Obscura: Enabling Ephemeral Proxies for Traffic Encapsulation in
WebRTC Media Streams Against Cost-Effective Censors

Afonso Vilalonga
Universidade NOVA de Lisboa & NOVA LINCS
Portugal
j.vilalonga@campus.fct.unl.pt

Joao S. Resende
INESCTEC, Universidade do Porto
Portugal
jresende@fc.up.pt

Abstract

Recent research on online censorship has provided valuable in-
sights into common censorship strategies and censors’ tolerance
for collateral damage. A consistent finding across these studies is
that censors tend to favour cost-effective techniques such as proxy
enumeration, active probing, and deep packet inspection (DPI),
rather than more complex and non-deterministic methods such as
deep learning-based traffic analysis. For example, a recent study on
the Snowflake censorship evasion system reinforced this finding by
demonstrating that authoritarian regimes primarily relied on DPI
to target the system. However, as censorship techniques continue
to evolve, two critical questions arise: (1) What future attack vec-
tors are likely to emerge based on current research and observed
censor capabilities? (2) How can these emerging threats, along with
previously utilised censorship methods, be effectively mitigated?

In this paper, we present Obscura, a censorship evasion system
designed to resist cost-effective, historically grounded censorship
techniques while also defending against a class of plausible future
attacks within a cost-effective threat model targeting WebRTC-
based censorship evasion systems. Obscura is built upon four core
features: (1) encapsulation of traffic within WebRTC media streams,
(2) the use of a reliability layer, (3) support for both browser-based
and Pion-based clients and proxy instances, and (4) the use of
ephemeral proxies. Each feature is intended to mitigate either a
known attack observed in the wild or a theoretically plausible
attack consistent with the capabilities of a cost-effective censor.
We provide a security analysis to justify our design choices and
a performance evaluation to demonstrate that Obscura maintains
reasonable throughput for typical online activities.

Keywords
Censorship Evasion, WebRTC, Ephemeral Proxies

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2026(1), 583-603

© 2026 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2026-0030

Kevin Gallagher
Universidade NOVA de Lisboa & NOVA LINCS
Portugal
k.gallagher@fct.unl.pt

Henrique Domingos
Universidade NOVA de Lisboa & NOVA LINCS
Portugal
hj@fct.unl.pt

1 Introduction

Censorship evasion systems allow citizens in authoritarian regimes
to exercise their freedom of expression and access uncensored
information, a matter of particular importance in today’s context,
given the reported rise in online censorship [53]. Recent global data
and research on online censorship [16-18, 28, 30, 31, 36, 42, 43, 45,
51, 61, 66, 77, 78, 80-82] have not only underscored the significance
of these systems but also offered insights into the strategies used
by censors to control information and enforce online censorship.
Censors typically use a two-pronged approach to target cen-
sorship evasion systems [62, 75]: (1) fingerprinting network flows
to classify them as allowed or disallowed, and (2) blocking disal-
lowed flows and their endpoints using techniques such as packet
injection or firewall rules. Techniques for identifying disallowed
connections include active probing [16, 17, 25, 77], deep packet in-
spection (DPI) 9, 21, 26, 58, 77], and traffic analysis via side-channel
inference [3, 10, 39, 78]. Active probing tests suspicious hosts (e.g.,
proxies of censorship evasion systems) for irregular responses. DPI
inspects unencrypted packet fields for distinctive byte sequences
or fingerprints. Traffic analysis identifies and fingerprints censor-
ship evasion systems by examining side-channel metadata, such as
timing features across multiple network flows, using techniques
including statistical methods, classifiers, and deep learning models.
Although censors have a wide range of techniques available to
identify prohibited flows, a consistent finding in the literature is
that they tend to favour simple, cost-effective, and deterministic
methods over complex, resource-intensive, and non-deterministic
ones [62]. To illustrate this finding, we focus on the Snowflake cen-
sorship evasion system. Snowflake [7] is an encapsulation-based
Tor pluggable transport. In encapsulation-based censorship eva-
sion systems, covert data is embedded within a carrier protocol,
making traffic exchanged with a proxy appear indistinguishable
from regular flows of the carrier protocol to external observers. For
Snowflake, the carrier protocol is WebRTC [2], a widely used pro-
tocol stack for peer-to-peer real-time communication for the web.
WebRTC supports arbitrary data connections (i.e., data channels),
which Snowflake uses to encapsulate Tor traffic, as well as media
streams. An important feature of Snowflake is the ephemeral nature
of its proxies. If a user’s connection to a proxy is interrupted, the
system automatically reconnects them to a new one. Additionally,
Snowflake can leverage volunteers’ regular devices as proxies sim-
ply by having them open a specific webpage on their device, thereby

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2026-0030

Proceedings on Privacy Enhancing Technologies 2026(1)

expanding the pool of available proxies. This ephemeral proxy
model, combined with its ease of deployment, makes Snowflake
a challenging target for proxy blocking (e.g., proxy enumeration
attacks) and active probing. A recent study by Snowflake’s au-
thors [7] documented several attempts by authoritarian regimes
to block Snowflake, primarily through DPI targeting fingerprints
in the Snowflake DTLS handshake protocol or TLS fingerprints
in complementary communication protocols within Snowflake, re-
inforcing the observation that censors have historically favoured
simpler, cost-effective methods over more sophisticated approaches.

A logical follow-up question is: why was Snowflake vulnerable
to such fingerprinting attacks? Unlike browser-to-browser Web-
RTC connections, which rely on the most prevalent browser-based
WebRTC implementations, the Snowflake client implementation
uses Pion [1], a Go-based WebRTC library. This choice has made
the DTLS handshake between the client and the proxy particularly
distinctive compared to typical browser-to-browser connections. As
a result, censors have identified and exploited unique fingerprints
in Pion’s DTLS implementation, which are absent in browser-based
WebRTC implementations. The underlying causes of TLS finger-
printing vulnerabilities are similar to those of DTLS fingerprinting,
but mitigation strategies have been proposed and applied to ad-
dress such attacks [26]. However, solutions to DTLS fingerprinting
have remained scarce [38]. The typical strategy for countering
DTLS fingerprinting has been to generate browser-like fingerprints
within Snowflake and patch vulnerabilities as they arise, requiring
ongoing maintenance and reflecting a reactive rather than proac-
tive approach. Another concern for censorship evasion systems
in general, and particularly for Snowflake, is identifying which
cost-effective censorship methods censors might adopt next. Prior
research has debated whether data channels constitute a distinctive
fingerprint, given their presumed limited use in real-world WebRTC
applications [7, 21]. Although data channels have thus far remained
unblocked, a recent study proposed a simple and cost-effective
technique for blocking them without disrupting major WebRTC
applications [59], referring to it as a differential degradation attack
(DDA). The same study also introduced a variant of this attack tar-
geting censorship evasion systems that encapsulate traffic within
WebRTC media streams. The core idea behind this variant is to
disrupt these systems by inducing targeted frame loss while leaving
regular WebRTC video traffic largely unaffected.

To counter current and future cost-effective attacks targeting
WebRTC-based censorship evasion systems, we propose Obscura,
a censorship evasion system that functions both as a standalone
solution and as a pluggable transport. Obscura is built on four key
principles: (1) traffic encapsulation within WebRTC media streams,
(2) the use of a reliability layer, (3) support for both browser-based
and Pion-based proxies and client instances, and (4) the use of
ephemeral proxies. Together, these core features enable Obscura to
defend against proxy enumeration, active probing, DPI of WebRTC-
based protocols, and DDAs. However, within Obscura, we acknowl-
edge an inherent trade-off between providing a reactive approach
to DPI resistance and the level of resistance to the media-based
encapsulation variant of DDAs, which we discuss in Section 5.3 and
Appendix H. Additionally, we design the system to blend in with
typical WebRTC usage, thereby mitigating potential fingerprints
that could be exploited by passive lightweight traffic analysis (LTA)

584

with low computational and storage overhead based on statistical
or low-storage information collected over multiple packets. Tech-
niques of this kind have been observed in the wild [78], in contrast
to more complex methods such as those based on machine learning
or deep learning.

To summarise, the main contributions of this work are as
follows: (1) A novel architectural design for a censorship evasion
system, based on the four identified key principles and targeting
a specific cost-effective threat model; (2) novel insights into how
video can be obtained for use in media-based traffic encapsulation
systems for real-world deployments; (3) a strategy used within
Obscura to defend against the DDAs identified in [59]; (4) a com-
prehensive security and performance analysis of Obscura; (5) an
open-source implementation of our system [68].

2 Threat Model and Design Goals

In this section, we present the threat model of our system, outline
the system goals, and discuss how these goals relate to both the
threat model and the overall system design.

2.1 Threat Model

Our threat model is based on a common censorship evasion sce-
nario [74], in which a user within a censor’s jurisdiction attempts
to access the uncensored internet. The censor allows general inter-
net usage but seeks to block access to content it deems prohibited
while minimising false positives. We assume that censors operate
within a cost-effective framework, which we outline in this sec-
tion. Since our system relies on WebRTC, we focus particularly on
cost-effective attacks targeting WebRTC-based censorship evasion
systems, as well as common, generic attacks on censorship evasion
systems. Specifically, we assume that censors can use the following
techniques: proxy enumeration, active probing, DPI targeting pro-
tocols within the WebRTC stack (e.g., targeting DTLS or WebRTC
data channels), and packet manipulation (e.g., packet dropping). We
also assume that censors may perform LTA relying on statistical
information or low-storage data collected across multiple packets
to fingerprint Obscura, as similar cost-effective attacks have been
observed in practice [78]. The distinction between DPI and LTA
is subtle. We define DPI as fingerprinting attacks that rely on in-
specting unencrypted fields in packets, such as specific fields in the
ClientHello message of the DTLS handshake. In contrast, we define
LTA as requiring the examination of metadata (e.g., packet sizes)
from multiple packets within a single flow. We classify DDAs as
DPI-based attacks because, although their primary purpose is not
to fingerprint censorship evasion systems, they rely on continuous
analysis of unencrypted packet fields within a single flow to decide
whether to drop them or not. Additionally, we classify techniques
such as threshold-based blocking through packet counting (e.g.,
detecting an unusual number of control messages) and the use of
packet sizes for traffic fingerprinting as LTA-based attacks that the
censor can perform. However, we exclude attacks that fall outside
this cost-effective framework. These include techniques that, in our
view, are theoretical, complex, computationally expensive, prone to
false positives, or non-deterministic, such as traffic analysis based
on classifiers or deep learning. Throughout the remainder of this

Obscura

Section 3.1
(Signalling Phase &
Rendezvous Channels)

Broker

Section 3.3
(Encapsulation)

Section 3.2
(Protocol Layering)

WebRTC media
stream

Client

Censored Region

Proceedings on Privacy Enhancing Technologies 2026(1)

Section 3.1

(Signalling Phase)

e |

. 1 Section 3.2

I (Protocol Layering)

Proxies

Destination

Figure 1: Obscura’s system architecture overview.

paper, we refer to censors operating within the bounds of this threat
model as cost-effective censors.

2.2 Design Goals

We identify three main design goals: resistance to baseline attacks,
blending in, and utility and usability.

Resistance to Baseline Attacks: We implement strategies to resist
five main generic attacks: (1) active probing and proxy enumeration,
(2) packet manipulation, (3) DPI of protocols within the WebRTC
stack, (4) data channel fingerprintability, and (5) the media streams
variant of DDAs. To address (1), we utilise ephemeral proxies and al-
low a large pool of devices to function as proxies. For (2), we provide
a reliability layer to mitigate packet dropping and use WebRTC’s
built-in cryptographic primitives to protect against packet modifica-
tion and injection. To counter (3), we leverage the browser’s native
protocol fingerprints by enabling browser-to-browser connections
between clients and proxies. To address (4), we use media channels
as the carrier instead of data channels, and, finally, to address (5),
we support Pion-based client and proxy instances and incorporate
a reliability layer to tolerate packet loss.

Blending In: We implement strategies to minimise the effectiveness
of LTA attacks. We also avoid introducing known or foreseeable
major vulnerabilities, which we define as significant deviations
from typical WebRTC behaviour, since knowingly introducing fin-
gerprints that could be exploited by censors, regardless of whether
their capabilities fall within our threat model, would be detrimental
to the long-term robustness of the system. Thus, we identify the
following as the most significant sources of fingerprintability: (1)
ensuring that traffic structurally resembles authentic video content,
and (2) avoiding unrealistic network patterns, such as reusing the
same videos across all users or volunteers, or generating multiple
consecutive Picture Loss Indication (PLI) requests (sent when miss-
ing or corrupted video frames are detected, see Section 3.3). To
address (1), we use the available frame sizes and transmit them at
the intended rate, regardless of whether there is data to encapsulate.
To address (2), we ensure that the number of PLI requests remains
within a typical range and that both clients and proxies exhibit

585

WebRTC media stream traffic patterns consistent with those of
diverse sources.

Utility and Usability: We provide reasonable performance, specif-
ically reasonable throughput (i.e., utility) to support typical web
browsing and online activities. The system’s utility is demonstrated
in Section 4. Regarding usability, the system is designed to be easy
to use and configure, especially for users and volunteers. To this end,
we minimise the number of actions and configurations required for
deployment and use. For example, proxies can be deployed simply
by launching a webpage, similar to Snowflake. Regarding resource
consumption, Section 4 demonstrates that the system operates with
low resource requirements, as confirmed by the tests performed on
basic commodity hardware. However, concerning bandwidth, we
discuss inherent trade-offs between minimising bandwidth usage
and achieving our goal of blending in Section 3.4 and Section 5.

3 Obscura

Our system design is based on the Snowflake architecture, as illus-
trated in Figure 1. It incorporates the same five core components:
the client (i.e., client-side software), broker, proxy, bridge, and STUN
server [37]. Clients, proxies, and STUN servers are not assumed
to be trusted; therefore, they can be deployed or used by anyone.
However, STUN servers should be accessible to users and selected
so that their blocking would inflict collateral damage on a cen-
sor. In contrast, we assume that the broker and bridge are trusted
components managed by a trusted party. Obscura can operate as a
standalone system, similar to a VPN, or as a pluggable transport.
We use the terms “client” and “user” interchangeably to refer to ei-
ther the individual operating the system or the client-side software
itself. The intended meaning can be inferred from the context.
Consider a user residing in a heavily censored region attempting
to access the open internet through Obscura. The user first launches
the Obscura client, which connects to a broker to request an avail-
able proxy. If a proxy is available, the necessary information for
establishing a WebRTC media connection between the client and
the proxy is exchanged through the broker. Using the Interactive
Connectivity Establishment (ICE) protocol [33], both peers obtain
their public IP addresses (i.e., server-reflexive candidates) via STUN

Proceedings on Privacy Enhancing Technologies 2026(1)

servers and exchange these candidates through the broker to form
candidate pairs. Each peer then tests these pairs to identify viable
network paths. However, ICE alone is insufficient to establish a
peer-to-peer connection. The client and proxy must also negoti-
ate session parameters, such as codecs and cryptographic keys,
using the Session Description Protocol (SDP) [5]. The proxy sends
an SDP offer, and the client responds with an SDP answer. Once
the connection is established, the client and proxy communicate
directly with each other. This phase, in which the WebRTC con-
nection is established, is referred to as the signalling phase, during
which all messages are exchanged through the broker. Additionally,
proxies may go offline; when this occurs, the client contacts the
broker to request a new proxy and restarts the signalling process.
A reliability layer ensures that the user session resumes once the
client establishes a connection with the new proxy. Covert traf-
fic is routed through proxies to a bridge and encapsulated within
video frames, which are transmitted over a WebRTC media stream
between the client and the proxy. Media streams use the Secure
Real-Time Transport Protocol (SRTP) [8] for encryption, integrity,
and authentication of RTP streams [55], with encryption keys ne-
gotiated via DTLS. The Real-Time Control Protocol (RTCP) [55] is
used in conjunction with SRTP to monitor connection quality.

In the remainder of this section, we describe the system’s opera-
tion by highlighting the features that support our design goals. We
begin with the signalling phase, which is necessary for establishing
the WebRTC connection on which the system relies (Section 3.1).
Next, we discuss the architectural layering of our protocol, explain-
ing how it ensures reliability and provides the foundation for proxy
ephemerality. Both aspects are central to achieving our first de-
sign goal (Section 3.2). We then describe our data encapsulation
methodologies, which directly support the first and second design
goals (Section 3.3). Finally, we discuss how the video content used
for encapsulation is obtained and how this design supports the
second design goal (Section 3.4). Where appropriate, we consider
how each feature may involve trade-offs related to our third goal.
For implementation details, we refer to Appendix A.

3.1 Signalling and Rendezvous Channels

We illustrate our signalling protocol in Figure 2. Proxies connect
to the broker via a secure WebSocket and send periodic pings at
regular intervals of X time units. If the broker does not receive
a ping within this timeframe, it marks the proxy as invalid and
discards it. Proxies also inform the broker of their type (i.e., browser-
based or Pion-based). The broker maintains the state of all active
proxies and pairs a client with one when the client sends a request to
establish a connection. If no proxies are available, the broker waits
until a proxy becomes available for the client. Once the broker
establishes a client-proxy pair, the client sends a packet to the
proxy via the broker containing the bridge address that the client
will use for the session, along with its client type. The proxy and
client exchange their types so the system can determine which
encapsulation methodology to use (see Section 3.3). The proxy then
connects to the bridge via a secure WebSocket. If the connection
between the proxy and the bridge is successful, the proxy sends an
SDP offer to the client and begins transmitting the ICE candidates
as they arrive. The client receives the SDP offer, responds with its

586

=) JEEER—,

O © == 0 =
— G — [
Client Censor Broker Proxy Bridge

1) RENDEZVOUS CHANNEL 0) send(PROXY_TYPE)
BOOTSTRAP -
2) send(CLIENT_TYPE,
BR_ADDR) 2) send(CLIENT_TYPE, BR_ADDR)
1 3) CONNECT

! 4) send(OFFER, PROXY_TYPE)
4) send(OFFER, PROXY_TYPE)

1 The proxy can now
5) send(ANSWER) send ICE candidates.
1 5) send(ANSWER)
The client can now 1
i 1
send ICE candidates. | | 6) webRTC Peer Connection

Figure 2: Obscura’s signaling protocol.

own SDP answer, and transmits its ICE candidates. We use Trickle
ICE [2] to transmit ICE candidates as they are gathered, rather than
waiting to collect all candidates first, thereby reducing connection
establishment time. The proxy and client communicate directly
once they establish the WebRTC peer-to-peer connection.

We use a first-in, first-out (FIFO) method for client-proxy al-
location. However, the modularity of the signalling protocol al-
lows it to be replaced entirely or extended with other heuristics,
such as geographic restrictions, NAT types, or instance types (e.g.,
browser-based or Pion-based). Since proxies are ephemeral, they
may become unavailable. When this occurs, the client initiates the
signalling process by contacting the broker to request a new proxy
after detecting that the WebRTC peer-to-peer connection with the
previous proxy has failed. The new proxy and the client then re-
peat the signalling phase to establish a new WebRTC connection.
Since the client maintains the configured bridge address indepen-
dently of the proxy, every proxy to which the client connects will
be instructed to establish a connection with that bridge unless this
configuration is modified on the client side. Currently, the bridge
address is stored in a configuration file, but could alternatively be
provided by the broker.

Proxies can contact the broker directly, as they are assumed to
operate outside the censored region and are therefore immune to
being blocked from accessing the broker. In contrast, users within
the censored region cannot communicate directly with the broker,
as this would expose it to blocking efforts and render the system
unusable. To address this, we use censorship-resistant channels to
exchange information between the client and broker during the
signalling phase. These channels, often referred to as rendezvous
channels [71, 72], must remain functional even if the censor is
aware of their operational details. Although typically more costly
and offering lower throughput than conventional censorship eva-
sion techniques, rendezvous channels provide greater resilience to
blocking, as their disruption would cause significant collateral dam-
age. Although existing approaches, such as domain fronting [23]
and cloud-based rendezvous channels [50], could be integrated into
Obscura, we developed two custom rendezvous channels: one based
on Google Pub/Sub [71] and another leveraging TURN servers [69].
Further implementation details are provided in Appendix B.

Obscura

3.2 Protocol Layering

We adopt the Turbo Tunnel architecture [20], which structures
transmitted data in censorship evasion systems into three hier-
archical layers: the obfuscation layer, the session layer, and the
application layer. Each layer serves a distinct function, and the
encapsulation follows a specific order: application-layer traffic is
encapsulated within session-layer traffic, which in turn is encapsu-
lated within obfuscation-layer traffic.

The obfuscation layer is the network visible layer and is responsi-
ble for obfuscating covert traffic. In Obscura, obfuscation is achieved
by encapsulating session layer packets within the video frame pay-
loads of WebRTC media streams. The session layer ensures re-
silience to packet loss and ordering by encapsulating application
layer traffic within a reliable network protocol. These features help
mitigate packet manipulation attacks and enable proxy switching
without restarting ongoing client sessions. For the session layer,
Obscura uses the KCP protocol [57], a reliable UDP-based transport
protocol, together with the smux library [79] to multiplex streams
over a single connection and to clean up timed out streams caused
by client disconnections, thereby preventing unnecessary resource
consumption on the bridge. Additionally, we use the encryption
capabilities of the KCP protocol to ensure that the covert content
remains encrypted between the client and the bridge. The applica-
tion layer traffic corresponds to the client application traffic that
Obscura will covertly transmit. In pluggable transport mode, the
application traffic is Tor traffic. In standalone mode, it may originate
from any client application that supports a SOCKS proxy, which
serves as the mechanism through which Obscura in standalone
mode expects client application traffic to be routed.

To enable proxy ephemerality, the session-layer state must be
maintained between the client and the bridge rather than the client
and the proxy. Managing the state at the proxy would lead to ses-
sion loss when switching proxies. To address this, the client soft-
ware integrates the client-side implementation of the KCP/smux
protocol while the bridge runs the server-side counterpart. When
the client or bridge receives application-layer packets, they are
processed by the KCP/smux stack, which encapsulates them into
KCP/smux packets. The KCP/smux packets are then delivered to
Obscura’s control for obfuscation before being transmitted to the
other endpoint. On the receiving end, when obfuscated packets
are received, Obscura removes the obfuscation layer and forwards
them to the KCP/smux stack, which extracts and delivers the decap-
sulated client application-layer packets back to Obscura. Obscura
then forwards this data to the client application. Since the bridge
handles traffic from multiple proxies representing different clients,
it must dynamically map delivered KCP/smux session-layer packets
from the KCP/smux stack to the correct proxy associated with each
packet. We use a custom eight-byte ID appended to each KCP/smux
packet to map received packets from the KCP/smux stack to a spe-
cific proxy. The bridge maintains a mapping table linking session
identifiers to WebSocket connections. When a new WebSocket con-
nection is established between a proxy and the bridge, the bridge
uses the custom ID to either update an existing mapping (if the
client has switched proxies) or create a new one. During a proxy
switch, any packets lost during the transition are retransmitted due
to the reliability properties of the KCP/smux protocol.

587

Proceedings on Privacy Enhancing Technologies 2026(1)

3.3 Data Encapsulation

Three main components are involved in transmitting and receiving
a media stream between two peers in a WebRTC connection: (1) the
media source/media sink, (2) the encoder/decoder, and (3) the pack-
etiser/depacketiser. First, the media source generates the content to
be streamed. Second, the encoder (i.e., the video codec) processes
and compresses the audio and video frames. Third, the packetiser
segments the encoded frames into smaller payloads, which are
then encrypted and transmitted over the network as SRTP packets.
On the receiving end, the reverse process occurs: the depacketiser
reconstructs the decrypted RTP payloads into complete encoded
frames, the decoder converts them into raw media content, and the
media sink plays the final decoded output.

We base our browser-based WebRTC application on the sample
implementations provided in [54] and use the Insertable Streams
API [73] to manipulate video frames without modifying the browser
code. This API operates between the encoder and packetiser on
the sending side and between the depacketiser and decoder on
the receiving side. It provides access to frames after encoding but
before packetisation for encapsulation and after depacketisation
but before decoding for decapsulation. Pion-based instances differ
from browser-based instances because Pion’s WebRTC implemen-
tation provides access to individual RTP packets at the receiving
side rather than fully reconstructed encoded frames. Although
Pion’s SampleBuilder interface [49] can theoretically reassemble
full frames, we have not evaluated this functionality and have found
limited practical examples. More importantly, relying on direct RTP
packet access with Pion provides a mechanism to defend against
DDAs. Therefore, we base our Pion-to-Pion encapsulation and de-
capsulation methodology on direct RTP packet access. As a result,
our encapsulation and decapsulation strategies are tailored to the
instance types in use, each offering distinct advantages: Browser-to-
browser (B-B) connections generate fingerprints that match those
of standard browsers when using WebRTC protocols. Pion-to-Pion
(P-P) connections allow defence mechanisms against DDAs and
offer greater usability for clients in both the pluggable transport
and standalone versions, as they do not require the client to use a
browser with WebRTC capabilities enabled (a particularly impor-
tant feature for the pluggable transport version); Pion-to-browser
(P-B) and browser-to-Pion (B-P) connections, while not explicitly
designed to mitigate any specific attack in our threat model, en-
hance the system usability and interoperability, similar to how
Snowflake client Pion instances support both browser-based and
Pion-based proxy connections.

For all encapsulation methodologies, we maximise the encoded
data space within each video frame allocated for data encapsulation.
However, doing so might sometimes require the fragmentation
of KCP/smux packets (i.e., session-layer packets). To enable the
reassembly of fragmented KCP/smux packets, we prepend a custom
11-byte header to each block of data we encapsulate inside the
payload of a frame, whether it is a complete KCP/smux packet or a
fragment. We refer to these data blocks, along with the header, as
Obscura packets. Each Obscura packet header consists of five fields:
(1) a 1-byte marker flag indicating the start of an Obscura packet,
(2) a 4-byte sequence number used for ordering and reassembly,
(3) a 1-byte segment number to track the order of each fragment,

Proceedings on Privacy Enhancing Technologies 2026(1)

Sender: Assembled Frame Receiver: Assembled Frame

0000000000000000 RTP 0000000000000000
0000000000000000 Packets 0000000000000000
0000000000000000 __ . _,0000000000000000
0000000000000000 0000000000000000

0000000000000000
0000000000000000

0101001090000000000

Packeti
ackstizer 0000000000000000

Depacketizer

Figure 3: Workflow for B-B connections. Each color (different
shade) represents an Obscura packet (sizes not to scale). For
simplicity, the VP8 payload header is omitted.

(4) a 4-byte payload length indicating the size of the payload, and
(5) a 1-byte flag indicating whether the packet contains the final
segment of the original KCP/smux packet.

We develop our encapsulation methodologies for VP8-encoded

video, though adapting them to support other codecs should be fea-
sible with minimal code changes. To achieve this, we consider both
the RTP header format [55] and the RTP payload format for VP8
video [76]. An RTP header has a minimum size of 12 bytes but may
include optional extensions. In the case of VP8, an additional field
known as the VP8 payload descriptor adds 1 to 6 bytes to the RTP
header. This descriptor includes metadata such as fragmentation
information and frame type. Within the RTP payload for VP8, two
key components are present: the VP8 payload header and the en-
coded frame data. The VP8 payload header marks the beginning of
the encoded frame data and provides information, such as whether
the frame is a key frame or an interframe (i.e., a delta frame). The
size of this payload header varies between 10 bytes for key frames
and 3 bytes for delta frames.
Browser-to-Browser: B-B connections rely on the WebRTC imple-
mentations of browsers, supporting both Firefox and Chromium-
based browsers. The encapsulation algorithm for B-B connections
generates Obscura packets whenever the available space in the
encoded video frame data is at least 22 bytes: 11 bytes for the Ob-
scura packet header, 10 bytes for the maximum VP8 payload header,
and at least 1 byte for the Obscura packet payload, which carries
the covert data. Frames whose encoded data size falls below this
22-byte threshold are marked as containing no Obscura packets.
If the available space in a frame exceeds the size of the data to
be encapsulated, the remaining space is replaced with zeros. Each
received encoded frame is examined to detect and extract any em-
bedded Obscura packets during decapsulation. We illustrate the
B-B encapsulation and decapsulation methodology in Figure 3.

Replacing the encoded frame content with covert data without
proper handling can trigger multiple RTCP PLI requests in browser-
based instances. These requests are issued when the decoder fails
to process the modified frames, interpreting them as corrupted and
continuously requesting key frames to restore proper playback.
While occasional PLI requests during a connection may not be con-
sidered abnormal, the repeated transmission of requests in rapid
succession could be exploited by a censor as a fingerprinting vector,
as such behaviour is uncommon in typical WebRTC applications. To
mitigate this risk, we use a browser canvas to generate a synthetic
image that is encoded as a valid VP8 frame. We then replace the
payload of the received frame with that of the synthetic frame. Addi-
tionally, we reuse the original RTCEncodedVideoFrame object [14]
(i.e., the object representation of an encoded frame in the WebRTC

588

sender and receiver pipeline) received because (1) it is the object
type accepted by the decoder, and (2) it can only be created through
the WebRTC sender or receiver pipeline. Attempting to pass the
synthetic frame’s object type directly to the decoder results in an
exception due to type incompatibility. By modifying the payload
of the existing RTCEncodedVideoFrame, we ensure compatibility
with the WebRTC pipeline and avoid decoding errors. When encap-
sulating data, the first 10 bytes of the frame are skipped to preserve
the VP8 payload header, which has a maximum size of 10 bytes
(i.e., corresponding to a key frame). We do this because these bytes
populate a specific read-only field in the RTCEncodedVideoFrame
object, the frame type field. This approach ensures that the frame
retains a valid VP8 payload header and, consequently, a valid type
field in the RTCEncodedVideoFrame on the receiving side, allowing
the frame to be reused by simply replacing the encapsulated data
with the synthetic frame. We note that, particularly in Firefox, PLI
requests are occasionally sent sporadically throughout a session
in our test environment. This behaviour is consistent and occurs
both when using our application with the Insertable Streams API
enabled, regardless of whether encapsulation or decapsulation is
performed, and when the API is disabled.

Pion-to-Pion: The P-P encapsulation methodology operates at the
granularity of RTP packets on the decapsulation side. However, the
full encoded frames are accessible on the encapsulation side. There-
fore, the encapsulation algorithm must account for the differing
access patterns between the sender and receiver. When encapsu-
lating data in a P-P connection, we ensure that individual Obscura
packets are not fragmented across multiple RTP packets, as this
would make reassembly extremely difficult. This is enforced by
ensuring that no Obscura packet exceeds the maximum RTP pay-
load size and preventing any Obscura packet from being positioned
within the frame payload in a way that causes the packetiser to split
it across two RTP packets. We use an auxiliary formula (Equation 1)
to calculate the current maximum RTP payload size (MPS) in bytes,
for each frame.

MPS =M RTP_S — (RTP_H S + VP8 _PD_S) 1)

In Equation 1, M_RTP_S denotes the maximum size for an RTP
packet, which is set to 1200 bytes in the Pion implementation [48].
The RTP_H_S represents the size of the RTP header, with a default
and minimum value of 12 bytes. The VP8_PD_S corresponds to
the size of the VP8 payload descriptor, which varies depending
on the length of the picturelD field. The picturelD is a 7- or 15-
bit field that increments with each frame as a frame index. The
VP8 payload descriptor is included in every RTP packet and has
the following sizes in Pion: 1 byte for the initial RTP packet(s) of a
frame, 3 bytes if the picturelD is less than 128, and 4 bytes if it is 128
or greater. When the picturelD reaches 128, it can either return to
0 or be extended to a 15-bit field. A 1-bit marker indicates whether
the picturelD is using 7 or 15 bits. By default, Pion initialises the
picturelD to 0, extends it to a 15-bit field when it reaches 128, and
wraps it back to 0 once the full 15-bit range is exhausted [46]. Based
on this behaviour, we calculate the Pion MPS value as follows:

e 1187 = 1200 — (12 + 1) bytes: For the first frame.

e 1185 = 1200 — (12 + 3) bytes: For frames with a pictureID
between 1 and 127.

Obscura

Sender: Assembled Frame
0000000000000000
000j0000000000000
000000j0000000000
000000000j0000000
000000000000Jo000
0000000000000000

— &

Packetizer

Receiver: Individual RTP packets l

L [L] L W[[
— — — — — —
118X 118X
Bytes Bytes

118X
Bytes

118X
Bytes

118X
Bytes

<118X
Bytes

Figure 4: P-P Encapsulation. The numbers beneath the pack-
ets indicate the RTP payload sizes, where the value of X can
be 4, 5, or 7. The regions between two red lines represent a
frame segment with a maximum size of MPS. For illustration
purposes, we assume that the maximum size of each RTP
packet payload is 19 zeros, corresponding to 118X bytes.

e 1184 = 1200 — (12 + 4) bytes: For frames with a pictureID
greater than or equal to 128.

Obscura maintains a variable representing the current value of
the picturelD field in order to calculate the MPS for the current
frame. Then, for each frame, until either the available space within
the frame is exhausted, or there is no more data to encapsulate,
Obscura creates Obscura packets of size PS using Equation 2.

PS = min(len(D), max(RS — HS, 0), max(FS — HS, 0)) (2)

In equation 2, D is the array of bytes representing the covert
data to be transmitted; RS denotes the remaining space available
for encapsulation within the current frame segment (i.e., a frame
chunk that fits within a single RTP packet) and, for each frame,
is initially set to MPS; FS is the total frame size; and HS (11) is
the size of the Obscura packet header. The value of RS is updated
each time a new Obscura packet is encapsulated by decrementing
it by the size of the encapsulated packet. Once the current frame
segment is fully occupied with Obscura packets, or when there is
no remaining space available or data to encapsulate, the value of
RS is reset to MPS. This design ensures that each Obscura packet is
encapsulated within a frame segment of maximum size MPS. Since
Obscura packets are never allowed to span multiple frame segments
and are always contained within a single RTP packet, any received
RTP packet can be used to fully recover the Obscura packet(s)
it contains without requiring reassembly across packets. The P-
P encapsulation and decapsulation methodology is illustrated in
Figure 4. For decapsulation, we analyse the VP8 payload descriptor
in each received RTP packet to compute the offset within the RTP
packet payload where Obscura packets begin. PLI requests caused
by corrupted frames are not a concern in P-P connections, as Pion
does not include built-in support for real-time video decoding.
Pion-to-Browser & Browser-to-Pion: Obscura ensures full inter-
operability across all instances and supported browsers. For P-B
connections, where Pion functions as the sender and the browser
as the receiver, Obscura uses the same techniques as in B-B con-
nections. This is possible because Pion has access to fully encoded

589

Proceedings on Privacy Enhancing Technologies 2026(1)

Sender (Browser): Assembled Frame
000000000000000
000000000000000
000000000000000

—
0000000000000000
00000O00OO00O0OOOOO Packetizer
0000000000000O0O

Receiver (Pion): Individual RTP packets
H | R (REC) (R L] (R
e e e B e

X Bytes

XBytes XBytes XBytes XBytes XBytes

Figure 5: Encapsulation methodology for B-P connections.

X =

[]

left) for FS mod {%] remaing bytes; FS is the frame size.

+1 byte from the last packet to first (right to

frames before transmission, and the browser provides access to
fully reassembled received frames. For B-P connections, Obscura
uses a modified version of the techniques used in P-P connections.

Testing on Chromium-based browsers and Firefox revealed that
Obscura’s maximum RTP payload size is 1174 bytes. The RTP header
remains fixed at 12 bytes, and the picturelD is always used in
its extended 15-bit format, initialised with a random 15-bit value
and not reset to 0 upon reaching its maximum. Referencing Equa-
tion 1, there is a 10-byte discrepancy in the payload size calculation:
(1200 — (12 + 4) = 1184;1184 — 1174 = 10). Feedback from the Web-
RTC API community suggests that this discrepancy may result from
the packetiser’s configuration, which deliberately produces slightly
smaller RTP payload sizes to account for possible header exten-
sions and to minimise the need for frequent reconfigurations [67].
It may also stem from negotiated RTP header extensions between
the browser and the Pion instance. Additionally, the WebRTC imple-
mentations in the tested browsers differ from Pion in the way their
packetisers operate. Specifically, in our test environment, and for
B-P connections, the tested browsers distribute frame data almost
evenly across packets [27], rather than filling each packet before
allocating new ones, as Pion does. To accommodate this behaviour,
our algorithm first determines the number of packets required for
a given frame. Based on the number of packets and the frame size,
it then calculates how many bytes of the frame each packet will
evenly receive. Finally, any remaining bytes are redistributed, be-
ginning with the last packet and proceeding toward the first. An
example of this process is illustrated in Figure 5.

3.4 Obtaining the Video

Most media-tunneling censorship evasion systems face a common
challenge: how can users and volunteers obtain suitable video con-
tent for streaming? A typical solution proposed in the literature is
to use the device’s camera feed or screen sharing. However, this ap-
proach raises significant privacy concerns, as users and volunteers
may be unwilling to share personal video feeds, even if the con-
tent is ultimately replaced. An alternative is to bundle the system
with preselected videos or allow users to provide their own. Yet,
enabling user selection can reduce overall usability, as it requires

Proceedings on Privacy Enhancing Technologies 2026(1)

users and volunteers to acquire video content continually. On the
other hand, relying on a single bundled video or a limited set of
bundled videos introduces the risk of creating a recognisable fin-
gerprint, as multiple users and volunteers would stream identical
content. To mitigate this risk while maintaining usability, we pro-
pose two strategies: (1) streaming from a canvas animation and (2)
implementing an efficient video distribution scheme.

Canvas Animations: Using a canvas animation as the video source
improves usability by eliminating the need for users, volunteers, or
system operators to manage and download video files. Additionally,
the use of random animations, along with their ease of deployment
and development, enables multiple users to utilise the system with
visually distinct animations simultaneously. However, using anima-
tions may result in lower throughput compared to video sources,
as they are typically less dynamic and transmit fewer bytes per
frame (see Appendix C for further evaluation). Integrating this ap-
proach with Pion instances presents additional challenges, as there
is no straightforward method for capturing a canvas animation as
a stream outside of browser environments. Instead, a third-party
tool, such as FFmpeg [19], must encode the animation frames into
a live feed that can then be streamed to the receiving peer.

Video Distribution Scheme: The primary challenge of using mul-
tiple videos without requiring users or volunteers to obtain them
manually lies in distributing them efficiently, given that video files
are typically large in size. Although this remains an open problem,
we propose a solution: enabling the broker to distribute metadata
files upon request. These files contain metadata about the videos
(e.g., number of frames, frame rate, frame sizes), allowing users and
volunteers to generate synthetic frames replicating the original con-
tent’s structural characteristics. While this approach still requires
the broker to distribute metadata files, it significantly reduces over-
head compared to distributing full video files. An additional advan-
tage is the flexibility to select source videos for metadata generation
based on specific criteria, such as regional popularity (e.g., using
popular videos in a given area) or throughput (e.g., prioritising
visually dynamic videos).

4 Experimental Evaluation

In this section, we evaluate Obscura’s performance.

4.1 Evaluation Goals and Metrics

The primary objective of our performance evaluation was to as-
sess Obscura’s throughput under varying network conditions and
system configurations, thereby developing a comprehensive under-
standing of the system’s behaviour across diverse network environ-
ments, video content profiles, and operational setups. We conducted
tests using three types of connections between the client and the
proxy in standalone mode: Pion-to-Pion (P-P), Chrome-to-Chrome
(C-C), and Firefox-to-Firefox (F-F). We also conducted tests on
asymmetric connections between the client and the proxy, as well as
on the system operating in pluggable transport mode. However, due
to space constraints and because these tests did not yield significant
new insights beyond those discussed in this section, the results are
presented in Appendix E and Appendix F, respectively. We adopted
a testing methodology similar to that used by the Tor Project to col-
lect performance metrics [60]. Specifically, we deployed an HTTP

590

Broker

(VM2)
- N e P e W
Client Proxy Bridge HTTP Server
(VM1) (VM3) (VM4) (VM5)

Figure 6: Setup for Obscura’s experimental evaluation

server hosting text files, performed repeated downloads of a 1
MB file, and calculated throughput based on the time required to
complete each download. All throughput values reported in the
subsequent sections were obtained using this approach. For each
measurement, we conducted at least 100 downloads and generated
box plots from the resulting throughput samples.

We note that some of the box plots, particularly those in Section 9,
exhibit a large number of outliers or a wide range between minimum
and maximum values. This variation arises from the nature of the
videos used, as well as from differences across different portions of
the same video. For example, two videos classified under the same
profile (e.g., Coding) may produce significantly different throughput
values if one is primarily static and the other features more dynamic
visual content. Even within a single video, abrupt transitions can
cause temporary spikes in throughput. For example, a shift from
a dark-mode IDE to a bright web browser page with more visual
information can trigger a momentary increase in throughput due
to the change in visual content. We refer the reader to Appendix D
for illustrative examples of variations in video frame sizes across
different video profiles and connection types.

4.2 Test bench

Our test bench, illustrated in Figure 6, consists of five 64-bit Ubuntu
22.04 LTS virtual machines (VMs), each configured with 4 virtual
cores and 8 GB of RAM. These VMs run on a dedicated cloud server
equipped with an AMD Epyc 7313 CPU (16 cores, 32 threads, 3.0/3.7
GHz), 128 GB of RAM, and 1 Gbps bandwidth. The limited resources
allocated to each VM demonstrate that the system components can
be deployed on modest hardware. VM1 and VM3 serve as the client
and proxy, respectively; VM2 functions as the broker; VM4 acts
as a bridge; and VM5 hosts an HTTP server that provides files
for download. Browsers are used in headless mode with autoplay
enabled, and its automation is managed through Selenium [56].
Regarding the video, we used a WebM file as a video element
to enable access and streaming in browser-based instances. For
Pion instances, we used the same video in IVF file format (a format
readable by Pion). Unless otherwise specified, the video used in the
tests was Big Buck Bunny [6], a publicly available short animated
film encoded with VP8, with a resolution of 1280x720 and a target
bitrate of 2 Mbps. Video encoding was performed using FFmpeg [19].
The 100 measurements for each throughput value exceeded the
duration of any video used in our experiments. Therefore, each
video was looped continuously during experiments until at least
100 throughput measurements were collected, ensuring a consistent
basis for comparison across all tests. Finally, network conditions
between VMs were enforced using the Linux tc command.

Obscura

4.3 Varying Network Conditions

This section presents the system’s throughput results under vary-
ing network conditions. We evaluate P-P, F-F, and C-C connections
across round-trip times (RTTs) of 80 ms, 115 ms, and 165 ms; band-
width constraints of 250 Kbps, 750 Kbps, and 1500 Kbps; and packet
loss rates of 2%, 5%, and 10%. The selected bandwidth and packet
loss values are based on prior studies of WebRTC performance [32]
and evaluations of WebRTC-based censorship evasion systems [4].
For RTT configuration, the RTT between VM4 and VM5 is set to
15 ms, representing typical latency between clients and CDN edge
servers co-located with a bridge [44, 64]. Given the widespread
deployment of CDN infrastructure, this is considered a reasonable
assumption. The RTT between VM3 and VM4 is fixed at 50 ms to
model intra-continental latency [44, 65]. We do not specify RTT
values between VM1 and VM2 or VM2 and VM3, as measurements
begin only after the proxy and client establish a connection, ren-
dering VM2 irrelevant to performance evaluation. RTTs between
VM1 and VM3 are varied at 15 ms, 50 ms, and 100 ms to simulate
regional, intra-continental, and intercontinental conditions, respec-
tively [44, 65]. The total RTTs reported reflect the combined RTT
across all links. Both packet loss and bandwidth constraints are
applied on the VM1-VM3 connection (i.e., client-proxy connection).
Overall, P-P and B-B connections exhibit reduced performance
as network conditions deteriorate. However, under less severe con-
ditions, specifically, in the absence of bandwidth constraints and
with packet loss rates at or below 2%, the system maintains reason-
able throughput. The baseline configuration used throughout the
remainder of this section is defined as 0% packet loss, no bandwidth
constraints, and a system RTT of 115 ms. Under this baseline, the
measured averaged throughput is 1.79 Mbps for F-F, 1.49 Mbps for
C-C, and 1.32 Mbps for P-P connections.
Insight #1: Tolerance of P-P connections to bandwidth con-
straints: When using Pion to stream video from a file, the absence
of real-time video encoding mechanisms significantly limits the
system’s adaptability to varying network conditions, particularly
under bandwidth constraints [47]. As illustrated in the bandwidth
constraints figure (middle graph) of Figure 7, Obscura is unable
to sustain a P-P connection when the video bitrate exceeds the
available bandwidth. Given that the video has a target bitrate of
2 Mbps and the lowest bandwidth constraint is 1500 Kbps, the
covert P-P connection becomes unstable, eventually tearing down
or experiencing severe degradation. Additional tests presented in
Appendix G further corroborate this behaviour.
Insight #2: Adaptability of B-B connections to network con-
ditions: Due to built-in congestion control mechanisms and live
video encoding, the system naturally adapts to network conditions
in B-B connections. Both F-F and C-C connections perform well
under bandwidth constraints. However, F-F connections appear
more sensitive to low bandwidth constraints, rendering the sys-
tem unusable at 250 Kbps. In contrast, under ideal conditions (i.e.,
no bandwidth constraints or packet loss), F-F connections achieve
higher throughput than C-C connections across all RTT values. Re-
garding packet loss, even at a rate of 10%, C-C connections remain
usable, achieving an average throughput value of 460 Kbps. In con-
trast, F-F connections become unstable, exhibiting high variability
of throughput values with an average of 160 Kbps. One reason F-F

591

Proceedings on Privacy Enhancing Technologies 2026(1)

connections outperform C-C connections in our baseline conditions
is the difference in the bitrate value used by Firefox and Chrome.
Although we use a video with a fixed bitrate, browsers adjust the
bitrate in real time. Thus, we measured the bitrate for each connec-
tion type every second over five minutes, repeating this process
five times. The results showed an average bitrate of 4.6 Mbps for
F-F connections and 2.4 Mbps for C-C connections. This also helps
explain why B-B connections outperform P-P connections, as we
used video encoded with a fixed target bitrate of 2 Mbps in FFmpeg,
and Pion lacks built-in real-time encoding capabilities. However, as
will be discussed in Section 4.4, bitrate is likely not be the sole fac-
tor explaining why F-F connections outperform C-C connections.
Furthermore, Appendix C shows that these differences may also
depend on the video content.

Insight #3: Comparative packet loss response of P-P and B-B
connections: We speculate that P-P connections outperform B-B
connections under high packet loss conditions for two reasons:
(1) Pion instances on the receiving end process individual RTP
packets directly, rather than relying on fully reassembled encoded
frames for decapsulation. As a result, they do not need to wait for
all packets to arrive to reconstruct a complete frame, unlike B-B
connections, which require full frame reassembly to extract covert
content; (2) because P-P connections use pre-encoded video and
Pion lacks support for real-time video encoding, P-P connections
are less susceptible to the video quality degradation typically caused
by packet loss, such as reduced bitrate and frame size.

4.4 Varying Video Parameters

This section focuses on analysing the impact of varying video
bitrates and resolution on throughput. To assess the effect of bitrate
changes, we fixed the video resolution at 1280x720 and varied
the bitrate across 500 Kbps, 1 Mbps, 2 Mbps, and 5 Mbps. For each
bitrate, the video was encoded using the specified value as the target
bitrate in FFmpeg. In B-B connections, the specified bitrate was
enforced by setting the connection’s maximum bitrate parameter,
which serves as the target bitrate. For resolution testing, we did not
specify the bitrate; instead, we allowed the codec to determine an
appropriate value. For P-P connections, no target bitrate was set
when encoding the video using FFmpeg. However, since FFmpeg
encodes video at a significantly lower bitrate than B-B connections
when no target bitrate is specified, we also present resolution testing
results for P-P connections using a fixed target bitrate of 2 Mbps
across all tested resolutions for comparison. We note that even when
a target bitrate of 2 Mbps is specified, FFmpeg adjusts the actual
bitrate based on the content and resolution during the encoding
process. Baseline network conditions, as defined in Section 4.3, were
applied for all tests. The tested resolutions were 426x240, 854x480,
1280x720, and 1920x1080. The results are presented in Figure 8.

Insight #4: Video resolution vs. video bitrate: The bitrate signifi-
cantly impacts Obscura’s throughput across all connection types.
This behaviour is expected, as bitrate determines the amount of data
used per unit of time to encode video. Regarding video resolution,
the impact is primarily driven by frame size and the bitrate require-
ments associated with each specific resolution. In B-B connections,
which use browser-based real-time variable bitrate encoding, lower
resolutions are encoded with smaller average bitrates than higher

Proceedings on Privacy Enhancing Technologies 2026(1)

(Chrome (C-C) Firefox (F-F) Pion (P-P)
m m m
525 S25 S5
220 ! ° 220 220] ,
S515(1°58 51 o | 515 51528 LT
2.0/° ° F°4 2 [R
£1.0 £1.0 | €10 ° = o
2 0s]° 3 =% 3 2
305 305 - & 305 L4
0.0 0.0= 0.0 =
= 80 115 165 K 250 750 1500 2 5 10
RTT (ms) Bandwidth (Kbps) Packet Loss (%)

Figure 7: Results under varying network conditions. Leftmost figure: Varying system RTT; Middle figure: Varying bandwidth
constraints; Rightmost figure: Varying packet loss. Box plots follow the order shown in the legend.

= Chrome (C-C) Firefox (F-F) Pion Targetless Bitrate (P-P) 20 Pion 2 Mbps (P-P) | —20
32
S25 825 3 =] $ =, =
=20 z =20 - 2 -§ el 8 .
&= T = = &8 &8 To =

515 aFL Y 515 23 % % % A é :1.5 Tok gL 3Ll
210 i 21035 S g ® 3 o
o =eF =) - Q [o% 8 — 4 g 8 .
S05lewd - 205 o & 210 $ g
o0 So0l— = g 2 cc
£ 500 Kbps 1 Mbps 2 Mbps 5 Mbps =) RS 0 o° g 8 oF

Bitrate 6 o ooF o £ E :

< A A =05 g+ P-P
Resolution

Figure 8: Results with varying video parameters. Leftmost
figure: Varying bitrate; Rightmost figure: Varying resolution.
Box plots follow the order shown in the legend.

resolutions for the same video content. A similar trend is observed
in P-P connections, where FFmpeg adjusts the bitrate based on
resolution, even when a target bitrate is specified during encod-
ing. However, this adjustment occurs during the “offline” encoding
process, before transmission, rather than in real time, as in B-B con-
nections. This behaviour explains the upward trend in throughput
as resolution increases for both targeted and non-targeted bitrate
configurations in P-P connections. In the targeted bitrate scenario,
however, throughput values at higher resolutions become more
closely aligned, as FFmpeg attempts to maintain the specified target
bitrate across resolutions, causing differences in actual bitrate to
diminish with increasing resolution.

Insight #5: Bitrate and bottlenecks: With a target bitrate of 5
Mbps, F-F connections exhibit average throughput values closely
matching those of the baseline scenario described in Section 4.3.
This similarity arises because, under our testbench conditions, the
baseline F-F connections naturally achieve an average bitrate close
to 5 Mbps, as shown in Section 4.3. In contrast, C-C connections
did not naturally reach this bitrate by default in our tests. When a
5 Mbps bitrate is enforced, the average bitrate of C—C connections
increases accordingly, explaining the observed rise in throughput
compared to the baseline values. However, even when C-C and
F-F connections operate at the same higher bitrate values (above
2 Mbps), F-F connections outperform C-C in our testbench, sug-
gesting that factors beyond bitrate contribute to the performance
disparity. In addition, the throughput gains for B-B and P-P con-
nections diminish between 2 Mbps and 5 Mbps, with this range
exhibiting the smallest increase in throughput. On average, the
throughput rises by 0.34 Mbps between 2 Mbps and 5 Mbps, com-
pared to 0.38 Mbps between 500 Kbps and 1 Mbps, and 0.6 Mbps

592

Chatting Coding Gaming Sports
Video Profile

Figure 9: Box plots of throughput values for all video profiles
and connection types.

between 1 Mbps and 2 Mbps across all connection types. This pat-
tern suggests that at higher bitrates, factors other than the video
bitrate, such as system-level constraints, might become the primary
limitations on throughput.

4.5 Varying Video Profiles

This section analyses the impact of different video profiles across all
connection types. We selected four video profiles—Gaming, Chat-
ting, Coding, and Sports—based on those used in prior related
work [4]. For each profile, five distinct videos were used, and at
least 100 throughput measurements were collected per video. Fig-
ure 9 presents the box plots of the 500 throughput measurements
for each video profile per connection type. All videos were encoded
with a target bitrate of 2 Mbps. However, as previously discussed,
B-B connections enforce their bitrate due to the use of variable
real-time bitrate encoding.

Insight #6: Impact of video profile on throughput: As expected,
video profiles have a clear impact on throughput, as the content of
a video determines its level of visual dynamism and, consequently,
the required bitrate and frame sizes. The coding profile exhibits
the lowest average throughput across all connection types, primar-
ily due to its relatively static nature compared to other profiles.
However, this does not imply that every segment of a coding video
is static or results in low throughput. Some coding videos or spe-
cific segments may be as dynamic as those in other profiles, which
explains the high maximum values and outliers observed in the
throughput measurements for the coding profile. For example, in
P-P connections, within the coding profile, the difference between
the highest and lowest average bitrate reported by FFmpeg across
the five coding videos was 1,069 Kbps, illustrating the significant

Obscura

variability in content dynamism even within the same profile. Ad-
ditionally, P-P connections exhibit multiple low outliers for the
gaming profile. This discrepancy is likely due to one of the selected
videos featuring a strategy game with relatively static content,
leading to periods of lower throughput compared to the average
gaming video. B-B connections exhibit fewer outliers in the gaming
video profile, likely because the real-time bitrate encoding and the
browser’s tendency to maintain a target bitrate lead to more stable
throughput than P-P connections.

5 Security Analysis

This section examines Obscura’s resilience to attacks by cost-effective
censors, as defined in our threat model, and discusses potential fin-
gerprinting vectors that could be exploited within Obscura.

5.1 Proxy- and Packet Manipulation-Based
Attacks

Proxy enumeration and active probing: The ephemeral nature
of proxies, the heterogeneous pool of volunteers, and the vast num-
ber of available IP addresses that Obscura can leverage contribute
to a resistance to proxy enumeration and IP blocking comparable
to Snowflake [7, 40]. However, this resistance is contingent upon
two factors: (1) the number of volunteers recruited and (2) the un-
willingness of the censor to risk significant collateral damage by
blindly blocking IP addresses or performing highly manual tasks to
block proxies. For (1), given the relative ease of proxy deployment,
we assume that Obscura can access a proxy pool of a scale similar
to Snowflake’s. Additionally, gamification and other strategies to
expand the volunteer pool can be explored and implemented. Con-
cerning (2), these efforts have not been observed against Snowflake,
leading us to assume that censors appear reluctant to carry out such
blind or manual attacks, resulting in a similar outcome for Obscura.
However, as with data channel fingerprinting, we do not rule it out
as a potential future attack, though we assume that the possible high
proxy rejuvenation rates and the potential collateral damage may
present challenges for censors attempting to carry it out. Regarding
active probing, identifying Obscura proxies should be challenging
for censors, as the volunteer pool can comprise a diverse range of
devices with varying configurations. Furthermore, Obscura proxies
do not expose ports or accept incoming connections.

Packet manipulation: Altering or adding packets in any way
would be detected by the authentication and integrity mechanisms
of the SRTP protocol. Adversaries may attempt to drop packets
from the WebRTC media stream to disrupt the system’s functional-
ity. However, as demonstrated in Section 4.3, the reliability layer
incorporated in our system, together with the WebRTC retrans-
mission mechanisms, allows Obscura to tolerate a high percentage
of dropped packets without compromising the covert connection,
while maintaining reasonable throughput.

5.2 System Fingerprintibility

STUN Servers: Similar to Snowflake, we utilise a public pool of
STUN servers instead of deploying our own, aiming to cause collat-
eral damage to the censor if they attempt to block them. Addition-
ally, the STUN message format for B-B connections is identical to
that used by the browser. In contrast, P-P connections utilise the

593

Proceedings on Privacy Enhancing Technologies 2026(1)

STUN message format of Pion. Should the detection of P-P connec-
tions based on the format of STUN messages become a concern in
the future, disguising strategies could be implemented reactively.
Rendezvous Methods: As previously discussed, the resistance
of rendezvous channels to fingerprinting depends on the specific
method used. For rendezvous channels that use TLS and may be
vulnerable to TLS fingerprinting [23], B-B connections will inherit
the browser’s TLS fingerprint if the methods are compatible with
browser environments. In contrast, for rendezvous methods that
cannot be used within browsers or are used in P-P connections, TLS
fingerprinting can be mitigated by utilising the uTLS package [26].
Media Streams: We propose solutions that use multiple video
sources rather than relying on a single static source for all users,
thereby reducing the likelihood that the video can be exploited as a
system fingerprint. For a more detailed discussion on the feasibility
of video-based fingerprinting, see Appendix D. Additionally, we do
not alter the size of frames or create new ones. Instead, we modify
only the encrypted payload of the SRTP packets and ensure the
intended transmission rate is maintained, regardless of whether
there is data to encapsulate. While we do not currently consider
machine learning or deep learning-based traffic analysis attacks,
Obscura’s traffic could still be vulnerable to such techniques, partic-
ularly through packet-based timing analysis [3]. However, recent
research has shown that the accuracy claims of previous studies
on detecting censorship evasion systems do not hold, particularly
given the low base rates of circumvention traffic in practice [75].
Instead, the authors propose a methodology based on host detec-
tion and suggest that proxy ephemerality is an effective mitigation
strategy. Nevertheless, a traffic analysis study against Obscura, and
if necessary, the development of traffic shaping techniques or opti-
misations, should be considered should this threat become more
realistic. Since Pion does not support real-time encoding, the video
quality does not adapt to changing network conditions. This limi-
tation may serve as a distinctive fingerprint of Pion itself, which
censors might consider depending on the potential collateral dam-
age and cost of detection.

Session Duration Behaviour: Maintaining an always-on video
stream can increase bandwidth usage for users and volunteers,
potentially affecting Obscura’s usability. This raises an important
question: when should the stream start and stop? We argue that
maintaining the stream, even during user inactivity, is the most
viable approach for two reasons. First, the system cannot reliably
detect user idleness unless the user explicitly stops Obscura, and fre-
quent stream connection interruptions may cause anomalous traffic
patterns. Second, the system is never completely idle; the session
layer connection must be maintained through control packets even
without user interaction. Terminating the connection would result
in loss of session state, forcing the user to restart the session. We
acknowledge the trade-off between blending in, based on our under-
standing of typical WebRTC usage patterns, and ensuring system
usability for users in censored regions. However, bandwidth con-
straints may also lead to unforeseen usage behaviours, particularly
when connections are maintained until users actively disconnect,
such as repeatedly connecting briefly to perform a task and then
disconnecting immediately afterwards. Nevertheless, we propose
a mitigation strategy that, while not ideal, may reduce bandwidth
consumption while maintaining active connections: dynamically

Proceedings on Privacy Enhancing Technologies 2026(1)

lowering the video bitrate or resolution during assumed idle peri-
ods. Although this approach may introduce its own fingerprints, it
more closely resembles standard browser-based WebRTC behaviour,
which adapts video quality to network conditions, than repeatedly
tearing down and reestablishing connections during idle periods.
Insertable Streams API: The Insertable Streams API is not negoti-
ated during the establishment of a WebRTC connection, making
it impossible to detect its use by observing the connection setup
alone. While more sophisticated attacks, such as timing-based traf-
fic analysis, could allow censors to infer its use, we consider this
issue analogous to that discussed in the media stream paragraph.
DTLS Protocol: B-B connections provide proactive resistance to
DTLS fingerprinting by ensuring that the fingerprints of the Clien-
tHello and ServerHello messages match those of genuine browsers.
To evaluate our resistance to DTLS fingerprinting, we captured
100 DTLS handshakes for each of the following WebRTC-based
applications: Facebook Messenger, Google Meet, Discord, and a
sample WebRTC application [54]. For each application, 50 hand-
shakes were collected using Chrome and 50 using Firefox. We also
captured 100 handshakes for Obscura, consisting of 50 from F-
F connections and 50 from C-C connections. We used the dfind
tool [38] to automatically identify unique identifiers in Obscura’s
DTLS handshakes by analysing the following ClientHello fields:
length, fragment offset, DTLS version, cookie length, cipher suite
length, cipher suites, extension length, and extensions. For the
ServerHello messages, the same fields were analysed except for
cipher suites and cipher suite length fields, which were replaced
by the chosen cipher field. We observed no unique identifiers in
either C-C or F-F connections, except for variations in the order
of ClientHello extensions, particularly in C-C connections, while
the set of extensions remained constant. However, the ordering
varied across handshakes in Chrome, even for the same application,
indicating that relying solely on this feature could lead to false pos-
itives. When the sample WebRTC application was excluded from
the dataset, C-C connections still exhibited no unique identifiers.
However, F-F connections showed unique identifiers in the Server-
Hello message, including a length of 86 bytes, a chosen cipher suite
of 0x1301 (TLS_AES_128 GCM_SHAZ256), and an extension field
length of 46 bytes We argue that this fingerprint is not unique to
Obscura, but rather corresponds to the default WebRTC fingerprint
in Firefox. Therefore, blocking such handshakes would also result in
the blocking of legitimate Firefox-based WebRTC connections. For
Pion-based clients or proxies, DTLS handshakes are implemented
by Pion and, similar to Snowflake, may produce identifiable finger-
prints. Thus, achieving resistance to DTLS fingerprinting requires
a reactive strategy, involving either manual or automated updates
to mitigate potential fingerprints [38].

5.3 Differential Degradation Attacks

Differential degradation attacks [59] aim to render censorship eva-
sion systems unusable while allowing the carrier application to re-
main functional. The original paper introduced these attacks in the
context of WebRTC-based systems, specifically targeting Snowflake
and Protozoa [4]. Protozoa, like Obscura, is a WebRTC-based cen-
sorship evasion system that uses media streams for encapsulation.
In this section, we focus on the DDA against Protozoa, as we argue

594

that the attack on Snowflake can be mitigated by simply switching
the carrier protocol from data channels to media channels. The
attack proposed against Protozoa aims to degrade covert channel
throughput while preserving acceptable video quality for regular
WebRTC connections. Instead of causing indiscriminate packet loss,
the idea is to selectively drop RTP packets, leveraging the original
authors’ observation that the loss of a single packet can result in
the entire video frame being discarded. The authors demonstrate
that even low frame loss rates can reduce throughput to single-digit
KBps, as each lost frame may result in the loss of multiple covert
packets. Considering that Protozoa lacks a reliability layer, requires
complete frames to recover covert data, and relies on browser-based
WebRTC connections, which degrade video quality in the presence
of packet loss, we hypothesise that this attack could be mitigated
by addressing each of these limitations, all of which are handled by
P-P connections.

We perform the attack as described by the authors to test our hy-
pothesis. First, we determine whether the connection is a WebRTC
connection. If it is, we inspect all outgoing SRTP packets associated
with the connection, examining their payload type and marker bit
fields [8]. The payload type field indicates whether the packet con-
tains video or audio content, while the marker bit field identifies
the last packet of a frame. We use the Netfilter Linux library [41]
to intercept packets at both the client and the proxy, leveraging the
setup described in Section 4.2, and randomly sample a percentage of
frames to drop. However, since we were unsure how the authors en-
forced packet loss—whether only a single packet from a frame was
dropped, all packets were dropped, or some intermediate number of
packets were dropped—we simulated two attack scenarios: the best-
case and the worst-case scenarios. In the best-case, a single packet
from a frame is dropped, while in the worst-case, every packet of a
frame is dropped. Specifically, for the worst-case, we dropped all
packets with a marker bit of 0 that occurred between two packets
with a marker bit of 1, including the final packet with a marker bit
of 1, for frames marked for dropping. For the best-case, we dropped
only packets with a marker bit value of 1, for frames marked for
dropping. This frame loss is applied bidirectionally to the stream,
and we conduct tests at 1920x1080 and 426x240 resolutions for P-P
connections, for both video encoded with a target bitrate of 2 Mbps
and without any specified target bitrate. For each resolution, we
evaluate different frame loss percentages. The results are presented
in Figure 10. For context, at a resolution of 1920x1080 with 15%
frame loss, the authors report that Protozoa’s throughput drops
to single-digit KBps, while the video stream maintains acceptable
quality. A similar effect is observed at 426x240 with 50% frame loss.

Our results, shown in Figure 10, indicate that Obscura’s through-
put degradation in the best-case scenario is substantially lower
than that reported for Protozoa in [59]. In the worst-case scenario
(Figure 11), although throughput is significantly lower than in the
best-case, it remains reasonably higher than the values reported
in [59] for equivalent frame loss percentages. The average through-
put drops below 100 Kbps (12.5 KBps) only for 426x240 at 2 Mbps
with 50% and 70% frame loss, and for 1920x1080 at 2 Mbps with 45%
frame loss. However, the authors did not evaluate a 45% frame loss
for the 1920x1080 resolution, and their results indicate noticeable
video quality degradation at 70% frame loss for the 426x240 reso-
lution. We hypothesise that bitrate affects the rate of throughput

Obscura

| 426x240 2 Mbps (P-P)

~4 1920x1080 2 Mbps (P-P) .
2 HE 426x240 200 Kbps (P-P)

[1920x1080 600 Kbps (P-P)

Etz g2

%1.5 é I 1 %1.5 g ,L .
§1.0 [T T Jé % §1.0 18 in é
205 ; i L8 gosi = .T -l
E00 55 15 55 a5 £%°70 20 30 s0 70

Frame Loss (%) Frame Loss (%)

Figure 10: Results of DDAs on P-P connections for the best-
case scenario.

4 1920x1080 2 Mbps (P-P)] 426x240 2 Mbps (P-P)

m Py | @ .
g > FH 1920x1080 600 Kbps (P-P) g_ 20 B 426x240 200 Kbps (P-P)
2157 | 215 \1

5 .07 5

3101 I 31.0

05 ; f . 505

800 ¥ . Sools & = o .
£ 0 5 15 25 45 £ 0 20 30 50 70

Frame Loss (%) Frame Loss (%)

Figure 11: Results of DDAs on P-P connections for the worst-
case scenario.

degradation under this attack. Higher bitrates, even at lower reso-
lutions, increase frame size and the number of packets per frame,
causing Obscura to embed more data per frame. Consequently, los-
ing a single frame results in greater data loss, and more dropped
packets require additional retransmissions. We also speculate that
as the attack transitions from best to worst-case scenarios, the
importance of decapsulation granularity decreases, while the relia-
bility layer and Pion’s lack of video quality adaptation in response
to packet loss become more significant. However, even in the worst-
case scenario, performing decapsulation at the RTP packet level
may still be beneficial because it allows faster access to individ-
ual RTP packets containing covert Obscura packets, rather than
waiting for the reassembly of complete frames. Since the features
described above are present in P-P connections but absent in B-B
connections, the latter are more susceptible to DDAs. This creates a
trade-off between enhanced resilience to the media stream variant
of DDAs and proactive resistance to DTLS fingerprinting within
our system. If P-P connections are used, reactive patches must be
applied to potential fingerprints to maintain DPI resistance, as in
Snowflake. Further details on DDAs are provided in Appendix H.

6 Related Work

WebRTC-Based Censorship Evasion Systems: TorKameleon [70]
is a preliminary experimental Tor pluggable transport designed
to evaluate the resilience of WebRTC-based traffic encapsulation
against active correlation attacks. Obscura builds upon TorKame-
leon by redesigning its architecture, trust model, and encapsulation
techniques. It incorporates ephemeral proxies, a reliability layer,
new client and proxy instance types, interoperability mechanisms,
novel encapsulation algorithms, and a distinct threat model, accom-
panied by a novel security and performance analyses. While we
have discussed Snowflake [7] throughout this paper, its primary

595

Proceedings on Privacy Enhancing Technologies 2026(1)

distinction from Obscura lies in its use of data channels rather
than media streams. Protozoa [4], another WebRTC media stream
encapsulation-based system, modifies the Chromium browser by
embedding hooks to intercept encoded frames. However, this design
poses significant challenges for real-world deployment, requiring
compiling a customised version of Chromium. Protozoa also lacks
a reliability layer and, like Snowflake, responds reactively to DTLS
fingerprinting. Users must repeatedly download and recompile
updated Chromium builds with the necessary hooks, a process
significantly more complex than simply updating a browser, as is
the case with Obscura’s B-B connections. Additionally, Protozoa
lacks proxy ephemerality and relies on a trust model built around
trusted volunteers. Stegozoa [24], an iteration over Protozoa, uses
steganography to conceal data within video frames. However, it
experiences reduced throughput due to a stricter threat model and
inherits the limitations of Protozoa. Finally, uProxy [63], similar to
Snowflake, uses WebRTC data channels, but its proxies are static.

Ephemeral Proxy-Based Censorship Evasion Systems: In addi-
tion to Snowflake, several other systems implement proxy ephemer-
ality. Flash Proxy [22], the precursor to Snowflake, enables clients
to switch between browser-based proxies in real time, although
it relies on WebSocket connections rather than WebRTC. Spot-
Proxy [35] automates the migration of proxies from censorship
evasion systems across lower-cost cloud virtual machines. Other
systems, including NetShuffle [34] and MassBrowser [40], adopt
similar approaches to proxy ephemerality. For instance, NetShuf-
fle obfuscates edge network domain-to-IP mappings: clients are
assigned a proxy identifier (e.g., a domain name) and NetShuffle’s
DNS resolver maps this to a temporary, client-facing IP address
that differs from the proxy’s actual internal IP. Finally, although
MassBrowser is not explicitly designed for ephemeral proxies, it
pairs users with volunteer proxies selected from a dynamic pool,
some of which may be untrusted by the user.

7 Conclusion

This paper introduced a novel encapsulation-based censorship eva-
sion system designed to defend against a threat model characterised
as the cost-effective censor. To address this adversary, we proposed
a unified approach that integrates techniques not previously com-
bined within a single system, specifically WebRTC media-based
encapsulation and proxy ephemerality, while supporting both Pion
and browser-based client and proxy instances. Within this threat
model, we also presented a mitigation strategy for a new class of
attacks, called differential degradation attacks, targeting WebRTC-
based censorship evasion systems. We believe that the system can
be deployed in real-world settings and that its core techniques
could be incorporated into other WebRTC-based censorship eva-
sion systems, such as Snowflake. However, we acknowledge that
our design reflects explicit trade-offs between our intended goals
and the practical constraints of real-world usability. While our de-
sign has allowed us to achieve our objectives, we acknowledge
that alternative decisions may be necessary in more constrained
deployment scenarios, such as those with limited bandwidth. We ar-
gue that such considerations can only be fully understood through
real-world deployment and observing the system in operation.

Proceedings on Privacy Enhancing Technologies 2026(1)

Acknowledgments

We thank the anonymous reviewers and our revision editor for their
valuable feedback, suggestions, and discussions. This work was sup-
ported by the FCT Ph.D. scholarship grant Ref. (PRT/BD/154787/2023),
awarded by the CMU Portugal Affiliated Ph.D. program, by UID/04-
516/NOVA Laboratory for Computer Science and Informatics (NOVA
LINCS) with the financial support of FCT.IP (Fundagio para a Cién-
cia e a Tecnologia) and by national funds through FCT.IP, under the
support UID/50014/2023 (https://doi.org/10.54499/UID/50014/2023).
This work was developed within the scope of the project HOSKY,
with reference 2024.07347.IACDC, co-funded by Component 5 - Cap-
italization and Business Innovation, integrated in the Resilience Di-
mension of the Recovery and Resilience Plan within the scope of the
Recovery and Resilience Mechanism (MRR) of the European Union
(EU), framed in the Next Generation EU, for the period 2021-2026,
measure RE-C05-108.M04 (to support the launch of a programme of
R&D projects geared towards the development and implementation
of advanced cybersecurity, artificial intelligence and data science
systems in public administration, as well as a scientific training pro-
gramme), as part of the funding contract signed between the Recov-
ering Portugal Mission Structure (EMRP) and the FCT.IP, as inter-
mediary beneficiary (https://doi.org/10.54499/2024.07347.JACDC).
Finally, we acknowledge our use of ChatGPT4 to revise the text
throughout the writing of the paper, correcting typos, grammatical
errors, and awkward phrasing.

References

[1] Pion. Pion WebRTC. https://github.com/pion/webrtc

[2] Harald T. Alvestrand. 2021. Overview: Real-Time Protocols for Browser-Based
Applications. RFC 8825. https://doi.org/10.17487/RFC8825

Diogo Barradas, Nuno Santos, and Luis Rodrigues. 2018. Effective Detection of
Multimedia Protocol Tunneling using Machine Learning. In 27th USENIX Security
Symposium (USENIX Security 18). USENIX Association.

Diogo Barradas, Nuno Santos, Luis Rodrigues, and Vitor Nunes. 2020. Poking a
Hole in the Wall: Efficient Censorship-Resistant Internet Communications by
Parasitizing on WebRTC. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. Association for Computing Machinery.
Ali C. Begen, Paul Kyzivat, Colin Perkins, and Mark J. Handley. 2021. SDP: Session
Description Protocol. RFC 8866. https://doi.org/10.17487/RFC8866

Big Buck Bunny. 2008. Big Buck Bunny. https://peach.blender.org/ Accessed:
2025-02-25.

Cecylia Bocovich, Arlo Breault, David Fifield, Serene, and Xiaokang Wang. 2024.
Snowflake, a censorship circumvention system using temporary WebRTC proxies.
In 33rd USENIX Security Symposium (USENIX Security 24). USENIX Association.
Elisabetta Carrara, Karl Norrman, David McGrew, Mats Naslund, and Mark
Baugher. 2004. The Secure Real-time Transport Protocol (SRTP). RFC 3711.
https://doi.org/10.17487/RFC3711

Jungiang Chen, Guang Cheng, and Hantao Mei. 2023. FFACCUMUL: A Protocol
Fingerprint and Accumulative Payload Length Sample-Based Tor-Snowflake
Traffic-Identifying Framework. Applied Sciences (2023).

Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. 2022. Online Website Fin-
gerprinting: Evaluating Website Fingerprinting Attacks on Tor in the Real World.
In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association.
Google Cloud. 2025. Google Cloud Pub/Sub. https://cloud.google.com/pubsub
Accessed: 2025-02-25.

Cloudflare. 2025. TURN Service. https://developers.cloudflare.com/calls/turn/
Accessed: 2025-02-25.

dmbb. 2020. Protozoa repo. https://github.com/dmbb/Protozoa/blob/master/
machine_setup/Vagrantfile Accessed: 2025-02-25.

MDN Web Docs. 2025. RTCEncodedVideoFrame. https://developer.mozilla.org/
en-US/docs/Web/API/RTCEncodedVideoFrame Accessed: 2025-02-25.

MDN Web Docs. 2025. Web Workers API - Web APIs. https://developer.mozilla.
org/en-US/docs/Web/API/Web_Workers_API Accessed: 2025-02-25.

Arun Dunna, Ciaran O’Brien, and Phillipa Gill. 2018. Analyzing China’s Blocking
of Unpublished Tor Bridges. In 8th USENIX Workshop on Free and Open Commu-
nications on the Internet (FOCI 18). USENIX Association.

(3

[4

fla

[9

=

[10

[11

[12]
[13]

[14

[15]

[16]

596

[17] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and
Vern Paxson. 2015. Examining How the Great Firewall Discovers Hidden Cir-
cumvention Servers. In Proceedings of the 2015 Internet Measurement Conference.
Association for Computing Machinery.

Yuzhou Feng, Ruyu Zhai, Radu Sion, and Bogdan Carbunar. 2023. A Study of
China’s Censorship and Its Evasion Through the Lens of Online Gaming. In
USENIX Security Symposium. USENIX. https://www.usenix.org/system/files/
usenixsecurity23-feng.pdf

FFmpeg. 2025. FFmpeg. https://www.fimpeg.org/ Accessed: 2025-02-25.

David Fifield. 2020. Turbo Tunnel, a good way to design censorship circumvention
protocols. In Free and Open Communications on the Internet. USENIX.

David Fifield and Mia Gil Epner. 2016. Fingerprintability of WebRTC.
arXiv:1605.08805

David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Roger Dingledine,
Phil Porras, and Dan Boneh. 2012. Evading Censorship with Browser-Based
Proxies. In Privacy Enhancing Technologies Symposium. Springer.

David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. Privacy Enhancing
Technologies 2015, 2 (2015).

Gabriel Figueira, Diogo Barradas, and Nuno Santos. 2022. Stegozoa: Enhancing
WebRTC Covert Channels with Video Steganography for Internet Censorship
Circumvention. In Proceedings of the 2022 ACM on Asia Conference on Computer
and Communications Security. Association for Computing Machinery.

Sergey Frolov, Jack Wampler, and Eric Wustrow. 2020. Detecting Probe-resistant
Proxies. In Network and Distributed System Security. The Internet Society.
Sergey Frolov and Eric Wustrow. 2019. The use of TLS in Censorship Circum-
vention. In Network and Distributed System Security. The Internet Society.
Google. 2025. RTP VP8 Packetization Format Source Code. https:
//chromium.googlesource.com/external/webrtc/+/lkgr/modules/rtp_rtcp/
source/rtp_format_vp8.cc Accessed: 2025-02-27.

Devashish Gosain, Kartikey Singh, Rishi Sharma, Jithin S, and Sambuddho Chakra-
vaty. 2024. Out in the Open: On the Implementation of Mobile App Filtering in
India. In Passive and Active Measurement Conference. Springer.

David Hasselquist, Ethan Witwer, August Carlson, Niklas Johansson, and Niklas
Carlsson. 2024. Raising the Bar: Improved Fingerprinting Attacks and Defenses
for Video Streaming Traffic. Privacy Enhancing Technologies 2024, 4.

Nguyen Phong Hoang, Jakub Dalek, Masashi Crete-Nishihata, Nicolas Christin,
Vinod Yegneswaran, Michalis Polychronakis, and Nick Feamster. 2024. GFWeb:
Measuring the Great Firewall’s Web Censorship at Scale. In USENIX Security
Symposium. USENIX.

Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey Knockel,
Pellaeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa Gill, and Michalis
Polychronakis. 2021. How Great is the Great Firewall? Measuring China’s DNS
Censorship. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association.

Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil Zuss-
man. 2018. Performance Evaluation of WebRTC-based Video Conferencing.
SIGMETRICS Perform. Eval. Rev. (2018). https://doi.org/10.1145/3199524.3199534
Ari Keranen, Christer Holmberg, and Jonathan Rosenberg. 2018. Interactive
Connectivity Establishment (ICE): A Protocol for Network Address Translator
(NAT) Traversal. RFC 8445. https://doi.org/10.17487/RFC8445

Patrick Tser Jern Kon, Aniket Gattani, Dhiraj Saharia, Tianyu Cao, Diogo Bar-
radas, Ang Chen, Micah Sherr, and Benjamin E. Ujcich. 2024. NetShuffle: Circum-
venting Censorship with Shuffle Proxies at the Edge. In Symposium on Security &
Privacy. IEEE.

Patrick Tser Jern Kon, Sina Kamali, Jinyu Pei, Diogo Barradas, Ang Chen, Micah
Sherr, and Moti Yung. 2024. SpotProxy: Rediscovering the Cloud for Censorship
Circumvention. In USENIX Security Symposium. USENIX.

Alexander Master and Christina Garman. 2023. A Worldwide View of Nation-
state Internet Censorship. In Free and Open Communications on the Internet.
Philip Matthews, Jonathan Rosenberg, Dan Wing, and Rohan Mahy. 2008. Session
Traversal Utilities for NAT (STUN). RFC 5389. https://doi.org/10.17487/RFC5389
Theodor Signebgen Midtlien. 2024. Reducing distinguishability of DTLS for usage
in Snowflake. Master’s thesis. Norwegian University of Science and Technology
(NTNU).

Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. DeepCorr: Strong
Flow Correlation Attacks on Tor Using Deep Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. Association
for Computing Machinery.

Milad Nasr, Hadi Zolfaghari, Amir Houmansadr, and Amirhossein Ghafari. 2020.
MassBrowser: Unblocking the Censored Web for the Masses, by the Masses. In
Network and Distributed System Security. The Internet Society.

Netfilter. 2025. Netfilter. https://www.netfilter.org/ Accessed: 2025-02-25.
Arian Akhavan Niaki, Shinyoung Cho, Zachary Weinberg, Nguyen Phong Hoang,
Abbas Razaghpanah, Nicolas Christin, and Phillipa Gill. 2020. ICLab: A Global,
Longitudinal Internet Censorship Measurement Platform. In 2020 IEEE Sympo-
sium on Security and Privacy (SP).

[29

[30

[31

[33

[34

[35

'S
S

[37

[38

(39]

[40

N
=

[42

https://doi.org/10.54499/UID/50014/2023
https://doi.org/10.54499/2024.07347.IACDC
https://github.com/pion/webrtc
https://doi.org/10.17487/RFC8825
https://doi.org/10.17487/RFC8866
https://peach.blender.org/
https://doi.org/10.17487/RFC3711
https://cloud.google.com/pubsub
https://developers.cloudflare.com/calls/turn/
https://github.com/dmbb/Protozoa/blob/master/machine_setup/Vagrantfile
https://github.com/dmbb/Protozoa/blob/master/machine_setup/Vagrantfile
https://developer.mozilla.org/en-US/docs/Web/API/RTCEncodedVideoFrame
https://developer.mozilla.org/en-US/docs/Web/API/RTCEncodedVideoFrame
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://www.usenix.org/system/files/usenixsecurity23-feng.pdf
https://www.usenix.org/system/files/usenixsecurity23-feng.pdf
https://www.ffmpeg.org/
https://arxiv.org/abs/1605.08805
https://chromium.googlesource.com/external/webrtc/+/lkgr/modules/rtp_rtcp/source/rtp_format_vp8.cc
https://chromium.googlesource.com/external/webrtc/+/lkgr/modules/rtp_rtcp/source/rtp_format_vp8.cc
https://chromium.googlesource.com/external/webrtc/+/lkgr/modules/rtp_rtcp/source/rtp_format_vp8.cc
https://doi.org/10.1145/3199524.3199534
https://doi.org/10.17487/RFC8445
https://doi.org/10.17487/RFC5389
https://www.netfilter.org/

Obscura

[43]

[44]

[45]

[46]

[47

[48]

[49

[50]

[51

[52]

[53]

[59]

[60

[61]

[67]

[68

[69]

[70

(71

Sadia Nourin, Van Tran, Xi Jiang, Kevin Bock, Nick Feamster, Nguyen Phong
Hoang, and Dave Levin. 2023. Measuring and Evading Turkmenistan’s Internet
Censorship. In The International World Wide Web Conference. ACM.

Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. 2010. The Akamai network:
a platform for high-performance internet applications. SIGOPS Oper. Syst. Rev.
(2010). https://doi.org/10.1145/1842733.1842736

Ramakrishna Padmanabhan, Arturo Filastd, Maria Xynou, Ram Sundara Raman,
Kennedy Middleton, Mingwei Zhang, Doug Madory, Molly Roberts, and Alberto
Dainotti. 2021. A multi-perspective view of Internet censorship in Myanmar. In
Free and Open Communications on the Internet. ACM.

Pion. 2024. vp8_packet.go. https://github.com/pion/rtp/blob/
a21194ecfb5362261a0dc4af1f68e4a8944df345/codecs/vp8_packet.go#L6 Accessed:
2025-02-25.

Pion. 2025. bandwidth-estimation-from-disk. https://github.com/pion/webrtc/
tree/master/examples/bandwidth-estimation-from-disk Accessed: 2025-02-25.
Pion. 2025. constants.go. https://github.com/pion/webrtc/blob/
44062a7a78006d7e6b2f97d991ad3c12a648150c/constants.go#L.28 Accessed: 2025-
02-25.

Pion. 2025. rtp-to-webrtc. https://github.com/pion/webrtc/tree/master/examples/
rtp-to-webrtc Accessed: 2025-02-25.

Michael Pu, Andrew Wang, Anthony Chang, Kieran Quan, and Yi Wei Zhou. 2024.
Exploring Amazon Simple Queue Service SQS for Censorship Circumvention.
In Free and Open Communications on the Internet.

Raymond Rambert, Zachary Weinberg, Diogo Barradas, and Nicolas Christin.
2021. Chinese Wall or Swiss Cheese? Keyword filtering in the Great Firewall of
China. In WWW. ACM.

Marc B. Rosen, James Parker, and Alex J. Malozemoff. 2021. Balboa: Bobbing
and Weaving around Network Censorship. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association.

Zach Rosson, Felicia, and Carolyn Tackett. 2024. The most violent year: inter-
net shutdowns in 2023. https://www.accessnow.org/internet-shutdowns-2023/.
Accessed: 2025-02-12.

WebRTC samples. 2023. Stream from a video to a peer connection. https:
//webrtc.github.io/samples/src/content/capture/video-pc/ Accessed: 2025-02-25.
Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. 2003.
RTP: A Transport Protocol for Real-Time Applications. RFC 3550. https://doi.
org/10.17487/RFC3550

Selenium. 2025. Selenium. https://www.selenium.dev/ Accessed: 2025-02-25.
skywind3000. 2020. KCP - A Fast and Reliable ARQ Protocol. https://github.
com/skywind3000/kcp/blob/1.7/README.en.md Accessed: 2025-02-25.

Sophie Stalla-Bourdillon, Evangelia Papadaki, and Tim Chown. 2014. From porn
to cybersecurity passing by copyright: How mass surveillance technologies are
gaining legitimacy ... The case of deep packet inspection technologies. Computer
Law & Security Review (2014).

Zhen Sun and Vitaly Shmatikov. 2024. Differential Degradation Vulnerabilities
in Censorship Circumvention Systems. arXiv:2409.06247 [cs.CR]

The Tor Project. 2025. Performance. https://metrics.torproject.org/torperf.html
Accessed: 2025-02-25.

A. Troianovski and V. Safronova. 2022. Russia takes censorship to new extremes,
stifling war coverage. The New York Times (2022). https://www.nytimes.com/
2022/03/04/world/europe/russia- censorship-media-crackdown.html Accessed:
2025-02-12.

Michael Carl Tschantz, Sadia Afroz, Anonymous, and Vern Paxson. 2016. SoK:
Towards Grounding Censorship Circumvention in Empiricism. In Symposium
on Security & Privacy. IEEE. https://www.eecs.berkeley.edu/~sa499/papers/
oakland2016.pdf

uProxy. -. uProxy. https://www.uproxy.org/ Accessed: 2025-02-12.

A. Vakali and G. Pallis. 2003. Content delivery networks: status and trends. IEEE
Internet Computing (2003). https://doi.org/10.1109/MIC.2003.1250586

Verizon. 2025. IP Latency Statistics. https://www.verizon.com/business/terms/
latency/ Accessed: 2025-02-25.

Vasilis Ververis, Lucas Lasota, Tatiana Ermakova, and Benjamin Fabian. 2023.
Website blocking in the European Union: Network interference from the per-
spective of Open Internet. Policy & Internet (2023).

Afonso Vilalonga. 2025. GitHub Issue #233: Frame packetization. https://github.
com/w3c/webrtc-encoded-transform/issues/233 Accessed: 2025-02-25.

Afonso Vilalonga. 2025. Obscura—Artifact. https://github.com/AfonsoVilalonga/
Obscura---Artifact

Afonso Vilalonga, Kevin Gallagher, Osman Yagan, Jodo S. Resende, and Henrique
Domingos. 2025. Extended Abstract: Using TURN Servers for Censorship Evasion.
In Free and Open Communications on the Internet.

Afonso Vilalonga, Joao S. Resende, and Henrique Domingos. 2023. TorKameleon:
Improving Tor’s Censorship Resistance with K-anonymization and Media-based
Covert Channels . In 2023 IEEE 22nd International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). IEEE Computer Society.
Afonso Vilalonga, Jodo S. Resende, and Henrique Domingos. 2024. Looking at the
Clouds: Leveraging Pub/Sub Cloud Services for Censorship-Resistant Rendezvous
Channels. In Free and Open Communications on the Internet.

597

Proceedings on Privacy Enhancing Technologies 2026(1)

(72

Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy. 2024. Commu-
nication Breakdown: Modularizing Application Tunneling for Signaling Around
Censorship. Privacy Enhancing Technologies 2024, 1 (2024).

W3C. 2025. WebRTC Encoded Transform. https://github.com/w3c/webrtc-
encoded-transform/blob/main/explainer.md Accessed: 2025-02-25.

Ryan Wails, Andrew Stange, Eliana Troper, Aylin Caliskan, Roger Dingledine,
Rob Jansen, and Micah Sherr. 2022. Learning to Behave: Improving Covert
Channel Security with Behavior-Based Designs. Proceedings on Privacy Enhancing
Technologies (PoPETs) 2022, 3 (2022). https://doi.org/10.56553/popets-2022-0068
Ryan Wails, George Arnold Sullivan, Micah Sherr, and Rob Jansen. 2024. On Pre-
cisely Detecting Censorship Circumvention in Real-World Networks. In Network
and Distributed System Security. The Internet Society.

Patrik Westin, Henrik Lundin, Michael Glover, Justin Uberti, and Frank Galligan.
2016. RTP Payload Format for VP8 Video. RFC 7741. https://doi.org/10.17487/
RFC7741

Philipp Winter and Stefan Lindskog. 2012. How the Great Firewall of China is
Blocking Tor. In Free and Open Communications on the Internet. USENIX.
Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,
Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
2023. How the Great Firewall of China Detects and Blocks Fully Encrypted
Traffic. In USENIX Security Symposium. USENIX.

xtaci. 2023. smux. https://github.com/xtaci/smux Accessed: 2025-02-25.
Diwen Xue, Benjamin Mixon-Baca, ValdikSS, Anna Ablove, Beau Kujath, Je-
didiah R. Crandall, and Roya Ensafi. 2022. TSPU: Russia’s Decentralized Censor-
ship System. In Internet Measurement Conference. ACM.

Diwen Xue, Reethika Ramesh, ValdikSS, Leonid Evdokimov, Andrey Viktorov,
Arham Jain, Eric Wustrow, Simone Basso, and Roya Ensafi. 2021. Throttling
Twitter: an emerging censorship technique in Russia. In Internet Measurement
Conference. ACM.

Tony Huiquan Zhang, Jianhua Xu, and Jinjin Liu. 2024. How Do Toothless
Tigers Bite? Extra-institutional Governance and Internet Censorship by Local
Governments in China. The China Quarterly (2024).

[73

(74

=
s

(82

A Implementation

Our Pion-based instances were developed in Go (version 1.21.2)
using the Pion framework (version V4), while the browser-based
instances were implemented in JavaScript and HTML. For testing,
we used Node.js (version 18.18) to serve the WebRTC web appli-
cation. The Go codebase comprises approximately 5,000 lines of
code, with some overlap across components, while the JavaScript
and HTML codebase consists of around 4,000 lines, including over-
lapping sections for different browser implementations.
Browser-based proxies and clients use the Web Workers API [15]
to handle tasks such as encapsulation, decapsulation, and synthetic
frame generation in separate threads, preventing performance bot-
tlenecks. Each browser-based proxy supports only one client to
avoid overloading volunteers’ devices, although it can be configured
to support multiple clients. Additionally, we developed a Go-based
intermediary layer to enable communication between the client
software and the browser-based WebRTC application. This layer
processes incoming client packets, delivers them to the KCP/smux
stack, and forwards them to the browser via a local WebSocket. The
Go layer is used exclusively for browser-based client instances.

B Rendezvous Channels

In this section, we present the rendezvous channels developed par-
allel with Obscura in more detail. While we provide a brief overview
of both, detailed explanations and justifications for each are beyond
the scope of this paper and are left to their respective publications.
Additionally, it is worth noting that the TURN rendezvous system
is still under development.

Google Pub/Sub Service [71]: The Google Pub/Sub service ren-
dezvous channel utilises the Google Pub/Sub service [11] as a relay
for information exchange. The client initially contacts the broker
by sending an initialisation message to a designated topic, which is

https://doi.org/10.1145/1842733.1842736
https://github.com/pion/rtp/blob/a21194ecfb5362261a0dc4af1f68e4a8944df345/codecs/vp8_packet.go#L6
https://github.com/pion/rtp/blob/a21194ecfb5362261a0dc4af1f68e4a8944df345/codecs/vp8_packet.go#L6
https://github.com/pion/webrtc/tree/master/examples/bandwidth-estimation-from-disk
https://github.com/pion/webrtc/tree/master/examples/bandwidth-estimation-from-disk
https://github.com/pion/webrtc/blob/44062a7a78006d7e6b2f97d991ad3c12a648150c/constants.go#L28
https://github.com/pion/webrtc/blob/44062a7a78006d7e6b2f97d991ad3c12a648150c/constants.go#L28
https://github.com/pion/webrtc/tree/master/examples/rtp-to-webrtc
https://github.com/pion/webrtc/tree/master/examples/rtp-to-webrtc
https://www.accessnow.org/internet-shutdowns-2023/
https://webrtc.github.io/samples/src/content/capture/video-pc/
https://webrtc.github.io/samples/src/content/capture/video-pc/
https://doi.org/10.17487/RFC3550
https://doi.org/10.17487/RFC3550
https://www.selenium.dev/
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://github.com/skywind3000/kcp/blob/1.7/README.en.md
https://arxiv.org/abs/2409.06247
https://metrics.torproject.org/torperf.html
https://www.nytimes.com/2022/03/04/world/europe/russia-censorship-media-crackdown.html
https://www.nytimes.com/2022/03/04/world/europe/russia-censorship-media-crackdown.html
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf
https://www.eecs.berkeley.edu/~sa499/papers/oakland2016.pdf
https://www.uproxy.org/
https://doi.org/10.1109/MIC.2003.1250586
https://www.verizon.com/business/terms/latency/
https://www.verizon.com/business/terms/latency/
https://github.com/w3c/webrtc-encoded-transform/issues/233
https://github.com/w3c/webrtc-encoded-transform/issues/233
https://github.com/AfonsoVilalonga/Obscura---Artifact
https://github.com/AfonsoVilalonga/Obscura---Artifact
https://github.com/w3c/webrtc-encoded-transform/blob/main/explainer.md
https://github.com/w3c/webrtc-encoded-transform/blob/main/explainer.md
https://doi.org/10.56553/popets-2022-0068
https://doi.org/10.17487/RFC7741
https://doi.org/10.17487/RFC7741
https://github.com/xtaci/smux

Proceedings on Privacy Enhancing Technologies 2026(1)

subscribed to exclusively by brokers. The client establishes a sym-
metric key with the broker, which is then used to encrypt messages
sent to the user through a topic that is exclusively subscribed to
by users. Since multiple users can access the same topic simultane-
ously, a unique symmetric key must be established between each
user and the broker. Once the client and the broker have established
the symmetric key, Obscura’s WebRTC signalling phase proceeds,
as shown in Figure 2. The Google Pub/Sub service functions as the
rendezvous channel, routing all messages between the broker and
the client through the Google Pub/Sub servers, ensuring that direct
communication between the client and the broker does not occur.
The rendezvous nature of this channel arises from the fact that
to block the system, a censor would need to block access to the
Google Pub/Sub API, which would also cause collateral damage by
affecting all other regular applications using it.

TURN Servers [69]: The rationale for using TURN servers as a
signalling channel is to leverage the infrastructure provided by
TURN service providers to facilitate information exchange between
the broker and the client. WebRTC is a widely adopted technology
stack censors are often reluctant to block. TURN servers enable
communication between two peers when a direct WebRTC peer-
to-peer connection is impossible due to restrictive NAT configura-
tions. Consequently, some of these services (e.g., Cloudflare TURN
servers [12]) may remain accessible in certain censored regions,
allowing them to function as relays between users and brokers.
The broker and client establish a symmetric key to ensure message
confidentiality, preventing TURN servers from accessing the con-
tent of the messages. Once this symmetric key is established, the
remaining message exchange follows the signalling phase protocol
outlined in Figure 2.

C Evaluation of Animations as Video

In this section, we evaluate the effectiveness of using animations,
rather than actual video, as the carrier for our covert channel. For
both P-P and B-B connections, only the video component is ren-
dered. However, audio can also be generated automatically, as dis-
cussed in related work [52].

For B-B connections, we implemented a simple deterministic
bouncing ball animation at a resolution of 1280x720. This animation
is rendered on a web canvas and captured directly from it. Modern
browsers typically throttle background animations by reducing
rendering frequency when a page is not in focus, requiring the
browser window to remain active throughout the session. Conse-
quently, operating a browser-based client or proxy instance that
utilises animations becomes impractical for users or volunteers,
thereby hindering the system’s usability. To address this issue, both
Firefox and Chrome must be configured to turn off background
throttling. This can be done by modifying specific browser settings
either manually through the GUI or via Selenium.

For P-P connections, we replicated the same bouncing ball ani-
mation at a resolution of 1280x720. However, unlike browser-based
animations, generating frames in Pion is more complex. In our
setup, each animation frame is generated individually and sent to a
locally running FFmpeg process, which encodes the frames in real
time and transmits them back to the Pion instance. These encoded

598

frames are then transmitted as RTP packets over a WebRTC con-
nection. All of this is handled automatically on the client side. We
configure FFmpeg for real-time encoding with a target bitrate of 2
Mbps. In practice, the actual bitrate of the encoded animation we
developed is significantly lower, in the low hundreds of Kbps, likely
due to the animation’s low visual complexity.

We present the results for all connection types under the network
conditions described in Section 4.3 in Figure 12. P-P connections
consistently outperform B-B connections across all configurations
in this test, likely due to differences in the methods used to generate
the animations, which may affect the animations themselves, as
well as possibly differing handling of low-complexity visual content
by FFmpeg compared to browser-based encoders. As in Section 4.3,
both F-F and P-P connections fail to operate under a 250 kbps
bandwidth constraint in our test environment, even when stream-
ing animations. However, under 10% packet loss, F-F connections
exhibit greater stability than that reported in Section 4.3.

One of the main advantages of using animations is the wide
variety available, with many examples readily implemented online,
particularly for browsers, and the relative ease of developing new
ones. We demonstrated the use of animations using a simpler, less
visually dynamic example, featuring a small ball bouncing on a static
background. However, more dynamic animations can be developed
and used to achieve higher bitrates. Obscura can be bundled with
a diverse set of deterministic and randomized animations tailored
to different network conditions and usage scenarios, providing a
large pool of potential carriers for covert traffic.

D Video-based Fingerprints

In this section, we assess the feasibility of fingerprinting the system
based on three factors: (1) the consistent use of identical video
content across users or proxies, (2) the repeated looping of video
content, and (3) the profiling of streamed content in relation to
typical usage patterns of WebRTC-based web applications.

Recent studies have explored the use of machine learning and
related techniques to infer the nature of streamed content, particu-
larly in the context of HTTP-based streaming [29]. Although we
believe such methods could be adapted to detect whether a connec-
tion is streaming specific video content, even when only encrypted
traffic is observable (as in the case of WebRTC), we consider them
to be complex machine-learning-based attacks that may be less
feasible than other types of attacks encountered in the wild. This
approach not only falls outside the current threat model but may
also be impractical for censors to implement due to its complex-
ity. However, when only a single identical video or a fixed set of
videos is distributed to all users, a censor could potentially identify
a fingerprint in the video or set of videos based on metadata, such
as the size of the first X frames, and use this information to block
connections through a possible LTA attack. To mitigate this risk,
we develop solutions in Section 3.4 that ensure that different users
and volunteers can use distinct videos without relying on the same
content.

To illustrate how it might be possible to identify whether a
specific video is being streamed using only traffic traces, even if
the video content itself is unknown, we present the frame sizes of
one five-minute video from each of the four video profiles (sports,

Obscura

Proceedings on Privacy Enhancing Technologies 2026(1)

Chrome (C-C) Firefox (F-F) Pion (P-P)

- 400 - 400 % 400 3
§ ; 5 5 : g
¥ 300 { s| X300 8 | ¥ 300 i 1 8
- * = T o T = = = T = T T =
2 200]% = =%, *% | 3200 T T - 32003% . F7F =<
< < = ° | < - ©
o 9 8 sl 9 + 8 CH - 8] e
3 100 3 100 2 100
e e e
[}] F o

80 115 165 250 750 1500 2 5 10

RTT (ms) Bandwidth (Kbps) Packet Loss (%)

Figure 12: Performance under varying network conditions using an animation as a carrier for the covert channel. Leftmost
figure: Varying system RTT; Middle figure: Varying bandwidth constraints; Rightmost figure: Varying packet loss. Box plots

follow the order shown in the legend.

gaming, chatting, and coding) introduced in Section 4.5, for F-F,
C-C, and P-P connections in Figures 13, 14, and 15, respectively.
These connections were established using a default WebRTC web
application, rather than Obscura, with two peers of the same type
(i.e., Firefox, Chrome, or Pion). Each five-minute video was looped
three times, with dotted vertical red lines marking the start of each
loop, resulting in a total capture duration of 15 minutes per graph.
Streaming was unidirectional, with one browser tab or instance
functioning solely as the sender and the other as the receiver. All
connections were established in a localhost environment. Frame
sizes were reconstructed by capturing SRTP traffic and summing
the payload sizes of consecutive SRTP packets until a packet with
the marker bit set was encountered. Although this method may not
precisely replicate the original frame size distribution, it provides a
sufficiently accurate approximation for our analysis. Additionally,
we do not claim that this would be the method used be the censor
to try and fingerprint our system or any other system. Our aim
with these results is to demonstrate that different types of video
content produce distinct network fingerprints based on their traffic
patterns, with differences sometimes discernible even to the naked
eye. In theory, such fingerprints could be used to identify network
connections that are using a particular video. We do not claim that
censors are currently conducting this type of analysis, nor that
it could be deployed in a real-world scenario; rather, we discuss
its potential feasibility and practicality, as well as the mitigation
strategies that we have developed or could develop to address it.

The plots indicate that the four videos exhibit distinct and recog-
nisable traffic patterns, which are consistently preserved across
different browser implementations. For example, similar traffic pat-
terns are observed when the same video is streamed via Chrome
and Firefox. We hypothesise that the differences between browser-
based and Pion-based traffic traces stem from the different encoders
used, as well as the lack of real-time video adaptability in P-P con-
nections compared to the real-time video quality adaptability in
B-B connections.

Looping video content also produces observable recurring traffic
patterns. This looping behaviour is more identifiable in Pion, which
maintains fixed encoding parameters and does not adapt video
quality based on network conditions. In contrast, browser-based
connections dynamically adjust video quality, resulting in varying
frame sizes across loops. Nevertheless, the looping pattern remains
visually recognisable in the packet traces. However, we argue that
while looping may offer a fingerprinting vector when the video

599

duration is known, it poses challenges in a black-box setting. These
challenges include accurately detecting loop occurrences when the
video duration is unknown to the censor, as well as mitigating false
positives caused by naturally looping videos or intentional user
behaviours (e.g., repeatedly playing a music video during a screen-
sharing session). Consequently, the effectiveness and practicality
of this approach in real-world scenarios remain uncertain. In some
cases, where only a small set of videos is used, a censor may be able
to learn the traffic characteristics of the videos within that set and
block connections after a certain number of loops. However, if users
and volunteers use a sufficiently large and diverse set of videos
(e.g., by using different animations and video files or shaping the
frames to match the metadata characteristics of varying content,
as described in Section 3.4), we hypothesise that detecting looping
behaviour and reliably blocking connections becomes significantly
more difficult for the censor. Additionally, if only a small set of
videos is used, we assume it would be easier for the censor to
fingerprint the system based on which videos are included in that
set, rather than relying solely on looping behaviour.

Finally, it could be argued that streamed content or the duration
of streaming sessions may reflect user behaviour that deviates from
“regular” WebRTC behaviour and could serve as a fingerprinting
vector. However, we argue that these factors do not offer a reliable
or practical basis for fingerprinting. While this view may be subject
to debate, it is supported by the vast diversity of WebRTC applica-
tions, each characterised by distinct usage patterns. Establishing
a standard for “normal” usage is inherently challenging, as these
applications serve varied user demographics. For instance, Dis-
cord targets a different audience than traditional, business-oriented
video conferencing platforms. As a result, both the nature of shared
content and the duration of sessions can vary substantially across
applications. Even within the same application, different users may
exhibit distinct usage patterns. In light of this variability, we hy-
pothesise that it would be difficult for a censor to reliably classify
streamed content or session duration as anomalous without causing
significant collateral damage.

E Evaluation of Asymmetric Connection Types

In this section, we present the results for the asymmetric con-
nection types, as shown in Figure 16. By “asymmetric”, we refer
to connections with different client and proxy instances, specifi-
cally Pion-Firefox (P-F), Pion-Chrome (P-C), Firefox-Pion (F-P),

Proceedings on Privacy Enhancing Technologies 2026(1)

200000 7 .

175000 o P P]
150000
o

2
2125000

-
o
=3
=3
=3
=)

75000

Frame Size (|

50000
25000

0 5000 10000 15000 20000 25000
Frame Number

(a) Gaming Video.

70000

60000 i
50000
40000

30000

Frame Size (bytes)

20000

10000

0 5000 10000 15000 20000 25000
Frame Number

(c) Coding Video.

100000

80000

60000

40000

Frame Size (bytes)

20000

120000

100000

80000

60000

Frame Size (bytes)

40000

20000

0

0 5000

10000 15000 20000 25000
Frame Number

(b) Sports Video.

i

+

0 5000

10000 15000 20000 25000
Frame Number

(d) Chatting Video.

Figure 13: Traffic patterns based on frame sizes for a single video from each of four video profiles, streamed over a Firefox-to-

Firefox connection.

120000

100000

80000

60000

Frame Size (bytes)

40000

20000

0

0 5000 10000 15000 20000 25000
Frame Number

(a) Gaming Video.

80000]

60000 H . e

40000

Frame Size (bytes)

20000

0 5000 10000 15000 20000 25000
Frame Number

(c) Coding Video.

80000

60000

& 40000

Frame Size (bytes)

20000

0 5000

10000 15000 20000 25000
Frame Number

(b) Sports Video.

80000

60000

40000

Frame Size (bytes)

20000

0 5000

10000 15000 20000 25000
Frame Number

(d) Chatting Video.

Figure 14: Traffic patterns based on frame sizes for a single video from each of four video profiles, streamed over a Chrome-to-

Chrome connection.

Firefox—Chrome (F-C), Chrome-Pion (C-P), and Chrome-Firefox
(C-F).

Based on the results obtained using the testing methodology
described in Section 4.1, which involved downloading a file, we
hypothesise that the proxy component has a significant impact on

600

the overall system performance in asymmetric connections. This
outcome is expected because, in this experimental setup, the proxy
is primarily responsible for transmitting a substantially larger vol-
ume of encapsulated traffic to the client, specifically the file content.

Obscura

70000

60000

50000

(bytes)

40000

ize

Frame S
w
S
S
S
S

20000

10000

[5000 10000 15000

Frame Number

20000 25000

(a) Gaming Video.

60000
50000
40000

30000

Frame Size (bytes)

20000

10000

0 5000 10000 15000 20000

Frame Number

25000

(c) Coding Video.

Proceedings on Privacy Enhancing Technologies 2026(1)

120000
100000
A
< 80000
=
P
N 60000
&
)
£ 40000
b
20000
0
0 5000 10000 15000 20000 25000
Frame Number
(b) Sports Video.
160000
140000
- 120000
2
3100000
£ 80000
&
)
g 60000
e
£ 40000
20000
0
0 5000 10000 15000 20000 25000
Frame Number
(d) Chatting Video.

Figure 15: Traffic patterns based on frame sizes for a single video from each of four video profiles, streamed over a Pion-to-Pion

connection.

PF PC FP FC CP CF
Connection Type (Client-Proxy)

Figure 16: Box plots of throughput values for all asymmetric
connections.

Consequently, connections such as P-F and C-F achieve the high-
est average throughput, followed by P-C and F-C, while F-P and
C-P exhibit the lowest average throughput. In other words, within
our testbench and for this test, Firefox proxy instances consistently
outperform Chrome proxy instances, which, in turn, outperform
Pion proxy instances. This hierarchy aligns with the performance
trends observed across most tests presented in this paper.

F Pluggable Transport

In this section, we evaluate the performance of Obscura as a Tor
pluggable transport. To ensure realistic conditions, no relays are
explicitly specified in the circuit configuration, except for a Tor
bridge under our control, which operates as an Obscura Tor bridge
(VM4 in the setup described in Section 4.2). The HTTP server is
hosted directly on the dedicated server, without the use of a virtual
machine, to ensure public accessibility via the dedicated server’s
public IP address. This configuration enables the Tor exit relay to

601

reach the server. Other than that, the test bench follows the same
setup discussed in Section 4.2. We conduct tests with RTTs between
VM1 (the client) and VM3 (the proxy), set to 15 ms, 50 ms, and 100
ms, while maintaining a constant RTT of 50 ms between VM3 and
VM4. The RTT between the Tor exit node and the HTTP server is
not measured and is therefore not reflected in the x-axis values of
the graph, although it does contribute to the total RTT. Additionally,
we perform tests under varying packet loss rates of 2%, 5%, and
10%.

We present the results in Figure 17. These findings are consistent
with those presented in Section 4.3, reflecting similar trends across
the tested connection types and indicating that the Tor network
has only a minor impact on system throughput.

[Chrome (C-C) Firefox (F-F) Pion (P-P)

22.5 fg2.5
a =, a
E 2.0 I I E 2.0 I
=158 " L &g = 2 151Z ;
o °c M &9 a * I T
£1.0{8 Tl £10{8 = @
2.l s T, %
205 005 & 8
c c ° 2
0.0 F 0.0 =

65 100 150 2 5 10

RTT (ms) Packet Loss (%)

Figure 17: Results under varying network conditions for Ob-
scura in pluggable transport mode. Leftmost figure: varying
system RTT; Rightmost figure: varying packet loss. Box plots
follow the order shown in the legend.

Proceedings on Privacy Enhancing Technologies 2026(1)

P-P: 65 Kbps - 480x270 [P-P: 250 Kbps - 480%270 P-P: 500 Kbps - 1280x720
% 700 % 700 % 700
8600 .| S600 8600
¥ 500 i i 7| ¥500 2| ¥500 ° : .
‘é 400 = -‘: = ‘é 400 = ‘é_ 400 = B I
2300 s 2300 & | £300 ¥ 1 I
2200 & & & | 2200 E3 & | 200 & i P
100 - _ S100{ _ _ £100{_ _ -
F o F o F oo
80 115 165 250 750 1500 2 5 10
RTT (ms) Bandwidth (Kbps) Packet Loss (%)

Figure 18: Results for varying network conditions in P-P connections with different video encodings. Leftmost figure: varying
system RTT; Middle figure: varying bandwidth constraints; Rightmost figure: varying packet loss. Box plots follow the order

shown in the legend.

G Pion’s Tolerance to Bandwidth Constraints

To confirm that Pion’s lack of real-time variable bitrate and reso-
lution encoding limits its usability in bandwidth-constrained net-
works, we evaluated P-P connections under the varying network
conditions described in Section 4.3, using low bitrate and low reso-
lution encoded videos. The results are presented in Figure 18. We
use the same video encoded with three different parameter set-
tings: 1280x720 at 500 Kbps, 480x270 at 250 Kbps, and 480x270
at 65 Kbps, corresponding to the respective bitrates and resolu-
tions. The results show that as video encoding quality decreases
(i.e., lower bitrates and resolutions), the system becomes better
suited for bandwidth-constrained environments. However, they
also emphasise the importance of selecting appropriate encoding
parameters for both video and audio based on network conditions,
particularly bandwidth constraints, when using P-P connections.

H Differential Degradation Attacks

While testing our hypothesis on mitigating DDAs, we also con-
ducted preliminary tests on F-F and C-C connections under the
best-case and worst-case scenarios described in Section 5.3. Our
goal was to verify whether we would obtain the same results as
those reported in the referenced paper, considering that our system
includes a reliability layer, whereas Protozoa does not. However,
at the time of writing, our results showed higher throughput val-
ues than those reported in the referenced paper for the best-case
scenario, while for the worst-case scenario we got similar values.
The main differences observed in the best-case scenario pertained
to the level of degradation in system throughput compared to that
of Protozoa. For C-C connections at high resolution (1920x1080),
throughput remained relatively high up to 25% frame loss, com-
parable to our baseline. However, at frame loss rates of 45% or
higher, Obscura became unstable. For F-F connections, throughput
remained high up to 15% frame loss but became unstable at 25%,
exhibiting highly variable throughput and becoming unusable at
45%. At lower resolutions (426x240), C-C connections remained
usable, with throughput values relatively close to the baseline up
to 30% frame loss. At a 50% frame loss rate, the connection began
to show instability, with throughput fluctuating between high and
low values and at 70%, the throughput dropped to approximately 2
KB/s. For F-F connections, at 426x240 resolution, the connection
was usable with relatively high throughput up to 20% frame loss but
became unstable at 30%, exhibiting high throughput variability. It
degraded further at 50% and was unusable at 70%. To contextualise,

602

at the time of writing, the authors reported that Protozoa achieved
an average throughput of 7 KBps for 15% frame loss using Chrome
at a resolution of 1920x1080. For a resolution of 426x240 and 30%
frame loss, Protozoa achieved a throughput of 10.4 KBps.

In the worst-case scenario, the results observed for both C-C
and F-F connections were similar to those reported in the original
paper and considerably worse than in the best-case scenario. This
is expected, as the packet drop rate is higher. Since all packets from
X% of the frames are dropped (where X denotes the percentage of
frame loss), rather than only a single packet per frame, more covert
data is lost, resulting in lower throughput values compared to the
best-case scenario. For example, in a video with 10 frames where
each frame contains an average of 5 packets, dropping 50% of the
frames in the worst-case scenario would result in an average of 25
dropped packets out of 50, excluding retransmissions, whereas in
the best-case scenario, it would result in an average of 5 dropped
packets.

We hypothesise that the discrepancies between our best-case
scenario results and those reported by the authors in [59] may stem
from three primary factors. First, our system includes a reliability
layer, which is absent in Protozoa. This layer is configured for faster
retransmissions, potentially improving resilience to attacks by en-
abling quicker detection and recovery from packet loss. Second,
differences in the experimental setup may also account for the ob-
served variation. Specifically, we use a different censorship evasion
system, a custom-developed WebRTC application based on the de-
fault WebRTC implementations [54] (in contrast to the authors’ use
of AppRTC in [59]), and a distinct test environment. Additionally,
based on our interpretation of the paper, the authors appear to use
a specific, unmodified commit of Protozoa [59]. Inspection of that
commit revealed that Protozoa depends on a Chromium version
from 2020 [13], suggesting that discrepancies in browser versions,
given the substantial version gap, may have influenced the results,
since we used the most recent versions of both Chrome and Firefox
available at the time of writing. Third, since the attack code is not
publicly available, our implementation may differ from that of the
original authors. Consequently, what we define as the best-case
scenario may not correspond to the attack the authors actually per-
formed. Instead, the authors may have considered the worst-case
scenario, or something closer to it, which is why we also tested
the worst-case scenario in our experimental evaluation. We also
observed the WebRTC retransmission mechanism activate, which
we believe helped the system maintain higher functionality at lower

Obscura

frame loss rates, particularly in the best-case scenario. However, it
is unclear whether the authors also marked retransmitted packets
for dropping during the DDAs, as we did in our implementation of
the attack.

In conclusion, P-P connections demonstrate greater resilience
to DDAs than B-B connections, particularly under the worst-case
scenario. This trend persists, though less pronounced, in the best-
case scenario, where B-B connections require higher frame loss
rates for the attack to significantly degrade throughput or induce
instability, whereas lower frame loss rates are enough to cause
instability or render the system unusable in the worst-case scenario.

603

Proceedings on Privacy Enhancing Technologies 2026(1)

Thus, we conclude that P-P connections are the most viable option
to resist DDAs across all tested scenarios; however, their use shifts
Obscura’s defence against DTLS fingerprinting from a proactive
to a reactive strategy. This shift occurs because Pion instances
do not leverage native browser fingerprints, requiring frequent
updates, patches, or alternative methods to replicate them whenever
vulnerabilities or new fingerprints are identified in Pion, similar to
Snowflake. Nonetheless, we argue that, depending on the attack
implementation and system configuration, B-B connections may
still be a usable option against DDAs, particularly in the best-case
scenario.

	Abstract
	1 Introduction
	2 Threat Model and Design Goals
	2.1 Threat Model
	2.2 Design Goals

	3 Obscura
	3.1 Signalling and Rendezvous Channels
	3.2 Protocol Layering
	3.3 Data Encapsulation
	3.4 Obtaining the Video

	4 Experimental Evaluation
	4.1 Evaluation Goals and Metrics
	4.2 Test bench
	4.3 Varying Network Conditions
	4.4 Varying Video Parameters
	4.5 Varying Video Profiles

	5 Security Analysis
	5.1 Proxy- and Packet Manipulation-Based Attacks
	5.2 System Fingerprintibility
	5.3 Differential Degradation Attacks

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Implementation
	B Rendezvous Channels
	C Evaluation of Animations as Video
	D Video-based Fingerprints
	E Evaluation of Asymmetric Connection Types
	F Pluggable Transport
	G Pion's Tolerance to Bandwidth Constraints
	H Differential Degradation Attacks

