Securing Private Federated Learning in a Malicious Setting: A
Scalable TEE-Based Approach with Client Auditing

Shun Takagi*
LY Corporation

Japan
shutakag@lycorp.co.jp

Abstract

In cross-device private federated learning, differentially private
follow-the-regularized-leader (DP-FTRL) has emerged as a promis-
ing privacy-preserving method. However, existing approaches as-
sume a semi-honest server and have not addressed the challenge
of securely removing this assumption. This is due to its stateful-
ness, which becomes particularly problematic in practical settings
where clients can drop out or be corrupted. While trusted execu-
tion environments (TEEs) might seem like an obvious solution, a
straightforward implementation can introduce forking attacks or
availability issues due to state management. To address this prob-
lem, our paper introduces a novel server extension that acts as a
trusted computing base (TCB) to realize maliciously secure DP-
FTRL. The TCB is implemented with an ephemeral TEE module
on the server side to produce verifiable proofs of server actions.
Some clients, upon being selected, participate in auditing these
proofs with small additional communication and computational
demands. This extension solution reduces the size of the TCB while
maintaining the system’s scalability and liveness. We provide for-
mal proofs based on interactive differential privacy, demonstrating
privacy guarantee in malicious settings. Finally, we experimentally
show that our framework adds small constant overhead to clients
in several realistic settings.

Keywords

differential privacy, federated learning, malicious security

1 Introduction

Cross-device Private Federated Learning (PFL) has recently gar-
nered significant attention as a privacy-preserving learning frame-
work across distributed clients’ data [22, 43, 84]. In a typical cross-
device PFL setting, a single central server (referred to simply as a
server hereafter) aims to train a unified machine learning model by
collecting model updates instead of raw data from numerous light-
weight clients. To provide a provable guarantee that privacy leakage
from model updates is bounded, a differential privacy (DP) [31]
mechanism injects noise into the (aggregated) updates.

The FL systems should be designed to uphold key privacy princi-
ples [14, 39]. DP supports this goal by enforcing data minimization
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2026(1), 486508

© 2026 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2026-0025

“Corresponding author.

This work is licensed under the Creative Commons Attribu-

486

Satoshi Hasegawa
LY Corporation
Japan
satoshi.hasegawa@lycorp.co.jp

and anonymization. However, many current DP FL methods lack
mechanisms to ensure transparency, verifiability, and auditability
from the clients’ perspective [25]. That is, they heavily rely on the
assumption that the server behaves honestly. A dishonest server or
an external attacker (i.e., an adversary) might gain sensitive infor-
mation more than clients expect, without their awareness, causing
the DP guarantee to fail.

To address this gap, we adopt a malicious adversarial model (i.e.,
the Dolev-Yao model [29]) rather than the weaker semi-honest
model. A semi-honest adversary correctly follows the protocol spec-
ifications but attempts to glean sensitive information from the
execution. A malicious adversary, however, poses a greater threat
as they are not bound by the protocol; they can deviate from it arbi-
trarily, which includes corrupting the server or a subset of clients.

Among the various DP approaches, methods based on differ-
entially private stochastic gradient descent (DP-SGD) [1], such
as DP-FedAvg [59] and DP-SCAFFOLD [67], have been widely
used. Extensive research has focused on making these methods at
least partially secure in settings with an untrusted server. Secure
Multiparty Computation (SMPC) [13] can ensure the secure ag-
gregation of updates and can be adapted for PFL, such as through
distributed differential privacy [2, 45]. However, these methods as-
sume the honesty of clients, and corrupted clients—such as in Sybil
attacks [30]!—can reduce the noise added for privacy. Moreover,
achieving essential privacy amplification with subsampling [1]
requires complex random device sampling protocols, which are
challenging to securely implement in a distributed environment
(e.g., relying on non-colluding servers [76]). Another approach,
shuffling [36], involves client-side perturbation and anonymiza-
tion [34] of updates. Shuffling is also susceptible to Sybil attacks,
compromising the privacy of remaining clients’ updates if a large
number of clients are corrupted [47]. Additionally, shuffling often
results in a worse utility-privacy trade-off or higher communication
costs compared to other methods [8].

That is, these approaches require subsampling [1] or shuffling [34]
of updates, which are difficult to implement effectively in malicious
settings. Even in semi-honest settings, these approaches are im-
practical in a cross-device environment since the server has lim-
ited control over the subset of training data it encounters at any
time [47]. In this context, DP-FTRL (Differentially Private Follow-
the-Regularized-Leader) [46] has emerged as an alternative to DP-
SGD-based methods, eliminating the need for such techniques.
Moreover, recent studies have demonstrated, both theoretically and

!In this paper, we define Sybil attacks as scenarios where an adversary controls multiple
client identities (i.e., Sybils) by possessing their secret keys, which allows a portion of
the clients to collude under the adversary’s direction.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2026-0025

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

empirically, that DP-FTRL may offer a better privacy-utility trade-
off than DP-SGD [18, 19]. Therefore, DP-FTRL appears promising
for PFL in malicious settings.

However, implementing DP-FTRL in malicious environments
introduces new challenges due to its stateful nature [25]. Unlike
DP-SGD, which aggregates updates with DP independently in each
round, DP-FTRL requires maintaining state throughout the training
process, leading to a more complex server implementation that is
difficult to verify for clients. Specifically, DP-FTRL requires two
steps for planning and aggregation that takes previous rounds into
account. During the planning phase, the server selects a new set of
participants, referred to as a cohort, based on the clients’ participa-
tion history to manage privacy leakage by bounding contribution.
In the aggregation phase, the server integrates the cohort’s up-
dates with noise that is correlated with noise used in earlier rounds,
reducing the total noise required.

Recent work [7, 12] has attempted to bridge this gap by proposing
SMPC for such noise, but this relies on the assumption that the
planning phase honestly determines the majority cohort. These
approaches do not effectively protect against a malicious server that
can freely select corrupted clients (i.e., Sybils) during the planning
phase to conduct Sybil attacks. Notably, a malicious server could
exploit the planning phase with Sybils to repeat an iteration with
different cohorts to uncover previous noise from correlations, thus
recovering raw past updates. Since clients cannot detect repeated
iterations due to changes in cohorts, preventing such attacks is
impossible without communication. Consequently, achieving DP-
FTRL in a malicious setting remains a challenging issue.

Contributions

Problem Formulation. To address this challenge, we begin research
on developing a maliciously secure system long-running FL with
DP-FTRL that supports adaptive? client participation. We pose the
following research question:

What constitutes ideal security for a maliciously secure DP-FTRL
system for long-running FL involving lightweight devices that can
drop out, and how can we achieve it at a low cost?

To formalize this problem, we adopt interactive DP [79] in a
distributed manner. The (¢, §)-interactive DP framework assumes
only predefined client algorithms, while the server protocol can
be arbitrary. This ensures that any server protocol concurrently
interacting with client algorithms (i.e., star topology) cannot infer
distributed data beyond what is guaranteed by (¢, §)-DP. Therefore,
this formalization accurately reflects our malicious setting.

As described above, DP-FTRL needs to manage its state through-
out the execution process. Therefore, we envision the set of client
algorithms as a concurrent system that maintains a shared object
with all clients, representing the state, such as participation history.
In this framework, we view DP-FTRL as a series of sequential oper-
ations composed of two key steps on the concurrent system with
consistent state: planning with consistent participation history and

2Adaptivity is crucial because a static client selection strategy risks losing large
amounts of data due to client dropouts, which can severely degrade model qual-
ity. Furthermore, in applications where users adaptively gather data, those who have
collected data should participate [43].

487

Proceedings on Privacy Enhancing Technologies 2026(1)

@ Secure
aggregation
W\th DP-| FTRL
®) Update COhDI‘t
L =1
=
o | DLoada

(rollbacked) state

©)] Save—T 1
the:ate @ Audit the
3 @ loaded state

with remote
attestation
Auditors
Figure 1: The process overview of each round of our system.

secure aggregation with consistent noise. Within the concurrent sys-
tem, these two steps constitute a process initiated by a (potentially
malicious) server, which updates the shared object.

Since breaking consistency can lead to privacy leaks as men-
tioned above, a necessary condition for the concurrent system to
satisfy interactive DP is to maintain process consistency with re-
spect to the shared object, ensuring that a malicious server cannot
complete any process that compromises this consistency. Thus,
we focus on ensuring the consistency of the concurrent system.
Specifically, the system must uphold:

o Integrity: The process loads the shared object and adhere
to the intended protocol (i.e., secure aggregation with the
correct clients and correct noise).

e Linearizability [38]: The history of concurrent processes is
equivalent to a history of sequential processes with respect
to the shared object (i.e., participation history and noise
added in the past rounds).

Implementing a linearizable system in a malicious environment
requires global consensus (involving all clients) at each iteration,
which is prohibitively expensive for large-scale FL. Without global
consensus, fork linearizability is the strongest consistency that can
be achieved [58], but it is not sufficient for DP-FTRL because it
still permits the aforementioned Sybil attack. Instead, we rely on a
probabilistic linearizability guarantee, which is sufficient for our
purpose.

Proposed Method. To address the aforementioned problem, we in-
corporate Trusted Execution Environments (TEEs), which are gain-
ing attention as future solutions for secure infrastructure [5, 33, 72]
in private data analytics, including FL infrastructure® [25, 87]. Al-
though this paper focuses on Intel SGX [21] as a concrete example
of a TEE, our method is applicable to any TEE that supports at-
tested execution [70]. While running the entire FL logic within a
TEE could serve as a potential solution, functioning as a trusted
third party, naive designs are susceptible to forking attacks on the
TEE-managed state [82], which breaks the consistency.

To tackle this issue, we propose a novel system that integrates
TEEs with client auditing. Figure 1 illustrates the overview of our
system during each update. (1) For each round, the server feeds

Shttps://research.google/blog/advances-in-private-training-for-production-on-
device-language-models/

Proceedings on Privacy Enhancing Technologies 2026(1) Takagi et al.

Table 1: Comparison of TEE-based systems for stateful applications. Our approach achieves consistency and liveness guarantees
with a small TCB and without requiring external trusted hardware.

Approach Consistency Liveness No External Trusted Hw. Formal Verification TCB Size
TEEs without sealing v X v n/a Small
TEEs with sealing X v v n/a Small
SMR on TEEs without sealing [4, 40, 57] v xt v n/a Medium
SMR on TEEs with sealing [66, 81] x* v v n/a Large
TEEs + external trusted hardware [75] v v X v Small
Ours Ve Ve v v Small

* Ours provides probabilistic guarantees; These properties hold with high probability, failing only with a small chance (e.g., 107%).
¥ Liveness is achieved under the assumption that a majority of TEEs do not experience faults (i.e., disaster).

I Consistency is achieved under the assumption that a majority of TEEs remain uncompromised by adversaries.

n/a: Not addressed or not available in the literature.

the current system state, along with the arguments for secure ag- First, the most straightforward TEE-based implementations ei-
gregation, into the TEE. (2) Upon successful client auditing of the ther forgo state persistence or use native sealing. An implemen-
state within the TEE with remote attestation, the TEE generates tation without sealing maintains consistency and a small trusted
proofs of integrity and linearizability. (3) These proofs, bundled computing base (TCB) (i.e., the small size of code in the TEE, which
with the newly validated state, are then saved to untrusted storage. reduces the need to implicitly trust its correctness) but fails to pro-
(4) Then, the secure aggregation process within the TEE with the vide liveness; the state is irrevocably lost if the TEE instance crashes.
input arguments is completed only after clients have successfully Conversely, an implementation with sealing ensures liveness by
verified it. Should an adversary attempt a fork or rollback attack by persisting the state to untrusted memory, but it becomes vulnera-
inputting a fraudulent state, the client-side verification would fail, ble to forking and rollback attacks [82], thus failing to guarantee
thus preventing the secure aggregation from executing. consistency.

However, guaranteeing linearizability poses a significant hurdle, Recent work has sought to address both consistency and liveness
as it would still necessitate consensus among all clients. A malicious by implementing State Machine Replication (SMR) across multiple
server could otherwise exploit any set of corrupted auditors to ap- TEEs. Systems like Engraft [81] and Narrator [66] achieve con-
prove a proof that violates consistency. Our system mitigates this sistency, but their guarantees rely on an honest majority of TEE
vulnerability by employing randomized auditing. In each round, a replicas. This assumption does not hold in our threat model, where
random subset of clients is tasked with auditing the server’s proof, an adversary may control (e.g., rollback) the majority of nodes.
which makes it infeasible for an adversary to ensure its colluders Nimble [4], CCF [40], and ROTE [57] operate under a threat
are selected. As a result, the probability of a forged proof being model similar to ours. They provide consistency even in the pres-
successfully validated becomes small (e.g., 10~8). Consequently, our ence of a malicious majority, not by relying solely on sealing APIs
protocol forgoes a linearizability guarantee in favor of a probabilis- for node recovery, but by leveraging consensus among the live
tic one, with a failure rate small enough for practical applications. nodes. However, this design choice means they cannot guarantee

liveness in the face of catastrophic failures (e.g., a crash of the ma-

This system acts as an extension to the existing FL system, where jority of TEEs). Furthermore, these systems inherit the complexity
the server merely appends proof to an original message, which each of SMR protocols inside TEEs, leading to a large TCB, which is unde-
client verifies. Moreover, the additional computation and commu- sirable according to the principles of TEEs [6]. As a result, formally
nication costs for the client are constant and small, enabling the verifying their security is challenging?, and complex in-enclave
system to preserve the scalability and liveness of the original ar- implementations are more susceptible to bugs. Indeed, vulnerabili-
rangement. ties related to consistency have been discovered in some of these

systems [66, 81].

Another line of work combines TEEs with additional trusted
hardware components (e.g., TPMs) external to the TEE to enforce
state integrity [69, 75]. These solutions are often simple, formally
verifiable, and feature a small TCB. However, they depend on the
availability of specialized hardware or a trusted monotonic counter,
and securely integrating it with a TEE can be challenging. For ex-
ample, the SGX-native monotonic counter is now deprecated, and
combining SGX with an external TPM is susceptible to man-in-the-
middle attacks like the Cuckoo attack [68], where a TEE is tricked

Related Work. While TEEs provide a powerful primitive for attested
execution—conceptually abstracted as Q;{’t“ba"k [11], they are not
known to offer a self-contained solution for preventing rollback
attacks. One strategy to this problem avoids TEE sealing capabili-
ties, reducing the TEE to a stateless primitive (i.e., Gar [70]) that
ensures consistency at the cost of liveness. Another major strat-
egy augments the TEE with an external source of trust, such as an
external hardware monotonic counter like Trusted Platform Mod-
ule (TPMs). In Table 1, we compare our proposed system against
these existing approaches based on five key properties important
for §ecur) long_r unning FL with DP-FTRL on TEEs in a malicious We considerable efforts in this area but did not fully verify functions
setting. such as reconfiguration. https://github.com/microsoft/Nimble/issues/6
488

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

into communicating with a remote, adversary-controlled TPM in-
stead of the local one, allowing forking attacks. The vulnerability
arises because, as explicitly described in the paper [75], the method
requires the TEE to be locally bound (i.e., on the same machine) to
the TPM to prevent forking attacks. However, an enclave cannot
verify this local binding due to the threat of the Cuckoo attack. A
proposed countermeasure, verifying adjacency by measuring com-
munication timing as proposed by Fink et al. [35], is ineffective in
our setting, which may involve high-speed networks like a LAN.
Therefore, establishing a truly secure and trusted channel between
a TEE and a TPM has another challenging problem.

Conceptually, our method for achieving consistency is analogous
to TPM-based solutions. However, instead of relying on external
trusted hardware, our system leverages client auditing. This ap-
proach inherits the benefits of a simple and small TCB, enabling
formal verification. It provides recovery from fault (i.e., liveness)
and requires only a single TEE-enabled server, thereby reducing
management overhead. More general related work is provided in
Appendix C.

Contributions. In summary, our proposed system realizes DP-FTRL
with the following desired characteristics:

e Privacy: Our approach preserves interactive DP (i.e., DP un-
der the malicious setting). Smaller reliance on TEE (i.e., small
TCB size) reduces security risks and enhances verifiability.

e Availability: Our system retains its standard resilience to
dropouts—training can continue even if some devices be-
come nonresponsive, and it is possible to recover from crashes
(i.e., liveness). A malicious client cannot halt the system via
fraudulent audits.

o Scalability: Clients perform only constant lightweight audit-
ing, incurring small computation and communication over-
head. The system operates with large-scale clients that can
drop out and progresses multiple processes concurrently.

Outiline. The remainder of this paper is structured as follows. In
Section 2, we provide the necessary background on key concepts,
including TEEs, DP-FTRL, and the security models we employ. We
then formalize our problem in Section 3, defining the requirements
for a maliciously secure DP-FTRL system in terms of integrity and
linearizability, and introduce our simulation-based proof frame-
work. Section 4 details the core design of our proposed system. We
provide a thorough analysis of our system in Section 5, covering its
privacy guarantees, liveness under client dropouts, scalability, and
guidance on parameter selection. In Section 6, we present experi-
mental results that demonstrate the practical performance of our
system, focusing on the trade-offs between communication cost,
security, and liveness, as well as the concrete overhead of our im-
plementation. We discuss side-channel attacks and implementation
challenges in Appendix A and situate our work within the existing
literature in Appendix C.

2 Preliminaries

In this section, we review some key concepts and frameworks rele-
vant to our proposed method, including Trusted Execution Environ-
ments (TEEs), Differentially Private Follow-the-Regularized-Leader
(DP-FTRL), the concurrent system model, and security notions.

489

Proceedings on Privacy Enhancing Technologies 2026(1)

2.1 Trusted Execution Environments (TEEs)

Although this paper focuses on Intel SGX [21] as a concrete example
of a TEE, our method is applicable to any TEE that provides attested
execution [11, 70] like AMD SEV-SNP [3] (i.e., confidentiality and
integrity of execution). Below, we offer a high-level overview and
refer the reader to [24] for more intricate details.

2.1.1 Enclaves. TEEs utilize trusted hardware to provide isolated
environments known as enclaves. Enclaves protect memory by
restricting access, thereby ensuring data confidentiality from unau-
thorized processes, including the operating system. Enclaves can
produce an attestation report, which we call evidence. This report
typically includes a hash of the running code (to verify its integrity),
additional data related to the enclave’s execution, and a signature
using a key endorsed by the TEE manufacturer. In this paper, an
enclave can be seen as an entity with functions that generate evi-
dence. Due to confidentiality guarantees, only the final evidence is
visible. Moreover, enclaves can generate a secure nonce valid for
the duration of the function’s execution to thwart replay attacks.

Sealing. Enclaves are volatile but can be made persistent through
sealing. Specifically, they can securely encrypt and store states
outside the enclave, allowing replication by an enclave with the
same binary.

2.1.2 Remote Attestation. The signature in the evidence allows a
remote party to verify that the evidence was generated by a genuine
enclave running on authentic TEE hardware. A client can authenti-
cate this evidence through various methods, including certificate
chains or contacting an attestation service. The included hash of
the code and computation results enable clients to affirm integrity.

2.1.3 Secure Aggregation. TEEs can perform secure aggregation
of distributed data x; [16, 41, 48], enabling computation of),/ x;
without exposing individual values x; to a potentially malicious
server. Compared to SMPC [13], which provides similar function-
ality, TEE-based secure aggregation requires smaller client-side
operations, maintains constant complexity, and offers the flexibility
to add complex noise without Sybil attacks. The core idea is using
an enclave as a trusted computing entity through remote attestation.
Each client sets up a secure channel to the enclave using the Diffie-
Hellman key exchange protocol. Client i generates a symmetric key
to encrypt x; and then transmits this symmetric key securely to
the enclave. Since loading large data (i.e., encrypted model parame-
ters) into an enclave can be time-intensive, methods such as stream
ciphers [48] like homomorphic one-time pad [41] can enhance
efficiency. See Section B.3 of [41] for a detailed methodology.

2.2 Threat Model

We consider a system comprising n + 1 parties: one server and n
clients. The server has significant computational resources. Each
client holds private input data x and a pair of private and public
keys. Clients can only communicate with the server, reflecting a
star network topology. These clients are lightweight and can drop
out, meaning they may have limitations in connectivity, bandwidth,
and computational power.

An adversary aims to compromise the privacy of clients’ sensi-
tive values. We adopt the Dolev-Yao model [29] as our model of the

Proceedings on Privacy Enhancing Technologies 2026(1)

malicious adversary. That is, an adversary can eavesdrop on all com-
munication, inject messages, and corrupt parties by obtaining their
private keys. However, the adversary cannot break cryptographic
primitives, in this paper, digital signatures, nonces, Diffie-Hellman
key exchanges, and the symmetric encryption.

In our threat model, we include a fixed server and clients listed
in a public key list, assuming the following conditions with y, x, § €
[0,1]:

e The adversary can corrupt the server and a fraction y of all
clients. The compromised clients are fixed.

e At any given time, at least a fraction x of all clients are
available, with this availability being variable.

o A fraction f of all available clients may drop out, failing
to fulfill their roles in the protocol.

This model specializes the (y, f) secure federated MPC para-
digm [7], tailoring it to more realistically account for the fraction
of all clients rather than just any single cohort. No party, apart
from an adversary, can distinguish corrupted clients. No party can
discern which clients will drop out.

We presuppose a trusted Public Key Infrastructure (PKI). While
clients do not communicate with each other directly, they leverage
the PKI to validate the public key list. Specifically, a client sends a
hash of a client list to the PKI, and the PKI certifies whether the list is
valid. A valid list is one where the proportion of malicious clients is
at most y and the total number of clients is above a certain threshold.
This circumscribed role for the PKI reduces our dependency on it
compared to other SMPC frameworks [7, 13].

We assume that enclaves provide confidentiality and integrity
as described in Section 2.1.1. Thus, vulnerabilities against TEEs,
such as side-channel attacks, are out of scope; however, a detailed
discussion about side-channel attacks on our system is provided in
Appendix A.1.

2.3 Concurrent System

In the threat model outlined above, we consider a distributed con-
current system of clients working cooperatively with a server, all
operating on a single object with one type of operation. Generally,
an operation is denoted as <q op(args) A><OK(response) A>,
where A is the process name, op is the type of operation, args is the
list of arguments, and q is the object. OK indicates the completion
of process A and outputs the response.

For example, let g be an ordered list, and consider an oper-
ation that appends an element a to this list, outputting the re-
sult of f(q, args). This could be denoted as <q append(a, args)
A><OK(f(q, args)) A>with some given function f and arguments
args. In the concurrent system, processes are invoked concurrently,
meaning that process B can complete before process A, even if
process A was invoked prior to process B.

2.3.1 Integrity and Linearizability. The properties of the concurrent
system that we focus on are integrity and linearizability.

Integrity of execution. Integrity is the property that each individ-
ual operation behaves according to its specification. For the above
example, given a object ¢, element a, and arguments args for a
function f, a system with integrity correctly appends a to g and
computes and returns the result of f(q, args). This implies that

490

Takagi et al.

the object’s state, the arguments, and the operation itself are not
tampered with, and the computation is performed as intended.

Linearizability [38]. Linearizability is a correctness condition for
concurrent objects which ensures that each process appears to take
effect instantaneously at some point between its invocation and
response. If a concurrent system respects linearizability, it ensures
that the result of concurrent processes is equivalent to a result of
sequential processes that are produced by the system that satisfies
integrity and respects real-time precedence ordering. See [38] for
the more formal definition. For instance, consider f as a function
that outputs g:

o If a system produces <q append(a_1) A> <q append(a_2)
B><OK([a_1, a_2]) B> <0K([a_1]) A>,itrespectslineariz-
ability; this is consistent with <q append(a_1) A><0K([a_11)
A><q append(a_2) B><OK([a_1, a_2]) B>.

e However, a system that produces <q append(a_1) A><q
append(a_2) B><qg OK([a_2]) B><qg OK([a_1]) A>does
not, because the output of process B does not account for the
update made by A, and thus it is not equivalent to a result
of any sequential processes.

o Also, a system that produces <q append(a2) B> <0K([a1,
a2]) B> <qg append(al) A><q OK([a_1]1) A> does not
respect linearizability. Here, B completes before A invokes,
establishing a real-time order where B precedes A. However,
B’s response depends on A’s input, requiring A to precede
B in any sequential explanation. This contradiction violates
the real-time precedence condition.

Unfortunately, under the threat model described in Section 2.2,
achieving linearizability is infeasible without the agreement of all
clients in each process. The strongest consistency notion achievable
under these conditions is captured by fork-linearizability [53, 58].
However, this is insufficient for DP-FTRL as it remains vulnerable
to the Sybil attack mentioned in Introduction. Instead, we rely on a
probabilistic linearizability guarantee, which is sufficient for our
purpose.

2.4 Interactive Differential Privacy (Interactive
DP)

DP provides a privacy framework for randomized mechanisms
that release outputs [32, 77]. It measures how close the probability
distributions of a mechanism’s outputs are when applied to two
adjacent datasets. The definition of adjacency is crucial. While it can
be broadly defined by the addition/removal of a single user’s record,
in the context of FL where the participants are fixed, we adopt a
more specific definition known as zero-out adjacency [19, 46]. In
this setting, two datasets D and D’, which are multisets over a data
universe X, are called adjacent if they differ in the participation of
a single client. Here, the participation means containing the client’s
true contribution, while in the other, that contribution is replaced
with a vector of zeros to represent the client’s non-participation.

Definition 2.1 (Differential Privacy [31]). For ¢, > 0, a random-
ized mechanism M : X" — Z is (¢, 6)-differentially private if for
every pair of adjacent datasets D, D’ € X" and all subsets T € Z,
the following holds:

Pr[M(D) € T] < ¢° - Pr[M(D’) € T] + 6

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

where the randomness is over the internal coin flips of the algorithm
M.

Recently, the concept of interactive DP [78] was developed to
handle scenarios where multiple DP mechanisms operate concur-
rently. Originally, this was explored in a centralized DP context,
where a single party holds all sensitive data, to examine properties
like the concurrent composition theorem [79]. In our setting, we
consider the distributed setting of DP, where each client manages
their own data [9]. Note that we do not require each mechanism to
meet the criteria of local DP [49], instead focusing on interactive
DP.

Here we present interactive DP applicable to our context. We
focus on an interactive protocol S for the concurrent composition
of client mechanisms M;, My, . .., My, where M; has sensitive input
x; for i € [n], denoted by M = ConComp(M;, My, ..., My) [79].
Within this interactive protocol, S can send messages to any client
(i.e., i € [n]) and receive responses from M;. Each party can store
received messages for crafting future responses. The view of the in-
teractive protocol, View(S, M (D)), is defined as the sequence of mes-
sages that S receives from My, My, . . ., My, where D = (x1, X, . .
X". For a more formal definition, see [78].

Interactive DP is defined as follows:

Definition 2.2 (Interactive Differential Privacy [78]). A random-
ized algorithm M is an (¢, §)-differentially private interactive mech-
anism if, for every pair of adjacent datasets D,D’ € X", for ev-
ery adversary algorithm A, and for every possible output set T C
Range (View(A, M(+))), the following holds:

Pr [View(A,M(D)) € T] < e°Pr [View(A,M(D")) € T] + &

where the randomness is over the internal coin flips of both the
algorithm M and the adversary A.

Simulation Based Proof. Proving interactive DP is not straightfor-
ward because we cannot assume a semi-honest server-side protocol
(e.g., the server can invoke processes concurrently). To address this,
we adopt an approach similar to Braun et al. [15] and Ball et al. [7],
using a simulation-based method [54] to prove the interactive DP
of CoNnComp (M, My, . .., My,). This proof technique compares our
real-world protocol to an idealized version. The proof framework
consists of two main steps: defining the ideal functionality and
proving the emulation of the ideal functionality by the real-world
protocol.

First, we define an ideal functionality that is executed by a trusted
party in a hypothetical ideal world. This functionality specifies the
perfect, secure execution of DP-FTRL. It interacts with a Simulator,
which represents the adversary in this ideal world. By design, the
view of the simulator in this interaction is guaranteed to be DP. The
ideal functionality is designed to allow the simulator to influence the
protocol on behalf of corrupted parties, for example, by providing
malicious inputs or choosing the order of round completion, thus
modeling the power of a real-world adversary.

Second, we demonstrate that our proposed concurrent system,
CoNComp(M;, My, . .., M), emulates this ideal functionality when
interacting with any real-world adversary A. This is shown by con-
structing a simulator, Sim, that can produce a view computationally
indistinguishable from the real adversary’s (i.e., A) view, using only
its interaction with the ideal functionality. This ensures that any

.y Xpn) €

491

Proceedings on Privacy Enhancing Technologies 2026(1)

view created by A matches the DP-compliant view in the ideal
functionality, thereby ensuring compliance with interactive DP.

2.5 Differentially Private
Follow-the-Regularized-Leader (DP-FTRL)

Kairouz et al. [46] proposed DP-FTRL as a DP optimization mecha-
nism that avoids the need for subsampling [1] and shuffling [34]
which are difficult due to client dropouts. Subsequent research
expanded DP-FTRL with the matrix mechanism [28], called MF-DP-
FTRL. This approach enables useful techniques such as multi-epoch
training, amplification, and runtime efficiency due to its flexibil-
ity [19, 20, 60]. Recent studies indicate that MF-DP-FTRL can gen-
eralize DP-SGD and demonstrate its superiority in terms of the
utility-privacy trade-off [18, 19].

We employ MF-DP-FTRL in our research to align our method
with those operating within this framework. The pseudocode for
the MF-DP-FTRL framework is located between Line 6 and Line 17
(where the simulator assigns k as i, Cconort as valid client indices, and
0 as 0;) in Algorithm 1. While resembling DP-SGD with gradient
computation, clipping, and gradient-noise summation for updates,
it deviates in the following key ways:

(1) Participation schema: client indices are arbitrarily chosen
from those meeting the participation schema based on his-
torical participation with an option for sampling,.

(2) Stateful aggregation: noise is correlated with noise used in
previous rounds.

Due to these differences, unlike DP-SGD, each iteration in DP-FTRL
cannot be treated as an independent DP mechanism. Thus, the
server must handle participation history and noise management as
detailed below.

Participation Schema [19]. Participation history H is a sequence
of sets, each representing a client’s participation record. Specifi-
cally, H; is a set representing client i’s participation pattern 7 C
[Rround], Where nyoung is the number of total rounds. For instance,
H = ({0, 2}, {1,3}) indicates that client 0 participates in the 0th and
2nd rounds, while client 1 participates in the 1st and 3rd rounds.
The participation schema is defined as follows:

Definition 2.3. A participation schema II is defined as the set of
possible participation patterns 7 C [nround]. A participation history
H adheres to a participation schema IT if for all i € [n], there exists
7 € II such that H; C 7.

Updating H with C C [n] and index i involves adding i to H;
for each j € C. In this context, the current participation history
H is used to determine which clients are eligible to participate in
the ith round by using the function fquairy (IL, H, i), defined below.
The function fyualify (I, H, i) returns the set Cquaiity € [1] such that
even if H is updated with Cqualify and i, H continues to adhere to
the participation schema II.

For example, if a client’s participation is limited to just once, IT =
{{1},{2}, ..., {niter } }. Recent works have demonstrated that the ITj
schema is both practical and attains utility comparable to DP-SGD
by permitting multi-epoch training and amplification [19]. This
schema permits participation at intervals of b between submissions.

Proceedings on Privacy Enhancing Technologies 2026(1)

Stateful Aggregation. In stateful aggregation, a noise matrix Z €
R'oundxd js employed throughout the DP-FTRL execution, with its
elements independently drawn from a Gaussian distribution.’ The
noise added in the i-th execution relies on Zj; for j € [i] and
k € [d]. This method, which depends on noise from prior rounds,
is termed correlated noise. The particular approach for calculating
this noise is given by C. Specifically, the noise for ith round is
Z(C™1Z)[i,:] where { is the clipping bound.

This method of noise integration is called the matrix mechanism
in the adaptive streaming [28], and in the context of DP-FTRL, C
is optimized according to a participation schema. Intuitively, this
optimization minimizes the introduced error by controlling the sen-
sitivity of participating clients based on the schema. Refer to [19, 28]
for more details. Therefore, if clients deviate from the participation
schema, their sensitivity may surpass allowable thresholds, risking
privacy breaches.

3 Problem Statement

This section aims to formalize the problem of implementing DP-
FTRL in our malicious setting.

3.1 DP-FTRL in the Malicious Setting

In our threat model (see Section 2.2), the server interacts with
client algorithms M, My, . . ., M, to update the model. The server
is malicious, so it can deviate from a predefined protocol, making
it impractical to presume any specific server behavior. This sit-
uation corresponds to concurrent composition in interactive DP
(see Section 2.4). Therefore, our goal is to construct a concurrent
composition mechanism M = ConComp(My, M, ..., M,) that can
execute DP-FTRL with an appropriate server protocol, while also
ensuring that M maintains interactive DP to provide robustness
against a malicious server.

3.1.1 Strawman Approaches. It might seem that a straightforward
implementation of DP-FTRL within a TEE could serve as a solution,
as the TEE can act as a trusted third party to correctly manage the
state. However, naive implementations fail to provide both liveness
and the interactive DP guarantee. We illustrate this by presenting
two strawman approaches.

With Sealing. Since an enclave is volatile, its state is lost when it
crashes. To prevent this, the server needs to seal the enclave’s state
after each round is completed, allowing the state to be recovered
even after a crash. However, this approach introduces a fatal vul-
nerability: it does not provide interactive DP because the server can
clone (i.e., fork) the sealed enclave state at will [82]. If an adversary
can fork the process, they can observe outcomes related to step
i’s noise more than once using the Sybil clients. This leads to a
critical privacy breach even if the ith input does not include the
target client’s values. This is because the noise added at step i is
correlated with the noise from earlier steps. This correlation can
leak information about the noise at earlier steps and, consequently,
the earlier private inputs that include the target value.

Even if the sequence of noise values is predetermined (e.g., from
a fixed seed), a malicious server could perform the following forking

Not all elements of Z need to be sampled initially; they can be incrementally sampled
as required.

492

Takagi et al.

attack. Suppose the server forks the computation at step i. It first
executes step i on one fork with a cohort that includes a target
client’s value alongside values from corrupted clients (e.g., all zeros).
It then executes step i on a second fork using a different cohort
containing only corrupted clients (all zeros). By comparing the
outputs from these two forks, the server can isolate the contribution
of the target client. The difference between the outputs effectively
removes the common, correlated noise component, thus breaking
the privacy guarantee.

While combining a TEE’s sealing capabilities with a trusted
hardware like TPM can enforce state integrity [75], this integration
creates its own security challenges. Securely linking the two trusted
components expands the attack surface and opens the door to man-
in-the-middle attacks. A prime example is the integration of Intel
SGX with a TPM, as explored by Strackx et al. [75]. However, this
method is vulnerable to the Cuckoo attack [68] as mentioned in
Introduction.

Without Sealing. To circumvent forking attacks, one might consider
an approach without sealing, where the server restarts the entire
process from its initial state if a crash occurs. However, this strategy
faces a different, equally critical problem in a malicious server
model.

The core issue is that honest clients cannot distinguish whether
the server has genuinely crashed or is merely pretending to have
crashed. A malicious server can declare a crash to honest clients
while secretly continuing to run the remaining planned iterations
with only the corrupted clients it controls. This raises the same issue
as the case with sealing. That is, because DP-FTRL uses correlated
noise, running these extra, secret iterations leaks further informa-
tion about the inputs used in the earlier iterations that involved
honest clients.

Consequently, the privacy analysis must account for the worst-
case leakage. This forces a conservative accounting of the privacy
budget for the maximum number of iterations the server could
potentially run with its corrupted clients after the apparent stop.
This results in an inherent and significant privacy loss. Furthermore,
DP-FTRL’s correlated noise mechanism is optimized based on the
total number of iterations planned in advance. An early stop and
restart breaks the optimality of this noise structure, potentially
leading to a much worse total privacy loss than originally intended.
Even using SMR [4, 40, 57] without sealing suffers from the same
problem if a majority of TEEs experience a fault (i.e., disaster).

3.1.2 Ideal Functionality. As discussed in Section 2.4, we adopt
a simulation-based proof framework to prove interactive DP of
our system. To do so, we first define an ideal functionality that
acts as a trusted party and is designed to avoid the issues of the
strawman approaches. We then show that our system emulates this
ideal functionality with some simulator.

Ideal Functionality. Algorithm 1 outlines the pseudocode for
the trusted party in our ideal model. Two main differences exist
when compared to a standard DP-FTRL system, both tailored to the
practical needs of a real model implementation. First, in Lines 2-5,
the ideal functionality allows for a small probability of failure that
is independent of D, indicating a small but non-zero of catastrophic
privacy leakage, contributing to § in (¢, §)-DP. This adjustment

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

Proceedings on Privacy Enhancing Technologies 2026(1)

Algorithm 1 Ideal Functionality By a Trusted Party

Algorithm 2 The Process

Require: Participation schema II, the number of rounds nyound,
matrix C € R™ound*™ound clipping parameter { € R, the number
of clients n, indices of corrupted clients Ceorrupted-

1: Receive D from clients.
2: | « a sample from a Bernoulli distribution with success proba-

blllty 5privacy-

3. if [= 1 then

4: send D to Sim. // Leakage

5. else

6: Initialize the participation history H.

7 Initialize model parameters 8, € RY.

8 Make the matrix with all zeros 0y, _, € R™ound*d

9 Sample Z[i, j] ~ N(0,0?) for i € [nyound], j € [d].

10: for i € [nyouna] do

11: Receive Ceonort € [n], k € [nmuml],@~ € R4 from Sim.

12: Restart from LINE 10 if any input is invalid. // Valid
if Ceonort € fquatiry(IL H, k) and ifk € [nyounq] is not in H yet.

13: Update H with Ceohort and k.

14: Compute g; = clip(Vgloss(X, é) {) for j € Ceohort
where clip(d, {) = min(1,/|d|)d

15: For j € Ceohort N Ceorrupted, Set g; as received from Sim

16: Set Oy := Zjeccohort gj + gV(C‘lZ) [k,]

17: send 0y, to Sim // Leakage.

18: end for

19: end if

enables the real model to be designed without requiring exhaustive
client interactions for each update (i.e., probabilistic relaxation
of linearizability), as discussed in Section 2.3.1. Second, in Line
11, the simulator (i.e., an adversary) can modify indices during
secure aggregation. This is due to the non-blocking attribute of
linearizability [38], which permits concurrent execution. Also, the
adversary can modify the values received from the corrupted clients
(Line 15).

Despite these variations, the following theorem confirms that
the original DP guarantee of DP-FTRL is preserved:

THEOREM 3.1. Assume that if Stm sets k to i, Ceohort t0 be a subset
Of_ﬁlualify(n, H, k), 0 to éi_l, and g; as defined in Algorithm 1 (i.e.,
the original DP-FTRL), the view of Sim satisfies (&, 6 + Oprivacy) -DP.
Then, the view of any other SiM' satisfies (&, 5 + Sprivacy) -DP.

The proof is detailed in Appendix D.1. Therefore, our goal is
to create a concurrent system capable of emulating the ideal func-
tionality within our threat model, whose privacy is a sufficiently
small probability. In parallel, the system should be designed to offer
availability with small communication and computation overhead
for clients.

3.2 Overview of Our Approach

We model ConComp(M;, My, ..., M,) as a distributed concurrent
system (see Section 2.3) to formulate the problem. In this model,
the concurrent system maintains a state object ¢, which includes
iteration number i, participation history H and noise matrix Z
explained in Section 2.5. This state is shared among all clients,

493

1: The server initializes an enclave or replicates the enclave with
q, Ceohort, and i.

2: The enclave sends evidence to the clients.

3: (Audit request) Clients verify the integrity and linearizability
using the evidence and send their signatures to the enclave.

4: if the enclave was initialized then the enclave validates these
and, if it is the initial enclave, the enclave makes q.Z, is sealed,
and stops this process.

5. end if

6: The enclave verifies C.onort and sends evidence to the Ceohort-
The server updates q.H with Ceonort and i.

7: (SecAgg request) Clients in Ceoport Verify the evidence and send
encrypted data with MAC to the enclave.

8: The enclave verifies these and outputs the result of SECAGG, 7.

and processes are concurrently invoked by the server. The pro-
cess with Ceonort € [n] and argSecagg (i.e., indices of participat-

ing clients and settings such as current model parameters 0 re-
spectively) increments q.i, updates q.H with Ceohort € [n] and
q.i, and outputs the result of stateful aggregation SECAGG,.z only
if Ceonort S fquatify (Il ¢.H, q.i), denoted by <q update(Ccohort ,
q.i, argSsecagg) A><OK(SecAgg, z(Ceohort,q-i, argSsecagg)) A>.
SECAGGy 7 is a function that computes the summation with noise
£(CY(q.Z))[q.i,] for Ceonort using the settings specified by args

Assume that given II, a system executes the process update
with integrity and linearizability. That is, due to the integrity, each
process does not break the participation schema IT and get the
correct result of SECAGGy.z(Ceohorts 4.1, argSsecagg)- Due to the lin-
earizability, the result of the processes is equivalent to a sequential
processes that respect real-time precedence ordering (i.e., the order
of i). That is, an adversary cannot get multiple 6; with the same i
and cannot define ith Ceonort and argssecag, after knowing ék for
i < k. Thus, by achieving integrity and linearizability, the system
emulates the ideal functionality in Algorithm 1 with a simulator.
Therefore, integrity and linearizability of the update process are
sufficient conditions for the system to achieve interactive DP.

Here, we present the high-level concept of our approach in
the real world to achieve integrity and linearizability. The pseu-
docode for the process is provided in Algorithm 2. The server is-
sues two types of the requests to clients: audit request and secure
aggregation request. Intuitively, before outputting the result of
SECAGG4 z—which involves private data and may thus compromise
privacy—the server must provide proof of linearizability and in-
tegrity with enclaves in the audit request. Clients must verify this
during the audit request, and only upon successful verification can
the server complete the process to obtain the result. Due to the
linearizability and integrity checks enforced by clients, a malicious
server can only complete linearizable processes. Thanks to the con-
fidentiality provided by the enclave operations, a malicious server
cannot access any information beyond the output.

For verification purposes, a client requires remote attestation
and validation of certain values. The number of clients needed for
auditing is modest (e.g., 129 for f,y = 0.1) as demonstrated in Sec-
tion 6.1. Hence, the additional computational and communication

secagg*

Proceedings on Privacy Enhancing Technologies 2026(1)
evidence chain !-=l G - GO I , GO GO G I ,

Approval
#of G

Agreement on Agreement I

Initialization on an enclave
Caua“

all clients
Figure 2: Overview of the core idea behind planner enclaves.

planner
enclave

overhead is both low and constant. Moreover, since a different en-
clave is used for each process, it allows for concurrent execution,
enhancing scalability. Also, even if an enclave fails, the entire DP-
FTRL execution does not halt because the server can make a new
process with a new enclave, thereby providing liveness.

This is achieved by enforcing integrity and linearizability through
TEEs combined with client auditing. The challenge lies in proving
integrity and linearizability to the clients, a topic that is thoroughly
explained in Section 4.

4 Design of Planner

In this section, we explain how to ensure integrity and lineariz-
ability in the presence of enclaves and client auditing. We start
by detailing a system that achieves integrity and linearizability
under the assumption that all clients are honest and available (i.e.,
(y =0,k =1, f =0)), to highlight the core of our proposed method.
Then, in Section 4.2, we propose modifications to the system to
accommodate scenarios where (y > 0,k # 1, § > 0).

4.1 Design Under (y =0,k =1, =

Figure 2 illustrates the basic concept of the system. We employ an
enclave that deploys our code, which we call a planner enclave. The
planner enclave initially secures consensus from all clients on the
shared object q and seals (see Section 2.1) the states. In subsequent
processes, replicated planner enclaves load the shared object g from
an evidence chain, after which a client audits whether the correct
shared object was loaded. If verified by the client, the planner en-
clave continues the process and generates evidence designating
the next client to audit the subsequent planner enclave. This iter-
ative process ensures linearizability, as planner enclaves always
load the latest state due to designated client audits (a rollbacked
enclave is rejected), and integrity is maintained through the TEE
characteristics.

4.1.1 Server-side Algorithm. Algorithm 3 provides pseudocode for
the server and planner enclave protocols. At each process (i.e., iter-
ation), the server-side algorithm establishes proofs of linearizability
and integrity in Lines 11-16 (i.e., Lines 1-3 of Algorithm 2) to conduct
secure aggregation in Line 19 (i.e., Lines 4 and 6 of Algorithm 2).

Here, f(args) is a function that outputs args,.ection <
[n] when |argsgecion| = 1; otherwise, it aborts, and we set 7 =
|argsjection|- We use this function as a placeholder for now and
will change it later to accommodate the case where f > 0andy > 0
(i-e., Section 4.2).

selection

494

Takagi et al.

Algorithm 3 Algorithm for the Server-side and the Planner Enclave

1: Initialization

2: The server initializes a planner enclave with the public keys of
all clients Cay = [n], and sets args,jection < Call-

: The enclave generates random seeds for Z and a nonce as ID.

. if the enclave verifies agreement on C,j then

The enclave computes Caudit = felect (args

The enclave seals the states.

The enclave generates evidence including Cy,git and ID.

: end if

: The server initializes an evidence chain (EC) with the generated
evidence.

10: Iteration (concurrent)

11: The server selects a cohort Ceohort € Call.

12: The server replicates the sealed planner enclave and inputs EC,

Ceohort» argssecagg’ and ArZSelection*

selection) .

N I L o

13 if the enclave verifies EC, Ceohort, and args ..o, then

14: The enclave retrieves Cyygit from the latest evidence.

15: The enclave computes Crext = feelect (218 gefection)-

16: if the enclave verifies agreement on 7 clients in Caygit then

17: The enclave generates evidence including Crex as audi-
tors, Ceohort, the hash of argSecage: and the digest of EC.

18: The server appends the new evidence to the EC.

19: The enclave does SECAGGz on Ceohort With argSecagy-

20: The server updates the global model.

21: end if

22: end if

Planner enclaves require the server to pass three types of verifi-
cations to ensure integrity and linearizability, which are as follows:

(1) Initialization (Line 4) verifies that all clients have reached
consensus on a shared object q. This ensures that clients can
deny planner enclaves that load a different shared object ¢’
for future auditing.

Approval of auditors Cg,q;; (Line 13) verifies that clients Caygit
have been approved as auditors by a planner enclave. This
means auditors can verify whether a planner enclave loads
the correct shared object and will correctly perform secure
aggregation (i.e., integrity).

Agreement on a planner enclave (Line 16) verifies that the
enclave is the planner enclave agreed upon by auditors Caygit-
This ensures the enclave maintains integrity and is the sole
enclave loading the current shared object (i.e., linearizabil-
ity).

Next, we discuss the evidence chain that manages a shared ob-
ject g, followed by detailed explanations of the three verifications,
illustrated in Figure 3.

—
N
~

Evidence Chain. We introduce the evidence chain as the state
management method for our concurrent system. It consists of a
sequence of evidence pieces generated by planner enclaves, with
evidences linked via hashes like blockchain [64] (i.e., evidence in
the evidence chain has the hash of the previous evidence). The
digest of the evidence chain is the hash of the latest evidence. The
ID of the evidence chain is the ID included in the initial evidence.

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

| server
« evidence | proof of —
chain (ec)| the _—I aggregated
+ Ccohort approval A update
| planner enclave
H 4
* nonce i

hash of input
« digest of ec
* ecid

A
= =/ proof of | encrypted
- i sign < iagreement ! update

D

le =

I Caudit I | Ceohort |

Figure 3: The flow of evidence-related proofs by the server. A
dotted line indicates indirect communication via the server.

Each piece of evidence includes updates to q.H (in our context,
Ceohorts l)

Verification of the evidence chain involves confirming that the
latest evidence remains untampered (verified via remote attestation)
and that the hash chain is valid.

When a planner enclave successfully verifies an evidence chain
and is agreed upon by the auditors C,yqit (explained later) docu-
mented in the latest evidence, it implies that the enclave reads the
latest state by sequentially updating q.H with the evidence chain.
This occurs because if consensus on Cygj; is reached, it is concluded
that the current auditors are the most recently approved.

Approval of Auditors (verified in Line 13). "Approval of auditors"
is a process where a planner enclave designates clients Cpygit as
auditors just once. As shown in Figure 3, the server validates this
approval through evidence generated by a previous planner enclave
(i-e., the latest evidence of the evidence chain). A planner enclave
is designed to designate clients and produce evidence just once
only after it has obtained consensus from the designated auditors.
Therefore, verification of code via remote attestation establishes
that the clients listed as auditors were indeed approved.

Agreement on a Planner Enclave (verified in Line 16). "Agreement
on a planner enclave" is the consensus process where auditors
designate a specific planner enclave. This implies:

e Any planner enclave not agreed upon by auditors is invalid.

e The planner enclave correctly loads the shared object and
will perform secure aggregation without disrupting the par-
ticipation schema.

As illustrated in Figure 3, the server first generates evidence using
a planner enclave, containing a nonce, the hash of inputs (i.e., the
hash of Ceonort and argssecagg), the digest of the evidence chain,
and the ID of the evidence chain. This evidence is provided to the
approved auditors retrieved from the evidence chain (i.e., Caydit)-
Approved auditors perform remote attestation to verify the integrity
of the evidence and the code. If auditors verify the ID and that
the digest has not been seen before (to prevent replay attacks),
they sign the nonce in response. The server sends all signatures of
Caudit (i-e., 7 signatures) to the planner enclave to generate further
evidence (Lines 17 and 18), which proves the "agreement on a
planner enclave".

495

Proceedings on Privacy Enhancing Technologies 2026(1)

Initialization (verified in Line 4). "Initialization" is a process by
which a planner enclave designates the shared object g to all clients.
Specifically, it implies:

e Consensus on the shared object and initial auditors by all
clients.
o Correct loading of the public key list by the planner enclave.

The process is similar to the "agreement on a planner enclave,'
though the evidence now includes the digest of the public key list,
nonce, and the ID of the enclave. Each client checks the digest
against their known hash of the public key list through PKI, as
described in Section 2.2, before registering the nonce as the evidence
chain ID and responding with a signature.

Note that "initialization" means all clients agree on q.Z because a
replicated planner enclave possessing the ID as the evidence chain
ID also possesses the random seeds for Z.

Secure Stateful Aggregation. Here, we explain the secure aggre-
gation of Line 19 (i.e., SECAGG 7). Due to three prior verifications
conducted before Line 19 of Algorithm 3, the planner enclave loads
the shared object correctly and thus possesses the correct Z, i, and
Ceohort, Where i is the number of entries in the evidence chain. This
allows precise computation of Line 16 of Algorithm 1.

We primarily adhere to the secure aggregation method outlined
by Huba et al. [41]. However, as discussed in Section 2.1.3, given
that the original formulation didn’t include noise, additional mod-
ifications are required to incorporate stateful noise. A simplistic
extension suffices; while carrying out secure aggregation method
from Huba et al., the enclave adds { (C™1Z)[i, :]. Then, aggregated
data with the noise is decrypted only when data from Ceohort 1S
collected with verified MAC.

4.1.2 Client-side Algorithm. The client-side algorithm is depicted
in Algorithm 4. The client-side algorithm is stateful, storing evi-
dence_chain_id and signed_digests. It employs two functions: Au-
DIT and SECUREAGGREGATION.

AuUDIT is involved in Lines 4 and 16 of Algorithm 3 (i.e., Initial-
ization and Agreement on a planner enclave). Acting as an auditor, a
client verifies whether the planner enclave establishes or reads the
shared object. During Line 3 of Algorithm 4, a client performs re-
mote attestations to verify that the evidence originated from a plan-
ner enclave. The evidence may encompass the ID of the evidence
chain, a nonce, and the digest of the evidence chain. The client veri-
fies whether this matches the stored evidence_chain_id (Line 10).
If not previously registered (i.e., evidence_chain_id=None), it is
stored accordingly (Line 8). Then, after ensuring that signed_digests
does not contain the digest to prevent replay attacks (Lines 13), the
client responds with the signature to the nonce.

SECUREAGGREGATION is initiated in Line 19 of Algorithm 3. First,
the client performs remote attestation to verify the integrity of
the evidence (i.e., to ensure that it is generated by the enclave that
has passed the three verifications). The client then extracts the
peer’s public key for the Diffie-Hellman (DH) key exchange from
the evidence. Using this key, the client sends the update encrypted
by a symmetric key, the symmetric key encrypted with the DH
key, and the MAC generated from the DH key (see Section 2.1.3 for
more details).

Proceedings on Privacy Enhancing Technologies 2026(1)

Algorithm 4 Client-side Algorithm

1: Initialize evidence_chain_id < None and signed_digests « 0
2: procedure AupIT(evidence)
3 If REMOTEATTESTATION(evidence) fails Then abort
4 Extract nonce, digest_of_evidence_chain,
dence_chain_id from evidence
if self.evidence chain_id = None then
self.evidence_chain_id « evidence_chain_id
end if
If evidence_chain_id # self.evidence_chain_id Then abort
If digest_of_evidence_chain € self.signed_digests Then
abort
10: ArprEND(self.signed_digests, digest_of_evidence_chain)
1t return SIGN(nonce)
12: end procedure
13: procedure SECUREAGGREGATION(evidence)

evi-

Y % N >

14: If REMOTEATTESTATION(evidence) fails Then abort
15: Extract nonce, argse ,q,, €c_peer_pub_key from evidence
16: update «— COMPUTELOCALUPDATE(args,g,)

17: encrypted_update, encrypted_decryption_key,
ec_pub_key, MAC «

18: MAKESECUREAGGREGATIONMESSAGE(update, nonce,
ec_peer_pub_key)

19: return encrypted_update, encrypted_decryption_key,
ec_pub_key, MAC

20: end procedure

4.1.3 Property of The System. In our concurrent system, each pro-
cess involves an object g virtually shared with all clients. The sin-
gular operation applicable to this object is "update" with secure
aggregation output, denoted by

<q update(ccohorta l) A><OK(SECAGGq.Z(Ccoh0rb i, auxsecagg*))) A>

While producing SECAGGq.z (Ceohorts i» aUXsecagg*) as output, the pro-
cess updates H with Ceonort and i. This means that Algorithm 3
concurrently performs the process described in Algorithm 2.

THEOREM 4.1. Algorithms 3 (server-side) and 4 (client-side) achieve
both integrity and linearizability with respect to the process described
in Algorithm 2 wheny = 0.

The proof is presented in Appendix D.2. Also, we formally veri-
fied this by the Tamarin prover. See Appendix E for details.

4.1.4 Vulnerability of the System Under (y > 0, > 0). Theo-
rem 4.1 demonstrates integrity and linearizability, but its assump-
tions overlook any client dropouts or dishonest behavior (i.e., (f =
0,y = 0)). Here, we evaluate the more realistic scenario where
B,y > 0, and k # 1, outlining the vulnerabilities introduced under
these conditions.

Sybil Selection. The inability to differentiate between malicious
and honest clients enables Sybil attacks, where Sybils break lin-
earizability. A malicious server might select args .., composed
entirely of corrupted clients, allowing corrupted auditors to deviate
from the protocol, which leads to linearizability violations. Specifi-
cally, in Line 16 of Algorithm 3, corrupted auditors could agree on
multiple enclaves, causing arbitrary state forks.

496

Takagi et al.

Interruptions Caused by Dropouts. In Line 16, the planner enclave
requires the collection of signatures from all auditors Cyygit to vali-
date and proceed with secure aggregation, as 7 = |Cyygit|. However,
an auditor dropping out before signing disrupts the entire process
outlined in Algorithm 3. The secure aggregation phase in Line 19
is similarly susceptible to disruptions.

4.2 Adaptation for (y > 0,k # 1, § > 0)

To address the aforementioned vulnerabilities, we propose neces-
sary modifications to Algorithm 3.

4.2.1
client dropouts can halt a process at Line 16 of Algorithm 3. To
alleviate this issue, we modify the value of 7. As discussed in Sec-
tion 4.1.1, the process of "agreement on a planner enclave" on Cyygit
must ensure that no alternative planner enclave gains agreement
on Cyygit- To meet this requirement, we can set 7 > |Caudit|/2, re-
quiring agreement from the majority of Caygit. By setting a larger
Naudit = |Caudit| and a smaller 7, the probability of interruptions
occurring can be minimized, as described in Section 5.2.2.

Interruptions may occur during the secure aggregation process
(i-e., Line 19 of Algorithm 3) as well. However, these interruptions
are not catastrophic since they occur post-Line 17, where evidence
for the next process is generated. This is a feature of linearizability
known as non-blocking characteristics [38]. The process, however,
loses utility as it fails to output results. To tackle this issue, we can
utilize an overselection strategy. Overselection involves selecting
a large pool of candidate clients for secure aggregation, allowing
available clients from these candidates to participate.

Preventing Interruptions by Dropout. As outlined in Section 4.1.4,

Remark. The overselection strategy could result in a disparity
between Ceohort and the clients that actually participate, possibly
causing data loss since participation schemes are based on Ceoport-
For simplicity, this paper does not consider this utility loss. However,
this problem is not insurmountable; it can be resolved by creating
evidence that includes Cpart at Line 19, where Cpart is the set of
clients that actually partake in secure aggregation. By adding this
evidence to the evidence chain, linked to the evidence generated in
Line 18, participation scheme verification can be employed to avert
data loss while accommodating client dropouts.

4.2.2 Preventing Sybil Selection. Within Algorithm 3, corrupted
clients can only influence the agreement parts at Lines 4 and 16 of
Algorithm 3. These clients could potentially send signatures without
conducting verification during AUDIT, permitting multiple enclaves
to exist carrying the same shared object, disrupting linearizability.
To counter this, it is crucial to establish that the majority of honest
clients in the auditors have reached an agreement. However, since
corrupted clients cannot be differentiated from honest ones, proving
this becomes impossible when the number of corrupted clients
exceeds the cohort size.

To avoid this issue, we restrict the server’s ability to arbitrarily
choose auditors. The server is allowed to choose a sufficient number
of candidates for auditors, but the actual selection of auditors is
done randomly by the enclave. Specifically, the enclave instead
employs fielection (r8Sgelection)> Which is a randomized function that

returns a random subset Caugir Of argsy jecion SUch that [Caugit| =

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

Naudit Where naugir € [n] is an adjustable parameter and aborts if
|argsselection| < nK.

Despite the random selection, auditors may still include some
corrupted clients, making it impossible to unequivocally prove that
a majority of honest clients are in agreement. Therefore, we set 7
to be a value larger than naygit/2, ensuring that the probability of
honest clients being in the majority becomes sufficiently high. Note,
however, that setting a higher 7 increases the likelihood of inter-
ruptions, presenting a trade-off, which is optimized in Section 5.4.

Assuming the server sets args,..i,n, as the available clients
Cavailable (i-€., |Cavailable| = nk as per Section 2.2), and considering
that up to a ratio of y of all clients may be corrupt, the probability
of having a certain number of corrupted clients in Caygit can be
calculated. By combining this with 7 and nayugit, the probability of a
Sybil attack occurring can be estimated, and this is the probability
that breaks integrity and linearizability.

THEOREM 4.2. Wheny > 0, Algorithm 3 maintains linearizability
and integrity with a probability of 1 — Sprivacy =

2(naudit—T)
1—(1 - Z

i=1

round
oe -) onr 2)/)
27 = Naydit + 1) \2Ngudir — 27— § Naudit .

In other words, with probability 1 — privacy, Our protocol main-
tains Theorem 4.1 that is formally verified. The proof can be found
in Appendix D.3. The relationship between Gprivacy and parameters
is shown in 6.1.

5 Analysis of Our System

In this section, we analyze our system from the perspectives of
privacy, correctness, liveness, and scalability.

5.1 Privacy and Correctness

We first present the main theorem of this paper, which clarifies the
privacy and utility aspects of our system.

THEOREM 5.1. Let M; be Algorithm 4 fori € [n]. The interactive
protocol CoNCompP(M;, . .., My), when used with any server protocol,
emulates the ideal model (i.e., Algorithm 1) with some simulator.

The proof is presented in Appendix D.4. From this theorem,
the server protocol can derive the output of MF-DP-FTRL from
ConComp(Mj, . .., M,), since Algorithm 1 reflects the MF-DP-FTRL
approach by setting k = i and 0= é,-. M = ConComp(My, ..., M)
meets the criteria of (&, § + Sprivacy)-interactive DP. This is because
any server protocol interacting with M fulfills (e, 8 + Sprivacy)-DP,
given that the corresponding simulator itself adheres to (¢, +
privacy)-DP, as concluded in Theorem 3.1.

5.2 Liveness

In our context, liveness refers to the capability to complete a process
(i-e., Algorithm 2). We analyze three potential issues that might
stop the process: crashes, interruptions, and attacks.

5.2.1 Crashes. If an enclave crashes for any reason, there is no
straightforward way to recover the process. This is because allowing
such recovery would enable an adversary to fork the enclave’s state.
Maintaining linearizability would require verification, which is
not possible. However, it is important to note that while a single

497

Proceedings on Privacy Enhancing Technologies 2026(1)

enclave crash may disrupt a process (i.e., Algorithm 2), it does not
necessarily mean that the entire system (i.e., Algorithm 3) will come
to a halt. As described in Appendix B, even if an enclave crashes,
the system can initiate another process to recover the state. This is
an advantage of our system compared to systems relying on SMR
that cannot securely recover from disasters [4, 40].

5.2.2 Interruptions by Dropouts. In our system, auditors may drop
out, which could potentially cause the system to halt as discussed
in 4.1.4. Here, we analyze the probability associated with client
dropouts.

PROPOSITION 5.2. The probability Sinterrupt of interruption of au-
fp . T nxf nk(1-p) nx | "round
diting is 1 — (1 - 2in (”audit_'H'i)(i)/("audit)) .

The proof is presented in Appendix D.5. As shown in Section 6.1,
the probability can be small if we set large naygit.

5.2.3 Attacks. We consider scenarios where a malicious client at-
tempts to disrupt the process. In our system, a malicious client
might send invalid values. However, this does not halt the system
since the enclave can disregard invalid inputs, similar to handling
dropouts. Given our system’s resilience to dropouts, a single mali-
cious client lacks the capability to stop the process.

5.3 Scalability

We evaluate the scalability of our concurrent system from two
perspectives. First, we examine server-side scalability concerning
throughput [65]. Second, we analyze client-side costs, considering
that clients are lightweight and can drop out.

We evaluate the additional communication and computation
costs incurred by clients due to our planner. In both AupiT and
SECUREAGGREGATION, the communication cost is constant, influ-
enced only by security parameters such as the size of the signature.
This is discussed in detail in Section 6.2. The computation cost is
also constant; the encryption method used is part of the standard
communication process and does not necessitate additional com-
putational resources. Although the frequency of AuprT depends
on parameters like f, k, and y, it remains low, as demonstrated
in Section 6.1. On the contrary, if n becomes large, the frequency
of AupIT decreases. Consequently, the costs incurred by clients
remain constant even as the system scales.

5.4 Parameter Selection

In our system, we have two adjustable parameters: 7 and naygit.
Here, we discuss how to determine these parameters. The goal is
to minimize nyygit to reduce communication costs (i.e., frequency
of Auprt) while ensuring Sinterrupt < p1 € [0, 1] and Sprivacy < p2 €
[0, 1] for livenss and security requirements. This can be formulated
as the following optimization problem:

T%{‘r;it Naudit S-t. 5privacy(naudits T) < 1 and 5interrupt(naudita T) < P2s
where Sprivacy (Maudit> 7) and Sinterrupt (Maudit: 7) represent the proba-
bilities of Sinterrupt and Sprivacy When 7 and ngugic are provided. Since
Naudit < 7 and 7 < naygir are integers, and the probabilities can be
calculated from Proposition 5.2 and Theorem 4.2, this problem is
solvable using binary search.

Proceedings on Privacy Enhancing Technologies 2026(1)

1073

6_interrupt
®
I
IS
~
6_privacy
=
9

,_.
2

1000 1250 1500

Figure 4: The trade-off between communication cost and
privacy for various y with f = 0 and x = 1 (left) and various y
with f = 0 and « = 1 (right).

— “
S 30 80 166 406 1724 3
2 8000 2 2000
<. 49 120 299 907 [EREM o
s 6000 c 1500
>3- 66 189 519 2264 ES E
-4000 ' 1000 Ct
86 282 962 [CHY
-2000 500
< <
117 440 2185 3
001 01 02 03 04 001 01 02 03 04
B B

Figure 5: Communication cost for various settings of (f,y)
with the constraint of (Sprivacy, Sintermpt)=(10‘8,10‘3), k=1
(left), and k = 0.5 (right). Results larger than 10000 are omitted.

6 Experiments

In this section, we first examine the effects of various parameters.
Then, we present the TCB size and actual communication overhead
associated with the implementation.

6.1 Communication, Liveness, and Privacy
Trade-offs

In this section, we analyze the trade-offs among communication
cost, liveness, and privacy. Here, nqit represents the minimum
number of auditors required for each process derived in Section 5.4,
which in turn correlates with the entire communication cost. Live-
ness is quantified by Sinterrupt, as described in Proposition 5.2; it
represents the probability of system failure in conducting DP-FTRL.
Privacy is measured by Oprivacy, as defined in Theorem 4.2; it de-
notes the additional overhead to § for approximate DP. By vary-
ing naudit, we explore the balance among these factors. Here, we
set Nyound = 10000 and n = 107, and the server is required to set
|argsection| s the available clients.

Initially, we illustrate the balance between communication cost
and liveness and between communication cost and privacy in Fig-
ure 4. For these analyses, we fix y = 0,k = lor f = 0,k =1
to focus on liveness or privacy, respectively. The results indicate
that by slightly increasing nyygit, the system can significantly lower
both dinterrupt and dprivacy, implying a communication overhead to
achieve sufficient liveness and privacy.

Next, we evaluate the communication cost across various set-
tings of (f, y) under the constraints (Sprivacy. 5imermpt)=(10_8, 107%)
with x = 1 or k = 0.5, as depicted in Figure 5. The plots illustrate the
communication cost as y and f vary. Compared to earlier scenarios
where either y or f is zero, achieving robustness requires greater

498

Takagi et al.

communication costs. This is because robustness for liveness re-
quires a low value of 7, while robustness for privacy necessitates a
high value. To increase the value of feasible rs to simultaneously
satisfy both requirements, n,,qit must be increased.

The value of « is also crucial as it quickly increases the value of
Naudit- This occurs because the candidates for auditors are selected
by the server (i.e., adversary), so the ratio of corrupted clients among
the candidates rises quickly if the number of candidates (i.e., nx)
is small. Even when « is small, if § is also low, our framework can
still function effectively with high y and a small naygit.

We observed that the value of n does not significantly impact
the results. Thus, by increasing n, the communication cost for each
client can be reduced because it decreases the probability of being
chosen as auditors.

6.2 Implementations

We implemented the planner enclave using Intel SGX with the
OpenEnclave SDK®. For both signing and key exchange, we use
ECDSA and ECDH with P-256, respectively, as implemented by
OpenSSL. In this section, we examine the implementation from two
angles: the TCB size and the message size required for a client.

TCB size. We assess the TCB size without the secure aggrega-
tion component to compare it with systems focused on achieving
linearizability, such as ROTE [57] and Nimble [4], which, to the
best of our knowledge, has the smallest TCB size for this purpose.
Our TCB size is 0.7K excluding libraries, which is more compact
than ROTE’s 1.1K and Nimble’s 2.3K as reported in the paper, as
our approach relies on client auditing rather than SMR.

Communication Overhead. We evaluated the additional commu-
nication overhead involved with AupiT and SECUREAGGREGATION
according to the client-side algorithm. For AubrT, the evidence size
is 5038 bytes, while for SECUREAGGREGATION, it is 5194 bytes. In
terms of responses, AUDIT sends 64 bytes, and SECUREAGGREGA-
TION sends 144 bytes. Note that we intentionally excluded the size
of model updates to concentrate solely on our additional communi-
cation costs. These communication sizes are fixed and do not vary
with FL parameters such as n and d.

7 Conclusion

Our paper considers malicious settings in private FL to bridge the
gap in privacy principles concerning transparency and verifiabil-
ity [25]. Our approach achieves this using interactive DP, relying
exclusively on TEEs and thereby avoiding additional trusted hard-
ware such as a TPM [75], which is vulnerable to the Cuckoo at-
tack [68]. Also, our design follows the fundamental principles of
TEE applications [4, 6]; that is, it has a small TCB size. Furthermore,
our system is resilient to disasters [4] —meaning it is capable of
recovery—and requires only a single TEE-enabled server, thereby
reducing management costs. As for future work, a key direction is
to investigate the trade-off between our approach of minimizing
trust in the server (i.e., bringing it closer to a zero-trust model) and
the implementation costs discussed in Appendix A.2. Exploring
simpler client auditing mechanisms with appropriate cost of trust
will be crucial for broader practical deployment.

®https://github.com/openenclave/openenclave

https://github.com/openenclave/openenclave

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

Acknowledgments

This research received no specific grant from any funding agency in
the public, commercial, or not-for-profit sectors. The authors used
ChatGPT4o to revise the texts throughout this paper to correct any
typos, grammatical errors, and awkward phrasing.

References

(1]

[7

[

8

=

[11]

[12]

[13]

[14]

[15

[16]

[17]

[18]

[19

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308-318.

Naman Agarwal, Peter Kairouz, and Ziyu Liu. 2021. The skellam mechanism
for differentially private federated learning. Advances in Neural Information
Processing Systems 34 (2021), 5052-5064.

AMD. 2016. AMD Secure Encrypted Virtualization
https://www.amd.com/en/developer/sev.html (2016).

Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger, Stella Lau, Srinath Setty,
and Sudheesh Singanamalla. 2023. Nimble: Rollback protection for confidential
cloud services. In 17th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 23). 193-208.

Apple. 2024. Private Cloud Compute: A new frontier for Al privacy in the cloud,
https://security.apple.com/blog/private-cloud-compute/. Technical Report. Apple.
Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’keeffe, Mark L
Stillwell, et al. 2016. {SCONE }: Secure linux containers with intel {SGX}. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). 689-703.

Marshall Ball, James Bell-Clark, Adria Gascon, Peter Kairouz, Sewoong Oh, and
Zhiye Xie. 2024. Secure Stateful Aggregation: A Practical Protocol with Applica-
tions in Differentially-Private Federated Learning. arXiv preprint arXiv:2410.11368
(2024).

Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. 2020. Private summation
in the multi-message shuffle model. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 657-676.

Amos Beimel, Kobbi Nissim, and Eran Omri. 2008. Distributed private data
analysis: Simultaneously solving how and what. In Advances in Cryptology—
CRYPTO 2008: 28th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2008. Proceedings 28. Springer, 451-468.

James Henry Bell, Kallista A Bonawitz, Adria Gascon, Tancréde Lepoint, and
Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic
overhead. In Proceedings of the 2020 ACM SIGSAC conference on computer and
communications security. 1253-1269.

Pramod Bhatotia, Markulf Kohlweiss, Lorenzo Martinico, and Yiannis Tselekounis.
2021. Steel: composable hardware-based stateful and randomised functional en-
cryption. In IACR International Conference on Public-Key Cryptography. Springer,
709-736.

Alexander Bienstock, Antigoni Polychroniadou, and Ujjwal Kumar. 2024. DMM:
Distributed Matrix Mechanism for Differentially-Private Federated Learning
using Packed Secret Sharing. In International Workshop on Federated Foundation
Models in Conjunction with NeurIPS.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175-1191.

Kallista Bonawitz, Peter Kairouz, Brendan McMahan, and Daniel Ramage. 2021.
Federated learning and privacy: Building privacy-preserving systems for machine
learning and data science on decentralized data. Queue 19, 5 (2021), 87-114.
Lennart Braun, Adria Gascon, Mariana Raykova, Phillipp Schoppmann, and Karn
Seth. 2024. Malicious security for sparse private histograms. Cryptology ePrint
Archive (2024).

Javad Ghareh Chamani and Dimitrios Papadopoulos. 2020. Mitigating leakage
in federated learning with trusted hardware. In Advances in Neural Information
Processing Systems, Privacy Preserving Machine Learning - PriML and PPML Joint
Edition.

Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and
Flavio D Garcia. 2021. {VoltPillager}: Hardware-based fault injection attacks
against intel {SGX} enclaves using the {SVID} voltage scaling interface. In 30th
USENIX Security Symposium (USENIX Security 21). 699-716.

Christopher A Choquette-Choo, Krishnamurthy Dj Dvijotham, Krishna Pillutla,
Arun Ganesh, Thomas Steinke, and Abhradeep Guha Thakurta. 2024. Correlated
Noise Provably Beats Independent Noise for Differentially Private Learning. In
The Twelfth International Conference on Learning Representations.

Christopher A Choquette-Choo, Arun Ganesh, Ryan McKenna, H Brendan McMa-
han, John Rush, Abhradeep Guha Thakurta, and Zheng Xu. 2024. (Amplified)

(SEV).

499

[20

[21

[22

[24

[25

[26

[27

[28

[29

(30]

[31

@
&,

[33

(34

™
i

[36

(37]

[38

[41

Proceedings on Privacy Enhancing Technologies 2026(1)

Banded Matrix Factorization: A unified approach to private training. Advances
in Neural Information Processing Systems 36 (2024).

Christopher A Choquette-Choo, H Brendan McMahan, Keith Rush, and
Abhradeep Thakurta. 2022. Multi-epoch matrix factorization mechanisms for
private machine learning. arXiv preprint arXiv:2211.06530 (2022).

INTEL CORP. 2015. Product Change Notification 114074-
00. https://qdms.intel.com/dm/i.aspx/ 5A160770-FC47-47A0-BF8A-
062540456F0A/PCN114074-00 (2015).

LINE Corporation. 2023. Differential Privacy in LINE Federated Learning. Technical
Report. https://linecorp.com/en/security/article/461.

Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, robust, and scalable
computation of aggregate statistics. In 14th USENIX symposium on networked
systems design and implementation (NSDI 17). 259-282.

Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint
Archive (2016).

Katharine Daly, Hubert Eichner, Peter Kairouz, H Brendan McMahan, Daniel
Ramage, and Zheng Xu. 2024. Federated learning in practice: reflections and
projections. In 2024 IEEE 6th International Conference on Trust, Privacy and Security
in Intelligent Systems, and Applications (TPS-ISA). IEEE, 148-156.

Research Scientist Daniel Ramage and Stefano Mazzocchi. 2020. Fed-
erated Analytics: Collaborative Data Science without Data Collection.
https://research.google/blog/federated-analytics-collaborative-data-science-
without-data-collection/ (2020).

Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostakova,
Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. {FastKitten}:
Practical smart contracts on bitcoin. In 28th USENIX Security Symposium (USENIX
Security 19). 801-818.

Sergey Denisov, H Brendan McMahan, John Rush, Adam Smith, and Abhradeep
Guha Thakurta. 2022. Improved differential privacy for sgd via optimal private
linear operators on adaptive streams. Advances in Neural Information Processing
Systems 35 (2022), 5910-5924.

Danny Dolev and Andrew Yao. 1983. On the security of public key protocols.
IEEE Transactions on information theory 29, 2 (1983), 198-208.

John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer
systems. Springer, 251-260.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our data, ourselves: Privacy via distributed noise generation. In
Advances in Cryptology-EUROCRYPT 2006: 24th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia,
May 28-June 1, 2006. Proceedings 25. Springer, 486—503.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3—4
(2014), 211-407.

Hubert Eichner, Daniel Ramage, Kallista Bonawitz, Dzmitry Huba, Tiziano San-
toro, Brett McLarnon, Timon Van Overveldt, Nova Fallen, Peter Kairouz, Al-
bert Cheu, et al. 2024. Confidential federated computations. arXiv preprint
arXiv:2404.10764 (2024).

Ulfar Erlingsson, Vitaly Feldman, Ilya Mironov, Ananth Raghunathan, Kunal
Talwar, and Abhradeep Thakurta. 2019. Amplification by shuffling: From local to
central differential privacy via anonymity. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2468-2479.

Russell A Fink, Alan T Sherman, Alexander O Mitchell, and David C Challener.
2011. Catching the Cuckoo: Verifying TPM Proximity Using a Quote Timing Side-
Channel: (Short Paper). In Trust and Trustworthy Computing: 4th International
Conference, TRUST 2011, Pittsburgh, PA, USA, June 22-24, 2011. Proceedings 4.
Springer, 294-301.

Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and
Ananda Theertha Suresh. 2021. Shuffled model of differential privacy in federated
learning. In International Conference on Artificial Intelligence and Statistics. PMLR,
2521-2529.

Anonymization Team Google. 2019. Delta for thresholding. https:
// github.com/google/ differential-privacy/ blob/ main/common_docs/Delta_
For_Thresholding.pdf (2019).

Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS) 12, 3 (1990), 463-492.

White House. 2012. Consumer data privacy in a networked world: A frame-
work for protecting a privacy and promoting innovation in the globaeconom.
http://www. whitphi) nse pnY/siles/default/files/privac (2012).

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Cleb-
sch, Manuel Costa, Antoine Delignat-Lavaud, Cédric Fournet, Andrew Jeffery,
Matthew Kerner, et al. 2023. Confidential consortium framework: Secure mul-
tiparty applications with confidentiality, integrity, and high availability. arXiv
preprint arXiv:2310.11559 (2023).

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceedings

https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf
https://github.com/google/differential-privacy/blob/main/common_docs/Delta_For_Thresholding.pdf

Proceedings on Privacy Enhancing Technologies 2026(1)

of Machine Learning and Systems 4 (2022), 814-832.

Mohit Kumar Jangid, Guoxing Chen, Yinqian Zhang, and Zhigiang Lin. 2021.
Towards formal verification of state continuity for enclave programs. In 30th
USENIX Security Symposium (USENIX Security 21). 573-590.

An Ji, Bortik Bandyopadhyay, Congzheng Song, Natarajan Krishnaswami, Prabal
Vashish, Rigel Smiroldo, Isabel Litton, Sayantan Mahinder, Mona Chitnis, and
Andrew W Hill. 2025. Private Federated Learning In Real World Application-A
Case Study. arXiv preprint arXiv:2502.04565 (2025).

Jiankai Jin, Chitchanok Chuengsatiansup, Toby Murray, Benjamin IP Rubinstein,
Yuval Yarom, and Olga Ohrimenko. 2024. Elephants Do Not Forget: Differential
Privacy with State Continuity for Privacy Budget. In Proceedings of the 2024 on

Takagi et al.

Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466-1482.
Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf (2008).

[65] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat,

Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered asyn-
chronous aggregation. In International conference on artificial intelligence and
statistics. PMLR, 3581-3607.

[66] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yingian Zhang. 2022. Narrator:

Secure and practical state continuity for trusted execution in the cloud. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 2385-2399.

ACM SIGSAC Conference on Computer and Communications Security. 1909-1923. [67

Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. 2022. Differentially

[45] Peter Kairouz, Ziyu Liu, and Thomas Steinke. 2021. The distributed discrete gauss- private federated learning on heterogeneous data. In International Conference on
ian mechanism for federated learning with secure aggregation. In International Artificial Intelligence and Statistics. PMLR, 10110-10145.
Conference on Machine Learning. PMLR, 5201-5212. [68] Bryan Parno. 2008. Bootstrapping trust in a" trusted" platform. In Proceedings of
[46] Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep the 3rd conference on Hot topics in security. 1-6.

Thakurta, and Zheng Xu. 2021. Practical and private (deep) learning without [69] Bryan Parno, Jacob R Lorch, John R Douceur, James Mickens, and Jonathan M

sampling or shuffling. In International Conference on Machine Learning. PMLR,
5213-5225.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2021. Advances and open problems in federated learning.
Foundations and trends® in machine learning 14, 1-2 (2021), 1-210.

Ryan Karl, Jonathan Takeshita, and Tacho Jung. 2021. Cryptonite: A framework
for flexible time-series secure aggregation with non-interactive fault recovery. In
Security and Privacy in Communication Networks: 17th EAI International Confer-
ence, SecureComm 2021, Virtual Event, September 6-9, 2021, Proceedings, Part I 17.
Springer, 311-331.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam Smith. 2011. What can we learn privately? SIAM J. Comput. 40, 3
(2011), 793-826

Fumiyuki Kato, Yang Cao, and Masatoshi Yoshikawa. 2023. Olive: Oblivious
Federated Learning on Trusted Execution Environment against the Risk of Spar-
sification. Proceedings of the VLDB Endowment 16, 10 (2023), 2404-2417.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020),
93-101.

Hanjun Li, Huijia Lin, Antigoni Polychroniadou, and Stefano Tessaro. 2023.
LERNA: secure single-server aggregation via key-homomorphic masking. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security. Springer, 302-334.

Jinyuan Li, Maxwell N Krohn, David Mazieres, and Dennis E Shasha. 2004. Secure
Untrusted Data Repository (SUNDR).. In Osdi, Vol. 4. 9-9.

Yehuda Lindell. 2017. How to simulate it-a tutorial on the simulation proof
technique. Tutorials on the Foundations of Cryptography: Dedicated to Oded
Goldreich (2017), 277-346.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, et al. 2020.
Meltdown: Reading kernel memory from user space. Commun. ACM 63, 6 (2020),
46-56.

Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and Tal Rabin.
2023. Flamingo: Multi-round single-server secure aggregation with applications
to private federated learning. In 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 477-496.

Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. {ROTE} : Rollback protection
for trusted execution. In 26th USENIX Security Symposium (USENIX Security 17).
1289-1306.

David Mazieres and Dennis Shasha. 2002. Building secure file systems out
of Byzantine storage. In Proceedings of the twenty-first annual symposium on
Principles of distributed computing. 108-117.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learning
Differentially Private Recurrent Language Models. In International Conference on
Learning Representations.

H Brendan McMahan, Zheng Xu, and Yanxiang Zhang. 2024. A Hassle-free
Algorithm for Private Learning in Practice: Don’t Use Tree Aggregation, Use
BLTs. arXiv preprint arXiv:2408.08868 (2024).

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN prover for the symbolic analysis of security protocols. In Computer
Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings 25. Springer, 696-701.

Fan Mo, Hamed Haddadi, Kleomenis Katevas, Eduard Marin, Diego Perino, and
Nicolas Kourtellis. 2021. PPFL: Privacy-preserving federated learning with trusted
execution environments. In Proceedings of the 19th annual international conference
on mobile systems, applications, and services. 94-108.

Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against

McCune. 2011. Memoir: Practical state continuity for protected modules. In 2011
IEEE Symposium on Security and Privacy. IEEE, 379-394.

Rafael Pass, Elaine Shi, and Florian Tramer. 2017. Formal abstractions for attested
execution secure processors. In Advances in Cryptology-EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30-May 4, 2017, Proceedings, Part I 36. Springer,
260-289.

Frank Piessens and Paul C van Oorschot. 2024. Side-channel attacks: A short
tour. IEEE Security & Privacy 22, 2 (2024), 75-80.

Mark Russinovich. 2023. Confidential computing: Elevating cloud security and
privacy. Commun. ACM 67, 1 (2023), 52-53.

Jinhyun So, Basak Giiler, and A Salman Avestimehr. 2021. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure federated learning. IEEE
Journal on Selected Areas in Information Theory 2, 1 (2021), 479-489.

Harish Srinivas, Graham Cormode, Mehrdad Honarkhah, Samuel Lurye, Jonathan
Hehir, Lunwen He, George Hong, Ahmed Magdy, Dzmitry Huba, Kaikai Wang,
et al. 2024. Federated Analytics in Practice: Engineering for Privacy, Scalability
and Practicality. arXiv preprint arXiv:2412.02340 (2024).

Raoul Strackx and Frank Piessens. 2016. Ariadne: A minimal approach to state
continuity. In 25th USENIX Security Symposium (USENIX Security 16). 875-892.
Kunal Talwar, Shan Wang, Audra McMillan, Vitaly Feldman, Pansy Bansal, Bailey
Basile, Aine Cabhill, Yi Sheng Chan, Mike Chatzidakis, Junye Chen, et al. 2024.
Samplable anonymous aggregation for private federated data analysis. In Proceed-
ings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security. 2859-2873.

Salil Vadhan. 2017. The complexity of differential privacy. Tutorials on the
Foundations of Cryptography: Dedicated to Oded Goldreich (2017), 347-450.

Salil Vadhan and Tianhao Wang. 2021. Concurrent composition of differential
privacy. In Theory of Cryptography: 19th International Conference, TCC 2021,
Raleigh, NC, USA, November 811, 2021, Proceedings, Part I 19. Springer, 582-604.
Salil Vadhan and Wanrong Zhang. 2023. Concurrent composition theorems for
differential privacy. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing. 507-519.

Stephan van Schaik, Marina Minkin, Daniel Genkin, Yuval Yarom, and Andrew
Kwong. 2021. CacheOut and SGAxe: How SGX Fails in Practice. ~ Video at
https://youtu.be/kO-3Uh7tq60?t=1806.

Weili Wang, Sen Deng, Jianyu Niu, Michael K Reiter, and Yinqian Zhang. 2022.
Engraft: Enclave-guarded raft on byzantine faulty nodes. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. 2841-2855.
Annika Wilde, Tim Niklas Gruel, Claudio Soriente, and Ghassan Karame. 2024.
The Forking Way: When TEEs Meet Consensus. arXiv preprint arXiv:2412.00706
(2024).

Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In 2015
IEEE Symposium on Security and Privacy. IEEE, 640-656.

Zheng Xu, Yanxiang Zhang, Galen Andrew, Christopher Choquette, Peter Kairouz,
Brendan Mcmahan, Jesse Rosenstock, and Yuanbo Zhang. 2023. Federated Learn-
ing of Gboard Language Models with Differential Privacy. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume
5: Industry Track), Sunayana Sitaram, Beata Beigman Klebanov, and Jason D
Williams (Eds.). Association for Computational Linguistics, Toronto, Canada,
629-639. https://doi.org/10.18653/v1/2023.acl-industry.60

Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and
Wenyuan Yan. 2020. LedgerDB: A centralized ledger database for universal audit
and verification. Proceedings of the VLDB Endowment 13, 12 (2020), 3138-3151.
Cong Yue, Gang Chen, Tien Tuan Anh Dinh, Beng Chin Ooi, Zhongle Xie, Xiaokui
Xiao, and Meihui Zhang. 2023. GlassDB: An Efficient Verifiable Ledger Database
System Through Transparency. Proceedings of the VLDB Endowment 16, 6 (2023),
1359-1371.

Yuanbo Zhang, Daniel Ramage, Zheng Xu, Yanxiang Zhang, Shumin Zhai, and
Peter Kairouz. 2023. Private Federated Learning in Gboard. arXiv e-prints (2023),

https://youtu.be/kO-3Uh7tq60?t=1806
https://doi.org/10.18653/v1/2023.acl-industry.60

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

arXiv-2306.

A Discussions

In this section, we explore the vulnerabilities of our approach, dis-
cuss practical implementation challenges.

A.1 Side-Channel Attacks

Our protocol’s security guarantees depend on the security of the
underlying TEEs. However, TEEs themselves can be susceptible
to various side-channel attacks [71]. We analyze our protocol’s
vulnerabilities to such attacks.

Our component for achieving linearizability (i.e., planner) is
independent of the secure aggregation mechanism. This design
offers the flexibility to employ different secure aggregation meth-
ods: SMPC [7] or TEE-based approaches [41]. We now analyze
the side-channel vulnerabilities of our system in two scenarios:
using TEE-based secure aggregation and using SMPC-based secure
aggregation.

Side-channel attacks that break confidentiality. One well-known
category of side-channel attacks is Controlled-Channel Attacks
(CCA) [83], where an adversary can infer sensitive input by ob-
serving an application’s input-dependent execution flow through
architectural side-effects like page faults. Our linearizability compo-
nent can be input-oblivious with respect to the execution flow and is
therefore not vulnerable to CCA. However, a TEE-based secure ag-
gregation protocol can be vulnerable if it performs input-dependent
operations, such as data sparsification [50]. Consequently, the se-
cure aggregation protocol must be carefully designed to avoid such
vulnerabilities.

Next, we consider microarchitectural side-channel attacks (e.g.,
transient execution attacks such as Spectre [51] and Meltdown [55])
that leak memory content from within an enclave. The recovery
protocol for our planner mechanism depends on enclave memory
confidentiality. However, this dependency can be removed at some
cost, as shown in Appendix B.2. TEE-based secure aggregation
is inherently vulnerable to this attack class because it processes
raw data in plaintext inside the enclave. An alternative is to use
an SMPC-based secure aggregation protocol [7], which does not
require enclave confidentiality. This approach, however, introduces
a different vulnerability: it is susceptible to Sybil attacks. Since
SMPC requires clients to collaboratively add noise, an adversary
controlling a set of corrupted clients could instruct them to omit
their noise contributions, thereby breaking the DP guarantee of
the final output. This implies the need for a mechanism that can
securely add noise without relying on enclave confidentiality.

Side-channel attacks that break integrity. Our protocol’s lineariz-
ability guarantee is critically dependent on the integrity of the
enclave. If an attacker compromises the enclave’s integrity, the
entire protocol becomes vulnerable. For instance, fault injection
attacks like Plundervolt [63] or Voltpillager [17] could be used to
bypass integrity and linearizability checks. In such a scenario, the
protocol would fail, allowing an adversary to control the process, ex-
tract noise information, and ultimately breach interactive DP. Such
side-channel attacks typically necessitate either physical access
to the hardware [17] or kernel-level privileges [63] for execution.

501

Proceedings on Privacy Enhancing Technologies 2026(1)

Within a robust cloud VM infrastructure, direct physical access is
inherently prevented. Moreover, the hypervisor acts as a critical
defense layer, blocking privileged operations that attempt to ma-
nipulate the physical hardware state—for example, by intercepting
writes to MSRs [17]. Consequently, leveraging a cloud-based VM
is a valid strategy for mitigating the risks posed by this class of
side-channel attacks

Furthermore, microarchitectural attacks like SGAxe [80] could
potentially leak the attestation key, compromising integrity. Such
vulnerabilities must be promptly addressed by TEE manufacturers,
so we can mitigate the risk by performing frequent TCB updates,
and clients can verify that the server is using a secure and up-to-date
version of the TEE.

A.2 Implementation Challenges

Our system’s security guarantee does not rely on additional trusted
hardware like TPMs or complex mechanisms like SMR, but rather
on honest clients performing auditing. This design choice enhances
transparency. However, it also introduces new practical implementa-
tion challenges, particularly concerning the deployment of auditing
functions on client devices. A flawed or unavailable implementation
of this client auditing is critical, as it could halt the entire FL proto-
col. Here, we discuss the specific challenges of our implementation
and potential mitigation strategies.

A.2.1 Remote Attestation on Heterogeneous Clients. A core require-
ment of our protocol is that clients perform remote attestation (RA)
to verify the server-side enclave’s quote. Implementing this verifi-
cation process on client devices presents a challenge, especially in
a typical cross-device FL environment with heterogeneous clients.

Verifying an RA quote can be a complex task. For instance, with
Intel SGX, this may involve processing collateral information and
requires the integration of specific SDKs and cryptographic libraries.
This increases the size and complexity of the client-side application,
potentially leading to instability and harming the availability of
client auditing.

A practical solution is to employ a third-party verifier service
like Intel Tiber Trust Authority’. Instead of performing the complex
verification locally, the client application can forward the enclave’s
quote to this trusted service, which then returns a simple pass/fail
result. This approach offloads the complexity from the diverse client
devices, simplifying the client application and improving overall
system stability and availability.

A.2.2 TCB Update and Management. In a real-world deployment,
the TCB will require updates to address bugs or respond to newly
discovered side-channel vulnerabilities. This necessity poses a chal-
lenge: clients must have a secure mechanism to learn the correct
hash of the new, updated enclave binary.

This is a common challenge for TEE-based systems. For example,
Papaya [41] addresses this by using a verifiable log, managed by
a trusted party, to record valid enclave hashes. Our system can
address this challenge in a more integrated and simpler manner by
leveraging our existing evidence chain.

The evidence chain in our protocol is already an externally ver-
ifiable mechanism for managing state. We can extend its use to

7https://www.intel.com/content/www/us/en/security/trust-authority.html

https://www.intel.com/content/www/us/en/security/trust-authority.html

Proceedings on Privacy Enhancing Technologies 2026(1)

manage TCB updates. The FL provider appends a special entry to
the evidence chain containing the hash of the new valid enclave
version. Clients, who already verify the evidence chain, can securely
learn the new TCB hash from this entry.

This approach seamlessly integrates TCB management into our
existing state-management protocol, eliminating the need for a
separate verifiable log system. This highlights a key advantage of
our system’s design: the secure and verifiable state management
provided by the evidence chain offers a simple and robust solution
for TCB updates.

B Recovery

This appendix details two proposed recovery mechanisms designed
to handle a critical failure scenario: an enclave crash occurring
during the state transition process. Our protocol’s liveness depends
on the successful generation of a new evidence block that desig-
nates the next set of auditors. A crash during this critical phase
(specifically, within Line 16 of Algorithm 3 after auditor signatures
have been collected but before the next state is committed) could
halt the entire DP-FTRL execution.

To solve this, we propose two distinct solutions, each tailored to
a different threat model regarding the security guarantees of the
underlying TEE.

B.1 Recovery under a Confidentiality
Assumption

This first solution operates under the confientiality assumption that
the TEE provides robust confidentiality for enclave memory, pro-
tecting it from both software and hardware-based attacks, including
side-channel attacks.

Mechanism. The protocol is augmented with the following steps:

(1) Key Initialization: During the initial setup (Line 2 of Algo-

rithm 3), the planner enclave generates a symmetric recovery_key.

This key is immediately sealed and persisted as part of the en-
clave’s initial state, never being exposed outside the trusted
boundary.

(2) State Commitment: In a regular update process, before
requesting auditor signatures, the planner enclave randomly
determines the next set of auditors, C_next. It then encrypts
this selection with the recovery_key and includes this en-
crypted blob within the evidence presented to the current
auditors.

(3) Recovery Trigger and Execution: If the enclave crashes
during Line 16 of Algorithm 3 after collecting a sufficient
number of signatures from C_audit, the server initiates a
recovery. It launches a new planner enclave instance, in-
voking a dedicated recovery function. The server provides
this function with the evidence from the crashed enclave
(containing the encrypted C_next) and the collected auditor
signatures.

(4

~

decrypts C_next, and verifies the validity of the provided
signatures against the auditor set specified in the evidence.
If successful, it deterministically regenerates the evidence

State Restoration: The recovery enclave unseals the recovery_key,

Takagi et al.

block that the previous enclave failed to produce, thus restor-
ing the continuity of the evidence chain and allowing the
overall FL process to continue.

Limitations and Trade-offs. While this approach effectively recov-
ers from a crash, it has two important limitations. First, the utility of
the crashed round is partially lost, as the secure aggregation result
itself cannot be recovered; only the protocol’s state continuity is
restored.

Second, and more critically, the security of this mechanism is
entirely dependent on the confidentiality of the recovery_key. As
discussed in Appendix A.1, if a side-channel attack were to leak
this key, an adversary could decrypt Cyext prematurely. This would
create a strategic vulnerability. By revealing the upcoming random
selection of auditors, it allows the adversary to repeatedly force
a re-selection by inducing crashes until a favorable set (i.e., one
including many corrupted clients) is chosen.

B.2 Recovery Resilient to Side-Channel Attacks

To address the limitations of the confidentiality-dependent ap-
proach, we propose a second mechanism designed for a weaker
threat model that assumes a transparent enclave [70]. This model
presumes that an adversary may be able to read the enclave’s mem-
ory, rendering secret-based commitments insecure.

Mechanism. This protocol avoids long-term secrets and instead
relies on a modification to the protocol logic:

(1) No Secret Key: This mechanism entirely avoids the use of
a secret recovery_key. The commitment to the next state
is purely logic-based.

Recovery Flag: The evidence is extended to include a boolean

recovery_flag. In a normal, non-failed operation, this flag

is always set to false.

(3) Controlled Fork on Post-Signature Crash: The protocol
explicitly permits a controlled, temporary fork to handle a
specific failure scenario: a crash that occurs after the auditors
for a given round (e.g., (i — 1)-th C,ugit) have signed for a
normal transition (to state S; with new randomly chosen
auditors i-th Cyygit), but before that state is finalized. In this
case, (i—1)-th Cyygi are permitted to sign a second time for a
recovery transition (to state S;), provided the server’s request
is for a recovery process and the corresponding enclave sets
the recovery_flag to true. In this recovery transition, i-th
Caudit 1s set to the same set as (i — 1)-th Cyygit, and secure
aggregation is not performed. This allows two potentially
valid successor states, S; and S;, to co-exist, representing a
deliberate fork in the state history.

(4) Fork Resolution via Interactive Verification: To resolve
this fork and ensure the system converges back to a sin-
gle history, the subsequent planner enclave is tasked with
additional verification before it can proceed. To validate a
transition from either S; or S/, the planner enclave must
query the auditors of the previous round ((i — 1)-th Cyydit)-
Each member of (i — 1)-th Caugit, based on their local knowl-
edge of whether they participated in a recovery signature,
provides a signed message to the planner enclave endorsing
only one of the two branches. The planner enclave must

—
)
~

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

collect a sufficient quorum of these endorsements to prove
that a single, unambiguous branch has been chosen.

Limitations and Trade-offs. The key advantage of this design is
its resilience to confidentiality-breaking attacks like side-channels.
However, this robustness comes at a price. The protocol becomes
significantly more complex. More critically, it introduces new live-
ness dependencies that may, paradoxically, reduce overall system
availability. The success of a recovery now hinges on the availability
of two consecutive sets of auditors (the current and the previous).
A failure or mass dropout in either of these sets would cause the
auditing itself to fail, making the system potentially more brittle
than the single-dependency model in Section B.1.

C Related Work

The most relevant recent works include those by Bienstock et
al. [12] and Ball et al. [7], which attempt to realize DP-FTRL in
a (partially) malicious setting. These works utilize SMPC and re-
share secrets between cohorts to achieve correlated noise. However,
they assume that Sybil attacks do not occur, which means that
they partially rely on the honesty of the central server during the
planning phase to select the correct Ceoport- To the best of our knowl-
edge, we are the first to propose a maliciously secure DP-FTRL that
includes planning. In the following, we discuss related works that
share similar objectives or approaches.

C.1 Secure FL

There is a vast body of work focusing on secure FL under un-
trusted server conditions. The foundational study was conducted
by Bonawitz et al. [13], which proposed using SMPC within a co-
hort for aggregating updates in FL such as FedAvg to prevent un-
trusted servers from accessing individual updates. Some research
has extended this to PFL setting that adds noise [2, 45]. Subsequent
work [10, 52, 56, 73] focused on optimizing the number of interme-
diate helper users or minimizing communication rounds, but this
requires additional computation, communication, and synchroniza-
tion from clients. Moreover, corrupted clients could refuse to add
distributed noise, undermining the intended privacy guarantees.

SMPC among non-colluding servers [23, 76] may overcome these
challenges but requires non-collusion assumptions, which are un-
realistic for a single FL conductor.

There is also literature on TEE-based secure aggregation for
FL [16, 41, 62]. However, these studies focus only on stateless and
noiseless secure aggregation methods like FedAvg, and the chal-
lenge of achieving DP-FTRL using TEEs has not yet been addressed.

C.2 Maliciously Secure Federated Analytics

As a broader concept of secure FL, (maliciously) secure federated
analytics for DP has become a recent trend [26]. One of the major
challenges is conducting stateful workloads on TEEs.
Confidential Federated Computation (CFC) [33], although not
specifically designed for FL, shares similar motivations with our
work. It addresses rollback attacks using SMR through multiple
TEE. Therefore, it is susceptible to the problems mentioned in Intro-
duction 1. Also, the application of this general system to DP-FTRL
remains unclear. Srinivas et al. [74] proposed a federated analytics
system that utilizes TEEs optimized for one-shot analytics to avoid

503

Proceedings on Privacy Enhancing Technologies 2026(1)

the challenge of the state management, but this approach sacrifices
state management, making DP-FTRL unattainable.

The SMPC-based approach for sparse histogram [15], while not
explicitly for federated learning, shares a similar environment. They
secure the sparse histogram mechanism with interactive DP, while
our approach secures DP-FTRL.

C.3 Maliciously Secure State Management
System

A crucial aspect of our system is realizing a linearizable concurrent
system under malicious conditions, a concept explored in previous
research. Generally, two methods achieve this: using TEEs and
utilizing auditors.

C.3.1 TEE Based Approach. Many TEEs provide sealing capabili-
ties to offload encrypted and signed state to disk, which, combined
with monotonic hardware counters, could be used to implement
rollback protection [75]. However, this approach suffers from low
performance [57], weak security [68], and quick exhaustion of
hardware counters, hence recent Intel SGX versions lack mono-
tonic counters. Systems using SMR for linearizability [4, 57] or
Raft consensus for fault tolerance [40, 81] on TEEs might mitigate
the problem. Elephants DP [44] utilizes similar systems for DP
budget management, but it assumes a trusted data curator or does
not address FL. Replacing our planner’s linearizability component
with these systems could work but would increase the TCB size
significantly, complicating verification. Furthermore, these solu-
tions cannot recover from disasters [4, 40], making them costly to
manage. Our planner can operate on a single machine and recover.

C.3.2 Auditor Based Approach. In auditor-based methods, systems
provide external state verifiability [85, 86]. The main challenge
is establishing trusted auditors and process integrity. Combining
TEEs might offer some integrity, but corrupted auditors could lead
to faults and privacy leaks. Integrating blockchain [27, 66] with
TEEs is another way to maintain consistent state. However, manag-
ing a blockchain is required, and in a single FL conductor setting,
adopting a permissioned blockchain (i.e., internal verifiability) is
infeasible, while managing a permissionless blockchain poses in-
centive issues or is vulnerable to a 51% attack.

D Missing Proofs

THEOREM D.1 (THEOREM 3.1). Assume that if Sim sets k to i,
Ceohort to be a subset of fquaity (TL, H, k), 0 to 0;_;, and g;j as defined
in Algorithm 1 (i.e., the original DP-FTRL), the view of SIm satis-
fies (&, + Oprivacy)-DP. Then, the view of any other SIM' satisfies
(&, 8 + Sprivacy) -DP.

Proor. This proof uses the "add the delta" technique [37] (i.e.,
joint convexity). We interpret the mechanism M (D) as choosing
either M’ (D) with probability 1—Gprivacy or M’ (D) with probability
Oprivacy» Where M"’ is defined by Line 4 of Algorithm 1 and M’ by
Lines 6-17. If M satisfies (¢,)-DP, then M satisfies (¢, & + Oprivacy)-

We will demonstrate that M’ satisfies (¢, §)-DP. When setting
k to i, Ceohort to be a subset of fouaify (IT, H, k), 0 to éi,l, and g;
as defined in Algorithm 1, this aligns with the matrix mechanism
in adaptive streaming [28]. We show that the privacy guarantee

Proceedings on Privacy Enhancing Technologies 2026(1)

holds even if k, Ceonort» 6, and g; are chosen adaptively, using the
method described in Theorem 2.1 of Denisov et al. [28], which
equates the matrix mechanism to the adaptive Gaussian mechanism.
Given that the sensitivity of M’ is bounded by the participation
schema due to Line 10 and Sim receives él:i at round i (i.e., Cy; +
Z[: i] where 6;; € R*) instead of 6, our mechanism remains
equivalent to the adaptive Gaussian mechanism. Consequently,
the folklore technique used in [28] implies that the privacy of the
adaptive Gaussian mechanism is equivalent to that of the non-
adaptive Gaussian mechanism. Therefore, the privacy guarantee is
maintained just as in that of Denisov et al. [28]. Thus, we conclude
that M’ satisfies (¢, §)-DP, and consequently, M satisfies (¢, +
5privacy)'DP~

]

THEOREM D.2 (THEOREM 4.1). Algorithms 3 (server-side) and 4
(client-side) achieve both integrity and linearizability with respect to
the process described in Algorithm 2 wheny = 0.

Proor. This derives from the three verifications outlined in Sec-
tion 4.1. Here’s a brief review:

Integrity: We demonstrate that each process (i.e., Algorithm 2)
loads the shared object g and correctly executes SECAGG,z on
Ceohort With index i only when Ceohort adheres to the participation
schema with q.H and i, and correctly updates q.H in the process.

Firstly, we show that a completed process loads the shared object
q due to the evidence chain for q.H and the sealing for g.Z. Initially,
all clients store the evidence chain ID corresponding to q.Z (Line 4 of
Algorithm 3 in the verification of "Initialization"). An enclave loads
q.Z by unsealing with the evidence chain ID and generates evidence,
including it. During Aubprr, clients verify that the evidence chain ID
inside the evidence matches theirs. Thus, the enclave can pass the
"agreement on an enclave" stage only when q.Z is correctly loaded
with the evidence chain ID by unsealing. The enclave retrieves q.H
from the evidence chain, and the validity of this chain is verified
by remote attestation to extract correct auditors ("the approval of
auditors") and AupIT to verify the evidence chain’s digest. Thus,
the enclave can pass the "agreement on an enclave" stage only when
q.H is correctly loaded from the evidence chain.

Next, we ensure the correct execution of SECAGGq.z. In Auprr,
auditors agree only when they verify, through remote attestation,
that Ceoport is confirmed to adhere to the participation schema and
that SECAGG,.z will be executed correctly. Therefore, passing the
"agreement on an enclave” stage indicates the correct execution of
SECAGGq 7.

Linearizability: In this section, to show linearizability, we demon-
strate that the result of concurrent processes is equivalent to the
result produced by processes that are sequentially (and not concur-
rently) invoked and completed based on the length of their loaded
evidence chain. This equivalence is due to the auditors’ approval
and the the agreement on an enclave. To update q.H (i.e., to create
new evidence for the evidence chain as the enclave loads q.H from
the evidence chain), the evidence chain requires the signatures
of the auditors recorded in the latest evidence. The auditors sign
only once, indicating that only one enclave, which has loaded the
evidence chain, can pass the verification. That is, other enclaves
that load the same evidence chain (i.e., q) will never complete their

Takagi et al.

process. From the integrity, an enclave that loads g completes the
process using the loaded q. Thus, the result of concurrent processes
aligns with that of processes sequenced according to the order
defined by the length of the loaded evidence chain.

O

THEOREM D.3 (THEOREM 4.2). Wheny > 0, Algorithm 3 maintains
linearizability and integrity of Theorem 4.1 with a probability of
1- 5privacy =

2(ngugir—7) ny n(K _ y) i Mround
i (D M) a1 i |
; 27 = Naydit +) \2ngugir — 27 — i Naudit

i=1

ProoF. In each completed process, the system satisfies Theo-
rem 4.1 as long as there is a majority agreement among honest
clients within Cyygit (i.€., reaching consensus). Therefore, the prob-
ability we are interested in calculating is the probability that at
least one round fails to reach consensus among the nyound processes
completed.

First, let’s calculate the probability that a single round fails to
reach a majority agreement among honest clients in Cyygit- This
situation occurs when the collected 7 signatures do not include
a majority of honest clients’ signatures within C,,4it. Define a as
the random variable representing the number of corrupted clients
among those in Cyyqit- When 7 signatures are collected, they include
at most 7 — a signatures of honest auditors. If this number is less
than the number of honest clients in C,yqit who have not agreed,
i.e., Naudit — T Where nuudit = |Caudit|, then a majority agreement is
not reached. Hence, the probability is given by:

Pr(7t — a < naugit — 7] = Pr[a > 27 — naygi].

Here, a follows a hypergeometric distribution because it counts
the number of corrupted clients among a randomly selected nygit
from the nyyailaple = nx candidates, which includes at most n x f8
corrupted clients. Therefore, the probability p we want to find is:

2(naudit—7)
p =Prla> 2t — nygi] = Pr(a = 27 — nayaic + i].
i=1

ny)(n(k —y))/(nK)
27 — Naudit + i 2naudit —2r—1 Naudit '

This occurs independently across nyound rounds. Let b be the random
variable that represents the number of rounds where consensus
was not reached. Then, the probability of interest is:

2(naydit—7) (

i=1

1-Pr[b=0].
Since b follows a binomial distribution with probability p and
Nround trials, the probability we are looking for is:

1-— (1 _p)nround'
This expression gives us the probability that at least one of the
rounds fails to reach a consensus.
[m]

TuEOREM D.4 (THEOREM 5.1). M = CoNnComp(M,, ..., M), when
used with any server interactive protocol, emulates the ideal model
(i.e., Algorithm 1) with some simulator.

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

Proor. Let T(D) denote the ideal functionality executed by a
trusted party as defined in Algorithm 2. Here, we show that for
any interactive protocol A in the real world, there exists a simu-
lator Sim in the ideal world such that the view of the adversary,
View(A, M(D)), is computationally indistinguishable from the view
of the simulator, View(Sim, T(D)).

First, let us analyze the adversary’s view in the real world,
View(A, M(D)). This view consists of all messages that the adver-
sary A receives during the execution of the protocol M(D). Clients
perform remote attestation to verify the integrity of the enclave
code and its parameters. They reject any messages not originating
from a legitimate enclave, ensuring that any data they accept is
a valid output of a process defined in Algorithm 2. Although the
adversary A controls when enclaves are executed, it cannot access
their internal memory due to the confidentiality guarantees of the
TEE. Consequently, A can only observe the inputs and outputs of
the enclave for each process. Crucially, according to Theorem 4.2,
the system maintains linearizability with a probability of 1—3,ivacy-
This means that with overwhelming probability, the sequence of
outputs generated by the enclaves is equivalent to a sequential
history where each process

(q update(Ceohort, i) P) <OK(SECAGGq.Z(CCOhOIt3 I, aquecagg*)) P),

completes in an ordered manner, with i incrementing sequentially.
With the remaining probability of d,,isacy, linearizability may be
violated, potentially exposing information about the dataset D to
the adversary.

Now, let’s construct the simulator Sim for the ideal world. Sim
must generate a view, View(Sim, T(D)), that is computationally
indistinguishable from View(A, M(D)). Sim can simulate the mes-
sages sent from clients to the server (e.g., signatures, encrypted
updates) by generating random values. This is justified because,
under standard cryptographic assumptions, these messages are
computationally indistinguishable from random numbers to the ad-
versary. The simulator Sim can mimic the messages that A receives
from M(D) by generating them randomly. To simulate the outputs
from the enclaves, Sim interacts with the trusted party T(D). Due
to the integrity property of the enclaves in the real world, the i-th
output from a real enclave is identical to the i-th output provided
by the ideal functionality T (D). Therefore, Sim can simply forward
the output from T(D) to the simulated adversary. Sim must also
simulate the adversary’s ability to influence the protocol. The ideal
functionality T(D) is explicitly designed to allow Sim to provide
inputs on behalf of corrupted clients (e.g., malicious updates g;
where j € Ceonort) and to choose the completion order of rounds
by setting the index k. This allows Sim to perfectly replicate any
malicious actions A could take regarding corrupted client inputs
and process scheduling. Due to the linearizability of the system,
the inputs for a given round k are independent of the outputs of
any other concurrently executing but not-yet-completed round i
(where i < k). This non-blocking nature allows Sim to simulate
the adversary’s reordering of round completions. Finally, we con-
sider the failure case, which occurs with probability dprivacy. In the
ideal world, the trusted party T(D) leaks the entire dataset D to Sim.
With this information, Sim can perfectly simulate any possible view
for the adversary, even one resulting from a catastrophic failure in
the real protocol.

505

Proceedings on Privacy Enhancing Technologies 2026(1)

Since the views are computationally indistinguishable in both the
success case (with probability 1 — dprivacy) and the failure case (with
probability dprivacy), we conclude that View(A, M(D)) is computa-
tionally indistinguishable from View(Sim, T(D)). This holds under
the standard security assumptions for the underlying cryptographic
primitives and the TEE’s remote attestation mechanism.

O

PrOPOSITION D.5 (PROPOSITION 5.2). The probability Sinterrups of
interruption of auditing is

- nKﬂ nK(l _ ﬁ) nic Nround
1= (l_;(naudit_‘["'i)(T—1i)/(naudit)) .

Proor. The method for computing the probability is almost
identical to that in Theorem 4.2. In each process, the interruption of
auditing occurs when more than n,,g; — 7 auditors drop out. Since
Naudit auditors are selected from nx clients, which includes nkf
dropout clients as assumed in Section 2.2, the probability of this
happening is given by p = Pr[a > nu4it — 7], where a is a random
variable following a hypergeometric distribution with parameters
nk and naygit. Specifically,

nkf

B a nk(1—p) nk
p= ; (naudit -7+ l)(T—1)/(naudit).

This trial independently iterates across nyound rounds. In the same
way as Theorem 4.2, we get the probability as

1-— (1 _p)nround'

E Formal Verification

This appendix details the formal verification of the core security
properties of our proposed planner enclave protocol. The goal is to
formally prove its linearizability and integrity under a malicious
server model (i.e., Theorem 4.1) while ensuring liveness. We use the
symbolic verification tool Tamarin Prover to model the protocol
and verify its security against a powerful adversary. This formal
proof provides strong evidence for the claims made in Theorem 4.1
(linearizability) and Section 5.2.1 (liveness).

Remark: To simplify the model, here, we represent auditor con-
sensus as the signature of a single, representative auditor who
correctly follows the protocol (i.e., y = 0). This abstraction is suffi-
cient to demonstrate the linearizability and integrity, as long as at
least one honest auditor is present. Even in the case where y > 0,
Theorem 4.2 shows that by collecting 7 signatures, it is highly prob-
able that honest clients form a majority. This justifies modeling the
behavior of the quorum as that of a single, representative honest
auditor. Therefore, this simplification effectively demonstrates the
essential security properties of our system.

E.1 Modeling Framework: Tamarin Prover

Tamarin Prover is a tool for the symbolic modeling and analysis of
security protocols [61]. It models protocols using Multiset Rewriting
(MSR) rules and assumes a Dolev-Yao adversary, which aligns with
our threat model. Modeling enclave program logic with Tamarin
has been shown to be an effective approach for verifying state

Proceedings on Privacy Enhancing Technologies 2026(1)

continuity properties, as demonstrated in prior work [42]. See the
details of modeling enclave programs in Tamarin in [42].

E.2 Modeling Our Protocol in Tamarin

We translated our protocol’s core logic into a set of Tamarin MSR
rules, modeling the interactions between the planner enclave, the
clients (auditors), and the adversary.

E.2.1 TEE Primitives.

e Planner Enclave and Remote Attestation: An enclave
is modeled by rules that use a unique hardware-derived
attestation key (‘!AttestationSecretKey*). Remote attestation
is modeled by having the enclave sign a message containing
its identity (“mrenclave’), a fresh nonce, and other relevant
data, which is called a quote. The integrity of the enclave’s
execution is guaranteed by Tamarin’s assumption that an
entity faithfully follows its specified rules, which are verified
by other parties through this quote.

o Ecall/Ocall Flow: The sequence of an Ecall, a subsequent
Ocall to a client, and the final processing step inside the
enclave is modeled using a Linear Fact. This fact can only
be consumed once, ensuring that the enclave’s internal state
is securely passed from one step to the next in a sequential
manner.

o Confidentiality: Sensitive data, such as a committed ran-
dom number, is modeled as a fact whose contents are in-
accessible to the adversary. The adversary can see the fact
exists but cannot learn the value of the input, thus modeling
confidentiality.

E.2.2 Protocol Logic.

Evidence Chain: An evidence chain is modeled as a sequence
of EvidenceChain(...) facts, each of which has a hash of the
previous block (block_hash). Crucially, it contains not only the
block hash but also a TEE-generated quote over that hash. In our
model, this quote is represented as a signature by the enclave’s
attestation key (~attestation_sk) over a tuple containing the
block_hash, the enclave’s identity (’mrenclave’), and a nonce.
This design ensures the integrity and authenticity of the chain’s
progression. When a subsequent process begins, the enclave must
verify this quote before it can proceed. While the EvidenceChain
facts themselves are passed through the public channel (making
them subject to replay attacks by the adversary), the cryptographic
link provided by the quote prevents the adversary from forging a
new, invalid state or tampering with an existing one without being
detected.

The Ecall/Ocall Flow. The core of our model (i.e., Algorithm 3)
lies in the Ecall/Ocall interactions between the planner enclave and
the clients (auditors) using the evidence chain, as shown in Figure 6.
By modeling this flow in detail, we enable Tamarin to verify the
linearizability of all state transitions. The following explains the
key rules for the two main phases of the protocol.

Initial State Generation (Genesis Block): The protocol begins
by generating the first block of the evidence chain, which we refer
to as the genesis block. This corresponds to Line 2-7 of Algorithm 3.
This process is modeled by the following Tamarin rules:

506

Takagi et al.

e EC_Initialization (Ecall): This rule models the planner
enclave initiating the creation of the evidence chain. The
enclave generates a unique nonce_for_init for the en-
tire chain and a nonce_for_enclave_thread for this spe-
cific transaction. It then produces a quote—a signature us-
ing its hardware-derived !AttestationSecretKey—over its
identity (’mrenclave’), the operation type (’init’), and
these nonces. This quote, along with the nonces, is sent
to the auditors via an Ocall (Out(...)). The linear fact
EnclaveThreadForInitialization ensures state continu-
ity within the enclave for the subsequent Sealing step.

e OC_AuditorSignForInitialization (Ocall): An auditor
handles the Ocall from EC_Initialization with this rule.
It first performs remote attestation by verifying the quote
against the enclave’s public key (!AttestationPublicKey).
Upon successful verification, the auditor signs the
nonce_for_enclave_thread to signal its approval of the
initialization and returns this signature to the enclave. This
represents the initial consensus on the genesis block.

e Sealing: The enclave receives the auditor’s signature
and finalizes the genesis block by sealing it with the
EvidenceChain fact. This fact includes the block_hash of
the genesis block, which is derived from the enclave’s iden-
tity, the nonces, and the auditor’s signature. The enclave
then commits this state to the evidence chain, ensuring that
it is now part of a verifiable history.

State Update Process: Once initialized, the chain is extended
through subsequent update processes. This corresponds to Lines
11-20 of Algorithm 3. This process is modeled by the following
Tamarin rules:

e EC_InitProcess (Ecall): This rule is invoked for subsequent
updates, modeling the planner enclave loading a previously
committed state (EvidenceChain(. ..)). A critical step here
is the verification of the quoted_block_hash from the loaded
EvidenceChain, ensuring the enclave is starting from a le-
gitimate, previously attested state. The enclave then prepares
a new state transition based on a new input and generates
a new quote. This new quote attests to the proposed update,
binding the old block_hash and the new input together.
The new quote is then sent to the auditors via an Ocall,
and the EnclaveThreadForUpdate linear fact maintains the
enclave’s state for the final Update rule.

e OC_AuditorSign (Ocall): This rule models the core audit-
ing function. An auditor receives the new quote from the
EC_InitProcess Ocall. It verifies this quote, confirming that
the enclave is proposing a valid state transition. By signing
the quote, the auditor approves the update, as enforced by
the AuditorSignOnlyOnce restriction (see Listing 1 below).
This signature is the crucial element that allows the Update
rule inside the enclave to finalize the new state and append
it to the evidence chain.

e Update: Finally, the enclave processes the auditor’s signa-
ture and updates the evidence chain with the new state.
It generates a new EvidenceChain fact that includes the
new block_hash, which is derived from the previous block’s

Securing Private Federated Learning in a Malicious Setting: A Scalable TEE-Based Approach with Client Auditing

Server Planner Enclave

Proceedings on Privacy Enhancing Technologies 2026(1)

All Clients / Auditors

alt [Initialization]

1. Ecall: EC_Initialization()

»
>

Creates a quote with the nonce for initialization and the nonce for this enclave thread
and generates the EnclaveThreadForlnitialization fact

2. Ocall: OC_AuditorSignForlnitialization(quote)

»
>

3. Return Signatures (Approval)

>
>

Verifies signatures and executes Sealing rule by consuming the EnclaveThreadForlnitialization fact

4. Return the genesis block of the evidence chain

[Iteration (Update)]

1. Ecall: EC_InitProcess(evidence_chain, input)

»
>

Verifies evidence chain, creates a quote containing the nonce for initialization,
the digest of the chain, the hash of the input, and nonce of this enclave thread
and generates the EnclaveThreadForUpdate fact

All clients verify the quote with
remote attestation to form consensus

2. Ocall: OC_AuditorSign(quote)

Verifies the quote, which commits
to the previously loaded state.

3. Return Signature (Approval)

>
|

4. Return the new block of the evidence chain

Verifies signature and executes Update rule by consuming the EnclaveThreadForUpdate fact

Planner Enclave

All Clients / Auditors

Figure 6: Sequence diagram of the state transition protocol between the Server, Planner Enclave, and Auditors.

hash, the new input. This new block is then appended to the
evidence chain, completing the state transition.

This detailed modeling of the Ecall/Ocall flow allows Tamarin to
verify that every state transition is correctly attested by the TEE and
validated by an honest auditor. This provides the formal proof for
the linearizability and integrity properties outlined in the main pa-
per, demonstrating resilience against the rollback attacks modeled
in GenerateRollbackedEvidenceChain (see Listing 2 below).

E.2.3 Auditors and Adversary Model.

Honest Auditors: The honest behavior of auditors is enforced us-
ing a ‘restriction’. This restriction ensures that an auditor cannot ap-
prove two different histories branching from the same state. Specif-
ically, an auditor can only sign once for any given block_hash.

507

restriction AuditorSignOnlyOnce:
All nonce_for_init block_hash inputl input2 #t1 #t2.
AuditorSignLabel (nonce_for_init, block_hash, input1)
— @t1
&
AuditorSignLabel (nonce_for_init,
— @t2
&
not (inputl =
=
#t1 =

block_hash, input2)

input2)

#t2

Listing 1: Restriction enforcing that an auditor signs only
once per state.

10

Proceedings on Privacy Enhancing Technologies 2026(1)

Adversary: We explicitly model the adversary’s primary attack

Takagi et al.

E.3.2 Proving Liveness. Next, we wanted to ensure that our proto-

vector: the rollback attack. The rule GenerateRollbackedEvidenceChaincol not only is secure but also guarantees liveness, allowing it to

allows the adversary to take any previously observed EvidenceChain

from the public channel and re-inject it into the system as a valid
input for a new update process. This directly models the forking
threat described in this paper.

rule GenerateRollbackedEvidenceChain:

L
// Adversary takes a previously seen

< EvidenceChain from the network
In(<..., block_hash, ..., quoted_block_hash>),
// Verifies its quote to make it seem legitimate
'AttestationPublicKey (attestation_pk),
_restrict(verify(quoted_block_hash, ...,

< attestation_pk) = true)
]
-—>
L

// Re-creates the EvidenceChain to feed into the
< Ecall

EvidenceChain(~nonce_for_init, ..., block_hash,
— ...)

1

Listing 2: Rule explicitly modeling the adversary’s rollback
attack capability by replaying a past state.

E.3 Security Properties and Verification Results

We defined two key lemmas in Tamarin to represent our desired
security properties and used the prover to check if they hold true
against our adversary model.

E.3.1 Proving Linearizability. To prove that our system achieves
linearizability, we defined the following lemma, which asserts that
for any given state (identified by block_hash), only one unique
subsequent state can be committed.

lemma UpdateOnlyOnceForAllBlockHash:
All nonce_for_init
— t2.
UpdatelLabel (nonce_for_init, ...,
— @t1
&
UpdatelLabel (nonce_for_init, ...,
— @t2
&
not (inputl =
==>
#t1 =

block_hash inputl input2 #t1 #

block_hash, input1)

block_hash, input2)

input2)

#t2

Listing 3: Lemma for proving linearizability.

This lemma states that it is impossible for two update operations
with different inputs (input1 # input2) to successfully complete
from the same state (block_hash). This directly prevents the sys-
tem from being forked into two different valid histories from a
single point in time. An adversary attempting a rollback attack
(modeled by GenerateRollbackedEvidenceChain) will fail to cre-
ate a divergent history if a valid update has already been committed
from that state.

Tamarin Prover successfully proved this lemma. This provides
formal evidence that our protocol maintains a single, linearizable
history and is resilient to rollback and forking attacks.

508

make progress even in the presence of crashes.

lemma UpdateAvailability: exists-trace

Ex nonce_for_init block_hash input #t1 #t2.

UpdatelLabel (..., block_hash, input) @tl
&
UpdateLabel (..., block_hash, input) @t2
&

#t1 < #t2

Listing 4: Lemma for proving availability/executability.

The primary purpose of this lemma is to demonstrate the protocol’s
crash recovery capability. It proves that a valid execution trace
exists, which implies that if an update process initiated at time t1
were to fail (or “crash”) before completion, a subsequent process
at a later time t2 can successfully execute the exact same update
using the same input. State consistency is critical during this recov-
ery. As proven by the UpdateOnlyOnceForAllBlockHash lemma,
any attempt to recover the process with a different input would be
rejected. Therefore, this lemma, in conjunction with the lineariz-
ability proof, formally shows that our protocol supports consistent
recovery from failures without compromising the integrity of the
state.

Tamarin Prover successfully found a valid execution trace, prov-
ing the lemma. This confirms that our protocol has liveness.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Trusted Execution Environments (TEEs)
	2.2 Threat Model
	2.3 Concurrent System
	2.4 Interactive Differential Privacy (Interactive DP)
	2.5 Differentially Private Follow-the-Regularized-Leader (DP-FTRL)

	3 Problem Statement
	3.1 DP-FTRL in the Malicious Setting
	3.2 Overview of Our Approach

	4 Design of Planner
	4.1 Design Under (=0,=1,=0)
	4.2 Adaptation for (>0, 1,>0)

	5 Analysis of Our System
	5.1 Privacy and Correctness
	5.2 Liveness
	5.3 Scalability
	5.4 Parameter Selection

	6 Experiments
	6.1 Communication, Liveness, and Privacy Trade-offs
	6.2 Implementations

	7 Conclusion
	Acknowledgments
	References
	A Discussions
	A.1 Side-Channel Attacks
	A.2 Implementation Challenges

	B Recovery
	B.1 Recovery under a Confidentiality Assumption
	B.2 Recovery Resilient to Side-Channel Attacks

	C Related Work
	C.1 Secure FL
	C.2 Maliciously Secure Federated Analytics
	C.3 Maliciously Secure State Management System

	D Missing Proofs
	E Formal Verification
	E.1 Modeling Framework: Tamarin Prover
	E.2 Modeling Our Protocol in Tamarin
	E.3 Security Properties and Verification Results

