here, we

set 𝑛round = 10000 and 𝑛 = 10
7
, and the server is required to set

|args
selection

| as the available clients.
Initially, we illustrate the balance between communication cost

and liveness and between communication cost and privacy in Fig-

ure 4. For these analyses, we fix 𝛾 = 0, 𝜅 = 1 or 𝛽 = 0, 𝜅 = 1

to focus on liveness or privacy, respectively. The results indicate

that by slightly increasing 𝑛audit, the system can significantly lower

both 𝛿interrupt and 𝛿privacy, implying a communication overhead to

achieve sufficient liveness and privacy.

Next, we evaluate the communication cost across various set-

tings of (𝛽,𝛾) under the constraints (𝛿privacy, 𝛿interrupt)=(10−8, 10−8)
with 𝜅 = 1 or 𝜅 = 0.5, as depicted in Figure 5. The plots illustrate the

communication cost as 𝛾 and 𝛽 vary. Compared to earlier scenarios

where either 𝛾 or 𝛽 is zero, achieving robustness requires greater

communication costs. This is because robustness for liveness re-

quires a low value of 𝜏 , while robustness for privacy necessitates a

high value. To increase the value of feasible 𝜏s to simultaneously

satisfy both requirements, 𝑛audit must be increased.

The value of 𝜅 is also crucial as it quickly increases the value of

𝑛audit. This occurs because the candidates for auditors are selected

by the server (i.e., adversary), so the ratio of corrupted clients among

the candidates rises quickly if the number of candidates (i.e., 𝑛𝜅)

is small. Even when 𝜅 is small, if 𝛽 is also low, our framework can

still function effectively with high 𝛾 and a small 𝑛audit.

We observed that the value of 𝑛 does not significantly impact

the results. Thus, by increasing 𝑛, the communication cost for each

client can be reduced because it decreases the probability of being

chosen as auditors.

6.2 Implementations
We implemented the planner enclave using Intel SGX with the

OpenEnclave SDK
6
. For both signing and key exchange, we use

ECDSA and ECDH with P-256, respectively, as implemented by

OpenSSL. In this section, we examine the implementation from two

angles: the TCB size and the message size required for a client.

TCB size. We assess the TCB size without the secure aggrega-

tion component to compare it with systems focused on achieving

linearizability, such as ROTE [57] and Nimble [4], which, to the

best of our knowledge, has the smallest TCB size for this purpose.

Our TCB size is 0.7K excluding libraries, which is more compact

than ROTE’s 1.1K and Nimble’s 2.3K as reported in the paper, as

our approach relies on client auditing rather than SMR.

Communication Overhead. We evaluated the additional commu-

nication overhead involved with Audit and SecureAggregation

according to the client-side algorithm. For Audit, the evidence size

is 5038 bytes, while for SecureAggregation, it is 5194 bytes. In

terms of responses, Audit sends 64 bytes, and SecureAggrega-

tion sends 144 bytes. Note that we intentionally excluded the size

of model updates to concentrate solely on our additional communi-

cation costs. These communication sizes are fixed and do not vary

with FL parameters such as 𝑛 and 𝑑 .

7 Conclusion
Our paper considers malicious settings in private FL to bridge the

gap in privacy principles concerning transparency and verifiabil-

ity [25]. Our approach achieves this using interactive DP, relying

exclusively on TEEs and thereby avoiding additional trusted hard-

ware such as a TPM [75], which is vulnerable to the Cuckoo at-

tack [68]. Also, our design follows the fundamental principles of

TEE applications [4, 6]; that is, it has a small TCB size. Furthermore,

our system is resilient to disasters [4]—meaning it is capable of

recovery—and requires only a single TEE-enabled server, thereby

reducing management costs. As for future work, a key direction is

to investigate the trade-off between our approach of minimizing

trust in the server (i.e., bringing it closer to a zero-trust model) and

the implementation costs discussed in Appendix A.2. Exploring

simpler client auditing mechanisms with appropriate cost of trust

will be crucial for broader practical deployment.

6
https://github.com/openenclave/openenclave

498

https://github.com/openenclave/openenclave

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

Acknowledgments
This research received no specific grant from any funding agency in

the public, commercial, or not-for-profit sectors. The authors used

ChatGPT4o to revise the texts throughout this paper to correct any

typos, grammatical errors, and awkward phrasing.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The skellam mechanism

for differentially private federated learning. Advances in Neural Information
Processing Systems 34 (2021), 5052–5064.

[3] AMD. 2016. AMD Secure Encrypted Virtualization (SEV).

https://www.amd.com/en/developer/sev.html (2016).
[4] Sebastian Angel, Aditya Basu,Weidong Cui, Trent Jaeger, Stella Lau, Srinath Setty,

and Sudheesh Singanamalla. 2023. Nimble: Rollback protection for confidential

cloud services. In 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23). 193–208.

[5] Apple. 2024. Private Cloud Compute: A new frontier for AI privacy in the cloud,
https://security.apple.com/blog/private-cloud-compute/. Technical Report. Apple.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L

Stillwell, et al. 2016. {SCONE}: Secure linux containers with intel {SGX}. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). 689–703.

[7] Marshall Ball, James Bell-Clark, Adria Gascon, Peter Kairouz, Sewoong Oh, and

Zhiye Xie. 2024. Secure Stateful Aggregation: A Practical Protocol with Applica-

tions in Differentially-Private Federated Learning. arXiv preprint arXiv:2410.11368
(2024).

[8] Borja Balle, James Bell, Adria Gascón, and Kobbi Nissim. 2020. Private summation

in the multi-message shuffle model. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 657–676.

[9] Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed private data

analysis: Simultaneously solving how and what. In Advances in Cryptology–
CRYPTO 2008: 28th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2008. Proceedings 28. Springer, 451–468.

[10] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and

Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic

overhead. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 1253–1269.

[11] Pramod Bhatotia, Markulf Kohlweiss, LorenzoMartinico, and Yiannis Tselekounis.

2021. Steel: composable hardware-based stateful and randomised functional en-

cryption. In IACR International Conference on Public-Key Cryptography. Springer,
709–736.

[12] Alexander Bienstock, Antigoni Polychroniadou, and Ujjwal Kumar. 2024. DMM:

Distributed Matrix Mechanism for Differentially-Private Federated Learning

using Packed Secret Sharing. In International Workshop on Federated Foundation
Models in Conjunction with NeurIPS.

[13] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[14] Kallista Bonawitz, Peter Kairouz, Brendan McMahan, and Daniel Ramage. 2021.

Federated learning and privacy: Building privacy-preserving systems for machine

learning and data science on decentralized data. Queue 19, 5 (2021), 87–114.
[15] Lennart Braun, Adrià Gascón, Mariana Raykova, Phillipp Schoppmann, and Karn

Seth. 2024. Malicious security for sparse private histograms. Cryptology ePrint
Archive (2024).

[16] Javad Ghareh Chamani and Dimitrios Papadopoulos. 2020. Mitigating leakage

in federated learning with trusted hardware. In Advances in Neural Information
Processing Systems, Privacy Preserving Machine Learning - PriML and PPML Joint
Edition.

[17] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and

Flavio D Garcia. 2021. {VoltPillager}: Hardware-based fault injection attacks

against intel {SGX} enclaves using the {SVID} voltage scaling interface. In 30th
USENIX Security Symposium (USENIX Security 21). 699–716.

[18] Christopher A Choquette-Choo, Krishnamurthy Dj Dvijotham, Krishna Pillutla,

Arun Ganesh, Thomas Steinke, and Abhradeep Guha Thakurta. 2024. Correlated

Noise Provably Beats Independent Noise for Differentially Private Learning. In

The Twelfth International Conference on Learning Representations.
[19] Christopher A Choquette-Choo, Arun Ganesh, RyanMcKenna, H BrendanMcMa-

han, John Rush, Abhradeep Guha Thakurta, and Zheng Xu. 2024. (Amplified)

Banded Matrix Factorization: A unified approach to private training. Advances
in Neural Information Processing Systems 36 (2024).

[20] Christopher A Choquette-Choo, H Brendan McMahan, Keith Rush, and

Abhradeep Thakurta. 2022. Multi-epoch matrix factorization mechanisms for

private machine learning. arXiv preprint arXiv:2211.06530 (2022).
[21] INTEL CORP. 2015. Product Change Notification 114074-

00. https://qdms.intel.com/dm/i.aspx/ 5A160770-FC47-47A0-BF8A-
062540456F0A/PCN114074-00 (2015).

[22] LINECorporation. 2023. Differential Privacy in LINE Federated Learning. Technical
Report. https://linecorp.com/en/security/article/461.

[23] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, robust, and scalable

computation of aggregate statistics. In 14th USENIX symposium on networked
systems design and implementation (NSDI 17). 259–282.

[24] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

[25] Katharine Daly, Hubert Eichner, Peter Kairouz, H Brendan McMahan, Daniel

Ramage, and Zheng Xu. 2024. Federated learning in practice: reflections and

projections. In 2024 IEEE 6th International Conference on Trust, Privacy and Security
in Intelligent Systems, and Applications (TPS-ISA). IEEE, 148–156.

[26] Research Scientist Daniel Ramage and Stefano Mazzocchi. 2020. Fed-

erated Analytics: Collaborative Data Science without Data Collection.

https://research.google/blog/federated-analytics-collaborative-data-science-
without-data-collection/ (2020).

[27] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,

Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. {FastKitten}:
Practical smart contracts on bitcoin. In 28th USENIX Security Symposium (USENIX
Security 19). 801–818.

[28] Sergey Denisov, H Brendan McMahan, John Rush, Adam Smith, and Abhradeep

Guha Thakurta. 2022. Improved differential privacy for sgd via optimal private

linear operators on adaptive streams. Advances in Neural Information Processing
Systems 35 (2022), 5910–5924.

[29] Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.

IEEE Transactions on information theory 29, 2 (1983), 198–208.

[30] John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer
systems. Springer, 251–260.

[31] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In

Advances in Cryptology-EUROCRYPT 2006: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28-June 1, 2006. Proceedings 25. Springer, 486–503.

[32] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[33] Hubert Eichner, Daniel Ramage, Kallista Bonawitz, Dzmitry Huba, Tiziano San-

toro, Brett McLarnon, Timon Van Overveldt, Nova Fallen, Peter Kairouz, Al-

bert Cheu, et al. 2024. Confidential federated computations. arXiv preprint
arXiv:2404.10764 (2024).

[34] Úlfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal

Talwar, and Abhradeep Thakurta. 2019. Amplification by shuffling: From local to

central differential privacy via anonymity. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2468–2479.

[35] Russell A Fink, Alan T Sherman, Alexander O Mitchell, and David C Challener.

2011. Catching the Cuckoo: Verifying TPM Proximity Using a Quote Timing Side-

Channel: (Short Paper). In Trust and Trustworthy Computing: 4th International
Conference, TRUST 2011, Pittsburgh, PA, USA, June 22-24, 2011. Proceedings 4.
Springer, 294–301.

[36] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and

Ananda Theertha Suresh. 2021. Shuffled model of differential privacy in federated

learning. In International Conference on Artificial Intelligence and Statistics. PMLR,

2521–2529.

[37] Anonymization Team Google. 2019. Delta for thresholding. https:
//github.com/google/differential-privacy/blob/main/common_docs/Delta_
For_Thresholding.pdf (2019).

[38] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correctness

condition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) 12, 3 (1990), 463–492.

[39] White House. 2012. Consumer data privacy in a networked world: A frame-

work for protecting a privacy and promoting innovation in the globaeconom.

http://www. whitphi) nse pnY/siles/default/files/privac (2012).
[40] Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Cleb-

sch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery,

Matthew Kerner, et al. 2023. Confidential consortium framework: Secure mul-

tiparty applications with confidentiality, integrity, and high availability. arXiv
preprint arXiv:2310.11559 (2023).

[41] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan

Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,

et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceedings

499

https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

of Machine Learning and Systems 4 (2022), 814–832.
[42] Mohit Kumar Jangid, Guoxing Chen, Yinqian Zhang, and Zhiqiang Lin. 2021.

Towards formal verification of state continuity for enclave programs. In 30th
USENIX Security Symposium (USENIX Security 21). 573–590.

[43] An Ji, Bortik Bandyopadhyay, Congzheng Song, Natarajan Krishnaswami, Prabal

Vashish, Rigel Smiroldo, Isabel Litton, Sayantan Mahinder, Mona Chitnis, and

Andrew W Hill. 2025. Private Federated Learning In Real World Application–A

Case Study. arXiv preprint arXiv:2502.04565 (2025).
[44] Jiankai Jin, Chitchanok Chuengsatiansup, Toby Murray, Benjamin IP Rubinstein,

Yuval Yarom, and Olga Ohrimenko. 2024. Elephants Do Not Forget: Differential

Privacy with State Continuity for Privacy Budget. In Proceedings of the 2024 on
ACM SIGSAC Conference on Computer and Communications Security. 1909–1923.

[45] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed discrete gauss-

ian mechanism for federated learning with secure aggregation. In International
Conference on Machine Learning. PMLR, 5201–5212.

[46] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep

Thakurta, and Zheng Xu. 2021. Practical and private (deep) learning without

sampling or shuffling. In International Conference on Machine Learning. PMLR,

5213–5225.

[47] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-

nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, et al. 2021. Advances and open problems in federated learning.

Foundations and trends® in machine learning 14, 1–2 (2021), 1–210.

[48] Ryan Karl, Jonathan Takeshita, and Taeho Jung. 2021. Cryptonite: A framework

for flexible time-series secure aggregation with non-interactive fault recovery. In

Security and Privacy in Communication Networks: 17th EAI International Confer-
ence, SecureComm 2021, Virtual Event, September 6–9, 2021, Proceedings, Part I 17.
Springer, 311–331.

[49] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,

and Adam Smith. 2011. What can we learn privately? SIAM J. Comput. 40, 3
(2011), 793–826.

[50] Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2023. Olive: Oblivious

Federated Learning on Trusted Execution Environment against the Risk of Spar-

sification. Proceedings of the VLDB Endowment 16, 10 (2023), 2404–2417.
[51] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner

Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.

Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020),

93–101.

[52] Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and Stefano Tessaro. 2023.

LERNA: secure single-server aggregation via key-homomorphic masking. In

International Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer, 302–334.

[53] Jinyuan Li, Maxwell N Krohn, David Mazieres, and Dennis E Shasha. 2004. Secure

Untrusted Data Repository (SUNDR).. In Osdi, Vol. 4. 9–9.
[54] Yehuda Lindell. 2017. How to simulate it–a tutorial on the simulation proof

technique. Tutorials on the Foundations of Cryptography: Dedicated to Oded
Goldreich (2017), 277–346.

[55] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, et al. 2020.

Meltdown: Reading kernel memory from user space. Commun. ACM 63, 6 (2020),

46–56.

[56] Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and Tal Rabin.

2023. Flamingo: Multi-round single-server secure aggregation with applications

to private federated learning. In 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 477–496.

[57] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,

Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. {ROTE}: Rollback protection
for trusted execution. In 26th USENIX Security Symposium (USENIX Security 17).
1289–1306.

[58] David Mazieres and Dennis Shasha. 2002. Building secure file systems out

of Byzantine storage. In Proceedings of the twenty-first annual symposium on
Principles of distributed computing. 108–117.

[59] HBrendanMcMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learning

Differentially Private Recurrent Language Models. In International Conference on
Learning Representations.

[60] H Brendan McMahan, Zheng Xu, and Yanxiang Zhang. 2024. A Hassle-free

Algorithm for Private Learning in Practice: Don’t Use Tree Aggregation, Use

BLTs. arXiv preprint arXiv:2408.08868 (2024).
[61] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The

TAMARIN prover for the symbolic analysis of security protocols. In Computer
Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings 25. Springer, 696–701.

[62] Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and

Nicolas Kourtellis. 2021. PPFL: Privacy-preserving federated learningwith trusted

execution environments. In Proceedings of the 19th annual international conference
on mobile systems, applications, and services. 94–108.

[63] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and

Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against

Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466–1482.
[64] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

https://bitcoin.org/bitcoin.pdf (2008).

[65] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,

Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered asyn-

chronous aggregation. In International conference on artificial intelligence and
statistics. PMLR, 3581–3607.

[66] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian Zhang. 2022. Narrator:

Secure and practical state continuity for trusted execution in the cloud. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 2385–2399.

[67] Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. 2022. Differentially

private federated learning on heterogeneous data. In International Conference on
Artificial Intelligence and Statistics. PMLR, 10110–10145.

[68] Bryan Parno. 2008. Bootstrapping trust in a" trusted" platform. In Proceedings of
the 3rd conference on Hot topics in security. 1–6.

[69] Bryan Parno, Jacob R Lorch, John R Douceur, James Mickens, and Jonathan M

McCune. 2011. Memoir: Practical state continuity for protected modules. In 2011
IEEE Symposium on Security and Privacy. IEEE, 379–394.

[70] Rafael Pass, Elaine Shi, and Florian Tramer. 2017. Formal abstractions for attested

execution secure processors. In Advances in Cryptology–EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30–May 4, 2017, Proceedings, Part I 36. Springer,
260–289.

[71] Frank Piessens and Paul C van Oorschot. 2024. Side-channel attacks: A short

tour. IEEE Security & Privacy 22, 2 (2024), 75–80.

[72] Mark Russinovich. 2023. Confidential computing: Elevating cloud security and

privacy. Commun. ACM 67, 1 (2023), 52–53.

[73] Jinhyun So, Başak Güler, and A Salman Avestimehr. 2021. Turbo-aggregate:

Breaking the quadratic aggregation barrier in secure federated learning. IEEE
Journal on Selected Areas in Information Theory 2, 1 (2021), 479–489.

[74] Harish Srinivas, Graham Cormode, Mehrdad Honarkhah, Samuel Lurye, Jonathan

Hehir, Lunwen He, George Hong, Ahmed Magdy, Dzmitry Huba, Kaikai Wang,

et al. 2024. Federated Analytics in Practice: Engineering for Privacy, Scalability

and Practicality. arXiv preprint arXiv:2412.02340 (2024).
[75] Raoul Strackx and Frank Piessens. 2016. Ariadne: A minimal approach to state

continuity. In 25th USENIX Security Symposium (USENIX Security 16). 875–892.
[76] Kunal Talwar, ShanWang, Audra McMillan, Vitaly Feldman, Pansy Bansal, Bailey

Basile, Aine Cahill, Yi Sheng Chan, Mike Chatzidakis, Junye Chen, et al. 2024.

Samplable anonymous aggregation for private federated data analysis. In Proceed-
ings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security. 2859–2873.

[77] Salil Vadhan. 2017. The complexity of differential privacy. Tutorials on the
Foundations of Cryptography: Dedicated to Oded Goldreich (2017), 347–450.

[78] Salil Vadhan and Tianhao Wang. 2021. Concurrent composition of differential

privacy. In Theory of Cryptography: 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 8–11, 2021, Proceedings, Part II 19. Springer, 582–604.

[79] Salil Vadhan and Wanrong Zhang. 2023. Concurrent composition theorems for

differential privacy. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing. 507–519.

[80] Stephan van Schaik, Marina Minkin, Daniel Genkin, Yuval Yarom, and Andrew

Kwong. 2021. CacheOut and SGAxe: How SGX Fails in Practice. Video at

https://youtu.be/kO-3Uh7tq60?t=1806.

[81] Weili Wang, Sen Deng, Jianyu Niu, Michael K Reiter, and Yinqian Zhang. 2022.

Engraft: Enclave-guarded raft on byzantine faulty nodes. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. 2841–2855.

[82] Annika Wilde, Tim Niklas Gruel, Claudio Soriente, and Ghassan Karame. 2024.

The Forking Way: When TEEs Meet Consensus. arXiv preprint arXiv:2412.00706
(2024).

[83] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel

attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640–656.

[84] Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher Choquette, Peter Kairouz,

Brendan Mcmahan, Jesse Rosenstock, and Yuanbo Zhang. 2023. Federated Learn-

ing of Gboard Language Models with Differential Privacy. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume
5: Industry Track), Sunayana Sitaram, Beata Beigman Klebanov, and Jason D

Williams (Eds.). Association for Computational Linguistics, Toronto, Canada,

629–639. https://doi.org/10.18653/v1/2023.acl-industry.60

[85] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and

Wenyuan Yan. 2020. LedgerDB: A centralized ledger database for universal audit

and verification. Proceedings of the VLDB Endowment 13, 12 (2020), 3138–3151.
[86] Cong Yue, Gang Chen, Tien Tuan AnhDinh, Beng Chin Ooi, Zhongle Xie, Xiaokui

Xiao, and Meihui Zhang. 2023. GlassDB: An Efficient Verifiable Ledger Database

System Through Transparency. Proceedings of the VLDB Endowment 16, 6 (2023),
1359–1371.

[87] Yuanbo Zhang, Daniel Ramage, Zheng Xu, Yanxiang Zhang, Shumin Zhai, and

Peter Kairouz. 2023. Private Federated Learning in Gboard. arXiv e-prints (2023),

500

https://youtu.be/kO-3Uh7tq60?t=1806
https://doi.org/10.18653/v1/2023.acl-industry.60

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

arXiv–2306.

A Discussions
In this section, we explore the vulnerabilities of our approach, dis-

cuss practical implementation challenges.

A.1 Side-Channel Attacks
Our protocol’s security guarantees depend on the security of the

underlying TEEs. However, TEEs themselves can be susceptible

to various side-channel attacks [71]. We analyze our protocol’s

vulnerabilities to such attacks.

Our component for achieving linearizability (i.e., planner) is

independent of the secure aggregation mechanism. This design

offers the flexibility to employ different secure aggregation meth-

ods: SMPC [7] or TEE-based approaches [41]. We now analyze

the side-channel vulnerabilities of our system in two scenarios:

using TEE-based secure aggregation and using SMPC-based secure

aggregation.

Side-channel attacks that break confidentiality. One well-known
category of side-channel attacks is Controlled-Channel Attacks

(CCA) [83], where an adversary can infer sensitive input by ob-

serving an application’s input-dependent execution flow through

architectural side-effects like page faults. Our linearizability compo-

nent can be input-oblivious with respect to the execution flow and is

therefore not vulnerable to CCA. However, a TEE-based secure ag-

gregation protocol can be vulnerable if it performs input-dependent

operations, such as data sparsification [50]. Consequently, the se-

cure aggregation protocol must be carefully designed to avoid such

vulnerabilities.

Next, we consider microarchitectural side-channel attacks (e.g.,

transient execution attacks such as Spectre [51] and Meltdown [55])

that leak memory content from within an enclave. The recovery

protocol for our planner mechanism depends on enclave memory

confidentiality. However, this dependency can be removed at some

cost, as shown in Appendix B.2. TEE-based secure aggregation

is inherently vulnerable to this attack class because it processes

raw data in plaintext inside the enclave. An alternative is to use

an SMPC-based secure aggregation protocol [7], which does not

require enclave confidentiality. This approach, however, introduces

a different vulnerability: it is susceptible to Sybil attacks. Since

SMPC requires clients to collaboratively add noise, an adversary

controlling a set of corrupted clients could instruct them to omit

their noise contributions, thereby breaking the DP guarantee of

the final output. This implies the need for a mechanism that can

securely add noise without relying on enclave confidentiality.

Side-channel attacks that break integrity. Our protocol’s lineariz-
ability guarantee is critically dependent on the integrity of the

enclave. If an attacker compromises the enclave’s integrity, the

entire protocol becomes vulnerable. For instance, fault injection

attacks like Plundervolt [63] or Voltpillager [17] could be used to

bypass integrity and linearizability checks. In such a scenario, the

protocol would fail, allowing an adversary to control the process, ex-

tract noise information, and ultimately breach interactive DP. Such

side-channel attacks typically necessitate either physical access

to the hardware [17] or kernel-level privileges [63] for execution.

Within a robust cloud VM infrastructure, direct physical access is

inherently prevented. Moreover, the hypervisor acts as a critical

defense layer, blocking privileged operations that attempt to ma-

nipulate the physical hardware state—for example, by intercepting

writes to MSRs [17]. Consequently, leveraging a cloud-based VM

is a valid strategy for mitigating the risks posed by this class of

side-channel attacks

Furthermore, microarchitectural attacks like SGAxe [80] could

potentially leak the attestation key, compromising integrity. Such

vulnerabilities must be promptly addressed by TEE manufacturers,

so we can mitigate the risk by performing frequent TCB updates,

and clients can verify that the server is using a secure and up-to-date

version of the TEE.

A.2 Implementation Challenges
Our system’s security guarantee does not rely on additional trusted

hardware like TPMs or complex mechanisms like SMR, but rather

on honest clients performing auditing. This design choice enhances

transparency. However, it also introduces new practical implementa-

tion challenges, particularly concerning the deployment of auditing

functions on client devices. A flawed or unavailable implementation

of this client auditing is critical, as it could halt the entire FL proto-

col. Here, we discuss the specific challenges of our implementation

and potential mitigation strategies.

A.2.1 Remote Attestation on Heterogeneous Clients. A core require-

ment of our protocol is that clients perform remote attestation (RA)

to verify the server-side enclave’s quote. Implementing this verifi-

cation process on client devices presents a challenge, especially in

a typical cross-device FL environment with heterogeneous clients.

Verifying an RA quote can be a complex task. For instance, with

Intel SGX, this may involve processing collateral information and

requires the integration of specific SDKs and cryptographic libraries.

This increases the size and complexity of the client-side application,

potentially leading to instability and harming the availability of

client auditing.

A practical solution is to employ a third-party verifier service

like Intel Tiber Trust Authority
7
. Instead of performing the complex

verification locally, the client application can forward the enclave’s

quote to this trusted service, which then returns a simple pass/fail

result. This approach offloads the complexity from the diverse client

devices, simplifying the client application and improving overall

system stability and availability.

A.2.2 TCB Update and Management. In a real-world deployment,

the TCB will require updates to address bugs or respond to newly

discovered side-channel vulnerabilities. This necessity poses a chal-

lenge: clients must have a secure mechanism to learn the correct

hash of the new, updated enclave binary.

This is a common challenge for TEE-based systems. For example,

Papaya [41] addresses this by using a verifiable log, managed by

a trusted party, to record valid enclave hashes. Our system can

address this challenge in a more integrated and simpler manner by

leveraging our existing evidence chain.
The evidence chain in our protocol is already an externally ver-

ifiable mechanism for managing state. We can extend its use to

7
https://www.intel.com/content/www/us/en/security/trust-authority.html

501

https://www.intel.com/content/www/us/en/security/trust-authority.html

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

manage TCB updates. The FL provider appends a special entry to

the evidence chain containing the hash of the new valid enclave

version. Clients, who already verify the evidence chain, can securely

learn the new TCB hash from this entry.

This approach seamlessly integrates TCB management into our

existing state-management protocol, eliminating the need for a

separate verifiable log system. This highlights a key advantage of

our system’s design: the secure and verifiable state management

provided by the evidence chain offers a simple and robust solution

for TCB updates.

B Recovery
This appendix details two proposed recovery mechanisms designed

to handle a critical failure scenario: an enclave crash occurring

during the state transition process. Our protocol’s liveness depends

on the successful generation of a new evidence block that desig-

nates the next set of auditors. A crash during this critical phase

(specifically, within Line 16 of Algorithm 3 after auditor signatures

have been collected but before the next state is committed) could

halt the entire DP-FTRL execution.

To solve this, we propose two distinct solutions, each tailored to

a different threat model regarding the security guarantees of the

underlying TEE.

B.1 Recovery under a Confidentiality
Assumption

This first solution operates under the confientiality assumption that

the TEE provides robust confidentiality for enclave memory, pro-

tecting it from both software and hardware-based attacks, including

side-channel attacks.

Mechanism. The protocol is augmented with the following steps:

(1) Key Initialization: During the initial setup (Line 2 of Algo-

rithm 3), the planner enclave generates a symmetric recovery_key.
This key is immediately sealed and persisted as part of the en-

clave’s initial state, never being exposed outside the trusted

boundary.

(2) State Commitment: In a regular update process, before

requesting auditor signatures, the planner enclave randomly

determines the next set of auditors, C_next. It then encrypts

this selection with the recovery_key and includes this en-

crypted blob within the evidence presented to the current

auditors.

(3) Recovery Trigger and Execution: If the enclave crashes
during Line 16 of Algorithm 3 after collecting a sufficient

number of signatures from C_audit, the server initiates a
recovery. It launches a new planner enclave instance, in-

voking a dedicated recovery function. The server provides

this function with the evidence from the crashed enclave

(containing the encrypted C_next) and the collected auditor

signatures.

(4) StateRestoration:The recovery enclave unseals the recovery_key,
decrypts C_next, and verifies the validity of the provided

signatures against the auditor set specified in the evidence.

If successful, it deterministically regenerates the evidence

block that the previous enclave failed to produce, thus restor-

ing the continuity of the evidence chain and allowing the

overall FL process to continue.

Limitations and Trade-offs. While this approach effectively recov-

ers from a crash, it has two important limitations. First, the utility of

the crashed round is partially lost, as the secure aggregation result

itself cannot be recovered; only the protocol’s state continuity is

restored.

Second, and more critically, the security of this mechanism is

entirely dependent on the confidentiality of the recovery_key. As
discussed in Appendix A.1, if a side-channel attack were to leak

this key, an adversary could decrypt 𝐶next prematurely. This would

create a strategic vulnerability. By revealing the upcoming random

selection of auditors, it allows the adversary to repeatedly force

a re-selection by inducing crashes until a favorable set (i.e., one

including many corrupted clients) is chosen.

B.2 Recovery Resilient to Side-Channel Attacks
To address the limitations of the confidentiality-dependent ap-

proach, we propose a second mechanism designed for a weaker

threat model that assumes a transparent enclave [70]. This model

presumes that an adversary may be able to read the enclave’s mem-

ory, rendering secret-based commitments insecure.

Mechanism. This protocol avoids long-term secrets and instead

relies on a modification to the protocol logic:

(1) No Secret Key: This mechanism entirely avoids the use of

a secret recovery_key. The commitment to the next state

is purely logic-based.

(2) Recovery Flag:The evidence is extended to include a boolean
recovery_flag. In a normal, non-failed operation, this flag

is always set to false.
(3) Controlled Fork on Post-Signature Crash: The protocol

explicitly permits a controlled, temporary fork to handle a

specific failure scenario: a crash that occurs after the auditors

for a given round (e.g., (𝑖 − 1)-th 𝐶audit) have signed for a

normal transition (to state 𝑆𝑖 with new randomly chosen

auditors 𝑖-th 𝐶audit), but before that state is finalized. In this

case, (𝑖−1)-th𝐶audit are permitted to sign a second time for a

recovery transition (to state 𝑆 ′𝑖), provided the server’s request
is for a recovery process and the corresponding enclave sets

the recovery_flag to true. In this recovery transition, 𝑖-th

𝐶audit is set to the same set as (𝑖 − 1)-th 𝐶audit, and secure

aggregation is not performed. This allows two potentially

valid successor states, 𝑆𝑖 and 𝑆
′
𝑖 , to co-exist, representing a

deliberate fork in the state history.

(4) Fork Resolution via Interactive Verification: To resolve

this fork and ensure the system converges back to a sin-

gle history, the subsequent planner enclave is tasked with

additional verification before it can proceed. To validate a

transition from either 𝑆𝑖 or 𝑆
′
𝑖 , the planner enclave must

query the auditors of the previous round ((𝑖 − 1)-th 𝐶audit).

Each member of (𝑖 − 1)-th𝐶audit, based on their local knowl-

edge of whether they participated in a recovery signature,

provides a signed message to the planner enclave endorsing

only one of the two branches. The planner enclave must

502

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

collect a sufficient quorum of these endorsements to prove

that a single, unambiguous branch has been chosen.

Limitations and Trade-offs. The key advantage of this design is

its resilience to confidentiality-breaking attacks like side-channels.

However, this robustness comes at a price. The protocol becomes

significantly more complex. More critically, it introduces new live-

ness dependencies that may, paradoxically, reduce overall system

availability. The success of a recovery now hinges on the availability

of two consecutive sets of auditors (the current and the previous).

A failure or mass dropout in either of these sets would cause the

auditing itself to fail, making the system potentially more brittle

than the single-dependency model in Section B.1.

C Related Work
The most relevant recent works include those by Bienstock et

al. [12] and Ball et al. [7], which attempt to realize DP-FTRL in

a (partially) malicious setting. These works utilize SMPC and re-

share secrets between cohorts to achieve correlated noise. However,

they assume that Sybil attacks do not occur, which means that

they partially rely on the honesty of the central server during the

planning phase to select the correct𝐶cohort. To the best of our knowl-

edge, we are the first to propose a maliciously secure DP-FTRL that

includes planning. In the following, we discuss related works that

share similar objectives or approaches.

C.1 Secure FL
There is a vast body of work focusing on secure FL under un-

trusted server conditions. The foundational study was conducted

by Bonawitz et al. [13], which proposed using SMPC within a co-

hort for aggregating updates in FL such as FedAvg to prevent un-

trusted servers from accessing individual updates. Some research

has extended this to PFL setting that adds noise [2, 45]. Subsequent

work [10, 52, 56, 73] focused on optimizing the number of interme-

diate helper users or minimizing communication rounds, but this

requires additional computation, communication, and synchroniza-

tion from clients. Moreover, corrupted clients could refuse to add

distributed noise, undermining the intended privacy guarantees.

SMPC among non-colluding servers [23, 76] may overcome these

challenges but requires non-collusion assumptions, which are un-

realistic for a single FL conductor.

There is also literature on TEE-based secure aggregation for

FL [16, 41, 62]. However, these studies focus only on stateless and

noiseless secure aggregation methods like FedAvg, and the chal-

lenge of achieving DP-FTRL using TEEs has not yet been addressed.

C.2 Maliciously Secure Federated Analytics
As a broader concept of secure FL, (maliciously) secure federated

analytics for DP has become a recent trend [26]. One of the major

challenges is conducting stateful workloads on TEEs.

Confidential Federated Computation (CFC) [33], although not

specifically designed for FL, shares similar motivations with our

work. It addresses rollback attacks using SMR through multiple

TEE. Therefore, it is susceptible to the problems mentioned in Intro-

duction 1. Also, the application of this general system to DP-FTRL

remains unclear. Srinivas et al. [74] proposed a federated analytics

system that utilizes TEEs optimized for one-shot analytics to avoid

the challenge of the state management, but this approach sacrifices

state management, making DP-FTRL unattainable.

The SMPC-based approach for sparse histogram [15], while not

explicitly for federated learning, shares a similar environment. They

secure the sparse histogram mechanism with interactive DP, while

our approach secures DP-FTRL.

C.3 Maliciously Secure State Management
System

A crucial aspect of our system is realizing a linearizable concurrent

system under malicious conditions, a concept explored in previous

research. Generally, two methods achieve this: using TEEs and

utilizing auditors.

C.3.1 TEE Based Approach. Many TEEs provide sealing capabili-

ties to offload encrypted and signed state to disk, which, combined

with monotonic hardware counters, could be used to implement

rollback protection [75]. However, this approach suffers from low

performance [57], weak security [68], and quick exhaustion of

hardware counters, hence recent Intel SGX versions lack mono-

tonic counters. Systems using SMR for linearizability [4, 57] or

Raft consensus for fault tolerance [40, 81] on TEEs might mitigate

the problem. Elephants DP [44] utilizes similar systems for DP

budget management, but it assumes a trusted data curator or does

not address FL. Replacing our planner’s linearizability component

with these systems could work but would increase the TCB size

significantly, complicating verification. Furthermore, these solu-

tions cannot recover from disasters [4, 40], making them costly to

manage. Our planner can operate on a single machine and recover.

C.3.2 Auditor Based Approach. In auditor-based methods, systems

provide external state verifiability [85, 86]. The main challenge

is establishing trusted auditors and process integrity. Combining

TEEs might offer some integrity, but corrupted auditors could lead

to faults and privacy leaks. Integrating blockchain [27, 66] with

TEEs is another way to maintain consistent state. However, manag-

ing a blockchain is required, and in a single FL conductor setting,

adopting a permissioned blockchain (i.e., internal verifiability) is

infeasible, while managing a permissionless blockchain poses in-

centive issues or is vulnerable to a 51% attack.

D Missing Proofs
Theorem D.1 (Theorem 3.1). Assume that if Sim sets 𝑘 to 𝑖 ,

𝐶cohort to be a subset of 𝑓qualify (Π, 𝐻, 𝑘), ˜𝜃 to ˜𝜃𝑖−1, and 𝑔 𝑗 as defined
in Algorithm 1 (i.e., the original DP-FTRL), the view of Sim satis-
fies (𝜀, 𝛿 + 𝛿privacy)-DP. Then, the view of any other Sim′ satisfies
(𝜀, 𝛿 + 𝛿privacy)-DP.

Proof. This proof uses the "add the delta" technique [37] (i.e.,

joint convexity). We interpret the mechanism 𝑀 (𝐷) as choosing
either𝑀 ′ (𝐷) with probability 1−𝛿privacy or𝑀 ′′ (𝐷) with probability
𝛿privacy, where 𝑀

′′
is defined by Line 4 of Algorithm 1 and 𝑀 ′ by

Lines 6-17. If𝑀 ′ satisfies (𝜀, 𝛿)-DP, then𝑀 satisfies (𝜀, 𝛿 + 𝛿privacy).
We will demonstrate that 𝑀 ′ satisfies (𝜀, 𝛿)-DP. When setting

𝑘 to 𝑖 , 𝐶cohort to be a subset of 𝑓qualify (Π, 𝐻, 𝑘), ˜𝜃 to
˜𝜃𝑖−1, and 𝑔 𝑗

as defined in Algorithm 1, this aligns with the matrix mechanism

in adaptive streaming [28]. We show that the privacy guarantee

503

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

holds even if 𝑘 , 𝐶cohort,
˜𝜃 , and 𝑔 𝑗 are chosen adaptively, using the

method described in Theorem 2.1 of Denisov et al. [28], which

equates the matrix mechanism to the adaptive Gaussian mechanism.

Given that the sensitivity of 𝑀 ′ is bounded by the participation

schema due to Line 10 and Sim receives
˜𝜃1:𝑖 at round 𝑖 (i.e., C𝜃1:𝑖 +

Z[: 𝑖] where 𝜃1:𝑖 ∈ R𝑖×𝑑
) instead of

˜𝜃𝑘 , our mechanism remains

equivalent to the adaptive Gaussian mechanism. Consequently,

the folklore technique used in [28] implies that the privacy of the

adaptive Gaussian mechanism is equivalent to that of the non-

adaptive Gaussian mechanism. Therefore, the privacy guarantee is

maintained just as in that of Denisov et al. [28]. Thus, we conclude

that 𝑀 ′ satisfies (𝜀, 𝛿)-DP, and consequently, 𝑀 satisfies (𝜀, 𝛿 +
𝛿privacy)-DP.

□

Theorem D.2 (Theorem 4.1). Algorithms 3 (server-side) and 4
(client-side) achieve both integrity and linearizability with respect to
the process described in Algorithm 2 when 𝛾 = 0.

Proof. This derives from the three verifications outlined in Sec-

tion 4.1. Here’s a brief review:

Integrity: We demonstrate that each process (i.e., Algorithm 2)

loads the shared object 𝑞 and correctly executes SecAgg𝑞.Z on

𝐶cohort with index 𝑖 only when 𝐶cohort adheres to the participation

schema with 𝑞.𝐻 and 𝑖 , and correctly updates 𝑞.𝐻 in the process.

Firstly, we show that a completed process loads the shared object

𝑞 due to the evidence chain for 𝑞.𝐻 and the sealing for 𝑞.Z. Initially,
all clients store the evidence chain ID corresponding to𝑞.Z (Line 4 of

Algorithm 3 in the verification of "Initialization"). An enclave loads

𝑞.Z by unsealing with the evidence chain ID and generates evidence,

including it. During Audit, clients verify that the evidence chain ID

inside the evidence matches theirs. Thus, the enclave can pass the

"agreement on an enclave" stage only when 𝑞.Z is correctly loaded

with the evidence chain ID by unsealing. The enclave retrieves 𝑞.𝐻

from the evidence chain, and the validity of this chain is verified

by remote attestation to extract correct auditors ("the approval of

auditors") and Audit to verify the evidence chain’s digest. Thus,

the enclave can pass the "agreement on an enclave" stage only when

𝑞.𝐻 is correctly loaded from the evidence chain.

Next, we ensure the correct execution of SecAgg𝑞.Z. In Audit,

auditors agree only when they verify, through remote attestation,

that 𝐶cohort is confirmed to adhere to the participation schema and

that SecAgg𝑞.Z will be executed correctly. Therefore, passing the

"agreement on an enclave" stage indicates the correct execution of

SecAgg𝑞.Z.

Linearizability: In this section, to show linearizability, we demon-

strate that the result of concurrent processes is equivalent to the

result produced by processes that are sequentially (and not concur-

rently) invoked and completed based on the length of their loaded

evidence chain. This equivalence is due to the auditors’ approval

and the the agreement on an enclave. To update 𝑞.𝐻 (i.e., to create

new evidence for the evidence chain as the enclave loads 𝑞.𝐻 from

the evidence chain), the evidence chain requires the signatures

of the auditors recorded in the latest evidence. The auditors sign

only once, indicating that only one enclave, which has loaded the

evidence chain, can pass the verification. That is, other enclaves

that load the same evidence chain (i.e., 𝑞) will never complete their

process. From the integrity, an enclave that loads 𝑞 completes the

process using the loaded 𝑞. Thus, the result of concurrent processes

aligns with that of processes sequenced according to the order

defined by the length of the loaded evidence chain.

□

TheoremD.3 (Theorem 4.2). When𝛾 > 0, Algorithm 3maintains
linearizability and integrity of Theorem 4.1 with a probability of
1 − 𝛿privacy =

1−
(
1 −

2(𝑛audit−𝜏)∑︁
𝑖=1

(
𝑛𝛾

2𝜏 − 𝑛audit + 𝑖

) (
𝑛(𝜅 − 𝛾)

2𝑛audit − 2𝜏 − 𝑖

)/ (
𝑛𝜅

𝑛audit

))𝑛round
.

Proof. In each completed process, the system satisfies Theo-

rem 4.1 as long as there is a majority agreement among honest

clients within 𝐶audit (i.e., reaching consensus). Therefore, the prob-

ability we are interested in calculating is the probability that at

least one round fails to reach consensus among the 𝑛round processes

completed.

First, let’s calculate the probability that a single round fails to

reach a majority agreement among honest clients in 𝐶audit. This

situation occurs when the collected 𝜏 signatures do not include

a majority of honest clients’ signatures within 𝐶audit. Define 𝑎 as

the random variable representing the number of corrupted clients

among those in𝐶audit. When 𝜏 signatures are collected, they include

at most 𝜏 − 𝑎 signatures of honest auditors. If this number is less

than the number of honest clients in 𝐶audit who have not agreed,

i.e., 𝑛audit − 𝜏 where 𝑛audit = |𝐶audit |, then a majority agreement is

not reached. Hence, the probability is given by:

Pr[𝜏 − 𝑎 < 𝑛audit − 𝜏] = Pr[𝑎 > 2𝜏 − 𝑛audit] .
Here, 𝑎 follows a hypergeometric distribution because it counts

the number of corrupted clients among a randomly selected 𝑛audit
from the 𝑛available = 𝑛𝜅 candidates, which includes at most 𝑛 × 𝛽

corrupted clients. Therefore, the probability 𝑝 we want to find is:

𝑝 = Pr[𝑎 > 2𝜏 − 𝑛audit] =
2(𝑛

audit
−𝜏)∑︁

𝑖=1

Pr[𝑎 = 2𝜏 − 𝑛audit + 𝑖] .

=

2(𝑛
audit
−𝜏)∑︁

𝑖=1

(
𝑛𝛾

2𝜏 − 𝑛audit + 𝑖

) (
𝑛(𝜅 − 𝛾)

2𝑛audit − 2𝜏 − 𝑖

)/ (
𝑛𝜅

𝑛audit

)
.

This occurs independently across𝑛round rounds. Let𝑏 be the random

variable that represents the number of rounds where consensus

was not reached. Then, the probability of interest is:

1 − Pr[𝑏 = 0] .
Since 𝑏 follows a binomial distribution with probability 𝑝 and

𝑛round trials, the probability we are looking for is:

1 − (1 − 𝑝)𝑛round .
This expression gives us the probability that at least one of the

rounds fails to reach a consensus.

□

TheoremD.4 (Theorem 5.1). 𝑀 = ConComp(𝑀1, . . . , 𝑀𝑛), when
used with any server interactive protocol, emulates the ideal model
(i.e., Algorithm 1) with some simulator.

504

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

Proof. Let 𝑇 (𝐷) denote the ideal functionality executed by a

trusted party as defined in Algorithm 2. Here, we show that for

any interactive protocol 𝐴 in the real world, there exists a simu-

lator Sim in the ideal world such that the view of the adversary,

View(𝐴,𝑀 (𝐷)), is computationally indistinguishable from the view

of the simulator, View(Sim,𝑇 (𝐷)).
First, let us analyze the adversary’s view in the real world,

View(𝐴,𝑀 (𝐷)). This view consists of all messages that the adver-

sary 𝐴 receives during the execution of the protocol𝑀 (𝐷). Clients
perform remote attestation to verify the integrity of the enclave

code and its parameters. They reject any messages not originating

from a legitimate enclave, ensuring that any data they accept is

a valid output of a process defined in Algorithm 2. Although the

adversary 𝐴 controls when enclaves are executed, it cannot access

their internal memory due to the confidentiality guarantees of the

TEE. Consequently, 𝐴 can only observe the inputs and outputs of

the enclave for each process. Crucially, according to Theorem 4.2,

the systemmaintains linearizability with a probability of 1−𝛿𝑝𝑟𝑖𝑣𝑎𝑐𝑦 .
This means that with overwhelming probability, the sequence of

outputs generated by the enclaves is equivalent to a sequential

history where each process

⟨𝑞 update(𝐶cohort, 𝑖) 𝑃⟩⟨OK(SecAggq.Z (𝐶cohort, 𝑖, auxsecagg∗)) 𝑃⟩,

completes in an ordered manner, with 𝑖 incrementing sequentially.

With the remaining probability of 𝛿𝑝𝑟𝑖𝑣𝑎𝑐𝑦 , linearizability may be

violated, potentially exposing information about the dataset 𝐷 to

the adversary.

Now, let’s construct the simulator Sim for the ideal world. Sim

must generate a view, View(Sim,𝑇 (𝐷)), that is computationally

indistinguishable from View(𝐴,𝑀 (𝐷)). Sim can simulate the mes-

sages sent from clients to the server (e.g., signatures, encrypted

updates) by generating random values. This is justified because,

under standard cryptographic assumptions, these messages are

computationally indistinguishable from random numbers to the ad-

versary. The simulator Sim can mimic the messages that 𝐴 receives

from𝑀 (𝐷) by generating them randomly. To simulate the outputs

from the enclaves, Sim interacts with the trusted party 𝑇 (𝐷). Due
to the integrity property of the enclaves in the real world, the 𝑖-th

output from a real enclave is identical to the 𝑖-th output provided

by the ideal functionality𝑇 (𝐷). Therefore, Sim can simply forward

the output from 𝑇 (𝐷) to the simulated adversary. Sim must also

simulate the adversary’s ability to influence the protocol. The ideal

functionality 𝑇 (𝐷) is explicitly designed to allow Sim to provide

inputs on behalf of corrupted clients (e.g., malicious updates 𝑔 𝑗
where 𝑗 ∈ 𝐶cohort) and to choose the completion order of rounds

by setting the index 𝑘 . This allows Sim to perfectly replicate any

malicious actions 𝐴 could take regarding corrupted client inputs

and process scheduling. Due to the linearizability of the system,

the inputs for a given round 𝑘 are independent of the outputs of

any other concurrently executing but not-yet-completed round 𝑖

(where 𝑖 < 𝑘). This non-blocking nature allows Sim to simulate

the adversary’s reordering of round completions. Finally, we con-

sider the failure case, which occurs with probability 𝛿𝑝𝑟𝑖𝑣𝑎𝑐𝑦 . In the

ideal world, the trusted party𝑇 (𝐷) leaks the entire dataset𝐷 to Sim.

With this information, Sim can perfectly simulate any possible view

for the adversary, even one resulting from a catastrophic failure in

the real protocol.

Since the views are computationally indistinguishable in both the

success case (with probability 1−𝛿privacy) and the failure case (with
probability 𝛿privacy), we conclude that View(𝐴,𝑀 (𝐷)) is computa-

tionally indistinguishable from View(Sim,𝑇 (𝐷)). This holds under
the standard security assumptions for the underlying cryptographic

primitives and the TEE’s remote attestation mechanism.

□

Proposition D.5 (Proposition 5.2). The probability 𝛿interrupt of
interruption of auditing is

1 −
(
1 −

𝜏∑︁
𝑖=1

(
𝑛𝜅𝛽

𝑛audit − 𝜏 + 𝑖

) (
𝑛𝜅 (1 − 𝛽)

𝜏 − 𝑖

)/ (
𝑛𝜅

𝑛audit

))𝑛round
.

Proof. The method for computing the probability is almost

identical to that in Theorem 4.2. In each process, the interruption of

auditing occurs when more than 𝑛audit − 𝜏 auditors drop out. Since

𝑛audit auditors are selected from 𝑛𝜅 clients, which includes 𝑛𝜅𝛽

dropout clients as assumed in Section 2.2, the probability of this

happening is given by 𝑝 = Pr[𝑎 > 𝑛audit − 𝜏], where 𝑎 is a random

variable following a hypergeometric distribution with parameters

𝑛𝜅 and 𝑛audit. Specifically,

𝑝 =

𝜏∑︁
𝑖=1

(
𝑛𝜅𝛽

𝑛audit − 𝜏 + 𝑖

) (
𝑛𝜅 (1 − 𝛽)

𝜏 − 𝑖

)/ (
𝑛𝜅

𝑛audit

)
.

This trial independently iterates across𝑛round rounds. In the same

way as Theorem 4.2, we get the probability as

1 − (1 − 𝑝)𝑛round .
□

E Formal Verification
This appendix details the formal verification of the core security

properties of our proposed planner enclave protocol. The goal is to

formally prove its linearizability and integrity under a malicious

servermodel (i.e., Theorem 4.1) while ensuring liveness. We use the

symbolic verification tool Tamarin Prover to model the protocol

and verify its security against a powerful adversary. This formal

proof provides strong evidence for the claims made in Theorem 4.1

(linearizability) and Section 5.2.1 (liveness).

Remark: To simplify the model, here, we represent auditor con-

sensus as the signature of a single, representative auditor who

correctly follows the protocol (i.e., 𝛾 = 0). This abstraction is suffi-

cient to demonstrate the linearizability and integrity, as long as at

least one honest auditor is present. Even in the case where 𝛾 > 0,

Theorem 4.2 shows that by collecting 𝜏 signatures, it is highly prob-

able that honest clients form a majority. This justifies modeling the

behavior of the quorum as that of a single, representative honest

auditor. Therefore, this simplification effectively demonstrates the

essential security properties of our system.

E.1 Modeling Framework: Tamarin Prover
Tamarin Prover is a tool for the symbolic modeling and analysis of

security protocols [61]. It models protocols usingMultiset Rewriting
(MSR) rules and assumes a Dolev-Yao adversary, which aligns with

our threat model. Modeling enclave program logic with Tamarin

has been shown to be an effective approach for verifying state

505

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

continuity properties, as demonstrated in prior work [42]. See the

details of modeling enclave programs in Tamarin in [42].

E.2 Modeling Our Protocol in Tamarin
We translated our protocol’s core logic into a set of Tamarin MSR

rules, modeling the interactions between the planner enclave, the

clients (auditors), and the adversary.

E.2.1 TEE Primitives.

• Planner Enclave and Remote Attestation: An enclave

is modeled by rules that use a unique hardware-derived

attestation key (‘!AttestationSecretKey‘). Remote attestation

is modeled by having the enclave sign a message containing

its identity (‘’mrenclave’‘), a fresh nonce, and other relevant

data, which is called a quote. The integrity of the enclave’s

execution is guaranteed by Tamarin’s assumption that an

entity faithfully follows its specified rules, which are verified

by other parties through this quote.

• Ecall/Ocall Flow: The sequence of an Ecall, a subsequent

Ocall to a client, and the final processing step inside the

enclave is modeled using a Linear Fact. This fact can only

be consumed once, ensuring that the enclave’s internal state

is securely passed from one step to the next in a sequential

manner.

• Confidentiality: Sensitive data, such as a committed ran-

dom number, is modeled as a fact whose contents are in-

accessible to the adversary. The adversary can see the fact

exists but cannot learn the value of the input, thus modeling

confidentiality.

E.2.2 Protocol Logic.

Evidence Chain: An evidence chain is modeled as a sequence

of EvidenceChain(...) facts, each of which has a hash of the

previous block (block_hash). Crucially, it contains not only the

block hash but also a TEE-generated quote over that hash. In our

model, this quote is represented as a signature by the enclave’s

attestation key (~attestation_sk) over a tuple containing the

block_hash, the enclave’s identity (’mrenclave’), and a nonce.

This design ensures the integrity and authenticity of the chain’s

progression. When a subsequent process begins, the enclave must

verify this quote before it can proceed. While the EvidenceChain
facts themselves are passed through the public channel (making

them subject to replay attacks by the adversary), the cryptographic

link provided by the quote prevents the adversary from forging a

new, invalid state or tampering with an existing one without being

detected.

The Ecall/Ocall Flow. The core of our model (i.e., Algorithm 3)

lies in the Ecall/Ocall interactions between the planner enclave and

the clients (auditors) using the evidence chain, as shown in Figure 6.

By modeling this flow in detail, we enable Tamarin to verify the

linearizability of all state transitions. The following explains the

key rules for the two main phases of the protocol.

Initial State Generation (Genesis Block): The protocol begins
by generating the first block of the evidence chain, which we refer

to as the genesis block. This corresponds to Line 2-7 of Algorithm 3.

This process is modeled by the following Tamarin rules:

• EC_Initialization (Ecall): This rule models the planner

enclave initiating the creation of the evidence chain. The

enclave generates a unique nonce_for_init for the en-

tire chain and a nonce_for_enclave_thread for this spe-

cific transaction. It then produces a quote—a signature us-

ing its hardware-derived !AttestationSecretKey—over its
identity (’mrenclave’), the operation type (’init’), and
these nonces. This quote, along with the nonces, is sent

to the auditors via an Ocall (Out(...)). The linear fact

EnclaveThreadForInitialization ensures state continu-

ity within the enclave for the subsequent Sealing step.
• OC_AuditorSignForInitialization (Ocall): An auditor

handles the Ocall from EC_Initialization with this rule.

It first performs remote attestation by verifying the quote

against the enclave’s public key (!AttestationPublicKey).
Upon successful verification, the auditor signs the

nonce_for_enclave_thread to signal its approval of the

initialization and returns this signature to the enclave. This

represents the initial consensus on the genesis block.

• Sealing: The enclave receives the auditor’s signature

and finalizes the genesis block by sealing it with the

EvidenceChain fact. This fact includes the block_hash of
the genesis block, which is derived from the enclave’s iden-

tity, the nonces, and the auditor’s signature. The enclave

then commits this state to the evidence chain, ensuring that

it is now part of a verifiable history.

State Update Process: Once initialized, the chain is extended

through subsequent update processes. This corresponds to Lines

11-20 of Algorithm 3. This process is modeled by the following

Tamarin rules:

• EC_InitProcess (Ecall): This rule is invoked for subsequent
updates, modeling the planner enclave loading a previously

committed state (EvidenceChain(...)). A critical step here

is the verification of the quoted_block_hash from the loaded

EvidenceChain, ensuring the enclave is starting from a le-

gitimate, previously attested state. The enclave then prepares

a new state transition based on a new input and generates

a new quote. This new quote attests to the proposed update,

binding the old block_hash and the new input together.

The new quote is then sent to the auditors via an Ocall,

and the EnclaveThreadForUpdate linear fact maintains the

enclave’s state for the final Update rule.

• OC_AuditorSign (Ocall): This rule models the core audit-

ing function. An auditor receives the new quote from the

EC_InitProcessOcall. It verifies this quote, confirming that

the enclave is proposing a valid state transition. By signing

the quote, the auditor approves the update, as enforced by

the AuditorSignOnlyOnce restriction (see Listing 1 below).

This signature is the crucial element that allows the Update
rule inside the enclave to finalize the new state and append

it to the evidence chain.

• Update: Finally, the enclave processes the auditor’s signa-
ture and updates the evidence chain with the new state.

It generates a new EvidenceChain fact that includes the

new block_hash, which is derived from the previous block’s

506

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing Proceedings on Privacy Enhancing Technologies 2026(1)

All Clients / AuditorsPlanner EnclaveServer

All Clients / AuditorsPlanner EnclaveServer

Creates a quote with the nonce for initialization and the nonce for this enclave thread
and generates the EnclaveThreadForInitialization fact

All clients verify the quote with
remote attestation to form consensus

Verifies signatures and executes Sealing rule by consuming the EnclaveThreadForInitialization fact

Verifies evidence chain, creates a quote containing the nonce for initialization,
the digest of the chain, the hash of the input, and nonce of this enclave thread

and generates the EnclaveThreadForUpdate fact

Verifies the quote, which commits
to the previously loaded state.

Verifies signature and executes Update rule by consuming the EnclaveThreadForUpdate fact

alt [Initialization]

[Iteration (Update)]

1. Ecall: EC_Initialization()

2. Ocall: OC_AuditorSignForInitialization(quote)

3. Return Signatures (Approval)

4. Return the genesis block of the evidence chain

1. Ecall: EC_InitProcess(evidence_chain, input)

2. Ocall: OC_AuditorSign(quote)

3. Return Signature (Approval)

4. Return the new block of the evidence chain

Figure 6: Sequence diagram of the state transition protocol between the Server, Planner Enclave, and Auditors.

hash, the new input. This new block is then appended to the

evidence chain, completing the state transition.

This detailed modeling of the Ecall/Ocall flow allows Tamarin to

verify that every state transition is correctly attested by the TEE and

validated by an honest auditor. This provides the formal proof for

the linearizability and integrity properties outlined in the main pa-

per, demonstrating resilience against the rollback attacks modeled

in GenerateRollbackedEvidenceChain (see Listing 2 below).

E.2.3 Auditors and Adversary Model.

Honest Auditors: The honest behavior of auditors is enforced us-

ing a ‘restriction‘. This restriction ensures that an auditor cannot ap-

prove two different histories branching from the same state. Specif-

ically, an auditor can only sign once for any given block_hash.

1 restriction AuditorSignOnlyOnce:
2 "
3 All nonce_for_init block_hash input1 input2 #t1 #t2.
4 AuditorSignLabel(nonce_for_init , block_hash , input1)

↩→ @t1
5 &
6 AuditorSignLabel(nonce_for_init , block_hash , input2)

↩→ @t2
7 &
8 not (input1 = input2)
9 ==>
10 #t1 = #t2
11 "
12

Listing 1: Restriction enforcing that an auditor signs only
once per state.

507

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

Adversary: We explicitly model the adversary’s primary attack

vector: the rollback attack. The rule GenerateRollbackedEvidenceChain
allows the adversary to take any previously observed EvidenceChain
from the public channel and re-inject it into the system as a valid

input for a new update process. This directly models the forking

threat described in this paper.

1 rule GenerateRollbackedEvidenceChain:
2 [
3 // Adversary takes a previously seen

↩→ EvidenceChain from the network
4 In(<..., block_hash , ..., quoted_block_hash >),
5 // Verifies its quote to make it seem legitimate
6 !AttestationPublicKey(attestation_pk),
7 _restrict(verify(quoted_block_hash , ...,

↩→ attestation_pk) = true)
8]
9 -->
10 [
11 // Re-creates the EvidenceChain to feed into the

↩→ Ecall
12 EvidenceChain (~ nonce_for_init , ..., block_hash ,

↩→ ...)
13]

Listing 2: Rule explicitly modeling the adversary’s rollback
attack capability by replaying a past state.

E.3 Security Properties and Verification Results
We defined two key lemmas in Tamarin to represent our desired

security properties and used the prover to check if they hold true

against our adversary model.

E.3.1 Proving Linearizability. To prove that our system achieves

linearizability, we defined the following lemma, which asserts that

for any given state (identified by block_hash), only one unique

subsequent state can be committed.

1 lemma UpdateOnlyOnceForAllBlockHash:
2 "
3 All nonce_for_init ... block_hash input1 input2 #t1 #

↩→ t2.
4 UpdateLabel(nonce_for_init , ..., block_hash , input1)

↩→ @t1
5 &
6 UpdateLabel(nonce_for_init , ..., block_hash , input2)

↩→ @t2
7 &
8 not (input1 = input2)
9 ==>
10 #t1 = #t2
11 "

Listing 3: Lemma for proving linearizability.

This lemma states that it is impossible for two update operations

with different inputs (input1 ≠ input2) to successfully complete

from the same state (block_hash). This directly prevents the sys-

tem from being forked into two different valid histories from a

single point in time. An adversary attempting a rollback attack

(modeled by GenerateRollbackedEvidenceChain) will fail to cre-
ate a divergent history if a valid update has already been committed

from that state.

Tamarin Prover successfully proved this lemma. This provides

formal evidence that our protocol maintains a single, linearizable

history and is resilient to rollback and forking attacks.

E.3.2 Proving Liveness. Next, we wanted to ensure that our proto-

col not only is secure but also guarantees liveness, allowing it to
make progress even in the presence of crashes.

1 lemma UpdateAvailability: exists -trace
2 "
3 Ex nonce_for_init block_hash input #t1 #t2.
4 UpdateLabel (..., block_hash , input) @t1
5 &
6 UpdateLabel (..., block_hash , input) @t2
7 &
8 #t1 < #t2
9 "

Listing 4: Lemma for proving availability/executability.

The primary purpose of this lemma is to demonstrate the protocol’s

crash recovery capability. It proves that a valid execution trace

exists, which implies that if an update process initiated at time t1
were to fail (or “crash”) before completion, a subsequent process

at a later time t2 can successfully execute the exact same update
using the same input. State consistency is critical during this recov-

ery. As proven by the UpdateOnlyOnceForAllBlockHash lemma,

any attempt to recover the process with a different input would be

rejected. Therefore, this lemma, in conjunction with the lineariz-

ability proof, formally shows that our protocol supports consistent

recovery from failures without compromising the integrity of the

state.

Tamarin Prover successfully found a valid execution trace, prov-
ing the lemma. This confirms that our protocol has liveness.

508

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Trusted Execution Environments (TEEs)
	2.2 Threat Model
	2.3 Concurrent System
	2.4 Interactive Differential Privacy (Interactive DP)
	2.5 Differentially Private Follow-the-Regularized-Leader (DP-FTRL)

	3 Problem Statement
	3.1 DP-FTRL in the Malicious Setting
	3.2 Overview of Our Approach

	4 Design of Planner
	4.1 Design Under (=0,=1,=0)
	4.2 Adaptation for (>0, 1,>0)

	5 Analysis of Our System
	5.1 Privacy and Correctness
	5.2 Liveness
	5.3 Scalability
	5.4 Parameter Selection

	6 Experiments
	6.1 Communication, Liveness, and Privacy Trade-offs
	6.2 Implementations

	7 Conclusion
	Acknowledgments
	References
	A Discussions
	A.1 Side-Channel Attacks
	A.2 Implementation Challenges

	B Recovery
	B.1 Recovery under a Confidentiality Assumption
	B.2 Recovery Resilient to Side-Channel Attacks

	C Related Work
	C.1 Secure FL
	C.2 Maliciously Secure Federated Analytics
	C.3 Maliciously Secure State Management System

	D Missing Proofs
	E Formal Verification
	E.1 Modeling Framework: Tamarin Prover
	E.2 Modeling Our Protocol in Tamarin
	E.3 Security Properties and Verification Results

